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Abstract

In this paper, the authors present a novel way to classify con-
tact objects using audio signals in a highly cluttered canopy
environment for agriculture manipulation. Rather than solely
relying on visual data to represent the dense canopies as ob-
stacles, we investigate whether robot can observe latent prop-
erties about safe interactions such as brushing against leaves
using audio signals. We developed a hand-held device to
facilitate the data collection process to distinguish between
three classes: leaf, twig, trunk. Of the time domain, frequency
domain, and cepstrum representations (MFCC), MFCC com-
parisons showed the most distinguishable patterns across the
classes. The provided results present a promising direction to
expand this research to leverage deep learning networks to
consistently classify the extracted audio inputs that can lead
to safe and robust agriculture manipulation.

Introduction

With increasing world population and rapid decrease in
available arable land, there is an urgent need to enhance
agriculture productivity. While there has been growing ef-
forts to adopt robotics and Al-enabled automation in agri-
culture, many existing approaches focus predominantly in
monitoring but not on harvesting. Given that fruit harvest-
ing is a labor-intensive task that constitutes significant por-
tion of the production costs (Whitney 1995), and there are
growing labor shortages on the field (Sario 1993), introduc-
ing robots in this trend suggests to be a cost-effective so-
lution. However, robot manipulation in a heavily cluttered
environment where picking fruits in dense canopies can be
an extremely challenging problem. Traditional robot manip-
ulation approaches, commonly applied in warehouses and
factories, often only use visual data to model the robot’s sur-
roundings as rigid body objects with which the robot must
avoid colliding. This would not transfer well in cluttered
canopies because such approach would be too restrictive to
generate feasible paths.

Rather than relying only on visual data to model the en-
vironment, we propose to also utilize vibrotactile or audio
signals obtained from contact microphones attached to the
robot’s end-effector to classify the obstacle the robot has
come in contact with. Our key insight is that leafs, twigs,
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Figure 1: Robotic manipulation in cluttered agricultural en-
vironments. Multi modal sensing inputs with deep learning
network for classifying type of collision events.

and trunks have different audio responses upon contact. As
leaves are more permeable obstacles than twigs or trunks,
the robot can use the audio contact classification to supple-
ment its original trajectory. Combining both visual and audio
signals provides intelligent approach for the robot to obtain
latent information about the environment and ultimately to
robust manipulation even in cluttered and occluded settings.

Related Works

There has been numerous studies on tackling various aspects
of robotic fruit harvesting. Common areas of focus are robot
perception for fruit counting (Yandun, Silwal, and Kantor
2020) or motion planning to pick fruits (Willigenburg, Hol,
and Henten 2004), (Cao et al. 2019). Many of the manipu-
lation planning approaches, however, drastically reduce the
model complexity of the interacting environment by ignor-
ing obstacles that are not fruits. The underlying assumption
is that leaves and twigs don’t drastically affect the robot
trajectory. This assumption works for only limited cases of
well-pruned canopies or where fruits are clearly exposed for
picking but performs poorly in realistic field environments
where excessive forces could damage the plants.

(Nemlekar et al. 2021) explicitly included leaves as
permeable objects with low weights in their RRT-based
path planner. However, their perception pipeline to distin-
guish permeable and non-permeable objects required time-
consuming human intervention to label all the leaves from
the generated point cloud.
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Figure 2: Multi modal sensor suite that can be hand-held in
order to facilitate data collection process.

Instead of relying on visual data for classifying contact
properties, audio signals can provide distinguishable fea-
tures as shown in (Zhang et al. 2019), (Sawhney et al. 2020).
These studies resemble this paper most closely in that con-
tact microphones are utilized to distinguish between objects
of interests with aid of a deep learning network. However,
these works focus on significantly more structured data col-
lected from cutting tasks rather than the cluttered structures
of plant canopies. Lastly, as deep learning network perfor-
mance benefits from a prolific dataset, the authors develop
a hand-held device to facilitate the data collection process
similar to studies in (Song et al. 2020).

Data Collection

Pilot data for contact interaction was captured at UMass
Farm on University of Massachusetts Amherst Center for
Agriculture with the UR5e robot on a mobile base. As safely
collecting prolific data with the robot on the field is difficult,
the authors developed a hand-held multi-modal sensor suite
as shown in Fig. 2 to facilitate data collection process. The
sensor suite has four piezo contact microphones evenly dis-
tributed on a contact plane of the device. In addition, the de-
vice captures RGB images from two Intel Realsense D435
cameras and Force/Torque readings from the FT24252 sen-
SOT.

With the hand-held device, we collected data for various
leaf, twig, and trunk types across campus of Carnegie Mel-
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Figure 3: Sensor collection on various contacts
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Figure 4: Audio signal response of contacting against trunk
from each of the microphone (top,bot,left,right) and F/T sen-
sor

lon University. We used mainly pushing motions to move the
device into the plants with some lateral motion.

As the purpose of this work is to classify various contact
objects according to the audio input, we focus on time inter-
vals of the data where distinct brushing or rustling sounds
are made upon contact. As shown in Fig. 3, upon such con-
tact time intervals, we observe that there are characteristic
visual features distinct for each class. The aim of the follow-
ing sections is to also find similar distinctive audio patterns
for each class upon contact.

Data Processing

Audio signal from the microphone arrays in the time domain
provides amplitude of contact sound over time. When plot-
ted with the Force/Torque sensor data as shown in Fig. 4, we
observe their responses are shared along the same time dura-
tion, indicating periods of contact interaction. The low-cost
piezo microphones used are high impedance and weak sig-
nal that requires to be amplified through the UMC404HC au-
dio interface with 24-bit/192kHz resolution converters. We
manually tune the audio input gain to mitigate signal clip-
ping while still detecting minute rustling signals. However,
as both the audio amplitude only provide signal intensity
over time, the data is limited and difficult to classify between
various object classes. We therefore want to extract audio
features in the frequency domain where vibration frequen-
cies detected would be distinctive between rustling of light
leaves as opposed to heavier scratching noises of thicker
branches.

To analyze in the frequency domain, we first filter out
dead-space in the time domain in order to best extract useful
audio features after applying the short time fourier transform



signal Envelope, Threshold = 0.1

Figure 5: Envelope of the audio signal to filter out dead-
space in the time-amplitude plot
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Figure 6: Filtered audio signal extracted for each of the
classes

across extracted time intervals. To do so, a rolling window
that averages the absolute mean of the audio signal is used to
create a signal envelope as shown in Fig. 5. Once the signal
envelope is created, we can apply an amplitude threshold to
smoothly extract dominant audio signals without distorting
the audio signal. With the dead-space filtered out, we can
then compare the spectrograms of contact sounds among the
various objects. As seen in Fig. 7, we can observe the nu-
ance differences in the spectrograms as rustling leaves dis-
play lowered energy with continuous signals compared to
the high energy with impulse-like signals for the striking
twigs upon contact.

Results

The current nascent stage of the dataset is composed of three
different classes (leaf, twig, trunk), three different type vari-
ations among each classes, four trials of various contact mo-
tions, and for four individual microphones, resulting in a
total of approximately 2880 seconds of audio signals. Al-
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Figure 7: Spectrogram comparison of different classes

though the four audio channels could provide spatial infor-
mation about the contact position, for this work, we focus
only on one of the audio channel in order to classify contact
objects.

We compare audio signals in three different signal rep-
resentations to distinguish between the object classes: time
domain, frequency domain, and Mel Frequency Cepstrum
Coefficients (MFCC). As seen in Fig. 6, contact with leaves
are mainly rustling motions that result in continuous signals
with lower amplitude. Contact with twigs, on the other hand,
are mainly snapping motions (like releasing a spring, we are
not damaging the plants) that result in jagged signals with
high amplitude. Contact with trunks are ”thumps” or signals
high amplitude but with longer duration than snapping as
seen with twigs. We can more clearly observe this described
pattern in the frequency domain as shown in the Spectro-
gram comparison shown in Fig. 7. As we are ultimately in-
terested in online classification using short duration of audio
signals, we use a more dense representations of MFCC.

Across the time duration of 0.1 second, we represent the
frequency and energy spectrum into 12 mel coefficients, as
shown Fig. 8. As contact sounds are mostly dominated in
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Figure 8: Audio features represented as MFCC plots for for
different classes



the low frequency, we see the lower coefficints displaying
the strongest responses similarly across all classes. How-
ever, we can still visually observe unique patterns across
the extracted audio features during contact. As the MFCC
responses of the extracted audio signals are visually distin-
guishable, the authors hypothesize that a classifier could be
trained to distinguish between these different types of sig-
nals for online contact classification. We leave the training
of this classifier to future work.

Discussion

Relying only on vision sensing for tasks such as fruit har-
vesting in dense canopies will struggle with occlusions and
observing latent properties about whether the robot can
safely brush against the environment. As such, in this paper,
the authors present a novel way to classify contact objects
using audio signals in a highly cluttered canopy environment
for agriculture manipulation.

To investigate how audio features can help classify con-
tact information, we developed a hand-held device to fa-
cilitate the data collection process. From the preliminary
dataset, we analyzed audio signals to distinguish between
three classes: leaf, twig, trunk. Of the time domain, fre-
quency domain, and MFCC representations, MFCC com-
parison showed the most distinguishable patterns across the
classes.

The provided results present a promising direction to ex-
pand this research to leverage deep learning networks to con-
sistently classify the extracted audio inputs. Depending on
the reliability of the feature input and network performance,
future works could utilize this research in various ways.

For example, when the robot is collecting data in the field,
The audio classification could help to automatically label the
contact data provided and therefore simplify the robot’s mo-
tions planning. In addition, after the dataset is augmented
with field data with the robot, audio classification could be
used to extract more information about the nature of colli-
sion, and adjust the trajectory accordingly. In this manner
we plan to increase the robustness and the safety of the arm
while interacting with plants. By the time of the workshop,
the authors intend to augment the preliminary dataset and
make it available to public.
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