
Published as a conference paper at ICLR 2025

AIOLI: A UNIFIED OPTIMIZATION FRAMEWORK FOR
LANGUAGE MODEL DATA MIXING

Mayee F. Chen1⋆, Michael Y. Hu2⋆, Nicholas Lourie3, Kyunghyun Cho2,3,4, Christopher Ré1
1 Computer Science Department, Stanford University; 2 Center for Data Science, NYU;
3 Computer Science Department, NYU; 4 Prescient Design, Genentech

ABSTRACT

Language model performance depends on identifying the optimal mixture of data groups
to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to
efficiently learn mixture proportions, ranging from fitting regression models over train-
ing runs to dynamically updating proportions throughout training. Surprisingly, we find
that no existing method consistently outperforms a simple stratified sampling baseline
in terms of average test perplexity. To understand this inconsistency, we unify existing
methods into a standard framework, showing they are equivalent to solving a common
optimization problem: minimize average loss subject to a method-specific mixing law—
an implicit assumption on the relationship between loss and mixture proportions. This
framework suggests that measuring the fidelity of a method’s mixing law can offer
insights into its performance. Empirically, we find that existing methods set their mixing
law parameters inaccurately, resulting in the inconsistent mixing performance we ob-
serve. Using this insight, we derive a new online method named AIOLI, which directly
estimates the mixing law parameters throughout training and uses them to dynamically
adjust proportions. Empirically, AIOLI outperforms stratified sampling on 6 out of 6
datasets by an average of 0.27 test perplexity points, whereas existing methods fail to con-
sistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical
setting where proportions are learned on shorter runs due to computational constraints,
AIOLI can dynamically adjust these proportions over the full training run, consistently
improving performance over existing methods by up to 12.012 test perplexity points.

1 INTRODUCTION

It is important to determine what data to train on for a language model (LM) to acquire a range of
capabilities, from generating code to understanding scientific literature and conversing with users (Albalak
et al., 2024; Longpre et al., 2024; Li et al., 2024). To achieve this, practitioners mix data from various
groups (such as code files, scientific papers, and chat logs) in specific proportions to compose an overall
training dataset—a procedure known as data mixing. Identifying the optimal mixture proportions is critical
to LLM performance. However, a brute-force trial-and-error search over the proportions is computationally
expensive, requiring many training runs.

Recent work introduces two types of data mixing algorithms that learn mixture proportions: offline and
online methods. Offline methods conduct multiple training runs with varying proportions, fit a regression
model to predict performance, and use this model to determine the optimal static mixture (Ye et al., 2024;
Liu et al., 2024). Online methods adjust the mixture proportions dynamically throughout training using
information from the model, such as its loss and gradients (Chen et al., 2023; Fan et al., 2024; Xie et al.,
2023a; Albalak et al., 2023). All mixing methods require at least one training run to learn the proportions
but are more efficient than a brute-force search.

Given the wide range of methods available, it is important to determine which ones are effective. However,
when we evaluated existing methods, we found that no method consistently outperformed stratified
sampling—a simple baseline that uniformly mixes groups and requires zero extra training runs—across
all sets of data groups in terms of average test perplexity (Table 2). This surprising outcome suggests that
all existing methods suffer from some common weaknesses. To make progress in data mixing, we identify
three objectives: 1) improve our understanding of the underlying assumptions of existing methods, 2)
assess the fidelity of these assumptions in practice to better understand performance, and 3) apply our
insights to develop principled new data mixing methods.

⋆Equal contribution. Contact: mfchen@stanford.edu, michael.hu@nyu.edu

1

mfchen@stanford.edu
michael.hu@nyu.edu

Published as a conference paper at ICLR 2025

Our method: Aioli 🧄

minimizep∈△T×m

m

∑
i=1

LT+1
i (pT)

s.t. Lt+1(pt) lin= σ(Atpt)

Unified Framework:  
Linear Mixing Optimization

̂ADoReMi ̂ADoGE ⋯ ̂ASkill-it
+

Analyzing fidelity of existing methods 1 2 3

Data mixtures p for training language models

Lo
ss

 o
n

Ar
Xi

v

Proportion of ArXiv

Lo
ss

 o
n

St
ac

kE
xc

ha
ng

e

Proportion of StackExchange

p*
̂pAioli

̂pexisting

}Estimate ̂AAioli

Training steps

Av
er

ag
e

Lo
ss

A⋆(fitted) ̂A(existing)

Figure 1: Left: existing methods can be expressed in a unified optimization framework, in which they im-
plicitly assume a linear or log-linear loss-proportion relationship. Center: the (log)-linear parameterizations
are well-specified, but existing methods set their parameters incorrectly. Right: AIOLI, an online mixing
method that more accurately estimates the parameters that capture the true loss-proportion relationship.

In this paper, we improve our understanding of data mixing methods by showing that many existing
methods can be expressed in a unified optimization framework, which we call Linear Mixing Optimization
(LMO) (Section 3). These methods are equivalent to solving an optimization problem that sets proportions
to minimize the average loss per data group, subject to an implicit method-dependent mixing law—an
assumption relating loss per group and mixture proportions. We find that all current mixing laws share
the same parameterization: for training round t from 1 to T ,

Lt+1(pt)
lin
=σ(Atpt),

where pt ∈ △m (the simplex) are mixing proportions over m given data groups at time t,
Lt+1(pt) : △m → (R+)m are the losses per group at the next timestep, At ∈ Rm×m is a param-
eter matrix, σ = Id or exp, and lin

= means equal up to linear transformation. Existing offline methods
assume a static (T =1) log-linear parameterization of the mixing law, while online methods assume a
linear dynamic mixing law. All methods set the parameters of their mixing laws differently (Table 1),
and offline methods solve the optimization problem directly while online methods solve it greedily using
exponentiated gradient descent. Our framework reveals the underlying assumptions of each method
in terms of the mixing law’s parameterization, the values of the parameters, and how the optimization
problem is solved. Furthermore, the fidelity of the mixing law and solving strategy dictates the optimality
of the method, providing us with a new tool for understanding data mixing methods.

Applying the LMO framework, we test the fidelity of existing methods’ assumptions, examining if they
hold in practice (Section 4). Both the log-linear static and linear dynamic parameterizations capture the
true loss-proportion relationship across datasets, achieving an average of 0.0005 MSE and 0.969 R2. We
then show that although existing mixing laws are well-specified, methods can set their parameters (At)
inaccurately, causing poor performance. We compare each method’s parameters to the optimal parameters,
which we approximate by fitting the mixing laws to training runs. We find that the method’s parameters
can differ significantly from the optimal parameters, and the extent of these deviations is correlated with
method performance relative to stratified sampling (Figure 3), helping explain our initial observations.
Finally, we validate the assumptions used in solving the optimization problem, finding that the greedy
approximation in online methods is a reasonable proxy for the full objective. Our analysis shows that
existing methods’ parameterizations and solving strategies are of high fidelity, but their parameters are not.

To validate these insights, we develop AIOLI, a simple new online data mixing method derived from the
LMO framework (Section 5). Unlike existing online methods, AIOLI directly estimates the parameters At

from the current training run by fitting the mixing law on the history of losses and dynamic mixture propor-
tions so far. AIOLI is thus able to dynamically adjust proportions without requiring any extra training runs.

We evaluate AIOLI in two settings by training 160M models on various combinations of data sources from
SlimPajama (Soboleva et al., 2023) (Section 6). First, we compare AIOLI to existing data mixing methods
and find that AIOLI consistently outperforms stratified sampling on all 6 datasets, by an average of 0.274
and up to 0.439 points in test perplexity. On the other hand, existing data mixing methods do worse than
stratified on at least one dataset by up to 6.9 perplexity points, despite using extra training runs. As we ex-
pect, the parameters of AIOLI are also more consistently close to the optimal parameters (Figure 2). Second,
we consider a scenario with limited additional computational resources, in which practitioners cannot run ex-
periments for learning mixture proportions for the full training duration. In this setting, mixture proportions
learned on a shorter run may not perform well on the longer final run. We find that using AIOLI to dynam-

2

Published as a conference paper at ICLR 2025

ically adjust these learned proportions throughout the final training run can improve performance by an
average of 1.202 perplexity points in 28 out of 30 cases, compared to using the learned proportions directly.

2 PROBLEM SETUP

We formalize the data mixing problem and establish notation. In data mixing, we have m data groups
of text, such as GitHub, BooksCorpus, and arXiv. We are given train, validation, and test sets for each
data group, which we denote as Di

train,D
i
val,D

i
test for the ith group. Define Dtrain={D1

train,...,D
m
train}, and

similarly define Dval and Dtest.

Data & Mixing. During training, we show the model a total ofN examples fromDtrain overS training steps.
To express how data proportions can change throughout training, we divide training into T equal rounds.
Each round t uses a mixture proportion from the probability simplex: pt=[pt1,...,p

t
m]∈△m. Static mixtures

use only a single round (T=1): p=
(
p1
)
, while dynamic mixtures use several (T >1): p=

(
p1,...,pT

)
.

Model & Loss. Let f(p,t) refer to the language model, f , at the beginning of round t where the model
has been trained on data sampled using mixture proportions p1,···,pt−1 so far. Given a model f , we can
compute its loss on each group using the training data, Ltrain(f)=(Ltrain,1(f),...,Ltrain,m(f)), and similarly
with the validation, Lval(f), and test data, Ltest(f). In this notation, the loss at the end of training can be
expressed as L(·)(f(p,T+1)). When the f being referred to is obvious, we simply write Lt

(·)(p), and
for static mixtures we drop the superscript: L(·)(p).

Data Mixing Problem. Given a set of data groups, an LM f to train for S steps with N samples, and
T rounds of training (i.e., whether we use static or dynamic proportions), we aim to determine the p that
minimizes the total test loss across groups: minimize

p∈△T×m

∑m
i=1L

T+1
test,i (p).

This objective aims to produce a trained model that does well on many data groups, which can serve
as a proxy for downstream performance. However, without assuming additional structure on LT+1(p),
this problem can only be solved with a brute-force search over p, which requires training many different
models. In the next section, our LMO framework imposes a constraint on Lt+(p) that allows many
existing methods to be expressed as approaches to solving this problem.

3 A UNIFIED OPTIMIZATION FRAMEWORK FOR DATA MIXING

We introduce the LMO framework by stating the general optimization problem (Section 3.1). Then, we
show how this framework can express several existing methods (Section 3.2, 3.3), with a summary of
our insights regarding these methods in Section 3.3.3.

3.1 LINEAR MIXING OPTIMIZATION (LMO) FRAMEWORK

The LMO framework consists of an optimization problem that is equivalent to the data mixing minimization
problem (Section 2), subject to an additional constraint:

minimizep∈△T×m

m∑
i=1

LT+1
val,i (p) (1)

s.t.Lt+1
val,i(p)=cti+btiσ

(m∑
j=1

−At
ijp

t
j

)
∀i∈ [m],t∈ [T] (2)

for some At,bt,ct, and σ. At ∈ Rm×m is a matrix that encodes cross-group interactions, where At
ij

intuitively describes how much training on group j at t impacts group i’s loss. bt,ct∈Rm are group-specific
parameters. σ :R→R is either the identity function (Id) or the exponential function (exp). We refer to
the constraint in (2) as a mixing law that specifies the assumed relationship between loss and proportions.

There are three components of this problem that need to be specified to yield a way to set p: a) the
parameterization of the mixing law (T , σ), b) the values of the parameters (At,bt,ct), and c) how to solve
the problem. We express existing methods in LMO by specifying these components.

3

Published as a conference paper at ICLR 2025

Method 1) Mixing Law Parameterization 2) Parameters 3) Solver

DML Lval,i(p)=ci+biexp
(∑m

j=1−Aijpj
)

Fit from ≥m+1 training runs Direct
Skill-It Lt+1

val,i (p)=Lt
val,i(p)−bt

∑m
j=1A

t
ijp

t
j At

ij =Lt
val,i(p)(L

T+1
val,i (1j)−L1

val,i(1j))/L
1
val,i(1j) EGD

DoReMi Lt+1
val,i (p)=Lt

val,i(p)−bt
∑m

j=1A
t
ijp

t
j At

ii=min{Lt
train,i(p)−Ltrain,i(fref),0} EGD

DoGE Lt+1
val,i (p)=Lt

val,i(p)−bt
∑m

j=1A
t
ijp

t
j At

ij =⟨▽Lt
val,i(p),▽L

t
train,j(p)⟩ EGD

AIOLI Lt+1
val,i (p)=Lt

val,i(p)−
∑m

j=1A
t
ijp

t
j Fit from history of Lval and p EGD

Table 1: Summary of how existing methods and AIOLI are expressed in the LMO framework (1).

3.2 PRELIMINARIES FOR UNIFYING METHODS

We discuss preliminaries before presenting existing methods and explaining how they can be expressed
in the LMO framework. First, we formally define what it means for a method to be expressed in the LMO
framework. Then, we present a result that allows us to convert between linear dynamic mixing laws and
a way to set p, which we will to use to express online methods in our framework in Section 3.3.

Definition 1. We say that a data mixing method can be expressed in the LMO framework if its exact
algorithm—how it sets proportions p and trains model f in terms of p—can be equivalently constructed
by specifying a mixing law and way of solving the LMO optimization problem.

This definition allows us to cast existing methods as a way of solving the LMO optimization problem
based on how they set p and train according to p, even if the methods themselves are not originally
designed to minimize average test loss.

Converting mixing laws into update rules. When T >1, a natural way to solve the LMO optimization
problem is via exponentiated gradient descent (EGD) (Kivinen & Warmuth, 1997; Arora et al., 2012),
which updates pt greedily while ensuring that it remains on the probability simplex. The following lemma
presents the EGD update rule for the LMO optimization problem when σ=Id.

Lemma 1. The EGD update rule for (1) subject to Lt+1
val,i(p)=cti−bti

∑m
j=1A

t
ijp

t
j ∀i∈ [m] is

pt+1
j =

1

Zt
·ptjexp

(
η

m∑
i=1

btiA
t
ij

)
∀j∈ [m], (3)

where η>0 is the step size and Zt is a normalizing constant such that pt+1
j ∈△m.

This lemma shows how to adjust pt dynamically to solve the LMO optimization problem. Notably, this
update rule is defined in terms of the mixing law parameters, At and bt. This gives us a way to convert
between how a method sets p and the implicit assumption it makes in the mixing law.

3.3 UNIFYING EXISTING METHODS

We discuss four existing data mixing methods and express them as specific instances of the LMO
framework. A summary of our insights is provided in Section 3.3.3 and Table 1. In Appendix B.1, we
comment on how several other online and offline data mixing methods are related to our framework, and
all proofs for this section are in Appendix B.2.

3.3.1 OFFLINE METHODS

Data Mixing Laws (DML). Ye et al. (2024) propose an offline method using a static mixing law (T=1):
Lval,i(p)=ci+biexp(

∑m
j=1−Aijpj) for i∈ [m], with A,b,c learned by sweeping training runs over static

proportions (≥m+1 runs to avoid being underdetermined). They select the proportion that minimizes
the predicted validation loss. This law can be derived from (2) with σ=exp, showing that LMO with
a) log-linear static mixing law, b) fitted parameters, and c) direct computation of p can express DML.

3.3.2 ONLINE METHODS

We provide a colloquial description and an algorithmic description of the following three online methods.
Then, in Theorem 1 we demonstrate how they all are expressed in LMO using a linear dynamic mixing
law, the EGD update rule, and method-specific mixing law parameters.

4

Published as a conference paper at ICLR 2025

Skill-It. Chen et al. (2023) is an online method motivated by curriculum learning that dynamically adjusts
mixture proportions. Data group interactions are expressed in a “skills graph,” where each edge denotes
how much the loss on one group changes when trained on another. The skills graph is learned in advance
using m training runs and then used to update proportions pt throughout training.

Concretely, the skills graph matrix ASG has entries ASG
ij =(LT+1

val,i (1j)−L1
val,i(1j))/L

1
val,i(1j) indicating

the relative decrease in loss on group i when training a model on group j only. This is used in the
Skill-It update rule, pt+1

j ∝ptjexp(η
∑m

i=1A
SG
ij L

t
val,i(p)) for all j∈ [m] and learning rate η>0. This rule

determines pt+1, which is then used to sample Dtrain for training f in the next round.

DoReMi. Xie et al. (2023a) is an online method that applies ideas from distributionally robust optimization
to data mixing, where the training objective minimizes the worst-group excess loss over a model trained
with stratified sampling. pt is updated dynamically to minimize this excess loss and then averaged for
the final run. DoReMi requires two additional runs to learn a static p.

Concretely, let fref = f(Unif(m), T + 1) denote a “reference model” that is first trained using
stratified sampling. Then, a “proxy model” uses dynamic proportions according to the update rule
pt+1
j ∝ptjexp(ηmax{Lt

train,j(p)−Ltrain,j(fref),0}) for all j∈ [m] and step size η>0. This pt+1 is used
to weight the training objective, such that the proxy model is updated to minimize

∑m
i=1p

t+1
i Ltrain,i(f)

at the next timestep. The averaged static proportions 1
T

∑T
t=1p

t are then used in the final run.

DoGE. Fan et al. (2024) is an online method that solves a bi-level optimization problem in which pt is
updated to minimize the average training loss at each step. By using a first-order Taylor approximation
of the training loss, pt is updated using the gradient of each data group. The dynamic proportions are
then averaged for the final run. DoGE requires one additional run to learn a static p.

Concretely, a proxy model is trained using pt+1
j ∝ ptjexp(η⟨▽Ltrain,j(f

t),
∑m

i=1▽Lval,i(f
t)⟩), and f is

updated to minimize the training loss weighted by pt, similar to DoReMi. The averaged static proportions
1
T

∑T
t=1p

t are used in the final run.

Framework expression. All three online methods use an update rule pt+1
j ∝ptjexp(·), which is similar

to (3). This provides intuition for our main theorem, which expresses these methods in LMO.
Theorem 1. Define the following parameters for each method:

• At,Skill-It∈Rm×m, where At,Skill-It
ij =Lt

val,i(p)(L
T+1
val,i (1j)−L1

val,i(1j))/L
1
val,i(1j) for all i,j∈ [m],

• At,DRM∈Rm×m, where At,DRM
ii =min{Lt

train,i(p)−Ltrain,i(fref),0} and At,DRM
ij =0 for i≠j,

• At,DoGE∈Rm×m, where At,DoGE
ij =⟨▽Lt

val,i(p),▽L
t
train,j(p)⟩ for all i,j∈ [m].

Instantiating the LMO framework (1) with a) a linear dynamic mixing law Lt+1
val,i(p) =

Lt
val,i(p) − bt

∑m
j=1 A

t
ijp

t
j, b) parameters At = At,Skill-It/DRM/DoGE, and c) EGD to solve for p

allows for us to express Skill-It, DoReMi, and DoGE, respectively.

3.3.3 SUMMARY OF LMO FRAMEWORK INSIGHTS

Table 1 summarizes how existing methods are expressed in the LMO framework. LMO reveals the assump-
tions each method makes through how the components of the framework are specified. First, all mixing
laws are either linear or log-linear. Second, the mixing laws differ in the values of the parameters used. For
example, Skill-It’s At is the current loss times a static skills graph matrix, while DoReMi’s At is diagonal.
Third, offline mixing methods solve for p directly while online mixing methods use EGD, which uses a
greedy approximation. If the mixing law and solving strategy assumptions hold true in practice, then the
method yields optimal mixture proportions. In the next section, we study the fidelity of these assumptions.

4 ANALYZING FIDELITY OF EXISTING METHODS WITH THE LMO FRAMEWORK

We examine the fidelity of the assumptions made by existing methods in terms of the three components of
the LMO framework: a) the mixing law parameterization, b) values of the mixing law parameters, and c)
how to solve the optimization problem for p. After providing experiment details (Section 4.1), we discuss
these three components in order (Section 4.2-4.4).

5

Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of arxiv

10 1
Lo

g
(L

os
s

- c
) o

n
ar

xi
v

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of stackexchange

10 1

100

Lo
g

(L
os

s
- c

) o
n

st
ac

ke
xc

ha
ng

e

Log-linear static mixing law on Arxiv/StackExchange

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of arxiv

2.8

2.9

3.0

3.1

3.2

3.3

N
ex

t-
st

ep
 L

os
s

on
 a

rx
iv

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of stackexchange

3.4

3.6

3.8

4.0

N
ex

t-
st

ep
 L

os
s

on
 s

ta
ck

ex
ch

an
ge

Linear dynamic mixing law on Arxiv/StackExchange

Figure 2: Left: pi vs log(Lval,i(p)−ci) with fitted static log-linear mixing law. Right: pti vs Lval,i(p) with
fitted linear dynamic mixing law. Colors represent random seeds (left) and initial p0∈P (right, blue is
0.7,0.3). Both laws fit the true loss-proportion relationship well.

4.1 EXPERIMENT DETAILS

Data settings. We use a sampled version of SlimPajama (Soboleva et al., 2023; Yoon, 2023), a
pre-processed version of the RedPajama pretraining dataset (Together.ai, 2023). SlimPajama consists
of 7 data groups: ArXiv, Books, CommonCrawl, C4 (Raffel et al., 2019), Github, StackExchange,
and Wikipedia. To develop a fine-grained understanding of data mixing, we create 6 settings by
extracting combinations of these groups. We study three settings with m = 2: Arxiv/Stackexchange,
Github/C4, and Book/StackExchange. We study two settings with m=3: Arxiv/Book/StackExchange and
CommonCrawl/Github/Wikipedia. Finally, we study mixing over the full SlimPajama dataset with m=7.

Models. We train 160M parameter GPT-style decoder-only LLMs with batch size 8 and context length
2048. For m=2,3, we train for 5K steps, and for m=7, we train for 40K steps.

Training sweeps. To assess the true loss-proportion relationship and compare it to the assumptions made
by existing methods, we conduct training sweeps over different mixture proportions, denoted as P. For
m=2, we set P={[0.1,0.9],[0.2,0.8],...,[0.9,0.1]}. For m=3 and 7, we set P equal to 10 p’s and 40
p’s drawn from the Dirichlet distribution with α=1.0 and 1.5, respectively.

4.2 MIXING LAW PARAMETERIZATION

We examine whether existing methods’ mixing law parameterizations—log-linear static and linear
dynamic—capture the true loss-proportion relationship. By empirically fitting them to loss-proportion
pairs, we find that both parameterizations are indeed well-specified. Full results for both mixing laws
are in Table 5 in Appendix C.1. We discuss the generality of these parameterizations across training scales
and other datasets, as well as higher-order parameterizations, in Appendix C.1.1.

Setup. For the log-linear static mixing law, we study if there exists A,b,c such that Lval,i(p) can be
expressed as ci+biexp(

∑m
j=1−Aijpj) for all i∈ [m]. We fit the parameters using full training runs on

P. For the linear dynamic mixing law, we study if there exists At such that Lt+1
val,i(p) can be expressed as

Lt
val,i(p)−

∑m
j=1A

t
ijp

t
j, for all i∈ [m] (bt is absorbed into At). To fit At, we select a timestep t and train

on a static proportion p0∈P for all p1,...,pt until time t, and at t+1 we sweep the values of pt+1∈P.

Results. On average across our 6 data settings, the mean squared error (MSE) of the fitted log-linear
static mixing law is 8.9×10−4, and the R2 coefficient of determination is 0.991. The average MSE of
the fitted linear dynamic mixing law is 1.0×10−4 and the R2 is 0.947. See Figure 2 for examples. Since
both parameterizations have high R2 and low MSE, we conclude that they capture the true loss-proportion
relationship well and are of high fidelity.

4.3 VALUES OF MIXING LAW PARAMETERS

As shown in Table 1, each method sets the parameters of its mixing law differently. We study how close
the method-specific parameters are to the optimal parameters that are obtained when fitting the method’s
mixing law to the true loss-proportion relationship, and if these parameter disparities are reflected in
method performance. We find that existing methods’ differences in mixing law parameters are largely
responsible for their performance. We omit studying DML since its parameters are fitted from full training
runs and hence differ from the optimal in estimation error only.

6

Published as a conference paper at ICLR 2025

Setup. For Skill-It, DoReMi, and DoGE, we select a step t and obtain the method-specific At. We then
sweep P for the next round t+1. This sweep is used to approximate an optimal At⋆ that captures the true
loss-mixture relationship, Lt+1

val (p)=Lt
val(p)−At⋆pt, as well as fit a bt∈R used for scaling At (details

in Appendix C.2). We study the relationship between Ãt := btAt and At⋆, and how it is related to the
performance of the method.

0.0 0.2 0.4 0.6 0.8 1.0
sim(At, At)

0.15

0.10

0.05

0.00

St
ra

tif
ie

d
lo

ss
 -

m
et

ho
d

lo
ss

Skill-It
DoReMi
DoGE
Aioli (ours)

Figure 3: Improvement over stratified sampling
versus optimality of At. Each dot represents
a method applied to a dataset. The red region
shows that existing methods are worse than strat-
ified on at least 1 dataset. The vertical dashed
line serves as a visual aid.

To express similarity between Ãt and At⋆ in a way
that is reflected in performance, we observe that from
Lemma 1, pt is updated using the column sum of At,
1⊤At. Moreover, the magnitude of At is not critical
to performance since the step size η can always be
tuned to control this. Therefore, we compare the vectors
ãt = 1⊤Ãt/∥1⊤Ãt∥2 and at⋆ = 1⊤At⋆/∥1⊤At⋆∥2.
Finally, we note that the order of the elements of ãt
determines the update direction from pt to pt+1 in
Lemma 1. Therefore, we propose a similarity score
that is an average of cosine similarity and the Spearman
rank correlation, sim(Ãt,At⋆) = 0.5cossim(ãt,at⋆) +
0.5Spearman(ãt,at⋆). This metric is bounded between
−1 and 1, where 1 indicates ãt=at⋆ and−1 indicates
ãt=−at⋆.

Results. In Figure 3, we plot each method’s sim(Ãt,At⋆)
versus each method’s improvement over the stratified
sampling baseline, which sets pi=1/m for all i∈ [m],
for each dataset in the m=2,3 data settings. We find that no existing online method works well across all
datasets (also see Table 2), and that our metric and loss improvement have a moderate positive correlation
(R2=0.491). This suggests that At’s accuracy is critical to the performance of online methods, and that
existing methods’ At are not consistently accurate across the datasets. In Appendix C.2.1, we give more
details on the structure of At⋆, providing intuition for why existing methods’ parameters cannot express it.

4.4 SOLVING STRATEGY

We study the assumptions made in how existing methods solve the LMO optimization problem. We find
that the greedy approximation used by EGD, minimizept

∑m
i=1L

t+1
val,i(p), does not significantly compromise

performance compared to full optimization of dynamic proportions, which has an exponentially large
solution space. In particular, we study if greedily selecting pt from P at each t yields the optimal dynamic
proportions in PT , and we find that this holds in 2 out of 3 data settings (Table 8). This suggests that the
greedy approximation can simplify optimization without substantial performance loss. We also comment
on other possible solving strategies in Appendix C.3.

5 AIOLI: A METHOD FOR IMPROVED DATA MIXING

To validate our insights from Section 4, we develop AIOLI, an online method derived from the LMO
framework. We have three takeaways from section 4:

a) A linear dynamic mixing law, Lt+1
val,i(p) = Lt

val,i(p)−
∑m

j=1A
t
ijp

t
j for all i ∈ [m], can capture the

loss-proportion relationship with high fidelity (Section 4.2).

b) Existing online methods often set the parameters At to be very different from true At⋆ (Section 4.3).

c) Exponentiated gradient descent can recover near-optimal performance while simplifying the optimiza-
tion problem, avoiding an exponential solution space (Section 4.4).

We thus directly specify the linear dynamic mixing law parameterization and EGD as two out of three
LMO components of AIOLI since we found that their assumptions generally hold in practice. According
to Lemma 1, the update rule given these two components is pt+1

j ∝ptjexp(η
∑m

i=1A
t
ij) (bt is absorbed

into At). Thus, our primary mandate in creating AIOLI is to construct and utilize an At that is an accurate
estimate of the true At⋆ in the linear dynamic mixing law, which existing online methods fail to achieve.

7

Published as a conference paper at ICLR 2025

Estimating At⋆. To build intuition, we first consider a high-cost naive approach. For each round, we could
conduct a training sweep of m different proportions pt,1,...,pt,m, and observe each resulting change in loss.
We could then solve a system of m equations for each i: Lt

val,i−L
t+1
val,i(p

t,s)=
∑m

j=1A
t
ijp

t,s
j for s∈ [m],

obtaining vectors At
1,...,A

t
m. However, this approach effectively requires m extra training runs. AIOLI

similarly solves a system of equations, but it computes loss changes per sweep mixture without requiring
extra training. First, it allocates δ fraction of the training round for learning At. Second, it partitions this
δ into K=mk intervals and trains according to an interleaved order on pt,1,...,pt,m. After training on
each pt,j, we record the resulting change in validation losses, and we average over all of pt,j’s intervals.
Intuitively, the interleaving ensures that the model is trained on each pt,j for several intervals throughout δ,
which can approximate if we were to train on pt,j for the entire δ (which approximates the entire round).
This procedure is outlined in LEARNPARAMS (Alg. 2), with more details in Appendix D and Figure 7.

AIOLI. First, we set p0 to be uniform. In each round, we estimate At using LEARNPARAMS and then
normalize the entries of At, producing Āt. Otherwise, At decreases along with loss over time, resulting in
the first few pt updates being much larger in magnitude than others. Then, we update the proportions using
ptj∝p

t−1
j exp(η

∑m
i=1Ā

t
ij), as in Lemma 1, and train for the remainder of that round using ptj.

Finally, we design AIOLI so that it can also be used to improve other data mixing methods, which we study
in Section 6.2. Mixture proportions can be updated using AIOLI either from the start of training or from
the middle of a run. In the latter case, we denote an initial static mixture pinit∈△m and initial number
of steps Sinit. If Sinit is nonzero, AIOLI trains according to pinit for the first Sinit steps before beginning to
update the mixture proportions. AIOLI is presented in Algorithm 1.

Algorithm 1 AIOLI

1: Input: data Dtrain, Dval, model f1. Initial steps Sinit, initial proportions pinit ∈△m. T rounds over
S − Sinit remaining steps, δ fraction per round for learning parameters, learning rate η, one-hot
smoothing factor ε.

2: If Sinit≠0, train f1 on pinit for Sinit steps.
3: Set p0=Unif(m).
4: for t=1,...,T do
5: Set At,ft+δ← LEARNPARAMS (Dtrain,Dval,δ,f

t,ε) (Alg. 2), and normalize At to get Āt.
6: ptj∝p

t−1
j exp(η

∑m
i=1Ā

t
ij) for all j∈ [m].

7: Train model ft+δ with S
T (1−δ) steps from mixture pt over Dtrain. Obtain updated ft+1.

8: end for

Algorithm 2 LEARNPARAMS

1: Input: Dtrain,Dval, δ, model ft, number of sweeps k, one-hot smoothing factor ε.
2: Split the fraction of a training round δ into K intervals, where K=mk.
3: Set β=0m,m

4: Define pt,i=(1−ε)1i+εUnif(m) for i∈ [m], and define P=[pt,1,...,pt,m]∈△m×m

5: Randomly shuffle k instances of each i∈ [m] to create an order I∈ [m]K .
6: for τ=1,...,K do
7: Let j=Iτ . Train model on mixture pt,j of Dtrain for one interval, obtain ft+τδ/K .
8: for i∈ [m] do
9: Update βij←βij+Lval,i(f

t+(τ−1)δ/K)−Lval,i(f
t+τδ/K) with loss difference on Di

val.
10: end for
11: end for
12: Update β← β

k .
13: Set At

i=P−1βi for each i∈ [m].
14: Return At∈Rm×m,ft+δ

6 EXPERIMENTAL RESULTS

We evaluate all methods in the LMO framework, including AIOLI, in two settings. First, we consider
an unrestricted additional training budget setting to assess how AIOLI compares to other methods in
their original form, since each method uses a different number of extra training runs to learn proportions

8

Published as a conference paper at ICLR 2025

Table 2: Difference in average test perplexity compared to stratified sampling in the unrestricted setting,
where all methods can use≤10 extra runs to learn p. Negative values (green) = improvement. A=Arxiv,
B=Books, GH=GitHub, SE=StackExchange, W=Wikipedia.

Method A/SE GH/C4 B/SE A/B/SE CC/GH/W SlimPajama # < stratified # extra runs

Stratified 16.532 35.991 47.192 35.114 41.583 26.426 - 0

GS −0.399 −0.407 −0.645 −0.247 0.298 0.490 4 10
DML −0.241 −0.110 −0.644 −0.599 0.242 1.641 4 10
Skill-It −0.326 0.551 −0.728 −0.568 −0.195 −0.184 5 m

DoReMi −0.307 5.303 −0.217 −0.393 6.898 0.703 3 2
DoGE 0.419 0.184 −0.678 1.843 0.604 0.949 1 1
AIOLI −0.205 −0.340 −0.439 −0.226 −0.196 −0.240 6 0

(Section 6.1). Second, we consider a restricted training budget setting to assess if AIOLI can enhance
existing methods in practical, budget-constrained conditions, where existing methods have less than a full
training run to learn mixing proportions (Section 6.2). Hyperparameters and experimental details, including
proportion trajectories are available in Appendix E. Downstream evaluation, ablations, experiments on
larger models, and results adapting AIOLI to an out-of-domain setting are in Appendix F.

Data settings and models. We use the same data settings and models as in Section 4.1, where we train for
S=5K steps for m=2,3-group settings and S=40K steps for the full SlimPajama.

Baselines and evaluation. We consider three online methods (Skill-It, DoGE, DoReMi) and one offline
method (DML). We also consider grid search (GS), which sweeps training runs and selects p with the
lowest average validation loss, and stratified sampling, which sets pi= 1

m for all i∈ [m]. For each method,
we report the average test perplexity per group of the trained model. This metric is considered a proxy for
downstream performance (Fan et al., 2024) and also represents the objective in the data mixing problem.

6.1 UNRESTRICTED SETTING

Setup. We allow methods up to 10S additional training steps to learn the mixture proportions. Approaches
like grid search and DML can use the entire budget (searching and fitting over 10 full runs), while Skill-It,
DoReMi, and DoGE use mS, 2S, and S extra training steps, respectively (see Section 3.3). Stratified
sampling and AIOLI use no extra training steps. We evaluate AIOLI with Sinit=0.

Results. In Table 2, we find that AIOLI robustly outperforms stratified sampling in all 6 data settings by an
average of 0.274 perplexity points, while all other methods do worse than stratified sampling on at least 1
set of data groups by up to 6.9 points. The performance of AIOLI and other online methods is additionally
reflected in Figure 3, in which we find that AIOLI’s At similarity with At⋆ is correlated with performance.
While AIOLI’s parameter similarity is not always the highest, we note that its lowest similarity score is
much higher than that of other methods, providing evidence that AIOLI’s parameter estimation procedure
is more consistently accurate than that of other methods. Lastly, regarding offline methods, we hypothesize
that their poor performance on settings with larger m is due to the training budget being limited to 10S,
and that increasing this budget would eventually allow them to perform well.

6.2 RESTRICTED SETTING

Motivation. We introduce the restricted setting because practitioners may not have the resources or desire
to complete multiple full training runs, especially as recent LLMs are trained for longer and on more data
(Muennighoff et al., 2023). As a result, practitioners may only use data mixing methods on shortened runs,
producing learned proportions that may be suboptimal on the full run. We study if AIOLI is able to improve
performance by dynamically adjusting previously learned proportions throughout the full training run.

Setup. We allow all existing methods up to 0.5S additional training steps to learn the mixture proportions.
This requires methods to learn pmethod over shorter runs of Smethod steps each. For instance, grid search
will conduct 10 runs of length S/20 (see Table 9). We evaluate each method by using pmethod learned
from shorter runs to train the model on the full run of S steps. We use AIOLI to dynamically adjust each
pmethod throughout the full run. That is, for each existing method, we run AIOLI with pinit=pmethod and
Sinit=Smethod, referring to this as AIOLI +method.

Results. In Table 3, we find that adding AIOLI to any existing method that learns proportions over shorter
runs improves average test perplexity per group in 28 out of 30 settings, by an average of 1.202 and a

9

Published as a conference paper at ICLR 2025

Table 3: Average test perplexity in the restricted setting, where each method learns p on shortened runs, and
AIOLI +method dynamically adjusts p throughout training. green=AIOLI +method outperforms method.

Method Arxiv/SE GH/C4 Books/SE Arxiv/Books/SE CC/GH/Wiki SlimPajama

GS 16.573 36.345 47.063 35.174 42.767 27.741
AIOLI + GS 16.388 35.925 46.667 34.705 41.378 25.654

DML 16.659 36.658 46.846 34.585 42.731 37.696
AIOLI + DML 16.277 35.856 46.710 34.529 41.595 25.654

Skill-it 16.246 37.255 46.667 34.539 42.069 26.734
AIOLI + Skill-it 16.261 36.153 46.586 34.565 41.732 26.073

DoReMi 16.522 37.812 46.489 34.934 42.738 28.762
AIOLI + DoReMi 16.347 35.626 46.163 34.770 41.800 26.587

DoGE 16.853 35.795 46.743 35.775 41.790 32.301
AIOLI + DoGE 16.473 35.632 46.145 34.771 41.378 26.073

maximum of 12.012 points. Furthermore, AIOLI can help methods that initially underperform stratified
sampling surpass it, such as DoGE across all settings. In some settings, such as Books/StackExchange,
AIOLI improves methods that already outperform stratified sampling. This shows that AIOLI can enhance
a wide variety of static proportions, regardless of their initial performance. For the two settings where
AIOLI underperforms the base method, the base method already outperforms stratified, and adding AIOLI
maintains this trend, worsening perplexity by at most 0.025 points.

7 RELATED WORK

Data mixing. Albalak et al. (2023) frames online data mixing as a multi-armed bandit problem. Recent
works have also studied how to generalize data mixes from smaller to larger models (Kang et al., 2024;
Ge et al., 2024; Liu et al., 2024; Allal et al., 2025). Thrush et al. (2024) optimizes model performance on
downstream tasks by constructing an At-like data interactions matrix using pre-trained model perplexities.
Jiang et al. (2025) mixes data online using each data group’s loss, effectively using a diagonal At matrix.

Curriculum Learning. Bengio et al. (2009) initially introduced curriculum learning as training models
over samples from easiest to hardest. While early work focused on manually designed curricula, later work
emphasizes model-driven ones (Hacohen & Weinshall, 2019; Varshney et al., 2022; Fan & Jaggi, 2023;
Mindermann et al., 2022). Curricula can encourage skills-based generalization (Huang et al., 2024), or
emphasize high quality data to improve downstream task performance (Blakeney et al., 2024).

Data Selection. A common way to curate datasets besides mixing is to select data at the per-sample
level (Albalak et al., 2024). Techniques here can be broadly classified as data filtering, data matching,
and data condensation. In data filtering, low-quality samples are removed using simple heuristics, such
as GitHub file lengths (Together.ai, 2023; Touvron et al., 2023), or via deduplication (Abbas et al., 2023;
Tirumala et al., 2023; Lee et al., 2022). In data matching, samples that are most similar to a reference
dataset are selected. Similarity can be defined in terms of embeddings Xie et al. (2023c), gradients (Xia
et al., 2024; Engstrom et al., 2024), or directly using machine learning models to score samples (Brown
et al., 2020; Grave et al., 2018; Moore & Lewis, 2010). Lastly, data condensation aims to identify a subset
of samples that captures the full training dataset’s properties. Selection mechanisms include using gradients,
model predictions, and embedding distances (Toneva et al., 2019; Paul et al., 2021; Sorscher et al., 2023).

8 DISCUSSION
We introduce the LMO framework, which unifies existing data mixing methods by viewing them as
solutions to a common optimization problem involving an implicit method-dependent mixing law. Using
this framework, we find that existing methods perform poorly on some datasets due to inaccurate mixing
law parameters. This insight inspires AIOLI, whose performance gains are rooted in its ability to estimate
parameters At of the linear dynamic mixing law throughout training.

Limitations and Future Work AIOLI incurs extra inference cost via the repeated evaluations in LEARN-
PARAMS (Alg. 2). This can be reduced by computing Lval over a subset of Dval, and by using each At for
longer (decreasing T). Another direction is understanding the role of data group partitions. For example,
C4 is a subset of CommonCrawl, and it is unclear if disjoint groups could improve performance.

The LMO framework itself is an invitation for future work. It shows that data mixing methods can be
improved and analyzed by studying their assumptions on how models learn from data. By exposing
such assumptions, LMO identifies key axes for improvement (mixing law parameterization, parameter
estimation, and how to solve for p), which we hope will inspire new principled data mixing methods.

10

Published as a conference paper at ICLR 2025

9 ACKNOWLEDGMENTS

We thank Sabri Eyuboglu, Neel Guha, Ben Viggiano, Dan Biderman, Dan Fu, Michael Wornow, Jon
Saad-Falcon, Alyssa Unell, Owen Dugan, Jerry Liu, and Gautam Machiraju for their feedback. We thank
NYU HPC and Stanford NLP for providing compute and research support. This research project has
benefited from the Microsoft Accelerate Foundation Models Research (AFMR) grant program.

We gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize), NSF under Nos.
CCF2247015 (Hardware-Aware), CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to Velocity),
and 1937301 (RTML); US DEVCOM ARL under Nos. W911NF-23-2-0184 (Long-context) and W911NF-
21-2-0251 (Interactive Human-AI Teaming); ONR under Nos. N000142312633 (Deep Signal Processing);
Stanford HAI under No. 247183; NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC,
ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices, Google Cloud, Salesforce, Total,
the HAI-GCP Cloud Credits for Research program, the Stanford Data Science Initiative (SDSI), the
Samsung Advanced Institute of Technology (under the project Next Generation Deep Learning: From
Pattern Recognition to AI), the NSF Graduate Research Fellowship (MYH), and members of the Stanford
DAWN project: Meta, Google, and VMWare. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views, policies, or endorsements, either expressed or implied, of NIH,
ONR, or the U.S. Government.

REFERENCES

Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S Morcos. Semdedup: Data-efficient
learning at web-scale through semantic deduplication. arXiv preprint arXiv:2303.09540, 2023.

Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing for
language model pre-training, 2023. URL https://arxiv.org/abs/2312.02406.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang, Niklas
Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang, Tatsunori
Hashimoto, and William Yang Wang. A survey on data selection for language models. arXiv preprint
arXiv:2402.16827, 2024. https://arxiv.org/abs/2402.16827.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Mart́ın Blázquez, Guilherme Penedo, Lewis
Tunstall, Andrés Marafioti, Hynek Kydĺıček, Agust́ın Piqueres Lajaŕın, Vaibhav Srivastav, Joshua
Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher,
Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas Wolf.
Smollm2: When smol goes big – data-centric training of a small language model, 2025. URL
https://arxiv.org/abs/2502.02737.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm
and applications. Theory of computing, 8(1):121–164, 2012.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pp. 41–48,
New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161. doi:
10.1145/1553374.1553380. URL https://doi.org/10.1145/1553374.1553380.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In AAAI Conference on Artificial Intelligence, 2019. URL
https://api.semanticscholar.org/CorpusID:208290939.

Cody Blakeney, Mansheej Paul, Brett W. Larsen, Sean Owen, and Jonathan Frankle. Does your data
spark joy? performance gains from domain upsampling at the end of training. In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=vwIIAot0ff.

11

https://arxiv.org/abs/2312.02406
https://arxiv.org/abs/2402.16827
https://arxiv.org/abs/2502.02737
https://doi.org/10.1145/1553374.1553380
https://api.semanticscholar.org/CorpusID:208290939
https://openreview.net/forum?id=vwIIAot0ff

Published as a conference paper at ICLR 2025

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners, 2020. URL https://arxiv.org/abs/2005.
14165.

Luis F. Chaparro and Aydin Akan. Chapter 8 - sampling theory. In Luis F. Chaparro and
Aydin Akan (eds.), Signals and Systems Using MATLAB (Third Edition), pp. 449–485. Aca-
demic Press, third edition edition, 2019. ISBN 978-0-12-814204-2. doi: https://doi.org/10.
1016/B978-0-12-814204-2.00019-3. URL https://www.sciencedirect.com/science/
article/pii/B9780128142042000193.

Angelica Chen, Sadhika Malladi, Lily H. Zhang, Xinyi Chen, Qiuyi Zhang, Rajesh Ranganath, and
Kyunghyun Cho. Preference learning algorithms do not learn preference rankings, 2024. URL
https://arxiv.org/abs/2405.19534.

Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue WANG, Ce Zhang, Frederic Sala, and Christo-
pher Ré. Skill-it! a data-driven skills framework for understanding and training language mod-
els. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances
in Neural Information Processing Systems, volume 36, pp. 36000–36040. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein, Christy
Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 2924–2936, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1300. URL https://aclanthology.org/N19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457, 2018. URL http://arxiv.org/abs/1803.05457.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems, 35:
16344–16359, 2022.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In Twenty-fourth international
joint conference on artificial intelligence, 2015.

Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection with
datamodels. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=GC8HkKeH8s.

Simin Fan and Martin Jaggi. Irreducible curriculum for language model pretraining. arXiv preprint
arXiv:2310.15389, 2023.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization estimation,
2024. URL https://arxiv.org/abs/2310.15393.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model
evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Ce Ge, Zhijian Ma, Daoyuan Chen, Yaliang Li, and Bolin Ding. Data mixing made efficient: A
bivariate scaling law for language model pretraining, 2024. URL https://arxiv.org/abs/
2405.14908.

12

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://www.sciencedirect.com/science/article/pii/B9780128142042000193
https://www.sciencedirect.com/science/article/pii/B9780128142042000193
https://arxiv.org/abs/2405.19534
https://proceedings.neurips.cc/paper_files/paper/2023/file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf
https://aclanthology.org/N19-1300
http://arxiv.org/abs/1803.05457
https://openreview.net/forum?id=GC8HkKeH8s
https://openreview.net/forum?id=GC8HkKeH8s
https://arxiv.org/abs/2310.15393
https://zenodo.org/records/12608602
https://arxiv.org/abs/2405.14908
https://arxiv.org/abs/2405.14908

Published as a conference paper at ICLR 2025

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov. Learning word
vectors for 157 languages. In Nicoletta Calzolari, Khalid Choukri, Christopher Cieri, Thierry Declerck,
Sara Goggi, Koiti Hasida, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion
Moreno, Jan Odijk, Stelios Piperidis, and Takenobu Tokunaga (eds.), Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May
2018. European Language Resources Association (ELRA). URL https://aclanthology.org/
L18-1550.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep networks. In
International Conference on Machine Learning, 2019. URL https://api.semanticscholar.
org/CorpusID:102350936.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

Daniel Hsu, Sham M. Kakade, and Tong Zhang. Random design analysis of ridge regression. In Shie
Mannor, Nathan Srebro, and Robert C. Williamson (eds.), Proceedings of the 25th Annual Conference
on Learning Theory, volume 23 of Proceedings of Machine Learning Research, pp. 9.1–9.24, Edinburgh,
Scotland, 25–27 Jun 2012. PMLR. URL https://proceedings.mlr.press/v23/hsu12.
html.

Yuncheng Huang, Qianyu He, Yipei Xu, Jiaqing Liang, and Yanghua Xiao. Laying the foundation
first? investigating the generalization from atomic skills to complex reasoning tasks, 2024. URL
https://arxiv.org/abs/2403.09479.

Yiding Jiang, Allan Zhou, Zhili Feng, Sadhika Malladi, and J Zico Kolter. Adaptive data optimization:
Dynamic sample selection with scaling laws. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=aqok1UX7Z1.

Sham Kakade. Lecture 22: Exponentiated gradient descent. https://homes.cs.washington.
edu/˜sham/courses/stat928/lectures/lecture22.pdf, n.d. Accessed: September
29, 2024.

Feiyang Kang, Yifan Sun, Bingbing Wen, Si Chen, Dawn Song, Rafid Mahmood, and Ruoxi Jia. Autoscale:
Automatic prediction of compute-optimal data composition for training llms, 2024. URL https:
//arxiv.org/abs/2407.20177.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, 132(1):1–63, 1997. ISSN 0890-5401. doi: https://doi.org/
10.1006/inco.1996.2612. URL https://www.sciencedirect.com/science/article/
pii/S0890540196926127.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. Deduplicating training data makes language models better, 2022. URL https:
//arxiv.org/abs/2107.06499.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length on the
reasoning performance of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 15339–15353, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.818. URL https://aclanthology.org/2024.
acl-long.818.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel,
Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton,
Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian,
Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe,
Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran
Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby,
Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh,
Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and
Vaishaal Shankar. Datacomp-lm: In search of the next generation of training sets for language models,
2024. URL https://arxiv.org/abs/2406.11794.

13

https://aclanthology.org/L18-1550
https://aclanthology.org/L18-1550
https://api.semanticscholar.org/CorpusID:102350936
https://api.semanticscholar.org/CorpusID:102350936
https://proceedings.mlr.press/v23/hsu12.html
https://proceedings.mlr.press/v23/hsu12.html
https://arxiv.org/abs/2403.09479
https://openreview.net/forum?id=aqok1UX7Z1
https://homes.cs.washington.edu/~sham/courses/stat928/lectures/lecture22.pdf
https://homes.cs.washington.edu/~sham/courses/stat928/lectures/lecture22.pdf
https://arxiv.org/abs/2407.20177
https://arxiv.org/abs/2407.20177
https://www.sciencedirect.com/science/article/pii/S0890540196926127
https://www.sciencedirect.com/science/article/pii/S0890540196926127
https://arxiv.org/abs/2107.06499
https://arxiv.org/abs/2107.06499
https://aclanthology.org/2024.acl-long.818
https://aclanthology.org/2024.acl-long.818
https://arxiv.org/abs/2406.11794

Published as a conference paper at ICLR 2025

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A
novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research,
18(185):1–52, 2018.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better downstream:
Implicit bias matters for language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
22188–22214. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
liu23ao.html.

Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing Jiang,
and Min Lin. Regmix: Data mixture as regression for language model pre-training, 2024. URL
https://arxiv.org/abs/2407.01492.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny Zhou,
Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage, quality, & toxicity. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pp. 3245–3276, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.naacl-long.179. URL https://aclanthology.org/2024.naacl-long.
179.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and
Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2381–2391, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1260. URL https://aclanthology.org/D18-1260.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie Xu,
Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized training on
points that are learnable, worth learning, and not yet learnt. In International Conference on Machine
Learning, pp. 15630–15649. PMLR, 2022.

D.C. Montgomery, E.A. Peck, and G.G. Vining. Introduction to Linear Regression Analysis. Wiley Series
in Probability and Statistics. Wiley, 2021. ISBN 9781119578727.

Robert C. Moore and William Lewis. Intelligent selection of language model training data. In Jan Hajič,
Sandra Carberry, Stephen Clark, and Joakim Nivre (eds.), Proceedings of the ACL 2010 Conference
Short Papers, pp. 220–224, Uppsala, Sweden, July 2010. Association for Computational Linguistics.
URL https://aclanthology.org/P10-2041.

Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piktus,
Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=j5BuTrEj35.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset: Word
prediction requiring a broad discourse context. CoRR, abs/1606.06031, 2016. URL http://arxiv.
org/abs/1606.06031.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 20596–
20607. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv e-prints, 2019.

14

https://proceedings.mlr.press/v202/liu23ao.html
https://proceedings.mlr.press/v202/liu23ao.html
https://arxiv.org/abs/2407.01492
https://aclanthology.org/2024.naacl-long.179
https://aclanthology.org/2024.naacl-long.179
https://aclanthology.org/D18-1260
https://aclanthology.org/P10-2041
https://openreview.net/forum?id=j5BuTrEj35
https://openreview.net/forum?id=j5BuTrEj35
http://arxiv.org/abs/1606.06031
http://arxiv.org/abs/1606.06031
https://proceedings.neurips.cc/paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf

Published as a conference paper at ICLR 2025

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Proceedings of the AAAI Conference on Artificial Intelligence,
34(05):8732–8740, Apr. 2020. doi: 10.1609/aaai.v34i05.6399. URL https://ojs.aaai.org/
index.php/AAAI/article/view/6399.

R. J. Serfling. Probability Inequalities for the Sum in Sampling without Replacement. The Annals of
Statistics, 2(1):39 – 48, 1974. doi: 10.1214/aos/1176342611. URL https://doi.org/10.1214/
aos/1176342611.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S. Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning, 2023. URL https://arxiv.org/abs/
2206.14486.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv
preprint arXiv:1406.3896, 2014.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Chung, William Fedus, Jinfeng Rao, Sharan Narang,
Vinh Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures: How does
inductive bias influence scaling? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of
the Association for Computational Linguistics: EMNLP 2023, pp. 12342–12364, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.825. URL
https://aclanthology.org/2023.findings-emnlp.825.

Tristan Thrush, Christopher Potts, and Tatsunori Hashimoto. Improving pretraining data using perplexity
correlations, 2024. URL https://arxiv.org/abs/2409.05816.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improv-
ing llm pretraining via document de-duplication and diversification. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 53983–53995. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
a8f8cbd7f7a5fb2c837e578c75e5b615-Paper-Datasets_and_Benchmarks.pdf.

Together.ai. Redpajama: an open dataset for training large language models, October 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network learning. In
International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=BJlxm30cKm.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023.
URL https://arxiv.org/abs/2302.13971.

Neeraj Varshney, Swaroop Mishra, and Chitta Baral. Let the model decide its curriculum for multitask
learning. In Colin Cherry, Angela Fan, George Foster, Gholamreza (Reza) Haffari, Shahram Khadivi,
Nanyun (Violet) Peng, Xiang Ren, Ehsan Shareghi, and Swabha Swayamdipta (eds.), Proceedings of
the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, pp. 117–125,
Hybrid, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.deeplo-1.13.
URL https://aclanthology.org/2022.deeplo-1.13.

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi Chen, Luke
Zettlemoyer, and Veselin Stoyanov. Training trajectories of language models across scales. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of

15

https://ojs.aaai.org/index.php/AAAI/article/view/6399
https://ojs.aaai.org/index.php/AAAI/article/view/6399
https://doi.org/10.1214/aos/1176342611
https://doi.org/10.1214/aos/1176342611
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2206.14486
https://aclanthology.org/2023.findings-emnlp.825
https://arxiv.org/abs/2409.05816
https://proceedings.neurips.cc/paper_files/paper/2023/file/a8f8cbd7f7a5fb2c837e578c75e5b615-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a8f8cbd7f7a5fb2c837e578c75e5b615-Paper-Datasets_and_Benchmarks.pdf
https://github.com/togethercomputer/RedPajama-Data
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm
https://arxiv.org/abs/2302.13971
https://aclanthology.org/2022.deeplo-1.13

Published as a conference paper at ICLR 2025

the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13711–13738, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.767.
URL https://aclanthology.org/2023.acl-long.767.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting
influential data for targeted instruction tuning, 2024.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V
Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model
pretraining. In Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL
https://openreview.net/forum?id=lXuByUeHhd.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language models
via importance resampling, 2023b.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language models
via importance resampling, 2023c. URL https://arxiv.org/abs/2302.03169.

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu. Data mixing laws:
Optimizing data mixtures by predicting language modeling performance, 2024. URL https://
arxiv.org/abs/2403.16952.

Dongkeun Yoon. Slimpajama-6b. https://huggingface.co/datasets/DKYoon/
SlimPajama-6B, 2023. Accessed: September 24, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine
really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4791–4800, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1472. URL https:
//aclanthology.org/P19-1472.

16

https://aclanthology.org/2023.acl-long.767
https://openreview.net/forum?id=lXuByUeHhd
https://arxiv.org/abs/2302.03169
https://arxiv.org/abs/2403.16952
https://arxiv.org/abs/2403.16952
https://huggingface.co/datasets/DKYoon/SlimPajama-6B
https://huggingface.co/datasets/DKYoon/SlimPajama-6B
https://aclanthology.org/P19-1472
https://aclanthology.org/P19-1472

Published as a conference paper at ICLR 2025

APPENDIX

In Appendix A, we provide a glossary of notation used in the paper. In Appendix B, we discuss how
additional data mixing methods are related to the LMO framework and provide proofs that existing methods
can be expressed in our framework. In Appendix C, we provide additional results on our analysis of
existing data mixing methods. In Appendix E we provide additional details for our results in Section 6, and
in Appendix F we provide additional results, including downstream evaluation and ablations.

A NOTATION

The glossary is given in Table 4 below.

Symbol Used for

m The number of data groups. Examples of data groups include a pre-training domain or
an instruction-tuning task.

Dtrain/val/test Training, validation, and test datasets comprised of m groups, where Di
(·) is

group i’s training/validation/test data.
N Total number of samples from Dtrain to train on.
S Number of steps to train for (i.e., S=N×batch size).
T Number of rounds to divide training into, where each round is S

T
steps.

p Mixture proportions are p=(p1) for T=1 (static) and p=(p1,...,pT) for T >1 (dynamic),
where pt=[pt1,...,p

t
m]∈△m is a probability distribution.

f A language model (can be either pre-trained or initialized from scratch).
f(p,t) The model f at the beginning of round t after being trained on p1,...,pt−1 so far.
Ltrain/val/test(f) Ltrain(f)=(Ltrain,1(f),...,Ltrain,m(f)) is the vector of f’s training losses over each data group;

similarly defined for validation and test losses.
Lt

(·)(p) Shorthand for L(·)(f(p,t)). When dealing with static mixtures, we also use L(·)(p).
At Parameter matrix At∈Rm×m used in mixing laws (2), capturing cross-group interactions.

See Table 1 for instantiations.
bt,ct Group-specific parameters bt,ct∈Rm used in mixing laws 2. Note that the value of

ct does not impact the LMO framework, and neither does bt when all bti are equal.
σ Either σ :R→R=Id or exp.
Zt Used for normalization in proportion update rule.
η Step size η>0 used in proportion update rule.
P The set of mixture proportions that comprises a training sweep.
At⋆ Approximately optimal At for the linear dynamic mixing law, obtained by fitting

Lvalt+1(p)=Lvalt(p)−At⋆p over training sweeps.
Ãt Method-specific Ãt=btAt, where At is obtained directly from the method and

bt∈R is learned from training sweeps.
sim(Ãt,At⋆) Similarity between method-specific and optimal At, defined as an average of cosine similarity

and Spearman rank correlation over At’s normalized column sums.
ε one-hot smoothing factor used to define pt,i=(1−ε)1i+εUnif(m), smoothed one-hot

distributions we use to learn At in AIOLI.
δ The fraction per round dedicated to learning At in AIOLI.
k Number of sweeps per group to average At estimates over in AIOLI.
pinit Initial mixture pinit∈△m that AIOLI can dynamically adjust.
Sinit Number of steps to train according to pinit.

Table 4: Glossary of variables and symbols used in this paper.

B LMO FRAMEWORK DETAILS

B.1 ADDITIONAL EXISTING METHODS

We comment on two other popular data mixing methods, Online Data Mixing (ODM) (Albalak et al.,
2023) and RegMix (Liu et al., 2024).

In ODM (Albalak et al., 2023), data mixing is framed as a multi-armed bandit problem, where each
arm is a data group that a batch is trained on, and the reward function is defined in terms of the training

17

Published as a conference paper at ICLR 2025

loss of each group. ODM uses the EXP3 algorithm to explore training on different data groups. pt,
which is used to determine which group the entire training batch is comprised of, is updated according

to pt+1
j = (1−mεt)

exp(εt−1R
t
j)∑m

i=1exp(εt−1Rt
i)
+ εt. εt is an exploration rate, and the reward function is Rt

j =

αRt−1
j + (1− α)

Lt
train,j(p)

ptj
if the jth group is selected at time t; otherwise, Rt

j = Rt−1
j . While the

exploration and the smoothing of pt and Rt make this method not directly expressible in our framework,
we note that the update rule can be loosely interpreted as allocating larger proportions to groups that have
high loss. This update rule does not consider cross-group interactions and is thus similar to DoReMi’s
update rule, which utilizes a diagonal At defined in terms of current loss.

RegMix (Liu et al., 2024) conducts many training runs on smaller models at shorter scales. Similar to
DML (Ye et al., 2024), a regression model is fit to these runs and used to predict mixture proportions
for a longer run on a larger model. They consider using a linear regression model, i.e., the mixing law
Lval,i(p)=ci−

∑m
j=1Aijp

t
j, but find that the R2 is relatively low (0.87). Instead, their main approach uses

LightGBM, a tree-based gradient boosting approach, i.e., using an ensemble of non-linear decision trees as
a mixing law. We note that AIOLI could be used in conjunction with RegMix in their settings, an exciting
direction for future work.

B.2 PROOFS FOR SECTION 3.3

B.2.1 BACKGROUND ON EXPONENTIATED GRADIENT DESCENT

We provide background on exponentiated gradient descent (EGD) taken from Kakade (n.d.). In EGD,
we have a sequence of decisions w1,...,wT , where wt = [wt

1,...,w
t
m]∈△m. We also have a sequence

of cost functions c1,...,cT :△m→R. To minimize the total cost
∑T

t=1c
t(wt), the EGD update rule

sets w0 =Unif(m), and updates according to wt+1
j =

wt
jexp(−η▽jc

t(wt))

Zt
. Zt ensures that wt+1 ∈△m,

η is a step size, and ▽jc
t(wt) denotes ∂ct(wt)

∂wt
j

. EGD is known to have certain regret guarantees on the

value of costs incurred by playing w1,...,wT versus always playing the best fixed point in hindsight:∑T
t=1c

t(wt)−infw∈△m

∑T
t=1c

t(w).

We now are ready to prove Lemma 1.
Lemma 1. The EGD update rule for (1) subject to Lt+1

val,i(p)=cti−bti
∑m

j=1A
t
ijp

t
j ∀i∈ [m] is

pt+1
j =

1

Zt
·ptjexp

(
η

m∑
i=1

btiA
t
ij

)
∀j∈ [m], (3)

where η>0 is the step size and Zt is a normalizing constant such that pt+1
j ∈△m.

Proof. The cost function at each timestep in our setting is
∑m

i=1L
t+1
val,i(p), and the decision we make is

pt. The mixing law constraint in (2) with σ= Id is Lt+1
val,i(p)= cti−bti

∑m
j=1A

t
ijp

t
j for all i∈ [m], so our

objective (1) can be written as
m∑
i=1

(
cti−bti

m∑
j=1

At
ijp

t
j

)
. (4)

The gradient of this expression with respect to ptj for j∈ [m] is−
∑m

i=1b
t
iA

t
ij. Plugging this into the EGD

update rule, we obtain the update pt+1
j = 1

Zt
ptjexp(η

∑m
i=1b

t
iA

t
ij).

B.2.2 PROOF OF THEOREM 1

To prove Theorem 1, we write out individual propositions 1, 2, 3 for expressing each online method in the
LMO framework.

By our definition of what it means to express a method in LMO, we must consider how each method 1)
trains f and 2) sets pt. We must see if this procedure can be replicated by solving some specification of the
LMO optimization problem in our data mixing setup.

18

Published as a conference paper at ICLR 2025

Critically, note that this definition of “expression” does not claim that the optimization problems proposed
in existing methods are exactly the same as the LMO optimization problem. Instead, we are stating that
the training procedures used in their methods can be equivalently viewed as a way of solving the LMO
optimization problem subject to certain assumptions on the loss-proportion relationship.
Proposition 1 (Skill-It Derivation). Using a) a linear dynamic parameterization Lt+1

val,i(p)=Lt
val,i(p)−

bt
∑m

j=1A
t
ijp

t
j, b) parameters At

ij=Lt
val,i(p)·(L

T+1
val,i (1j)−L1

val,i(1j))/L
1
val,i(1j), and c) exponentiated

gradient descent (EGD) to solve for p, the LMO framework (1) can express Skill-It.

Proof. The Skill-It algorithm sets pt in each round and then samples from Dtrain according to pt to train
f for a round. This training procedure is directly specified in our data mixing problem setup (Section 2).
Therefore, we simply need to show that the Skill-It update rule can be converted into a linear dynamic
mixing law. By comparing Lemma 1 and the Skill-It update rule pt+1

j = 1
Zt
·ptjexp

(
η
∑m

i=1A
SG
ij L

t
val,i(p)

)
,

we can match At
ij in the lemma with ASG

ij in Skill-It, and we can match bti in the lemma with Lt
val,i(p).

Therefore, Lemma 1 tells us that using Lt+1
val,i(p)= cti−bt

∑m
j=1L

t
val,i(p)A

SG
ij p

t
j in the LMO framework

with exponentiated gradient descent recovers Skill-It (since the bt and cti can be dropped and are only used
for scaling At).

Using the definition of ASG
ij , we can rewrite the mixing law as Lt+1

val,i(p)=cti−bt
∑m

j=1A
t,Skill-It
ij ptj where

At,Skill-It
ij =Lt

val,i(p)(L
T+1
val,i (1j)−L1

val,i(1j))/L
1
val,i(1j). Lastly, note that we can replace cti with any other

value, including Lt
val,i(p), due to the fact that pt has m−1 degrees of freedom (see Lemma 2).

We note that Chen et al. (2023) explicitly specify their mixing law in equation 2 of their paper, along with
the same objective function as ours in the LMO framework.

Proposition 2 (DoReMi Derivation). Using a) a linear dynamic parameterization Lt+1
val,i(p)=Lt

val,i(p)−
bt
∑m

j=1A
t
ijp

t
j, b) parameters At

ij=min{Lt
train,i(p)−Ltrain,i(fref),0} for i=j and Aij=0 otherwise, and

c) EGD to solve for p, the LMO framework (1) can express DoReMi’s proxy model.

Proof. When training the proxy model for DoReMi, pt is set in each round, and then f is updated to
minimize

∑m
i=1p

t
iLtrain,i(f). Using Lemma 3, we establish that DoReMi’s weighted training objective at

each timestep is equal in expectation to the objective of training on data sampled from pt, which is what
our problem setup focuses on. Having established that the training procedure is the same in expectation, we
now need to show that the DoReMi pt update rule can be converted into a linear dynamic mixing law. By
comparing Lemma 1 and the DoReMi update rule pt+1

j ∝ptjexp(ηmax{Lt
train,j(p)−Ltrain,j(fref),0}), we

can match At
ij in the lemma with 0 for i≠j, and At

ii with max{Lt
train,j(p)−Ltrain,j(fref),0}. Therefore,

Lemma 1 tells us that using Lt+1
val,i=cti−bt

∑m
j=1A

t
ijp

t
j with At

ii=max{Lt
train,j(p)−Ltrain,j(fref),0} can

express the DoReMi proxy model training. We include bt to allow for scaling At, but since this does not
impact the optimal p, it is not in the update rule. Lastly, applying Lemma 2 lets us write the mixing law as
Lt+1

val,i=Lt
val,i(p)−bt

∑m
j=1A

t
ijp

t
j.

We comment on the fact that DoReMi’s proxy model is trained with a DRO (distributionally robust
optimization) min-max objective, namely, minimizef maximizep

∑m
i=1piL

T+1
train,i(f). This objective, which

differs from our data mixing objective, yields the pt gradient ascent and ft gradient descent updates.
However, we are still able to express this training procedure in the LMO framework, since our claim is:
if we assume that the Lt+1

val,i=Lt
val,i(p)−bt

∑m
j=1A

t,DRM
ij ptj mixing law captures the relationship between

Lt
val and pt, then training according to the DoReMi proxy run should not only guide f and p to optimize

the DRO objective, but also to optimize the average validation loss per group.

Proposition 3 (DoGE Derivation). Using a) a linear dynamic parameterization Lt+1
val,i(p)=Lt

val,i(p)−
bt
∑m

j=1A
t
ijp

t
j, b) parameters At

ij=⟨▽Lt
val,i(p),▽L

t
train,j(p)⟩ for all i,j∈ [m], and c) EGD to solve for p,

the LMO framework (1) can express DoGE’s proxy model.

Proof. When training the proxy model for DoGE, pt is set in each round, and then f is updated to minimize∑m
i=1p

t
iLtrain,i(f). Using Lemma 3, we establish that DoGE’s weighted training objective at each timestep

19

Published as a conference paper at ICLR 2025

is equal in expectation to the objective of training on data sampled from pt. Next, we show that the DoGE
update rule can be converted into a linear dynamic mixing law. By comparing Lemma 1 and the DoGE
update rule pt+1

j ∝ptjexp(η⟨▽Ltrain,j(f
t),
∑m

i=1▽Lval,i(f
t)⟩), we can see that At

ij in the Lemma can be
matched with ⟨▽Ltrain,j(f

t),▽Lval,i(f
t)⟩. Therefore, using the mixing law Lt+1

val,i = cti−bt
∑m

j=1A
t
ijp

t
j

with At
ij=⟨▽Ltrain,j(f

t),▽Lval,i(f
t)⟩ allows LMO to express DoGE proxy model training. Again, bt is

included for scaling but does not impact optimization, and by applying Lemma 2, we can replace cti with
Lt

val,i(p).

Lemma 2. Let Lt+1
i (p) = cti−

∑m
j=1A

t
ijp

t
j for some ct and At. Then, there exists an Bt

ij such that
Lt+1
i (p)=Lt

i(p)−
∑m

j=1B
t
ijp

t
j.

Proof. Since pt∈△m, we can write the probability ptm as 1−
∑m−1

j=1 ptj. Then, the first equation can be
written as

Lt+1
i (p)=cti−

m−1∑
j=1

At
ijp

t
j−At

im

(
1−

m−1∑
j=1

ptj

)
(5)

=cti−
m−1∑
j=1

(At
ij−At

im)ptj−At
im

=Lt
i(p)−

m−1∑
j=1

(At
ij−At

im)ptj−(At
im−cti+Lt

i(p))

=Lt
i(p)−

m−1∑
j=1

(At
ij−At

im+At
im−cti+Lt

i(p))p
t
j−(At

im−cti+Lt
i(p))(1−

m−1∑
j=1

ptj)

=Lt
i(p)−

m−1∑
j=1

(At
ij−cti+Lt

i(p))p
t
j−(At

im−cti+Lt
i(p))(1−

m−1∑
j=1

ptj).

Let Bt
ij=At

ij−cti+Lt
i(p) for all j∈ [m]. Then, this equation becomes

Lt+1
i (p)=Lt

i(p)−
m−1∑
j=1

Bt
ijp

t
j−Bt

im(1−
m−1∑
j=1

ptj) (6)

=Lt
i(p)−

m∑
j=1

Bt
ijp

t
j.

Lemma 3. Let Lt
B(f,p) be the total training loss of f on a batch of size B sampled from Dtrain according

to p∈△m, and let Lt
B,i(f,p) be the total training loss on samples from group i in that batch. Then, the

average loss over a uniformly sampled batch weighted by pt is equal in expectation to the average loss per
group over a batch sampled according to pt:

E

[
m∑
i=1

ptiL
t
B,i(f,Unif(m))

]
=E

[
Lt
B(f,p

t)

m

]
(7)

Proof. Let each group i consist of samples x from the distribution Pi, and let L̃train, i(f)=Ex∼Pi
[ℓ(f,x)]

be the population-level loss on group i, where ℓ(f,x) is f’s loss on sample x.

If a batch is uniformly sampled, each group has B/m samples. We can then write Lt
B,i(f,Unif(m))=∑B/m

k=1 ℓ(f,xik), where xik is the kth sample of group i. Then,

E

[
m∑
i=1

ptiL
t
B,i(f,Unif(m))

]
=E

 m∑
i=1

pti

B/m∑
k=1

ℓ(f,xik)

=

m∑
i=1

ptiB

m
L̃train, i(f). (8)

20

Published as a conference paper at ICLR 2025

Next, if a batch is sampled according to pt, then group i has Bpti samples in the batch. We can then write

Lt
B(f,p

t)=
∑m

i=1

∑ptiB
k=1ℓ(f,x

i
k). Then,

E
[
Lt
B(f,p

t)

m

]
=E

 m∑
i=1

ptiB∑
k=1

ℓ(f,xik)

m

=

m∑
i=1

ptiB

m
L̃train, i(f). (9)

This hence establishes the equivalence in expectation between a weighted training objective and training on
data sampled according to p.

C ANALYSIS DETAILS

C.1 MIXING LAW PARAMETERIZATION

Table 5: Comparison of log-linear static and linear dynamic mixing law parameterizations across different
data settings with MSE and R2 metrics. Both log-linear and linear dynamic mixing laws fit the relationship
between mixing proportions and losses well.

Parameterization Arxiv/SE GH/C4 Books/SE
MSE R2 MSE R2 MSE R2

Log-linear static 2e-4 0.990 5e-4 0.989 6e-4 0.987
Linear dynamic 2e-4 0.936 1e-4 0.948 4e-5 0.926

Arxiv/Books/SE CC/GH/Wiki SlimPajama
MSE R2 MSE R2 MSE R2

Log-linear static 6e-4 0.991 0.001 0.989 0.002 0.997
Linear dynamic 6e-5 0.957 1e-4 0.975 5e-6 0.938

We describe how we performed the linear and log-linear parameterization experiments.

For the log-linear static parameterizations, we train our model on p∈P sweeps and fit the parameters
using code provided in Ye et al. (2024) (i.e., using PyTorch and L-BFGS to minimize the Huber loss of the
mixing law). We do this over 5 random seeds for k=2,3 and over 3 seeds for the full SlimPajama.

For the linear dynamic parameterizations, for k=2,3 we train the model for 2000 steps according to some
p0∈P, and then sweep over P for the next 100 steps. We do this for one random seed, performing |P|2
total runs. For the full SlimPajama setting, we train the model for 10000 steps using stratified sampling,
and then sweep over P for the next 5000 steps. We fit the parameters using Pytorch and L-BFGS.

C.1.1 ADDITIONAL PARAMETERIZATION EXPERIMENTS

Parameterization across checkpoints. We investigate whether the log-linear static and linear dynamic
mixing laws remain well-specified in later stages of training and on other datasets. To do so, we take
various Pythia 160M checkpoints (Biderman et al., 2023), sweep mixing proportions, and fit the linear
dynamic and log-linear static mixing laws. We train for 2000 steps according to the learning rates and
learning rate scheduler reported in (Biderman et al., 2023). We fit the static mixing law on full runs of 2000
steps, and the linear dynamic mixing law at t=500, after which we do a training sweep over the next 500
steps. In Tables 6 and 7, we find that the strong fit for log-linear static mixing laws continues to hold during
pre-training at checkpoint 72K (roughly halfway through training Pythia-160M) and after pre-training, with
an average R2 of 0.982 and 0.991, respectively. However, the linear dynamic mixing law’s R2 coefficient
is lower, averaging 0.815 at checkpoint 72K and 0.830 at the end of pre-training. It thus may be interesting
to further study if the dynamics of the loss-proportion relationship evolve in a structured way throughout
training, or if these results are due to more noise in how models learn at later stages of training.

Parameterization across other sets of data groups. In Figure 4, we identify an example set of data
groups that exhibits a non-linear relationship between loss and proportion: Books/C4 from SlimPajama.

21

Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of book

10 5

10 4

10 3

10 2

10 1

Lo
g

(L
os

s
- c

) o
n

bo
ok

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of c4

10 1

100

Lo
g

(L
os

s
- c

) o
n

c4

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of book

4.25

4.30

4.35

4.40

4.45

4.50

N
ex

t-
st

ep
 L

os
s

on
 b

oo
k

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of c4

5.0

5.1

5.2

5.3

5.4

5.5

N
ex

t-
st

ep
 L

os
s

on
 c

4

0.4 prior
0.1 prior
0.2 prior

0.3 prior
0.5 prior

0.6 prior
0.7 prior

0.8 prior
0.9 prior

Figure 4: Top: Log-linear static mixing law fit on Books/C4 across 5 random seeds. Bottom: Linear
dynamic mixing law fit on Books/C4 on 1 random seed. Each color is a different initial mixture p0∈P
trained for 2000 steps, and the fitting sweeps are done over 100 additional steps.

For these two data groups, we see that as the proportion of Books increases while C4 decreases, the loss on
Books starts increasing past a certain p, suggesting quite counterintuitively that performance on Books
is optimized by allocating some proportion to C4. In this case, neither log-linear static or linear dynamic
mixing laws have good fit to the proportion-loss relationship, as neither can represent the non-linearity. In
particular, the average MSE and R2 for the log-linear static mixing law is 0.003 and 0.558, respectively,
and the average MSE and R2 for the linear dynamic mixing law is 0.0002 and 0.721.

Fortunately, because these nonlinearities exist on the boundary of the simplex and tend to incur high loss,
they tend to have little impact on the optimization of p, which strives to minimize the average loss. For
instance, we found that the optimal proportion according to Ye et al. (2024)’s log-linear static mixing law
on one random seed was [0.176,0.824], and the true optimal from grid search was [0.2,0.8]. However, it is
important to further investigate this non-linear phenomenon on additional data groups and training regimes,
which we defer to future work.

Table 6: Comparison of log-linear static and linear dynamic mixing law parameterizations when training
from the 72K Pythia-160M checkpoint.

Parameterization Arxiv/SE GH/C4 Books/SE
MSE R2 MSE R2 MSE R2

Log-linear static 2e-4 0.975 7e-5 0.992 2e-4 0.981
Linear dynamic 4e-4 0.834 7e-4 0.815 6e-4 0.796

Table 7: Comparison of log-linear static and linear dynamic mixing law parameterizations when training
from the pre-trained Pythia-160M.

Parameterization Arxiv/SE GH/C4 Books/SE
MSE R2 MSE R2 MSE R2

Log-linear static 3e-6 0.994 4e-6 0.992 6e-6 0.986
Linear dynamic 5e-5 0.896 8e-5 0.824 1e-4 0.769

Checking for interactions among groups. It is natural to ask whether a linear mixing law is sufficient
to model how mixing proportions affect the loss. In linear regression, such assumptions are often evaluated
using visual diagnostics called residual plots (Montgomery et al., 2021). Residual plots graph the prediction
error from each data point (the residuals) in order to reveal different kinds of structure. For example, it is
common to plot the residual against the predicted value to check for nonlinearity.

Figure 5 shows several such residual plots for the dynamic mixing law experiments with 3 domains
(Arxiv, Books, and Stackexchange). The figure checks for interactions when predicting Arxiv’s loss. The
corresponding plots for the other domains look similar.

The top row visualizes the residuals inside the simplex. If strong interactions were present, then they would
cause clustered patterns in the residuals—regions where the linear model consistently gives predictions that
are too low or too high. Strong patterns do not seem apparent.

22

Published as a conference paper at ICLR 2025

Figure 5: Residuals plots to check for interactions in the dynamic mixing law experiments with 3 domains
(Arxiv, Books, and StackExchange). The target loss is Arxiv. Columns correspond to different initial
mixing proportions. Data points show the (externally studentized) residuals of different mixing proportions
after fitting the linear mixing law. Top row: Each point in the simplex corresponds to a different mixture
of the 3 domains, with its color giving the residual’s value at that point (red is positive, blue is negative).
Bottom 3 rows: each row shows the residual plotted against a different interaction term: P1P2, P1P3, and
P2P3. Dotted gray lines show upper and lower 99% confidence limits for the residuals, assuming the linear
regression assumptions hold.

The bottom three rows plot the residuals against different interaction terms. A consistent trend in the
residuals above or below zero would suggest the term captures a meaningful interaction. The scatter plots
show no consistent trend. The first three charts on the bottom row hint that a small interaction could be
present in those cases; however, it is difficult to say without larger samples. Considering the linear model’s
excellent fit and high R2, if such an interaction is present then it is likely small.

To summarize: the linear model seems sufficient. While we can not rule out the possibility of small
interactions, the diagnostics do not reveal any major departures from linearity that might compel us to use a
more complex model.

C.2 VALUES OF MIXING LAW PARAMETERS

We explain how to compare method-specific At’s to an approximation of the true At⋆. First, after
performing method-specific initialization, such as training reference models, we run each online method
(Skill-It, DoReMi’s proxy model DoGE’s proxy model, Skill-it, and AIOLI) for t steps. For Skill-It,
DoReMi, and DoGE, we use the unrestricted setting configuration of hyperparameters presented in Section
E. For AIOLI, we analyze the parameters of AIOLI +GS from the restricted setting, since we found that this
had less noisy fluctuation in the weights than in the unrestricted setting. For m=2, we set t=1000 for
Skill-It and t=500 for DoGE, DoReMi, and AIOLI since Skill-It is updated less frequently. For m=3, we
set t=1000 for DoGE, DoReMi and Skill-It, and t=1500 for AIOLI. We then checkpoint the language
model and the method’s At. For DoGE and DoReMi, we compute a smoothed At= 1

100

∑100
i=1A

t−100+i

because each At is computed at the batch level, and can thus be noisy. For AIOLI, we also smooth the At

by averaging the previous timestep parameters.

To approximate At⋆, we then run a training sweep of pt over P for 100 steps on the checkpoint. We use
this training sweep to fit At⋆ from the dynamic mixing law Lt+1

val,i(p)=Lt
val,i(p)−

∑m
j=1A

t⋆
ijp

t
j.

23

Published as a conference paper at ICLR 2025

Before we compare parameters, we scale At by some bt where Lt+1
val,i(p)=Lt

val,i(p)−bt
∑m

j=1A
t
ijp

t
j for all

i∈ [m]. This is allowed since bt does not influence the optimal p and does not need to be in the update rule.
We fit a single bt across each group’s mixing law and set Ãt=btAt. We can then compare At and At⋆

using the metric sim(Ãt,At⋆)=0.5cossim(ãt,at⋆)+0.5Spearman(ãt,at⋆), which we proposed in Section
4.3.

C.2.1 PROPERTIES OF At⋆

We discuss some properties of At⋆, finding that 1) At⋆ can vary significantly across time, and 2) At⋆ needs
to be modeled as a full matrix. To do this, for each initial mixture p0∈P, we train for t=2000 steps and
then sweep over P for the next 100 steps. We repeat this setup for t=4000 to obtain A2000⋆ and A4000⋆.
We do this experiment for Arxiv/Stackexchange and Github/C4.

Extent of time variation of At. We find that the column sums of At can change order over time, meaning
that the pt “changes direction” in terms of which group has the largest proportion. In particular, for
p0=[0.5,0.5] and Github/C4, we have that

A2000⋆=

[
0.148 0.011
−0.013 0.087

]
A4000⋆=

[
0.015 0.001
0.001 0.015

]
(10)

The column sums are 1⊤A2000⋆=[0.135,0.098] and 1⊤A4000⋆=[0.016,0.017], showing that the ordering
of proportions of the groups changes. This suggests that the optimal pt can change significantly across
time, prioritizing Github initially and later C4, which is also reflected for Github/C4 in the greedy row of
Table 8.

However, for Arxiv/Stackexchange, the column sums of A2000⋆ and A4000⋆ never change in terms of the
ordering of proportions of the data groups, across all p0∈P. As a result, the optimal pt never changes
direction. This suggests that how much At varies in ordering over time depends on the data groups. As
a result, methods like Skill-It, which use a time-invariant ASG multiplied by validation loss, may not be
able to match the true At⋆ if the groups’ validation losses do not change in ranking across time, which we
observe in Github/C4.

Modeling At⋆ as a full vs diagonal matrix. We find that modeling the off-diagonal entries of At,⋆ is
important. For each sweep, we fit both At⋆ as described above and a diagonal matrix At⋆

d . We compare if
the column sums of At⋆ and At⋆

d differ in the order of elements.

We find that for Arxiv/StackExchange, p0=0.4, and both t=2000 and t=4000, setting pt based on the
full matrix would put a larger proportion on StackExchange, while setting pt based on the diagonal matrix
would put a larger weight on ArXiv. In particular, the full and diagonal matrices for t=2000 are

A2000⋆=

[
0.249 0.058
0.025 0.224

]
A2000⋆

d =

[
0.284 0
0 0.238

]
(11)

The second column sum is larger for A2000⋆ and smaller for A2000⋆
d . We also have similar findings on

Github/C4; for p0=0.6 and t=2000, we have

A2000⋆=

[
0.119 0.027
−0.010 0.104

]
A2000⋆

d =

[
0.135 0
0 0.098

]
(12)

Using the diagonal matrix for Github/C4 would result in prioritizing training on Github, even though the
full matrix suggests that C4 should be prioritized. Therefore, it is important to model At⋆ as a full matrix.
As a result, methods like DoReMi, which use a diagonal At, can perform suboptimally.

C.3 SOLVING STRATEGY

We present our results on examining the assumptions made in how existing methods solve the LMO
optimization problem. All online methods use exponentiated gradient descent, which updates pt using the
gradient at the current timestep. This involves a greedy approximation of the objective function. We study
if the greedy approximation yields a p is close to the true optimal p.

24

Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of arxiv

2.8

2.9

3.0

3.1

3.2

3.3

3.4

N
ex

t-
st

ep
 L

os
s

on
 a

rx
iv

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of stackexchange

3.4

3.6

3.8

4.0

4.2

N
ex

t-
st

ep
 L

os
s

on
 s

ta
ck

ex
ch

an
ge

0.7 prior
0.1 prior
0.2 prior

0.3 prior
0.4 prior

0.5 prior
0.6 prior

0.8 prior
0.9 prior

Figure 6: The linear dynamic parameterization results from Figure 2 (right), with pt=[0,1] and [1,0] also
plotted. We see that the linear dynamics are misspecified at pti=0 for both i.

For m=2 data settings, we take our S=5000 steps and split it into T=2 rounds. We perform a brute-force
sweep at each round over P, which sweeps p1=0.1,0.2,...,0.9. In total over one random seed, we conduct
81 training runs for each of Arxiv/Stackexchange, Github/C4, and Books/Stackexchange.

We determine the greedy-approximate p by selecting the best p1. Then, conditioning on this p1, we select
the best p2. We report what the greedy p and its performance is in the first row of Table 8, and we report
the optimal p and its performance in the second row. Note that this protocol does not depend on the mixing
law or a method for setting p.

We find that for Arxiv/StackExchange and Books/StackExchange, the greedy proportions and the optimal
proportions are identical. However, for Github/C4, the greedy approximation fails to recover the optimal
proportions. Therefore, the greedy approximation recovers the optimal dynamic proportions in 2 out of 3
cases.

Table 8: Comparison of the greedily selected p1, p2 versus the optimal p1, p2 for a T =2 rounds data
mixing problem. On 2 out of 3 datasets, the greedily selected proportions match the optimal proportions.

Solving Arxiv/SE GH/C4 Books/SE
p11,p

2
1 Avg test PPL p11,p

2
1 Avg test PPL p11,p

2
1 Avg test PPL

Greedy 0.4,0.4 16.039 0.6,0.4 36.525 0.3,0.6 45.513
Optimal 0.4,0.4 16.039 0.3,0.6 34.709 0.3,0.6 45.513

Beyond exponentiated gradient descent, one may wonder if exactly solving the greedy objective could
suffice. For the linear dynamic mixing law Lt+1(p) = Lt(p)− Atpt, the optimal pt is 1j, where
j=argmax

∑m
i=1A

t
ij. However, we find in Figure 6 that the loss-proportion relationship can be nonlinear

at the edge of the simplex where pt=1j. Exponentiated gradient descent, which uses entropy regularization,
is hence able to implicitly avoid extreme p where the linear mixing law is misspecified and thus is a
practical technique for LMO.

D ADDITIONAL ALGORITHMIC DETAILS

In AIOLI, LEARNPARAMS is used in each round to learn At. Then, At is used to compute pt, which is
used for training during the round. We provide a derivation of LEARNPARAMS by first presenting a naive,
high-cost method for estimating At (Appendix D.1). This involves checkpointing the model at each round,
running a training sweep over the round and observing the changes in validation losses, and fitting At to
these changes. Then, we layer on two modifications that compute slightly different loss changes, helping
lower the cost of estimation. First, we shorten the training sweep to be only over a fraction of the round,
δ, and use these shortened changes in validation losses to fit At (Appendix D.2). Second, we simulate a
simultaneous training sweep by partitioning the δ fraction of the round into many small parts, interleaving
the different sweep mixtures at a fine granularity and averaging the loss changes for each sweep mixture
(Appendix D.3). This idea, with similarity to concepts like time-division multiplexing in signal processing
(Chaparro & Akan, 2019), enables AIOLI to require no extra training while trading off accuracy of the
estimate. We provide a sketch of our derivation in Figure 7.

Finally, in Appendix D.4 we convert our first principles description of why LEARNPARAMS works above
into a theoretical statement, bounding the difference between At learned from LEARNPARAMS and At⋆.

25

Published as a conference paper at ICLR 2025

p1
,1

p 1,3

pT,
1

p1 p2 pT

p2
,1

p1
,1

p 1,3

p
2,1

pT
,1

p1 p2 pT

δ δ

p1 p2 pT

δ δ δ

I = {1, 3, 2, 3, …, 3}
k = 3

p1,2

p1
,2

LearnParams

I = {1, 2, 3}
k = 1

1. Naive approach with full training sweeps

2. Shorten training sweeps

3. Aioli: interleave training sweeps

δ

Figure 7: Derivation of AIOLI. Top: a naive high-cost approach where training sweeps are conducted
to fit At at each round (Appendix D.1). Middle: a modification that shortens the training sweeps used
to learn At (Appendix D.2). Bottom: a final modification that interleaves the sweep mixtures at a high
frequency (large k) in one single run, enabling AIOLI’s LEARNPARAMS to require no additional training
(Appendix D.3).

D.1 NAIVE TRAINING SWEEP APPROACH

This approach is depicted in Figure 7 (top). By conducting a training sweep over round t, we can use a linear
system of equations to estimate At from the linear dynamic mixing law Lt+1

val,i(p)=Lt
val,i(p)−

∑m
j=1A

t
ijp

t
j.

Let pt,1,pt,2,...pt,m∈△m comprise a training sweep over the duration of round t. First, we checkpoint
the model ft, and for simplicity denote ft’s validation loss on group i as Lt

val,i. For each pt,j, we train
ft for the entire round using pt,j. We then record how much the validation loss on each group changes,
Lt

val,i−L
t+1
val,i(p

t,j) for all i∈ [m]. By the end of this procedure on each pt,j, we have the following system
of equations for each i∈ [m]:

m∑
j=1

At
ijp

t,1
j =Lt

val,i−Lt+1
val,i(p

t,1) (13)

m∑
j=1

At
ijp

t,2
j =Lt

val,i−Lt+1
val,i(p

t,2)

...
m∑
j=1

At
ijp

t,m
j =Lt

val,i−Lt+1
val,i(p

t,m)

This is a system of linear equations with m unknowns: Ai1,...,Aim. We can write it in matrix form as:
pt,11 pt,12 ... pt,1m
pt,21 pt,22 ... pt,2m

...
pt,m1 pt,m2 ... pt,mm

At

i1
At

i2
...

At
im

=

Lt

val,i−L
t+1
val,i(p

t,1)

Lt
val,i−L

t+1
val,i(p

t,2)
...

Lt
val,i−L

t+1
val,i(p

t,m)

 (14)

26

Published as a conference paper at ICLR 2025

Let P ∈Rm×m be the leftmost matrix and βi∈Rm be the vector on the right hand side. Then, we can
write At

i=P−1βi. We solve this system for each i∈ [m] to obtain At.

The advantage of this method is that it directly estimates the optimal At⋆ that is used in the mixing
law. However, it requires m sweeps per round, because the key quantity we must observe to learn At is
Lt

val,i−L
t+1
val,i(p): the change in loss after training through the entire round t. As a result, this approach

requires m extra full training runs to learn At. Below, we will describe how we can compute cheaper
alternatives to Lt

val,i−L
t+1
val,i(p).

D.2 MODIFICATION 1: SHORTENING TRAINING SWEEPS

This modification is depicted in Figure 7 (middle). A simple way to reduce the number of extra training
runs needed to estimate At is to train on each mixture pt,j for less than a round. Let δ denote the fraction of
the round we use for the training sweep. Then, our system of equations in 14 uses Lt

val,i−L
t+δ
val,i(p

t,j); we
simply record the loss difference over δ of the round rather than the entire round, and use this to solve for
At. Now, this approach effectively requires mδ extra training runs; however, this cost is still linear in the
number of data groups. Moreover, there is some inaccuracy incurred by using δ of a round to approximate
the entire round.

D.3 MODIFICATION 2: “INTERLEAVING” TRAINING SWEEPS

This modification is depicted in Figure 7 (bottom). Our final modification to derive LEARNPARAMS is
to convert the training sweep—where we checkpoint the model and execute m separate runs for δ of a
round—into one round without requiring any checkpointing or rolling back of training. Our intuition is
that if we interleave different mixtures sequentially at a high frequency, we can simulate executing these
mixtures simultaneously. This is similar to a concept in signal processing called time-division multiplexing,
in which two or more signals or bit streams are transferred appearing simultaneously as sub-channels in
one communication channel, but are physically taking turns on the channel1.

Formally, we break down the δS/T steps allocated for learning At into K intervals, where K=mk and
k is the number of sweeps per mixture. We construct an interleaved order of pt,1,...,pt,m over these K
intervals, and we denote their index order as I∈ [m]K. Let Iτ denote the mixture at the τ th position in
I. We can denote the model at the end of each interval as t+δ/K,t+2δ/K,...,t+δ. During the τ th
interval, we train on one pt,Iτ and observe the change in loss, Lval,i(f

t+(τ−1)δ/K)−Lval,i(f
t+τδ/K) for

each validation group i. Let Tj={τ :Iτ =j} be all the intervals where pt,j is assigned. We approximate
Lt

val,i −Lt+1
val,i(p

t,j) with 1
|Tj|

∑k
τ∈Tj

Lval,i(f
t+(τ−1)δ/K)−Lval,i(f

t+τδ/K). These approximated loss
differences are then used to recover At from the system of linear equations.

Lastly, note that the choice of k controls the interleaving frequency and the bias of the estimated At.
Suppose that k=1. This means that each mixture is only assigned to one interval, and this could be at the
beginning, middle, or end of the δ round. Then, the change in loss is a poor approximation of the original
quantity Lt

val,i−L
t+1
val,i(p) due to dependence on time. However, as we increase k, the mixture pt,j will be

trained on in the beginning, middle, and end of the δ round, allowing for a less time-biased estimate of the
loss change.

With this modification, LEARNPARAMS now requires no extra training. However, there are still some
performance tradeoffs. First, in order to save compute, our estimate of At via the shortened interleaved
sweeps is less accurate than the naive approach. Second, without rolling back training, AIOLI has both an
“explore” and “exploit” phase, where the former learns At over δ of the round and the latter uses At to set pt
and mix data accordingly for the remainder of the round. If δ is large, the estimate of At may be relatively
more accurate. However, training for longer on the sweep mixtures pt,1,...pt,m may be suboptimal for the
performance of the model. Moreover, the training duration that utilizes the pt that is updated using the
more accurate At is now shortened. Therefore, adjusting δ is key to ensuring that At is accurate and the
model performs well.

1https://en.m.wikipedia.org/wiki/Time-division_multiplexing

27

https://en.m.wikipedia.org/wiki/Time-division_multiplexing

Published as a conference paper at ICLR 2025

D.4 THEORETICAL RESULTS

We now provide a bound on the difference between At⋆, the optimal mixing law parameter, and AtAioli, the
parameters that LEARNPARAMS estimates.

Our proof approach follows a similar break down to sections D.1, D.2, and D.3. Let Ât be the parameters
learned from the naive approach in Appendix D.1, where we fit the parameter from full training sweeps
over the round. Note that the difference between Ât and At⋆ in this case is due to finite-sample regression
(i.e., over the m runs rather than the entire population of mixture proportions). Let Âtδ be the parameters
learned from the shortened approach in Appendix D.2, where we fit the parameter from shortened training
sweeps. The difference between Ât and Âtδ comes from variation in how the losses when trained on each
mixture evolve from t+δ to t+1. Finally, let ÂtAioli be the parameters learned from LEARNPARAMS,
which interleaves different proportions throughout δ. The difference between Âtδ and ÂtAioli comes from
how frequent the interleaving of mixtures is.

Our goal is to find an upper bound on ∥At⋆−µÂtAioli∥2, since differences in magnitudes can be offset by
adjusting η. Using the triangle inequality, we now have the following decomposition:

∥At⋆−µÂtAioli∥2≤∥At⋆−Ât∥2︸ ︷︷ ︸
OLS error

+∥Ât−νÂtδ∥2︸ ︷︷ ︸
Error from δ

+∥νÂtδ−µÂtAioli∥2︸ ︷︷ ︸
Error from interleaving

(15)

Below, we state a set of conditions we use to bound all three quantities. Then, we present our main result,
Theorem 2, before providing our proof.

Setup for OLS error. We frame the error from Ât being learned on finite samples as the “random
design” prediction error of ordinary least squares regression (Hsu et al., 2012). We specify the data model
(covariates and response variable) and use it to formally construct At⋆ and Ât.

Let the covariate p∈△m be a random vector. We have m response variables, Lt
val,i−L

t+1
val,i(p), and m

separate regression problems. Note here that we have dropped the remainder of the dynamic p in the loss
notation in order to model that only the mixture at time t, p, is the covariate. For simplicity, we consider a
single regression problem over the ith validation group.

We are given n samples, (pt,1,Lt
val,i−L

t+1
val,i(p

t,1)),...,(pt,n,Lt
val,i−L

t+1
val,i(p

t,n)) to estimate each A⋆
i (in our

algorithm, we set n=m). We make the following assumptions that define At⋆ and our data-generating
model.
Condition 1 (Ordinary least squares data model). Suppose the following hold true regarding the true data
model of p and Lt

val,i−L
t+1
val,i(p).

1. p is drawn from a centered Dirichlet distribution. That is, p∼Dirichlet(α1,...,αm) where αj=α≥1
for all j∈ [m].

2. The true loss-proportion relationship follows the form,

Lt
val,i−Lt+1

val,i(p)=

m∑
j=1

At⋆
ijp+εOLS, (16)

for some At⋆
i ∈Rm, where εOLS is a zero-mean noise term. That is, we assume no approximation error

in our data-generating model.

3. The noise term εOLS is Subgaussian, meaning that there exists a σOLS≥0 such that almost surely,

E[exp(ηεOLS)]≤exp(η2σ2
OLS/2)∀η∈R. (17)

We assume that p is drawn from the Dirichlet distribution with α≥1, since exponential gradient descent
uses an entropy regularization term that pushes proportions away from the edges of the simplex. We assume
that there is no approximation error in the linear mixing law, since we have established that it is of high
fidelity.

28

Published as a conference paper at ICLR 2025

Now, we formally define Ât. Let Σ denote the covariance E
[
pp⊤

]
. Let Σ̂ be the sample-level estimate of

the covariance, and let Ê[] express sample-level expectation on our size n dataset. Then, our ordinary least
squares estimator is

Ât
i=Σ̂−1Ê

[
p(Lt

val,i−Lt+1
val,i(p))

]
(18)

Âi is an unbiased estimate of A⋆
i . Moreover, for n =m, this estimator is equivalent to setting Âi =

P−1[Lt
val,i−L

t+1
val,i(p

t,1),...,Lt
val,i−L

t+1
val,i(p

t,n)]⊤ over the linear system of m equations, where P is defined
in LEARNPARAMS.

Setup for error from δ. We can express Âtδ as the solution to a linear system of equations where
the response variable is computed over shortened runs. First, we abuse notation from LEARNPARAMS
and define βi∈Rn to be the response variable vector over our n samples, where βij=Lt

val,i−L
t+1
val,i(p

t,j).
Then, we recall that Ât

i=P−1βi, where P satisfies Pij=
ε
m for i≠j and Pii=1−ε+ ε

m .

Next, define βδ
i ∈Rn, where βδ

ij=Lt
val,i−L

t+δ
val,i(p

t,j)—the loss difference in group i when training on pt,j

over δ of a round. We have that

Âtδ=P−1βδ
i , (19)

βδ
ij=Lt

val,i−Lt+δ
val,i(p

t,j) ∀j∈ [n] (20)

The next condition characterizes the relationship between βi and βδ, connecting the full round’s loss
difference to the shortened loss difference.
Condition 2 (Linear + noise time model). There exists cδ∈(0,1) and εδ∼N (0,(1−δ)2σ2

δ) such that

βδ
i =cδβi+εδ ∀i∈ [m]. (21)

Intuitively, this means that when shortening a training run from one round to δ of a round, the loss change
is scaled by a linear factor cδ and then adjusted by some Gaussian noise. εδ captures how much variance
there is in the shortened training runs relative to the full training runs. Note that as δ approaches 1, cδ
approaches 1 and εδ decreases in variance.

Setup for error from interleaving. We define ÂtAioli now. Recall that we have taken δ of the round
and split it into K equal intervals. During each interval, we train on some mixture pt,j. Let the order of
interleaved indices be captured by I ∈ [m]K. Iτ is the index of the mixture that is trained on in the τ th
interval, and Tj={τ :I=j} are all the intervals for which the model is trained using pt,j. I is constructed
such that |Tj|=k for all j∈ [n]. Moreover, we assume that each set of indices for j is selected with equal
probability (i.e., Pr(Tj)=1/

(
K
k

)
).

Due to the dynamic nature of this training procedure, we abuse loss notation to capture what the model
has already been trained on so far. Let Lt+τδ/K

val,i (p|[·]) denote that the model up to interval τ was
trained on [·]. Let βI

i ∈Rn be the response variable vector over n samples, where each βij is equal to
1
k

∑
τ∈Tj

(
L
t+(τ−1)δ/K
val,i (pt,Iτ−1|I1:τ−2)−Lt+τδ/K

val,i (pt,j|I1:τ−1)
)
. Here, we have annotated the losses to

show that the loss differences are always computed before and after training an interval using pt,j, even
though the remaining intervals are trained on other mixtures. Using this definition of βI

i , we have

ÂtAioli=P−1βI
i , (22)

βI
ij=

1

k

∑
τ∈Tj

(
L
t+(τ−1)δ/K
val,i (pt,Iτ−1|I1:τ−2)−Lt+τδ/K

val,i (pt,j|I1:τ−1)
)
. (23)

29

Published as a conference paper at ICLR 2025

Moreover, we can write βδ
ij in terms of interval-level loss differences:

βδ
ij=Lt

val,i−Lt+δ
val,i(p

t,j)=
(
Lt

val,i−L
t+δ/K
val,i (pt,j)

)
+
(
L
t+δ/K
val,i (pt,j)−Lt+2δ/K

val,i (pt,j|pt,j)
)

(24)

+···+
(
L
t+(K−1)δ/K
val,i (pt,j|pt,j)−Lt+δ

val,i(p
t,j|pt,j)

)
. (25)

We make the following assumption relating βδ
ij and βI

ij.

Condition 3 (Independent loss differences). Fix a j∈ [n]. For any interval τ∈Tj,

L
t+(τ−1)δ/K
val,i (pt,Iτ−1|I1:τ−2)−Lt+τδ/K

val,i (pt,j|I1:τ−1)=L
t+(τ−1)δ/K
val,i (pt,j|pt,j)−Lt+τδ/K

val,i (pt,j|pt,j)

Intuitively, this means that the loss difference before and after we train on pt,j at interval τ is independent
of what we trained on before this point; this quantity only depends on pt,j and τ .

Main result. We are now ready to present our main theorem that bounds ∥At⋆−µÂtAioli∥2. We provide
a few extra definitions, as well as reminders of key terms.

Recall that m is the number of domains and n is the number of samples used to fit the training sweep (we
use n=m in practice). α is the parameter of the Dirichlet distribution for generating mixtures. σ2

OLS is
the Subgaussian parameter for the noise in the mixing law. δ is the proportion of the round allocated for
learning At. σ2

δ and cδ are the noise and slope in the linear model, respectively, for how loss change over δ
of a round is expressed in terms of loss change over the entire round. ε is the one-hot vector smoothing
factor used in LEARNPARAMS. K is the total number of intervals in δ, and k is the number of intervals per
mixture, where kn=K. Let aij=maxτL

t+τδ/K
val,i (pt,j|pt,j) and let bij=minτL

t+τδ/K
val,i (pt,j|pt,j). Define

r=maxi,jaij−bij.
Theorem 2. Suppose that Conditions 1, 2, and 3 hold. Let t satisfy t>max{0,2.6−logm} and assume
n≥ 6(logm+t))

m(mα+1) . There exists some µ>0 such that the estimation error of LEARNPARAMS can be bounded
as follows:

∥At⋆−µÂtAioli∥2≤ErrOLS+Errδ+ErrI w.p. ≥1−3mexp(−t)−exp
(
−mt2(1−t)

4

)
−nmt, (26)

where there exists some finite c>0 and

ErrOLS=
cσ2

OLSm(m+2
√
mt+2t)

√
mα+1

n
(27)

Errδ=
(1−δ)2σ2

δm
3/2(1+t)

(1−ε)c2δ
(28)

ErrI=
rK

cδ(1−ε)

√
nmln(1/t)

(
1− k−1

K

)
2k

(29)

We briefly discuss each of the three terms:

• ErrOLS: this term describes the error incurred when learning At over finite number of samples. We
see that there are several quantities controlling this error. As the number of samples n increases, this
error goes to 0. Similarly, if the linear dynamic mixing law is not very noisy, then σ2

OLS is small and
the error will be negligible. Lastly, note the dependence on α, the key parameter dictating how sharp
the Dirichlet distribution is.

• Errδ: in this term, we can see that if δ is close to 1, the full round, then the error is negligible. Moreover,
if the shortened rounds are not noisy and σ2

δ is low, then the error is also small. Lastly, observe the
1−ε in the denominator. Intuitively, this means that if the pt,1,...pt,m are spread out, things are easier
to learn.

30

Published as a conference paper at ICLR 2025

• ErrI: this term is controlled by the relationship between k, how many intervals you use out of K
to train on each pt,j, and K, the total number of intervals. If k≈K, then error is roughly constant.
However, if k is small, the error from interleaving can be high because we are only using a fraction of
δ for estimating loss differences.

D.5 PROOF OF THEOREM 2

We break down our proof into three lemmas that bound ∥At⋆ − Ât∥2, ∥Ât − νÂtδ∥2, and ∥νÂtδ −
µÂtAioli∥2.

D.5.1 OLS ERROR BOUND

First, we restate Theorem 11 from Hsu et al. (2012), which we apply to obtain our bound on ∥At⋆−Ât∥2.

Theorem 3 (Hsu et al. (2012)). Denote ∥x∥Σ to be
√
x⊤Σx. Assume that Condition 1 holds. Let t satisfy

t>max{0,2.6−logm}. Let ρ0 satisfy ∥Σ−1/2p∥2√
m

≤ρ0. Assume that the number of samples n satisfies
n≥6ρ20m(logm+t). Then, with probability at least 1−3e−t, we have

∥At⋆
i −Ât

i∥Σ≤
2

1−δs
·σ

2
OLS(m+2

√
mt+2t)

n
, (30)

where δs=
√

4ρ20m(logm+t)
n +

2ρ20m(logm+t)
3n .

To adapt this theorem to our setting, we must compute ρ0 and δs, and convert the bound into a result on the
2-norm of the matrix difference.
Lemma 4 (OLS random design bound). Let t satisfy t>max{0,2.6−logm}. Assume Condition 1 holds,
and the number of samples n satisfies n≥ 6(logm+t)

m(mα+1) . Then, with probability at least 1−3me−t, we have

∥Ât−At⋆∥2≤
2

1−δs
·σ

2
OLSm

√
m(m+2

√
mt+2t)(mα+1)

n
, (31)

where δs=2
(√

logm+t
nm(mα+1)+

logm+t
3nm(mα+1)

)
.

Proof. We first compute ρ0 and δs. From the triangle inequality and definition of the norm, we have

that ∥Σ1/2p∥2√
m
≤ ∥Σ∥1/22 ∥p∥2√

m
. Using Lemma 7 and the fact that ∥p∥2≤ 1, we can set ρ0=

√
1

m(mα+1)√
m

=
1

m
√

(mα+1)
. Then, we have that

δs=2

(√
logm+t

nm(mα+1)
+

logm+t

3nm(mα+1)

)
. (32)

To convert the bound in (30) into a bound on ∥Ât
i − At⋆

i ∥2, we note that ∥Ât
i − At⋆

i ∥2 = ∥(Ât
i −

At⋆
i)Σ1/2Σ−1/2∥2≤∥(Ât

i−At⋆
i)Σ1/2∥2∥Σ−1/2∥2≤∥Ât

i−At⋆
i ∥Σ∥Σ−1/2∥2. Then, using Lemma 7, we

have

∥Âi−A⋆
i ∥2≤

2

1−δs
·
σ2(m+2

√
mt+2t)

√
m(mα+1)

n
. (33)

Then, we use ∥Ât−At⋆∥2≤∥Ât−At⋆∥F =
√∑m

i=1∥Ât
i−At⋆

i ∥22≤
√
m∥Ât

i−At⋆
i ∥2. Applying a union

bound, we have

∥Ât−At⋆∥2≤
2

1−δs
·σ

2
OLSm(m+2

√
mt+2t)

√
mα+1

n
w.p.1−3me−t (34)

31

Published as a conference paper at ICLR 2025

D.5.2 ERROR FROM δ BOUND

Lemma 5. Define t∈ [0,1] and assume that Condition 2 holds. There exists a ν≥0 such that

∥Ât−νÂtδ∥2≤∥P−1∥2

√√√√ m∑
i=1

∥εδ/cδ∥22=∥P−1∥2·
∣∣∣∣εδ
cδ

∣∣∣∣2
2
·
√
m (35)

Proof. We first simplify the left hand side and plug in the construction from Condition 2:

∥Ât−νÂtδ∥2≤

√√√√ m∑
i=1

∥Âi−νÂδ
i∥22≤∥P

−1∥2

√√√√ m∑
i=1

∥βi−νβδ
i ∥22=∥P

−1∥2

√√√√ m∑
i=1

∥βi−ν(cδβi+εδ)∥22.

(36)

Setting ν equal to 1
cδ

, we have

∥Ât−νÂtδ∥2≤∥P−1∥2

√√√√ m∑
i=1

∥εδ/cδ∥22=∥P−1∥2·
∣∣∣∣εδ
cδ

∣∣∣∣2
2
·
√
m (37)

From Lemma 8, we have that ∥P−1∥2 under our construction in LEARNPARAMS is 1
1−ε . Moreover, note

that ∥εδ∥2 is equal to (1−δ)2σ2
δχ

2
m, where χ2

m is the Chi-squared distribution with m degrees of freedom.
Using a Chernoff bound, we have that Pr(∥εδ∥2≤ (1−δ)2σ2

δm(1+t))≤1−exp(−m
2 (t+ln 1

1+t)) for
some t>0. Putting everything together, we have

∥Â−µ1Â
δ∥2≤

(1−δ)2σ2
δm
√
m(1+t)

(1−ε)c2δ
w.p.1−exp

(
−m

2

(
t+ln

1

1+t

))
(38)

D.5.3 ERROR FROM INTERLEAVING BOUND

Lemma 6. Assume that Condition 3 holds. Let aij = maxτ L
t+τδ/K
val,i (pt,j|pt,j) and let bij =

minτL
t+τδ/K
val,i (pt,j|pt,j). Define r=maxi,jaij−bij. Then,

∥νÂtδ−µÂtAioli∥≤ rK

cδ(1−ε)

√
nmln(1/t)·(1− k−1

K)

2k
w.p.≥1−nmt. (39)

Proof. We can write ∥νÂtδ−µÂtAioli∥ as

∥νÂtδ−µÂtAioli∥≤ν∥P−1∥2

√√√√ m∑
i=1

∥βδ
i −

µ

ν
βI
i ∥22=

ν

1−ε

√√√√ m∑
i=1

∥βδ
i −

µ

ν
βI
i ∥22. (40)

We write βδ
ij = x1|j + x2|j + ···+ xK|j, where xτ|j = L

t+(τ−1)δ/K
val,i (pt,j|pt,j)− L

t+τδ/K
val,i (pt,j|pt,j).

Similarly, we write βI
ij = x1|I + x2|I + ··· + xK|I, where xτ|I = L

t+(τ−1)δ/K
val,i (pt,j|I1:τ−2) −

L
t+τδ/K
val,i (pt,j|I1:τ−1). From Condition 3, we have that xτ|j=xτ|I for any τ∈Tj. This means that

βI
ij=

1

k

∑
τ∈Tj

xτ|j. (41)

32

Published as a conference paper at ICLR 2025

This gives us an elegant way of comparing βI
ij and βδ

ij: in expectation, we have that E
[
βI
ij

]
=

βδ
ij

K . Then,
∥βδ

i −
µ
νβ

I
i ∥2=

∑n
j=1(β

δ
ij−

µ
νβ

I
ij)

2=
∑n

j=1(
∑K

τ=1xτ|j−
µ
ν

1
k

∑
τ∈Tj

xτ|j)
2. If we set µ/ν to be equal to

K, then we get

∥βδ
i −

µ

ν
βI
i ∥2=K2

n∑
j=1

(1

K

K∑
τ=1

xτ|j−
1

k

∑
τ∈Tj

xτ|j

)2

(42)

Applying Theorem 5 and a union bound, this becomes

∥βδ
i −

µ

ν
βI
i ∥2≤

nK2ln(1/t)·(1− k−1
K)r2

2k
w.p.≥1−nt (43)

where r is the range of xτ|j. Finally, we plug this into the original bound and use ν= 1
cδ

and a union bound
again.

∥νÂtδ−µÂtAioli∥≤ rK

cδ(1−ε)

√
nmln(1/t)·(1− k−1

K)

2k
w.p.≥1−nmt. (44)

D.5.4 AUXILIARY LEMMAS

Theorem 4 (Horn & Johnson (1985)). If matrix A∈Rm×m has eigenvalues λ,λ2,...,λm and x is the
eigenvector such that Ax=λx, then for any v∈Rm, A+xv⊤ has eigenvalues λ+v⊤x,λ1,...,λm.
Lemma 7. For p∼Dirichlet(α1,...,αm) where αi =α for all i∈ [m], the L2 norm of the covariance
matrix Σ=E

[
pp⊤

]
is

∥Σ∥2=
1

m(mα+1)
. (45)

Proof. First, the Dirichlet covariance matrix with constant αi’s has the following form:

Σij=

{
−1

m2(mα+1) i≠j
m−1

m2(mα+1) i=j
(46)

We can write this covariance matrix as a sum of a rank one matrix and a diagonal matrix:

Σ=diag
(1

m(mα+1)

)
− 1

m2(mα+1)
11⊤

Note that the diagonal matrix has all eigenvalues equal to 1
m(mα+1) , and every vector in Rm is an

eigenvector.

Next, we apply Theorem 2.4.10.1 from Horn & Johnson (1985), which is restated in Theorem 4. We set
A=diag(1

m(mα+1)), x=1, v=− 1
m2(mα+1)1. Then, the eigenvalues of Σ are 1

m(mα+1)+m −1
m2(mα+1)=

0 (multiplicity 1) and 1
m(mα+1) (multiplicity m−1). Therefore, we have that ∥Σ∥2= 1

m(mα+1) .

Lemma 8. The matrix P ∈Rm×m is defined in LEARNPARAMS as:

Pij=

{
1−ε+ ε

m i=j
ε
m i≠j

, (47)

where ε is a one-hot correction factor. Then,

∥P−1∥2=
1

1−ε
. (48)

33

Published as a conference paper at ICLR 2025

Proof. First, observe that we can write P as the sum of a rank one and diagonal matrix.

P=
ε

m
·11⊤+diag(1−ε) (49)

The diagonal matrix has all eigenvalues equal to ε
m . Next, we apply Theorem 2.4.10.1 from Horn &

Johnson (1985), restated in Theorem 4, to the sum of the diagonal and rank-one matrix. The eigenvalues
are 1−ε+ε=1 (multiplicity 1) and 1−ε (multiplicity n−1). The eigenvalues of P−1 are then 1 and 1

1−ε ,
and 1

1−ε is the largest eigenvalue.

Theorem 5 (Serfling (1974)). Let x1,...,xK be a finite list of values. We draw a sample of size k without
replacement, each with equal probability—denote this as X1,...,Xk. Define a=minixi and b=maxixi.
Then,

Pr

(
1

k

k∑
i=1

Xk−
1

K

K∑
i=1

xK≥t
)
≤exp

(
− 2kt2

(1−(k−1)/K)(b−a)2

)
. (50)

This can also be written as

1

k

k∑
i=1

Xk−
1

K

K∑
i=1

xK≤

√
ln(1/δ)·(1− k−1

K)(b−a)2

2k
w.p.≥1−δ (51)

E EXPERIMENTAL DETAILS

E.1 DATA

To obtain a test set, we shuffle and split the validation set from SlimPajama-6B (Soboleva et al., 2023;
Yoon, 2023) in half.

To perform training sweeps and emulate grid searches in static settings for m=3,7, we oversampled from
the Dirichlet with α=1 by 4x the number of points and then hierarchically merged closest points into a
centroid until we obtained x points. For example, to obtain 10 points in the 7-dimensional simplex for
SlimPajama-full, we would sample 40 points in the simplex and hierarchically merge closest points until
10 points remain. This is to ensure that near-duplicate p’s are not included in the sweep. This procedure is
used in Grid Search (GS) and DML in Section 6 and in our analysis in Section 4

E.1.1 TRAINING

Here, we discuss the training setups for the restricted and unrestricted settings. For the m=2,3 settings, we
train a 160M model using Pythia-160M’s configuration for S=5000 steps and results are averaged over 5
random seeds. For m=7, we train a 160M model using Pythia-160M’s configuration for S=40000 steps
results are averaged over 3 random seeds. All settings use FlashAttention (Dao et al., 2022), batch size of 8,
context size of 2048, and cosine learning rate decay from a starting learning rate of 5e-5 to 1e-5 with 500
steps of learning rate warmup.

For the m=2,3 settings, experiments were run on a NVIDIA RTX 6000 Ada Generation GPU. For the
m=7 setting, experiments were run on a NVIDIA A100 80 GB GPU.

Restricted versus unrestricted. Both the restricted and unrestricted settings share the same length of the
final training runs (5000 and 40000 steps, as above). The unrestricted setting gives all methods up to 10
training runs to initialize mixing algorithm parameters, or 10S steps, while the restricted setting give 0.5S
steps. See Table 9 for training budget allocations in each setting. AIOLI and stratified sampling do not use
extra training runs.

E.2 DATA MIXING METHODS

AIOLI-specific hyperparameters In the unrestricted setting, we found it sometimes helpful to use an
exponential moving average with proportion γ over At for AIOLI. Formally, the standard pt update rule in

34

Published as a conference paper at ICLR 2025

Table 9: Training budget allocations for restricted and unrestricted settings.

Setting m Method Runs within training budget
Unrestricted 2 DML 10 runs, 5000 steps

Skill-it 2 runs, 5000 steps
DoReMi 2 runs, 5000 steps
DoGE 1 run, 5000 steps

3 DML 10 runs, 5000 steps
Skill-it 3 runs, 5000 steps

DoReMi 2 runs, 5000 steps
DoGE 1 run, 5000 steps

7 DML 10 runs, 40000 steps
Skill-it 7 runs, 40000 steps

DoReMi 2 runs, 40000 steps
DoGE 1 run, 40000 steps

Restricted 2 DML 10 runs, 250 steps
Skill-it 2 runs, 1250 steps

DoReMi 2 runs, 1250 steps
DoGE 1 run, 2500 steps

3 DML 10 runs, 250 steps
Skill-it 3 runs, 833 steps

DoReMi 2 runs, 1250 steps
DoGE 1 run, 2500 steps

7 DML 10 runs, 2000 steps
Skill-it 7 runs, 2814 steps

DoReMi 2 runs, 10000 steps
DoGE 1 run, 20000 steps

Algorithm 1 can be unrolled as pt+1
j ∝p0jexp(η

∑t
τ=1

∑m
i=1A

τ
ij), which places equal weight on every Aτ

ij.
To incorporate the EMA, we define A1

ema = Ā1 and At
ema =(1−γ)Āt+γAt−1

ema . We then use the update
rule pt+1

j ∝p0jexp(ηA
t
ema). This allows AIOLI to gradually decay the contributions of At, such that the

value of pt is less dependent on earlier proportions in the training.

We summarize the hyperparameters used in AIOLI, providing their default values as well as guidelines for
how to set them. Refer to Algorithm 1 and 2 to see how they are used:

• Number of rounds T : we set this to 20 in all experiments. Larger T means more frequent updates to the
mixture proportions.

• Sweeps k: we set this to be 4 for m=2,3 and 2 for the full SlimPajama experiments. We did not adjust
this hyperparameter otherwise. Intuitively, a larger k will give a more accurate At, because this means
that each pi,t will be trained on more frequently throughout the δ proportion of the round; however, this
will also result in less of the round being allocated to exploiting At via using pt.

• ε one-hot smoothing factor: we set this to be 0.75 in all experiments. In general, ε must be set between 0
and 1, where 0 results in the training sweep using one-hot mixture proportions to learn At, which means
that each batch only consists of one data group and can result in poor learning dynamics. ε=1, on the
other hand, means that our training sweep would only consist of uniform proportions.

• EGD step size η: we sweep {0.1, 0.2, 0.3, 0.5}, with higher η resulting in greater magnitude of the
proportion update.

• Proportion of round δ dedicated to learning At: We use δ = 0.128,0.288,0.007 for m = 2,3,7,
respectively. Intuitively, a larger δ will give more accurate At because the parameter is learned on more
data, but this will also result in less of the round being allocated to exploiting At via using pt.

• EMA parameter γ: we sweep None, 0.1,0.5. Intuitively, None means that the pt update is equally
dependent on all previous pt’s, while a small γ=0 means that the pt update is only a function of the
current At.

35

Published as a conference paper at ICLR 2025

For the last three hyperparameters, η,δ,γ, we used different values of them in different experiments.
Tables 10, 11, 12, 13, 14, and 15 list exact values for the unrestricted and restricted settings for m=2,3,7.
In addition, Appendix F.3 provides results on hyperparameter sensitivity for η,δ, and γ.

Table 10: Unrestricted hyperparameter values for each data mixing algorithm for experiments where
m=2 (corresponding to Table 2 results).

Data groups Hyperparameter Value
arXiv/SE · proportion of round δ 0.128

· EGD learning rate η 0.2
· EMA parameter γ 0.1

GitHub/C4 · proportion of round δ 0.128
· EGD learning rate η 0.3
· EMA parameter γ 0.5

Books/SE · proportion of round δ 0.128
· EGD learning rate η 0.1
· EMA parameter γ None

Table 11: Restricted hyperparameter values for each data mixing algorithm for experiments where m=2
(corresponding to Table 3 results).

Data groups Hyperparameter Value
arXiv/SE · proportion of round δ 0.128

· EGD learning rate η 0.2
· EMA parameter γ None

GitHub/C4 · proportion of round δ 0.128
· EGD learning rate η 0.2
· EMA parameter γ None

Books/SE · proportion of round δ 0.128
· EGD learning rate η 0.2
· EMA parameter γ None

Table 12: Unrestricted hyperparameter values for each data mixing algorithm for experiments where
m=3 (corresponding to Table 2 results).

Data groups Hyperparameter Value
arXiv/Books/SE · proportion of round δ 0.288

· EGD learning rate η 0.5
· EMA parameter γ None

CommonCrawl/GitHub/Wiki · proportion of round δ 0.288
· EGD learning rate η 0.3
· EMA parameter γ 0.5

Baseline hyperparameters. We consulted the original papers and implementations to determine how to
set the hyperparameters for each baseline, ensuring that the updated proportions were changing significantly
but not oscillating under these configurations.

• Skill-It: the hyperparameters are the number of rounds T , the EGD learning rate η, and the multiplicative
weights window w. Our default configuration was T=10, η=0.2, and w=3. However, we made two
exceptions in the unrestricted setting after conducting a sweep over T ∈{5,10} and η∈{0.1,0.2,0.5,0.8};
for GitHub/C4, we used T=5 and η=0.1, and for Books/StackExchange, we used η=0.8.

• DoReMi: the hyperparameters are the EGD learning rate η and a smoothing factor ε (0 = no smoothing).
For all experiments, we set η=0.01 and ε=1e−3.

36

Published as a conference paper at ICLR 2025

Table 13: Restricted hyperparameter values for each data mixing algorithm for experiments where m=3
(corresponding to Table 3 results).

Data groups Hyperparameter Value
arXiv/Books/SE · proportion of round δ 0.288

· EGD learning rate η 0.2
· EMA parameter γ None

CommonCrawl/GitHub/Wiki · proportion of round δ 0.288
· EGD learning rate η 0.2
· EMA parameter γ None

Table 14: Unrestricted hyperparameter values for each data mixing algorithm for experiments where
m=7 (corresponding to Table 2 results).

Data groups Hyperparameter Value
SlimPajama, full · proportion of round δ 0.07

· EGD learning rate η 0.2
· EMA parameter γ 0.1

Table 15: Restricted hyperparameter values for each data mixing algorithm for experiments where m=7
(corresponding to Table 3 results).

Data groups Hyperparameter Value
SlimPajama, full · proportion of round δ 0.07

· EGD learning rate η 0.2
· EMA parameter γ 0.1

• DoGE: the hyperparameters are the EGD learning rate η, the smoothing factor ε, and the proportion of
the training batch that is allocated for the validation dataset r; this is needed to compute the gradient
dot-product at each step. We use ε=0 for all experiments. For m=2, we set r=0.25 and for m=3,7,
we set r=0.5. For all experiments besides Github/C4 and SlimPajama, we use η=0.01. For Github/C4,
we use η=0.1 and for SlimPajama we used η=0.1 and η=0.03 for unrestricted and restricted settings,
respectively.

Weight trajectories. In Table 16, we provide the mixture proportions for each method (averaged across
training steps) for each dataset on one random seed. In Figure 8, we provide all of AIOLI’s proportion
trajectories throughout training in both the unrestricted and restricted settings on one random seed for the
m=2 settings. In Figure 9 and Figure 10, we provide AIOLI’s trajectories in the unrestricted and restricted
settings on one random seed for Arxiv/Books/StackExchange and CommonCrawl/Github/Wikipedia,
respectively. All of our trajectories demonstrate that AIOLI can significantly adjust proportions over time,
and that conditioning on different initial proportions can drastically change the behavior of AIOLI.2

F ADDITIONAL EXPERIMENTS

F.1 DOWNSTREAM TASKS

We find that lower perplexity is positively correlated with worse performance on downstream tasks. We
evaluated all models trained on SlimPajama on ARC-Challenge, ARC-Easy (Clark et al., 2018), BoolQ
(Clark et al., 2019), HellaSwag (Zellers et al., 2019), LAMBADA (Paperno et al., 2016), OpenBookQA
(Mihaylov et al., 2018), PiQA Bisk et al. (2019), and WinoGrande (Sakaguchi et al., 2020) using the

2Note that for the restricted setting, AIOLI’s trajectory consists of using the base method for a certain amount of
steps, and then roughly reverting to the uniform distribution before adjusting the proportions. This is expected behavior,
since our initial proportions p0 are uniform in Algorithm 1; this avoids a “biased” proportion update.

37

Published as a conference paper at ICLR 2025

Table 16: Average proportions over the entire training trajectory for the unrestricted setting, on one random
seed.

Data groups Method Average Proportions

arXiv/SE Grid search [0.4, 0.6]
DML [0.404, 0.596]
Skill-it [0.437, 0.563]

DoReMi [0.37, 0.63]
DoGE [0.624, 0.376]
AIOLI [0.507, 0.493]

GitHub/C4 Grid search [0.3, 0.7]
DML [0.46, 0.54]
Skill-it [0.583, 0.417]

DoReMi [0.858, 0.142]
DoGE [0.352, 0.648]
AIOLI [0.505, 0.495]

Books/SE Grid search [0.3, 0.7]
DML [0.381, 0.619]
Skill-it [0.316, 0.684]

DoReMi [0.286, 0.714]
DoGE [0.325, 0.675]
AIOLI [0.456, 0.544]

arXiv/Books/SE Grid search [0.291, 0.306, 0.403]
DML [0.245, 0.277, 0.477]
Skill-it [0.292, 0.238, 0.469]

DoReMi [0.318, 0.180, 0.502]]
DoGE [0.592, 0.132, 0.276]
AIOLI [0.342, 0.275, 0.383]

CC/GitHib/Wiki Grid search [0.291, 0.306, 0.403]
DML [0.157, 0.472, 0.371]
Skill-it [0.275, 0.3, 0.425]

DoReMi [0.101, 0.714, 0.185]]
DoGE [0.536, 0.220, 0.244]
AIOLI [0.342, 0.325, 0.333]

SlimPajama, full Grid search [0.202, 0.022, 0.28, 0.038, 0.018, 0.376, 0.064]
(A/B/C4/CC/G/SE/W) DML [0.042, 0, 0, 0.579, 0, 0.249, 0.013]

Skill-it [0.098, 0.111, 0.204, 0.103, 0.138, 0.266, 0.076]
DoReMi [0.08, 0.047, 0.057, 0.11, 0.467, 0.078, 0.157]
DoGE [0.056, 0.162, 0.343, 0.28, 0.038, 0.067, 0.051]
AIOLI [0.142, 0.143, 0.143, 0.144, 0.140, 0.144, 0.143]

Language Model Evaluation Harness (Gao et al., 2024) (Table 17). The correlation between perplexity and
the macroaverage of our downstream tasks is 0.529, indicating that lower perplexity is predictive of worse
downstream performance. In fact, DML obtains the best overall performance, even though it omits three
out of seven datasets in SlimPajama (see the average proportions in Table 16).

One potential reason for this disparity is the distribution shift between pre-training data and downstream
evaluation data; for example, the DML results suggest that training on Books, C4, and Github is not
needed to do well on the above selection of downstream tasks. Many recent works have also noted that
perplexity and downstream performance are uncorrelated (Liu et al., 2023; Xia et al., 2023; Tay et al.,
2023). Furthermore, Levy et al. (2024) proposes a question answering dataset where the perplexity of the
pretrained model is positively correlated with performance, similar to our results. This mismatch between
training objective and downstream evaluations also extends to post-training, where better learning of human
preferences does not translate to better win-rate against other post-trained models (Chen et al., 2024).

38

Published as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000
steps

0.30

0.35

0.40

0.45

0.50

0.55

pr
op

or
tio

n
(A

rX
iv

)

Arxiv/Stackexchange

Aioli Unrestricted
Aioli+GS
Aioli+DML
Aioli+Skill-it
Aioli+DoReMi
Aioli+DoGE

0 1000 2000 3000 4000 5000
steps

0.40

0.45

0.50

0.55

0.60

0.65

0.70

pr
op

or
tio

n
(G

ith
ub

)

Github/C4

0 1000 2000 3000 4000 5000
steps

0.30

0.35

0.40

0.45

0.50

0.55

pr
op

or
tio

n
(B

oo
k)

Book/Stackexchange

Figure 8: AIOLI’s proportions throughout training for both unrestricted and restricted settings on
Arxiv/StackExchange, Github/C4, and Book/StackExchange. These trajectories show that AIOLI meaning-
fully alters the mixture proportions over time.

1000 2000 3000 4000 5000

0.25

0.30

0.35

0.40

0.45

pr
op

or
tio

n

Aioli Unrestricted

Arxiv
Books
StackExchange

1000 2000 3000 4000 5000
0.275

0.300

0.325

0.350

0.375

0.400

0.425
Aioli+GS

1000 2000 3000 4000 5000

0.30

0.32

0.34

0.36

0.38

0.40
Aioli+DML

0 1000 2000 3000 4000 5000
steps

0.25

0.30

0.35

0.40

0.45

0.50

pr
op

or
tio

n

Aioli+Skill-it

1000 2000 3000 4000 5000
steps

0.275

0.300

0.325

0.350

0.375

0.400
Aioli+DoReMi

1000 2000 3000 4000 5000
steps

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Aioli+DoGE

Figure 9: AIOLI’s proportions throughout training for both unrestricted and restricted settings on
Arxiv/Book/StackExchange.These trajectories show that AIOLI meaningfully alters the mixture proportions
over time.

Table 17: Downstream evaluation metrics for various data mixing methods after training on SlimPajama
across three random seeds in the unrestricted setting.

Method Average ARC-C ARC-E BoolQ HellaSwag LAMBADA OpenBookQA PiQA WinoGrande

Stratified 0.305 0.176 0.314 0.394 0.261 0.116 0.117 0.563 0.499
AIOLI 0.311 0.172 0.315 0.447 0.264 0.114 0.111 0.559 0.504
GS 0.322 0.176 0.329 0.502 0.262 0.117 0.124 0.568 0.500
DML 0.333 0.181 0.330 0.608 0.261 0.109 0.128 0.554 0.490
Skill-it 0.316 0.182 0.322 0.462 0.261 0.124 0.122 0.559 0.492
DoReMi 0.324 0.177 0.323 0.507 0.264 0.127 0.122 0.574 0.499
DoGE 0.314 0.173 0.313 0.471 0.262 0.116 0.115 0.557 0.504

Resolving the disconnect between training objective and downstream evaluations is an area of active
research. In the case of data mixing, AIOLI remains the only algorithm in our tests that robustly minimizes
average test perplexity–essentially, AIOLI achieves what it sets out to achieve in the LMO framework
in (1). Conversely, other data mixing algorithms might be implicitly doing something else with respect to
minimizing downstream evaluations. Considering how to incorporate downstream evaluations into data
mixing is a fruitful area for future work.

39

Published as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

0.32

0.33

0.34

0.35

pr
op

or
tio

n

Aioli Unrestricted

CommonCrawl
Github
Wikipedia

1000 2000 3000 4000 5000

0.1

0.2

0.3

0.4

0.5

0.6
Aioli+GS

1000 2000 3000 4000 5000

0.2

0.3

0.4

0.5

Aioli+DML

0 1000 2000 3000 4000 5000
steps

0.20

0.25

0.30

0.35

0.40

pr
op

or
tio

n

Aioli+Skill-it

1000 2000 3000 4000 5000
steps

0.20

0.25

0.30

0.35

0.40

0.45
Aioli+DoReMi

1000 2000 3000 4000 5000
steps

0.25

0.30

0.35

0.40

0.45

Aioli+DoGE

Figure 10: AIOLI’s proportions throughout training for both unrestricted and restricted settings on Common-
Crawl/Github/Wikipedia.These trajectories show that AIOLI meaningfully alters the mixture proportions
over time.

F.2 ABLATIONS

We ablate AIOLI by studying performance when two key properties of At (Appendix C.2.1) are changed:
when T=1 (i.e., At is only learned once at the beginning of training and used throughout), and when At is
assumed to be diagonal. We evaluate these two ablations in the unrestricted setting presented in Section 6.1
and Table 2:

• AIOLI-STATIC: We set T=1 in Algorithm 1. That is, we learn A1 at the beginning of training. We
use this A1 to set p1, and use this p1 for the remainder of the training run. This approach tests if At

needs to be adjusted throughout training.

• AIOLI-DIAGONAL: We assume that each At is diagonal in this ablation. In particular, in LEARN-
PARAMS we do At

ii=βii/p
t,i rather than At

i=P−1βi for each i∈ [m] in line 11. This approach tests
if it is sufficient to not model cross-group interactions and instead only capture how much group i’s
performance improves when trained on group i itself.

For both AIOLI-STATIC and AIOLI-DIAGONAL, we use the same set of hyperparameters as AIOLI as
described in Appendix E. For AIOLI-STATIC, we additionally sweep over EGD learning rates {η,2η,3η,4η}
where η is the EGD learning rate used by AIOLI.

Our results are in Table 18. We find that AIOLI outperforms both ablations in 3 out of 6 settings, and
obtains the lowest test perplexity on average over these settings. This suggests that both T >1 and modeling
off-diagonal entries are important to AIOLI’s consistent performance across datasets.

Table 18: Ablations on AIOLI. The table reports the difference in average test perplexity compared to
stratified sampling. Negative values (green) = improvement, and bolded = best performing method for given
data setting. A=Arxiv, B=Books, GH=GitHub, SE=StackExchange, W=Wikipedia. AIOLI outperforms
ablations in 3 out of 6 settings and attains the lowest test perplexity on average.

Method A/SE GH/C4 B/SE A/B/SE CC/GH/W SlimPajama Average

Stratified 16.532 35.991 47.192 35.114 41.583 26.426 33.806

AIOLI −0.205 −0.340 −0.439 −0.226 −0.196 −0.240 −0.274
AIOLI-STATIC −0.065 −0.333 −0.226 −0.117 0.092 −0.330 −0.140

AIOLI-DIAGONAL −0.182 −0.178 −0.354 −0.246 −0.215 −0.202 −0.230

40

Published as a conference paper at ICLR 2025

F.3 HYPERPARAMETER SENSITIVITY

We study how robust AIOLI is to changes in its hyperparameters. From the experimental details in
Appendix E, the main hyperparameters that we modify are η (EGD step size), δ (proportion of round
allocated for learning At), and γ (the EMA parameter). In Tables 19, 20, and 21, we report results on
AIOLI in the unrestricted setting for Arxiv/StackExchange and Arxiv/Books/StackExchange. We sweep
η ∈ {0.1,0.2,0.3,0.5}, δ/m∈ {0.064,0.096,0.128}, and γ ∈ {None,0.1,0.5}. We find that AIOLI still
yields lower test perplexity than stratified sampling across all η,δ, and γ we evaluated.

Table 19: The difference in average test perplexity of AIOLI with varying η step size hyperparameter
compared to stratified sampling. Bolded result is the original number reported in Table 2.

Method A/B A/B/SE

Stratified 16.532 35.114

AIOLI (η=0.1) −0.110 −0.212
AIOLI (η=0.2) −0.205 −0.221
AIOLI (η=0.3) −0.155 −0.186
AIOLI (η=0.5) −0.166 −0.226

Table 20: The difference in average test perplexity of AIOLI with varying δ/m, the fraction of each round
for learning At, compared to stratified sampling. Bolded result is the original number reported in Table 2.

Method A/B A/B/SE

Stratified 16.532 35.114

AIOLI (δ/m=0.064) −0.205 −0.152
AIOLI (δ/m=0.096) −0.283 −0.226
AIOLI (δ/m=0.128) −0.003 −0.296

Table 21: The difference in average test perplexity of AIOLI with varying γ, the hyperparameter for
computing pt with an exponential moving average, compared to stratified sampling. Bolded result is the
original number reported in Table 2.

Method A/B A/B/SE

Stratified 16.532 35.114

AIOLI (γ=None) −0.11 −0.226
AIOLI (γ=0.1) −0.205 −0.185
AIOLI (γ=0.5) −0.141 −0.213

F.4 RESULTS ON LARGER MODELS

We examine if our findings—both in terms of the mixing law and in terms of AIOLI’s performance—
hold on larger models. We train 1.4B-parameter models. We use a learning rate of 3e-4 and keep
all other training details the same. We use a subsample of our data settings, focusing on when we mix
Arxiv/StackExchange (m=2) and Arxiv/Book/StackExchange (m=3).

First, we measure if the log-linear static and linear-dynamic mixing laws are well-specified for 1.4B models.
We use the same fitting procedure as described in Section 4.1 and Appendix C.1. Figure 11 describes the
fit of the static and dynamic mixing laws on Arxiv/StackExchange. The full results are in Table 22, which
show that the average R2 for the static and dynamic mixing laws for the 1.4B model are 0.989 and 0.929,
respectively. This accuracy of the mixing law parameterization on the 1.4B model is a prerequisite for
AIOLI’s performance, which we evaluate next.

Second, we evaluate AIOLI in the unrestricted setting on the 1.4B models. We compare AIOLI to stratified
sampling and DoGE. Our results on three random seeds are in Table 23. Similar to our results on the 160M
models, we find that AIOLI outperforms stratified sampling in both data settings. Moreover, from Table 2,
we see that DoGE originally performed worse than stratified sampling at the 160M scale. Our results here
confirm that even at the 1.4B model scale, DoGE continues to underperform stratified sampling. Altogether,
we see that AIOLI consistently outperforms stratified sampling while existing methods do not—at both the
160M and 1.4B scale.

41

Published as a conference paper at ICLR 2025

Table 22: Comparison of log-linear static and linear dynamic mixing law parameterizations when training
a 1.4B model.

Parameterization Arxiv/SE Arxiv/Books/SE
MSE R2 MSE R2

Log-linear static 2e-4 0.995 1e-3 0.984
Linear dynamic 7e-5 0.916 2e-4 0.943

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of arxiv

10 1

Lo
g

(L
os

s
- c

) o
n

ar
xi

v

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of stackexchange

10 1

100

Lo
g

(L
os

s
- c

) o
n

st
ac

ke
xc

ha
ng

e

Log-linear static mixing law on Arxiv/StackExchange (1.4B model)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of arxiv

3.2

3.4

3.6

3.8

N
ex

t-
st

ep
 L

os
s

on
 a

rx
iv

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of stackexchange

3.8

4.0

4.2

4.4

4.6

N
ex

t-
st

ep
 L

os
s

on
 s

ta
ck

ex
ch

an
ge

Linear dynamic mixing law on Arxiv/StackExchange (1.4B model)

Figure 11: Left: log-linear static mixing law fit on Arxiv/Stackexchange on 1.4B parameter model, in which
each color represents a different random seed. Right: linear dynamic mixing law fit on Arxiv/Stackexchange
on 1.4B parameter model on 1 random seed. Each color is a different initial mixture p0∈P trained for
2000 steps, and the fitting sweeps are done over 100 additional steps.

Table 23: Difference in average test perplexity compared to stratified sampling in the unrestricted setting for
1.4B models. For AIOLI, we use η=0.5,δ/m=0.096,γ=0.1 for A/SE and η=0.1,δ/m=0.096,γ=0.5
for A/B/SE.

Method A/SE A/B/SE

Stratified 15.799 34.733

DoGE 0.551 0.922
AIOLI −0.276 −0.403

F.5 OUT-OF-DOMAIN SETTING

We consider the out-of-domain setting, in which the training data groups are disjoint from the groups that
the model will be evaluated on. This is a practical scenario where we have access to a separate validation
dataset that we wish our model to perform well on (Fan et al., 2024; Chen et al., 2023; Xia et al., 2024; Xie
et al., 2023b; Engstrom et al., 2024). We will demonstrate how 1) the LMO framework can be adjusted to
capture this setting, recovering the out-of-domain versions of Skill-It and DoGE proposed in their respective
papers; 2) the linear mixing laws are still well-specified in this setting; and 3) AIOLI adjusted for this
setting can still more consistently outperform out-of-domain baselines.

LMO framework for OOD setting. Concretely, we suppose we have m training data groups such that
Dtrain is still {D1

train,...,D
m
train}, and we have one separate out-of-domain data group that we do not train on;

we have IID validation and test datasets for this out-of-domain data group. Let Lval, OOD be the validation
and test loss on the out-of-domain data group, respectively. Then, the LMO framework can be slightly
modified:

minimizep∈△T×mLT+1
val, OOD(p) (52)

s.t.Lt+1
val, OOD(p)=ct+btσ

(m∑
j=1

−At
OOD,jp

t
j

)
∀t∈ [T], (53)

where At
OOD,j∈Rm is now a vector representing how much each training group influences the validation

group. There are two changes to the optimization problem: first, the objective is now to minimize the
out-of-domain validation loss; second, the mixing law captures the relationship between the validation loss
and the mixture proportions over the training data groups. Note that the DML method can still be applied
in the OOD setting by directly minimizing c+b exp(

∑m
j=1−AOOD,jpj). More importantly, applying

42

Published as a conference paper at ICLR 2025

Lemma 1 to this optimization problem, we get the update rule pt+1
j ∼ ptjexp(ηA

t
OOD,j)∀j ∈ [m]. This

expression recovers the Skill-It and DoGE OOD update rules, and can be incorporated into AIOLI as
demonstrated in Algorithms 3 and 4. These algorithms are identical to AIOLI (Alg 1) and LEARNPARAMS
(Alg 2), with the exception of lines 6 and lines 3, 8, and 11 respectively, which reflect that At

OOD is now a
vector rather than an m×m matrix.

Algorithm 3 AIOLI-OOD

1: Input: data Dtrain, Dval, model f1. Initial steps Sinit, initial proportions pinit ∈△m. T rounds over
S − Sinit remaining steps, δ fraction per round for learning parameters, learning rate η, one-hot
smoothing factor ε.

2: If Sinit≠0, train f1 on pinit for Sinit steps.
3: Set p0=Unif(m).
4: for t=1,...,T do
5: Set At

OOD,f
t+δ← LEARNPARAMS-OOD(Dtrain,Dval,δ,f

t,ε) (Alg. 4), and normalize At to get Āt.
6: ptj∝p

t−1
j exp(ηĀt

OOD,j) for all j∈ [m].
7: Train model ft+δ with S

T (1−δ) steps from mixture pt over Dtrain. Obtain updated ft+1.
8: end for

Algorithm 4 LEARNPARAMS-OOD

1: Input: Dtrain,Dval, δ, model ft, number of sweeps k, one-hot smoothing factor ε.
2: Split the fraction of a training round δ into K time segments, where K=mk.
3: Set β=0⃗∈Rm.
4: Define pt,i=(1−ε)1i+εUnif(m) for i∈ [m], and define P=[pt,1,...,pt,m]∈△m×m

5: Randomly shuffle k instances of each i∈ [m] to create an order I∈ [m]K .
6: for τ=1,...,K do
7: Let j=Iτ . Train model on mixture pt,j of Dtrain for one time segment, obtain ft+τδ/K .
8: Update βj ← βj +Lval,OOD(f

t+(τ−1)δ/K)−Lval,OOD(f
t+τδ/K) with loss difference on OOD

validation dataset.
9: end for

10: Update β← β
k .

11: Set At
OOD=P−1β.

12: Return At
OOD∈Rm,ft+δ

Mixing law parameterization results. We study a setting where our training data groups are Arxiv,
Book, and Github from SlimPajama and our validation data group is StackExchange. Using the same setup
as other m=3 settings in Section 4.2 (160M model, 5K steps, sweep over 9 runs), we measure the MSE
and R2 of the log-linear static mixing law, Lval, OOD(p)=c+bexp

(∑m
j=1−AOOD,jpj

)
, and of the linear

dynamic mixng law, Lt+1
val, OOD(p)= ct+bt

∑m
j=1−At

OOD,jp
t
j. The MSE and R2 for the log-linear static

mixing law are 1.5×10−3 and 0.964, respectively. The MSE and R2 for the linear dynamic mixing law
are 1.1×10−4 and 0.796. The linear dynamic mixing law fits the true loss-proportion relationship less
accurately than the log-linear static law. Nevertheless, both MSEs are low, and the R2 still suggests that at
least 79% of the variability in validation loss can be explained by the mixing law.

AIOLI results. We evaluate stratified sampling, and OOD versions of AIOLI, Skill-It, DoGE, and DML
in the unrestricted setting on 3 random seeds. We train on Arxiv, Books, and Github and evaluate on
StackExchange. Our results are in Table 24.

We find that all methods, including AIOLI, attain lower test perplexity than the stratified sampling baseline,
which both the Skill-It and DoGE papers use as a comparison point for the OOD setting. AIOLI is the only
method that achieves this improvement without requiring additional training runs. This improvement over
stratified sampling across OOD methods is expected, since stratified sampling can include irrelevant data

43

Published as a conference paper at ICLR 2025

Table 24: Out-of-domain data evaluation, in which we mix training data from Arxiv, Books, and Github
and evalute on StackExchange data. The table reports the difference in average test perplexity compared to
stratified sampling on the training data groups. For AIOLI, we use η=0.8,δ/m=0.096,γ=None.

Method Arxiv/Book/Github → StackExchange # extra runs

Stratified 39.644 0

GS −7.244 10
DML −6.316 10

Skill-It (OOD) −5.786 3
DoGE (OOD) −7.626 1
AIOLI (OOD) −4.028 0

due to the distribution shift between training and evaluation. On the other hand, stratified sampling is a
strong baseline in the in-distribution scenarios studied in the rest of this work.

G ADDITIONAL DISCUSSION

Hyperparameter Optimization and Truncation Bias. Many data mixing methods utilize extra training
runs to learn the static mixture proportions before the final training run. This allows us to view data
mixing as a hyperparameter optimization problem in p. Ye et al. (2024) and Liu et al. (2024) mitigate the
inefficiency of grid search in higher dimension by combining it with data mixing laws to impose additional
structure. By fitting the loss surface, these methods obtain better sample complexity and performance than
grid search alone. However, both grid search and these offline methods can have poor performance when p
is searched for or fitted on shorter runs, as in the restricted setting.

To understand these results, we look to the hyperparameter optimization literature. Many popular hy-
perparameter optimization methods carefully control truncation, and some runs are allowed to continue
longer than others (Li et al., 2018; Swersky et al., 2014; Domhan et al., 2015). Thus, generic hyperparam-
eter optimization methods may eventually prove effective for tuning data mixes, but for future work we
recommend going beyond a fixed compute budget for all runs in a hyperparameter sweep, especially in
compute-constrained settings.

H WHY THE METHOD IS CALLED AIOLI

An aioli is an emulsion, where individual components remain chemically separate from each other,
despite being combined into one mixture. Similarly, our At matrix is formed from separate test runs (the
pt,1,...,pt,m in Section 5), despite being combined into one update for pt.

44

	Introduction
	Problem Setup
	A Unified Optimization Framework for Data Mixing
	Linear Mixing Optimization (LMO) Framework
	Preliminaries for unifying methods
	Unifying Existing Methods
	Offline methods
	Online Methods
	Summary of LMO Framework Insights

	 Analyzing Fidelity of Existing Methods with the LMO Framework
	Experiment Details
	Mixing law parameterization
	Values of mixing law parameters
	Solving strategy

	Aioli: a Method for Improved Data Mixing
	Experimental Results
	Unrestricted Setting
	Restricted Setting

	Related Work
	Discussion
	Acknowledgments
	Notation
	LMO framework details
	Additional existing methods
	Proofs for section 3.3
	Background on Exponentiated Gradient Descent
	Proof of Theorem 1

	Analysis Details
	Mixing Law Parameterization
	Additional parameterization experiments

	Values of mixing law parameters
	Properties of At

	Solving strategy

	Additional Algorithmic Details
	Naive training sweep approach
	Modification 1: shortening training sweeps
	Modification 2: ``interleaving'' training sweeps
	Theoretical results
	Proof of Theorem 2
	OLS error bound
	Error from bound
	Error from interleaving bound
	Auxiliary lemmas

	Experimental Details
	Data
	Training

	Data mixing methods

	Additional Experiments
	Downstream Tasks
	Ablations
	Hyperparameter sensitivity
	Results on Larger Models
	Out-of-domain setting

	Additional Discussion
	Why the method is called Aioli

