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ABSTRACT

Current methods for initializing state space model (SSM) parameters primarily
rely on the HiPPO framework (Gu et al., 2023), which is based on online function
approximation with the SSM kernel basis. However, the HiPPO framework does
not explicitly account for the effects of the temporal structures of input sequences
on the optimization of SSMs. In this paper, we take a further step to investigate
the roles of SSM initialization schemes by considering the autocorrelation of input
sequences. Specifically, we: (1) rigorously characterize the dependency of the
SSM timescale on sequence length based on sequence autocorrelation; (2) find
that with a proper timescale, allowing a zero real part for the eigenvalues of the
SSM state matrix mitigates the curse of memory while still maintaining stability at
initialization; (3) show that the imaginary part of the eigenvalues of the SSM state
matrix determines the conditioning of SSM optimization problems, and uncover
an approximation-estimation tradeoff when training SSMs with a specific class of
target functions.

1 INTRODUCTION

The state space model (SSM) is a sequence model that has recently shown great potential in long
sequence modeling across various applications, including computer vision (Zhu et al., 2024; Liu
et al., 2024), time series forecasting (Rangapuram et al., 2018; Zhang et al., 2023) and natural lan-
guage processing (Gu & Dao, 2023; Dao & Gu, 2024). In mathematics, a SSM layer is defined by
a continuous-time ordinary differential equation h′(t) = Wh(t) + Bx(t), y(t) = Ch(t) +Dx(t),
where W,B,C,D are trainable parameters, x(t) is the input sequence, and y(t) is the output se-
quence. For discrete input sequences, a timescale ∆ > 0 will be introduced as a hyperparameter
to discretize the model. Different from the attention mechanism (Vaswani et al., 2017), SSMs are
recurrent-based architectures that treat the input sequence token by token, yet can achieve first-order
time complexity on the sequence length through parallelization (Gu et al., 2022b). There are two
well known issues for training recurrent-based architectures, the vanishing and the exploding gradi-
ent problems (Pascanu et al., 2013). By introducing complex-valued initialization schemes, proper
parameterization methods and regularization techniques, recent works demonstrate that SSMs can
achieve performance comparable to attention-based architectures in terms of both computational
cost and sample efficiency (Gu & Dao, 2023; Dao & Gu, 2024; Zhu et al., 2024; Yu et al., 2024;
Wang & Li, 2024; Liu & Li, 2024; Yu et al., 2024; Bick et al., 2024; Hwang et al., 2024; Wang et al.,
2024; Waleffe et al., 2024). However, the theoretical understanding on the roles of the initialization
schemes is still lacking and needs to further explored. In this paper, we particularly look into the
timescale ∆ and the state matrix W , and we aim to study the following fundamental question

Given a sequential dataset with length L, how should the timescale ∆ depend on L and
what is the role of W on training SSMs?

Based on the analysis of continuous-time SSMs, previous works (Gu et al., 2022b;c; 2023) propose
the HiPPO framework where W,B are initialized such that the SSM basis kernels {e⊤n eWtB}∞n=1
are orthogonal in L2[0,∞) with some measure ω(t), and the timescale ∆ scales as 1/L to capture
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long range dependencies of sequences with length L. Common HiPPO-based initialization methods
such as S4D-Legs and S4D-Lin typically presume that the measure ω(t) is exponential decay and
the discrete input sequences x have a inherent timescale ∆ that is shared with the model. However,
these assumptions are restrictive because exponential decay measures weaken the effects of temporal
dependencies in input sequences, and in practice, we usually lack prior information about the data’s
timescale. To address this concern, we take an initial step towards understanding the relationship
between the autocorrelation of input sequences and the SSM initialization schemes. Specifically,
we focus on the diagonal SSM1 (Gu et al., 2022c) where the state matrix W is a complex-valued
diagonal matrix. By studying the stability condition for given input sequences x ∈ RL, we find that
the connection of the timescale ∆ and the sequence length L is highly related with the spectrum of
the data autocorrelation matrix E[xx⊤]. Different temporal dependencies in the input sequences can
cause significant variations in the spectrum of the autocorrelation matrix. For example, when x is
sampled from a standard normal distribution, x has zero temporal dependencies, and the autocorre-
lation matrix becomes an identity matrix. On the other hand, if x consists of constant values, the
input sequence exhibits full temporal dependencies, and the autocorrelation matrix is low rank. For
the state matrix W , our stability analysis shows that even with a zero real part, i.e. ℜ(W ) = 0, the
diagonal SSM can still be stable at initialization if ∆ is properly set. However, during training, it
is worth noting that stability is not guaranteed because ℜ(W ) = 0 places the SSM on the edge of
training stability. In this paper, we find that, at least for simple tasks, initializing ℜ(W ) = 0 helps
improve training performance for fixed-length tasks. One benefit for setting the real part to zero is
that the learned SSM kernel functions at initialization do not exponentially decay, which helps to
mitigate the curse of memory (Li et al., 2022). Our convergence analysis indicates that the imaginary
part ℑ(W ) plays a crucial role in the convergence rate and explains the benefits for complex-valued
SSMs compared to real-valued SSMs in terms of the optimization. In particular, the more separated
the imaginary parts ℑ(w) are, the faster the convergence. When considering both approximation
and optimization, we characterize an approximation-estimation tradeoff when the target function
has closely spaced dominant frequencies. Then well separated ℑ(w) values lead to fast conver-
gence, while achieving a good approximation requires close imaginary parts. To summarize, our
contributions are as follows:

• In section 4.1, we characterize the dependency between the timescale ∆ and the sequence
length L by taking into account the autocorrelation of the input sequences. Even if the
eigenvalues of the state matrix W have zero real part, the stability condition on the magni-
tude of the output value at initialization can still hold with an appropriate setting of ∆.

• In section 4.2, we show that the real part of the eigenvalues of the state matrix W determines
the decay rate of the SSM kernel functions. Allowing the eigenvalues of W to have zero
real part at initialization can significantly increase the model’s effective memory and help
mitigate the curse of memory for fixed-length tasks that require long-term memory.

• In section 4.3, we prove that the conditioning of SSM optimization problems is determined
by the separation distance of the imaginary parts of the eigenvalues of the state matrix.
Well-separated imaginary parts induce faster convergence, whereas closely spaced ones
lead to slower convergence. This explains the benefits of complex-valued SSMs over real-
valued SSMs. Furthermore, it uncovers an approximation-estimation tradeoff when the
target function has close dominant frequencies in the frequency domain.

2 RELATED WORKS

Optimization of SSMs. Recurrent-based architectures are known for two issues: training stability
and computational cost (Pascanu et al., 2013). To mitigate these challenges and capture long range
dependencies more effectively in sequence modeling, the S4 model was introduced with novel pa-
rameterization, initialization, and discretization techniques (Gu et al., 2022b). Recent updates to
the S4 model have further simplified the hidden state matrix by using a diagonal matrix, thereby
improving computational efficiency (Gu et al., 2022c; Gupta et al., 2022; Orvieto et al., 2023). Ad-
ditionally, regularization methods such as dropout, weight decay, and data-dependent regularizers
(Liu & Li, 2024) are employed with SSMs to prevent overfitting. In this study, we explore how

1To simplify the analysis, we omit the skip connection by letting D = 0.
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temporal dependencies in input sequences impact initialization schemes in terms of optimization,
with a particular focus on the timescale and state matrix.

Curse of memory in SSMs. The “curse of memory” is a newly introduced concept that highlights
the difficulty recurrent-based models face in capturing long-term memory (Li et al., 2021; 2022),
and has been discussed in recent works (Cirone et al., 2024; Sieber et al., 2024; Zucchet & Orvieto,
2024). This issue arises due to the exponential decay property of the model’s kernel basis functions.
A common strategy to parameterize the real part of the state matrix’s eigenvalues involves stable
parameterization (Gu et al., 2022c; Wang & Li, 2024), ensuring stable training dynamics even if the
input sequence is infinitely long. However, this stable parameterization constrains the real part of
the state matrix’s eigenvalues to be strictly negative, thereby limiting the model’s ability to capture
long-term memory. In this paper, we argue that if input sequences have fixed lengths, it is reasonable
to set the real part of the eigenvalues to zero by appropriately setting the timescale. This relaxation
allows the model to capture long-term memory while still maintaining training stability.

3 PRELIMINARIES

In this section, we briefly introduce the diagonal SSM and the problem setting we consider through-
out this paper. Specifically, we consider the following single-input single-output diagonal-SSM built
in the complex number field C and then cast into the real number field R,

d

dt
h(t) = Wh(t) + bx(t), y(t) = ℜ(c⊤h(t)), t ≥ 0, (1)

where ℜ(·) represents the real part; x(t) is input sequence from an input space2 X := C0(R≥0,R);
y(t) ∈ R is the output sequence at time t; h(t) ∈ Cm is the hidden state with h(0) = 0; W ∈
Cm×m, b, c ∈ Cm are trainable parameters. In particular, the state matrix W = diag(w1, . . . , wm)
is a diagonal matrix. To simplify the analysis, we omit the skip connection matrix D. Following the
training setup in Gu et al. (2022c), the read-out vector c follows standard normal distribution and
the read-in vector b in (1) is fixed as an all-one vector at initialization without training. Under these
settings, the input-output relation in (1) is explicitly given by the integral

y(t) =

∫ t

0

ℜ(c⊤ews)x(t− s)ds, (2)

where w ∈ Cm is the state vector that contains all the diagonal entries of the state matrix W , and
the function ℜ(c⊤ews) is called the memory function or the kernel function.

Discretization. To handle discrete input sequences, we follow (Gu et al., 2022c) to use the zero-
order (ZOH) hold method for discretization. Then given a timescale ∆ > 0 and any discrete se-
quence (x0, . . . , xL−1) ⊂ R with length L, the ZOH method induces a model output

yℓ = ℜ

 m∑
j=1

e∆wj − 1

wj
cje

∆wj(ℓ−1)

x0 + · · ·+ ℜ

 m∑
j=1

e∆wj − 1

wj
cje

∆wj0

xℓ−1, (3)

for ℓ = 1, 2, . . . , L.

In the following section, we tackle the problems related to the initialization schemes of State Space
Models (SSMs) that were introduced in the Introduction. Specifically, we will explore the following
questions:

1. Timescale Initialization: How should we correctly initialize the model timescale ∆ for
fixed-length tasks to enhance the training of SSMs? Is the previously used scaling ∆ = 1/L
a universal approach?

2. Real Part of the State Vector: What role does ℜ(w) play? Can we initialize ℜ(w) to be
zero, and what benefits might arise from a zero real part?

3. Imaginary Part of the State Vector: What role does ℑ(w) play? What advantages do
complex-valued SSMs offer compared to real-valued SSMs?

By probing these questions, we aim to deepen our understanding of effective initialization practices
for SSMs, thereby improving their training performance.

2A linear space of continuous functions from R≥0 to R that vanishes at infinity.
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Figure 1: (Left) Training a diagonal SSM (3) on a copying task using i.i.d. data with a dimension
of 128. We vary the minimal timescale ∆min = 1/L, 1/

√
L and the maximal timescale ∆max =

1/L, 1/
√
L, 0.1 w.r.t. sequence length L. (Middle) The maximal eigenvalue of the autocorrelation

matrix E[xx⊤] on different random processes of x. (Right) The maximal eigenvalue of E[xx⊤] on
sequential image datasets sMNIST and sCIFAR10 with different resize rates varied from 0.5 to 4.

4 MAIN RESULTS

In this section, we present our main results by focusing on three initialization parameters ∆,ℜ(w)
and ℑ(w) respectively. Specifically, in section 4.1, we rigorously characterize the relationship be-
tween the timescale ∆ and the sequence length L in terms of training stability at initialization by
taking into account data autocorrelation. In section 4.2, we demonstrate that allowing the state
vector’s real part to be zero can prevent exponential decay in the SSM kernel function, thereby miti-
gating the curse of memory in certain scenarios. In section 4.3, we explore the relationship between
the convergence rate and the separation distance of the state vector’s imaginary part. In particular,
we uncover an approximation-estimation tradeoff for a class of target functions.

4.1 RELATIONSHIP BETWEEN ∆ AND L

In this subsection, we derive a stability condition for the ZOH-discretized diagonal SSM (3) when
the state vector’s real part ℜ(w) is non-positive. From both theoretical and numerical perspectives,
we demonstrate that the dependency of the model timescale ∆ on the sequence length L is strongly
influenced by the data autocorrelation. To start with, we prove the following theorem that provides
an upper bound on the magnitude of the model output value.
Theorem 4.1. Consider a ZOH discretized SSM (3) with timescale ∆ > 0 and ℜ(wj) ≤ 0 for j =
1, . . . ,m. Suppose that the input sequence (x0, . . . , xL−1) is sampled from a unknown distribution
in RL, and the read-out vector c is from i.i.d. standard normal distribution. Then we have

Ec,x[y
2
L] ≤ ∆2m2L · λmax(E[xx⊤]),

where λmax(·) represents the maximal eigenvalue.

The proof is provided in Section C. In practice, the hidden state size m is often much smaller than
the sequence length L (Gu et al., 2023). Given this, we focus on fixing the hidden size m and
investigating the relationship between the model timescale ∆ and the sequence length L. We see
that Theorem 4.1 connects the model timescale ∆ with the sequence length L in terms of the data
autocorrelation matrix E[xx⊤]. If we have normalized the sequences such that E[∥x∥2] = 1, then a
simple observation is that 1 ≤ λmax(E[xx⊤]) ≤ L because Tr(E[xx⊤]) = L. This indicates that the
maximal eigenvalue of the autocorrelation matrix can have different dependencies on L based on the
temporal dependencies. For example, when the elements in the sequence are uncorrelated with each
other, x exhibits zero temporal dependencies, and the autocorrelation matrix is an identity matrix
with λmax(E[xx⊤]) = 1. In this case, ∆ should scale as 1/

√
L to ensure training stability. On the

other hand, when x is a constant sequence (1, 1, . . . , 1), then x exhibits full temporal dependencies.
The autocorrelation matrix then becomes a rank-1 matrix with λmax(E[xx⊤]) = L, implying that
∆ should scale as 1/L. Additionally, Theorem 4.1 includes the case for ℜ(w) = 0. This deviates
from the common practice, as noted in Gu et al. (2022c; 2023), where exponential parameterization
is applied to the real part to ensure ℜ(w) is strictly negative for training stability. We emphasize that
for fixed-length sequences, it is also reasonable to have a zero real part, provided there is an estimate
of the spectrum of the data autocorrelation matrix.
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Figure 2: The expected magnitude of the SSM output value on synthetic sequences with different
autocorrelation. The real part ℜ(w) = −0.5 follows the common practice and we consider four
dependencies between the timescale ∆ and the sequence length L.

Figure 3: The expected magnitude of the SSM output value on synthetic sequences with different
autocorrelation and different dependencies between ∆ and L. The real part ℜ(w) is set to be zero.

Numerical experiments on λmax(E[xx⊤]) and E[y2L]. To validate our theory, we conduct ex-
periments on the exact values of the magnitude of the model output and E[xx⊤]. Specifically,
we consider both synthetic and real sequential datasets in both negative and zero real part cases.
For synthetic datasets, we consider Gaussian process with mean 0 and autocovariance function
E[xixj ] = K(i, j). By restricting K(i, i) = 1 then the autocovariance matrix is exactly the same
as the autocorrelation matrix. In this paper, we choose 4 Gaussian processes with different auto-
covariance functions and plot their maximal eigenvalues. The autocovariance functions for “ou,
iid, rbf” are K(i, j) = exp(−|i − j|/ℓ), δi−j , exp(−|i − j|2/ℓ) respectively. The autocovariance
matrix for “rand” is given by ΣΣ⊤ where Σ is a random matrix with i.i.d. uniform distributed
entries in [0, 1]. As Figure 1 (Middle) shows, different processes have varying dependencies of
λmax(E[xx⊤]) on L ranging from O(1) to O(L). For the i.i.d. case, λmax(E[xx⊤]) is not always
1 in Figure 1 (Middle), which is because we use the sample autocorrelation matrix to replace the
expected autocorrelation matrix. For real sequential datasets, we choose to resize the MNIST dataset
(LeCun et al., 2010) and the gray CIFAR10 dataset (Krizhevsky et al., 2009; Tay et al., 2021) with
resize rates [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4] and the flatten the images to sequences. More experiment
details are provided in Appendix A. We record λmax(E[xx⊤] based on the entire training dataset.
As shown in Figure 1 (Left), the maximal eigenvalue scales (almost) linearly with sequence length
across the resize rate for both sequential MNIST (sMNIST) and sequential CIFAR10 (sCIFAR10)
datsets. Additionally, we plot the relationship between the magnitude of the model output value and
sequence length by varying the timescale ∆ = [L−1, L−0.75, L−0.5, L−0.25]. In Figures 2 and 4,
when ℜ(w) = −0.5 (following the setup in Gu et al. (2022c; 2023)), the magnitude E[y2L] remains
stable for both synthetic and resized image datasets for all decay rates of ∆. When ℜ(w) = 0,
Figures 3 and 4 demonstrate that for the ‘rand’ process, ∆ = L−1 is stable. For the ‘iid,’ ‘ou,’ and
‘rbf’ processes, ∆ = L−0.75 is stable. This indicates that our bound in Theorem 4.1 effectively
characterizes the relation between ∆ and L for ℜ(w) = 0. Moreover, as shown in Figure 4, for the
sequential image datasets, ∆ should scale as 1/L to ensure stability when ℜ(w) = 0; otherwise,
the magnitude increases with sequence length. This finding aligns with the empirical results in (Gu
et al., 2022c; 2023) that ∆ should scale as 1/L to effectively capture the range of dependencies
for length L for real-world tasks. But their theoretical reasons are based on Fourier analysis of
continuous-time SSMs and do not explicitly account for the data autocorrelation.
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Figure 4: The expected magnitude of the SSM output value on sequential image datasets with dif-
ferent resize rates (ranging from 0.5 to 4) and different dependencies between ∆ and L.

Experiments on copying task with different timescales. We also tested the performance of the
diagonal state-space model (SSM) (3) on a copying task with various dependencies of ∆ on L.
It is worth noting that, as discussed in Jelassi et al. (2024), SSMs struggle with the copying task
because the model’s state dimension needs to scale linearly with the sequence length to memorize
all the input tokens. However, the limitation highlighted in Jelassi et al. (2024) pertains to the
length generalization task—i.e., training an SSM with short sequences and then testing it on longer
sequences will fail if the hidden size m does not grow linearly with L. Here, we focus on a fixed-
length task, where both training and test sequences have the same length. We find that, with an
appropriately initialized timescale, SSMs can effectively handle the copying task even with a small
state size. In this paper, we use a diagonal SSM with a fixed state size m = 32 to learn a copying
task on i.i.d. data with a dimension of 128, and the timescale ∆ ∈ R128. We vary the minimal
and maximal timescales (∆min,∆max) with different dependencies on L. From Figure 1 (Left),
we see that the combination (∆min,∆max) = (1/L, 0.1), which is commonly used in practice
(Gu et al., 2022c; 2023) to train real datasets, consistently performs worse than setting ∆min =
1/

√
L. This stable scaling is in line with our theoretical suggestions for i.i.d. data. Therefore, the

data autocorrelation is very crucial for us to get a good initialization scale on the timescale. More
experiment details are provided in Appendix A.

4.2 BENEFITS OF ZERO REAL PART

In this subsection, we investigate the benefits of initializing ℜ(w) = 0 for tasks that require long-
term memory. In previous works (Li et al., 2021; 2022), it is shown that recurrent-based models
suffer from the curse of memory in both approximation and optimization when there is long-term
memory in the target. For example, we consider using a diagonal SSM (3) to learn a input-out
relationship given by a real-valued target function ρ∗ such that

y∗ℓ = ρ∗ℓ−1x0 + · · ·+ ρ∗0xℓ−1, ℓ = 1, 2, . . . , L.

The objective function is given by the squared difference between the model output yL and the
corresponding label y∗L. Then in a special case when the input sequences have zero temporal depen-
dencies with E[xx⊤] = IL, the expected mean squared error is given by

E[|yL − y∗L|2] = ∥ρ̃− ρ∗∥2 ,

where ρ̃ is a vector
(
ℜ
(∑m

j=1
e∆wj−1

wj
cje

∆wj0
)
, . . . ,ℜ

(∑m
j=1

e∆wj−1
wj

cje
∆wj(L−1)

))
that rep-

resents the model’s memory, and ρ∗ = (ρ∗0, . . . , ρ
∗
L−1). Therefore, a well-trained SSM means that

the model memory function matches with the target function, i.e.,

ℜ

 m∑
j=1

e∆wj − 1

wj
cje

∆wjℓ

 = ρ∗ℓ , ℓ = 0, . . . , L− 1.

Then we can see that the curse of memory happens when the target function ρ∗ has a sudden spike in
a very long distance. For instance, consider a shifting task that requires mapping an input sequence
(x0, . . . , xL−1) to a shifted sequence (0, . . . , 0, x0). In this task, the target ρ∗ is (0, . . . , 0, 1), which
is challenging for an exponentially decaying SSM kernel ρ̃ to capture long-term memory when

6
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ℜ(w) < 0. However, if we allow the real part to be zero at initialization, then ρ̃ does not un-
dergo exponential decay. As a result, we can potentially avoid the curse of memory, even for long
sequences, in this scenario. It is worth noting that in this paper, we do not consider a stable parame-
terization to ensure ℜ(w) ≤ 0 strictly during training, which means there may be some optimization
stability issues since ℜ(w) = 0 is on the stability boundary. However, our experiments on simple
tasks demonstrate that initializing with a zero real part still helps enhance training, even without a
stable parameterization. This suggests that, despite the potential optimization stability challenges
during training, a zero real part can be beneficial for training on certain tasks.

Experiments on the benefits of zero real part. To validate the effectiveness of having a zero real
part, we conduct experiments on both synthetic and real datasets that require long-term memory.
For the synthetic task, we use i.i.d. sequential data to easily visualize the expected error via the
memory function. The goal is to learn an input-output mapping from (x0, . . . , xL−1) to x0 + xL−1,
which requires the model to memorize both the first and last token. The target memory function
ρ∗ is (1, 0, . . . , 0, 1). In our setting, the sequence length L is 128, and the hidden state size m is
32. As shown in Figure 5 (Left) and (Middle), the SSM with a zero real part outperforms the case
with a negative real part. It is evident that by initializing ℜ(w) = 0, the learned memory function is
able to capture long range dependencies. For the real-world task, we utilize the sequential MNIST
(sMNIST) dataset. Before training, we preprocess the entire dataset with a linear transformation to
decorrelate the training sequences, resulting in an autocorrelation matrix that is an identity matrix.
We recover the underlying target memory function by solving a least square problem minρ ∥X ∗ρ−
Y ∥2F where X ∈ R50000×784 is the collected sequence matrix, Y ∈ R50000×10 is the one-hot label
matrix, and ∗ denotes the convolution operator. The recovered target memory function ρ ∈ R784×10

has 10 channels. To illustrate the underlying memory patterns, we plot
√
Lρ for each channel in

Figure 6. We observe that for the decorrelated sMNIST dataset, the underlying memory function
exhibits a sudden spike at a long distance, implying the curse of memory when ℜ(w) < 0. This
observation is confirmed in Figure 5 (Right), which shows that initializing ℜ(w) = 0 outperforms
the case with a negative real part. More experimental details are provided in Appendix A.

Figure 5: (Left) Training a diagonal SSM (3) on a task that requires long-term memory. The learned
memory function ρ̃ effectively captures the spike in long-range dependencies. However, it struggles
to do so when the real part is negative. (Middle) Test loss on the long-term memory task when
initializing ℜ(w) = 0 and ℜ(w) = −0.5. (Right) Test accuracy for training a diagonal SSM on
decorrelated sequential MNIST dataset with different real parts at initialization.

4.3 IMAGINARY PART INDUCES AN APPROXIMATION-ESTIMATION TRADEOFF

In the previous subsection, we show that the real part ℜ(w) is related with the long-term memory
when training SSMs. In this subsection, we focus on the imaginary part ℑ(w). We will demonstrate
how ℑ(w) influences the conditioning of the SSM optimization problem within a convex framework.
Additionally, from an approximation standpoint, we reveal an approximation-estimation tradeoff
that arises when training SSMs with a particular class of target functions.

Convergence analysis. Here we consider the continuous-time SSM (2) and assume that the read-
out vector c is in Rm. Now we define the loss function. Suppose the ground truth input-output
relation is given by some real-valued target function ρ∗(s) ∈ L1[0,∞) ∧ L2[0,∞) with y∗(t) =∫ t

0
ρ∗(s)x(t − s)ds. We use the squared difference between the SSM output y(t) and the target

7
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Figure 6: Recovering the memory function ρ on the decorrelated sequential MNIST dataset by
solving a linear equation X ∗ ρ = Y , where X ∈ RN×L is the collected sequence matrix, Y ∈
RN×10 is the one-hot label matrix, and ∗ is the convolution operator. Then ρ ∈ RL×10 has 10
channels and we plot the scaled function

√
Lρ each channel to show the underlying memory patterns.

output y∗(t) at some terminal time T > 0 averaged over input distributions, which can be written as

L(c, a) := Ex (y(T )− y∗(T ))
2
. (4)

To make the theoretical analysis amenable, we make the simplification that the input sequence x(t)
is sampled from white noise, i.e., x(T − s)ds = dWs where Ws is the canonical real-valued Wiener
process. Then by Itô’s isometry (Proposition B.2), the expected risk (4) can be rewritten as

L(c, w) =
∫ T

0

(
c⊤ℜ (ews)− ρ∗(s)

)2
ds.

In the practical training, the sequence length is very long and thus we take T −→ ∞ to investigate
the effect of long-term memory. To study the effects of the state vector initialization, we consider
the following convex optimization problem where w is fixed.

argmin
c∈Rm

Lc :=

∫ ∞

0

 m∑
j=1

cjℜ(ewjs)− ρ∗(s)

2

ds. (5)

From the perspective of function approximation, the HiPPO framework (Gu et al., 2020) initializes
w such that the SSM basis kernel functions {ℜ(ewjs)}∞j=1 are orthogonal in L2[0,∞) w.r.t. some
measure ω(s). In this paper, we discover the effects of the state initialization on the optimization
problem (5). Let c∗ be one of the solution of the convex problem (5), then c∗ is a stationary point
that satisfies

Gc∗ =

∫ ∞

0

ℜ(ews)ρ∗(s)ds,

where G ∈ Rm×m is a Gram matrix with

[G]j,k =

∫ ∞

0

ℜ(ewjs)ℜ(ewks)ds. (6)

Therefore, the spectrum of the Gram matrix G determines the numerical stability and convergence
rate of optimization algorithms for solving the convex problem (5). We show in the following
proposition that when w ∈ Rm and all wj are distinct, or when w ∈ Cm and all the imaginary parts
ℑ(w) are non-zero and distinct, then G is positive definite.

Proposition 4.2. Let wj = aj + i · vj with aj , vj ∈ R for j = 1, . . . ,m. If all vj = 0, i.e., w ∈ Rm,
then G is positive definite given that all aj are distinct. If vj are all non-zero, i.e., w ∈ Cm, then G
is positive definite given that all vj are distinct.

8
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Figure 7: (Left) Condition number κ(G) := λmax(G)
λmin(G) for S4D-Real and S4D-Lin with different hid-

den size m. (Middle) κ(G) for S4D-Lin with different m by varying scaling factors of the imaginary
part ℑ(a). (Right) κ(G) and approximation measure σmax(M) (in the approximation-estimation
tradeoff part) for S4D-Lin by different ratios of model frequencies v and target frequencies ξ.

The proof is based on the argument of Vandermonde matrix, and we provide details in Appendix D.
Given that the gram matrix G is positive-definite, we are ready to study its spectrum. In the follow-
ing theorem, we show that for complex-valued SSMs, the gram matrix G can be well-conditioned
provided that the imaginary parts ℑ(w) are well separated.
Theorem 4.3. Let λmin(G), λmax(G) be the extreme eigenvalues of G defined in (6), and let
coth(x) = e2x+1

e2x−1 . Suppose that wj = −0.5 + i · vj for vj ∈ R, and we define the separation
distance δ := minj ̸=k |vj − vk|. Then if δ > 0, we have

1.19− 3π

4δ
coth

(π
δ

)
< λmin(G) ≤ λmax(G) <

5

12
+

3π

4δ
coth

(π
δ

)
.

The proof is based on the Gershgorin circle theorem, with details provided in Appendix E. The
setup wj = −0.5 + i · vj follows the configurations in Gu et al. (2022a;c; 2023). This theorem
shows that the Gram matrix G can be well-conditioned when the separation distance δ is large. One
example is that for the commonly used S4D-Lin initialization (Gu et al., 2022c), vj = π · j. Then
the separation distance δ = π. Numerical calculations show that 0.2 < λmin(G) ≤ λmax(G) <

√
2,

meaning that G is well-conditioned for any hidden size m, and its condition number has a uniform
upper bound w.r.t. m. Note that x coth(x) ≥ 1 and is increasing on [0,∞), which implies that the
bound for λmin(G) is non-trivial when 3π

4δ coth
(
π
δ

)
< 1.19. By numerically solving this inequality,

it is sufficient to have δ > 2.3. However, Proposition 4.2 suggests that as long as δ > 0, the
positive-definiteness of G is guaranteed. This indicates a gap between the lower bound and the
actual minimal eigenvalue, which we leave for future research.

Real vs complex. We can now compare real-valued SSMs and complex-valued SSMs in terms of the
conditioning of the convex optimization problem (5), which is determined by the condition number
of G. For real-valued SSMs with the S4D-Real initialization (Gu et al., 2022c), where wj = −j, we
have Gj,k = 1

j+k . In this case, G is a Hilbert matrix, whose condition number grows exponentially
with respect to its size m (Todd, 1953). For complex-valued SSMs with wj = −0.5+ ivj , Theorem
4.3 indicates that if the separation distance δ remains uniformly large with respect to m, then G can
be well-conditioned even for larger values of m. For S4D-Lin initialization, we already know that
0.2 < λmin(G) ≤ λmax(G) <

√
2 by the above argument. Therefore, unlike real-valued SSMs, the

condition number of G in the complex-valued case can remain well-conditioned even for large m,
given that the imaginary parts are well separated. This difference is illustrated in Figure 7 (Left),
where we compare the exact condition numbers for S4D-Real and S4D-Lin. As the scaling factor
of the imaginary part increases, the separation distance also increases. Figure 7 (Middle) shows that
the Gram matrix G for S4D-Lin becomes better conditioned, validating Theorem 4.3.

Approximation-estimation tradeoff. Despite the fact that complex-valued SSMs with adequately
separated imaginary parts ℑ(w) enhance the conditioning of G, we cannot simply initialize w with
widely separated ℑ(w). This is because ℑ(w) determines the frequencies that the SSM can capture,
and misaligned frequencies relative to the target ρ∗ lead to a large approximation error Lc∗ . For
example, suppose that the target memory function ρ∗(s) = e−s/2ĉ⊤ cos(ξs) with ĉ, ξ ∈ Rm. Let

9
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w = −0.5 + iv for v ∈ Rm, then we have

Lc∗ =

∫ ∞

0

ρ∗2(s)ds−
(∫ ∞

0

e−
s
2 cos(vs)ρ∗(s)ds

)⊤

G−1

(∫ ∞

0

e−
s
2 cos(vs)ρ∗(s)ds

)
= ĉ⊤Mc,

where M ∈ Rm×m is given by∫ ∞

0

e−s cos(ξs) cos(ξs)⊤ds−
(∫ ∞

0

e−s cos(ξs) cos(vs)⊤ds

)
G−1

(∫ ∞

0

e−s cos(vs) cos(ξs)⊤ds

)
.

We can see that the maximum singular value σmax(M) of M determines the approximation error.
Now, let’s consider a limiting case when vj = µj with µ → ∞. According to Lemma B.5, we know
that G = 1

2 Im, a scaled identity matrix, possesses the best possible conditioning. Furthermore, if
ξ is finite, then as µ → ∞,

∫∞
0

e−s cos(vjs) cos(ξks) ds = 0, indicating that the worst approxi-
mation error

∫∞
0

ρ∗2(s) ds. On the other hand, if we aim to minimize the approximation error, we
might align the frequencies such that v = ξ. However, when the target function comprises closely
spaced frequencies ξ1, . . . , ξm, such alignment may cause G to have a large condition number (as
per Theorem 4.3). Balancing these two aspects reveals an approximation-estimation tradeoff, which
is crucial when selecting an SSM initialization. Numerical evidence for this tradeoff is illustrated
in Figure 7 (Right). In this figure, we set ξj = 0.1πj with a relatively small separation distance
δ = 0.1π, and we vary the ratio vj/ξj from 20 to 28. As the ratio increases, the optimization is
expected to improve, while the approximation deteriorates. This trend is shown in Figure 7 (Right),
where the induced Gram matrix G becomes better-conditioned, whereas the approximation measure
σmax(M) increases. In practice, the approximation-estimation tradeoff indicates that selecting a
data-dependent initialization for ℑ(w), based on the dominant frequencies of the target function,
can strike a balance that optimizes performance for a given training budget, such as the number of
training epochs.

5 CONCLUSION

In this paper, we study the question proposed in the Introduction section, focusing on two initializa-
tion schemes for state space models (SSMs): the timescale ∆ and the state matrix W . Regarding the
timescale ∆, we investigate it from the perspective of training stability at initialization. Our findings
indicate that its dependency on sequence length is determined by data autocorrelation. By analyzing
data autocorrelation, we can initialize ∆ to enhance SSM training for tasks involving fixed-length
sequences. For the state matrix W , we differentiate between the real part ℜ(W ) and the imagi-
nary part ℑ(W ). The real part ℜ(W ) is crucial for capturing long-term memory in temporal data.
Allowing for a zero real part can effectively mitigate the curse of memory while maintaining train-
ing stability at initialization, provided the timescale is appropriately initialized. The imaginary part
ℑ(W ) affects the conditioning of the SSM optimization problem. A well-separated ℑ(W ) leads to
a well-conditioned Gram matrix, improving the convergence rate. However, from an approxima-
tion standpoint, excessively increasing the separation distance can result in a frequency mismatch
between the SSM and the target function, leading to an approximation-estimation tradeoff. There
are several potential future interesting directions. For instance, we have not discussed the effects of
gating (Mehta et al., 2023) and model depth on the approximation and optimization of SSMs, which
we leave for future research.
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A EXPERIMENTS DETAILS

In this section, we provide more experiment details that produce Figure 1, 2, 3, 4, 5, 6 in section 4.

Figure 1 (Left). The synthetic dataset that we use to produce Figure 1 (Left) is i.i.d. sampled from
standard normal distribution with dimension 128, i.e., each input sequence is of shape (1, L, 128)
where L is its sequence length. We use a ZOH discretized diagonal SSM layer (3) with hidden size
m = 32, model dimension d = 128 to handle the 128 dimensional dataset. We initialize the state
vector w by S4D-Lin with real part −0.5. The read-out vector c is initialized as i.i.d. standard normal
distribution. We vary ∆min and ∆max in the SSM layer and use the Adam optimizer (Kingma,
2014) to train the hyperparmeters ∆,ℜ(w),ℑ(w), C without weight decay. The learning rate for
∆,ℜ(w),ℑ(w) is 0.001 and the learning rate for c is 0.1.

Figure 1 (Middle), 2, 3. The synthetic datasets that we use to produce these figures are Gaus-
sian processes with mean zero and varied autocovariance functions E[xixj ] = K(i, j) for i, j =
1, 2, . . . , L. Specifically, the ‘iid’ dataset refers to K(i, j) = δi−j ; the ‘ou’ dataset refers to
K(i, j) = exp(−|i − j|/2); the ‘rbf’ dataset refers to K(i, j) = exp(−π|i − j|2); and the au-
tocovariance matrix for the ‘rand’ dataset is given by ΣΣ⊤/L where Σ ∈ RL×L is a random matrix
with i.i.d. entries sampled from a uniform distribution U [0,

√
3]. For all the four synthetic datasets,

we have K(i, i) = 1. The plot for Figure 1 (Middle) records the maximal eigenvalue of the sample
matrix that we fix the data size to be 1000 and vary the sequence length L as plotted. So we can see
some deviations between theory and practice. For Figure 2 & 3, we also use the 1-dimensional SSM
layer (3) with S4D-Lin initialization on ℑ(w) and vary the real part ℜ(w) to be −0.5 or 0.

Figure 1 (Right), 4, 5 (Right), 6. For the resized sequential image datasets, we choose to resize
the original images with resize rates [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]. Then we standardize the whole
images and flatten them into 1-d sequence. For sequential MNIST (sMNIST) dataset, the sequence
length is 784r2 and for sequential CIFAR10 (sCIFAR10), the sequence length is 1024r2 where r
is the resize rate. The plot for the maximal eigenvalue of the autocorrelation matrix and the output
value are based on the whole training set. We use the 1-dimensional SSM layer (3) with S4D-Lin
initialization and vary the real part ℜ(w) to be −0.5 or 0 to calculate the output value magnitude.
For the decorrelated sMNIST dataset, we choose the original MNIST dataset and the decorrelation
transformation is given by a centered matrix with a whitening matrix after flattening images. The
centered matrix is the mean of the sequential data along the batch dimension, and the whitening
matrix has shape L×L. The whitening matrix can be obtained by SVD on the data matrix. To train
the decorrelated sMNIST dataset, we use a 128-dimensional SSM layer (3) with m = 32 and GELU
activation (Hendrycks & Gimpel, 2016) on the model output, and also apply a gated linear unit after
the GELU activation. We use dropout with rate 0.1 and apply a decoder layer for classification. We
use Adam optimizer with learning rate 0.001 on ∆,ℜ(w),ℑ(w) and AdamW optimizer with weight
decay 0.01 on the rest hyperparameters. For the plot of the memory function in Figure 6, we solve a
least square problem by taking the pseudo inverse of the sequence matrix X ∈ R50000×784 and then
get the recovered memory function ρ.

Figure 5 (Left), (Middle). The comparisons on zero real part and negative real part in Figure 5
(Left) & (Middle) are conducted on a 1-dimensional synthetic dataset. We sample the training and
test dataset from i.i.d. standard normal distribution with length 128. The training sample size and
the test sample size are both 1000. We use the SSM layer (3) with m = 32, S4D-Lin initialization
on ℑ(w) and initialize the timescale ∆ = 1/

√
128. We use Adam optimizer with learning rate 0.001

on ∆,ℜ(w),ℑ(w) and learning rate 0.01 on c.

A.1 ADDITIONAL EXPERIMENTS FOR S4D-LEGS INITIALIZATION

In this subsection, we include more experiment results in Figure 8, 9, 10, 11 for SSMs with S4D-
Legs (Gu et al., 2022c) initialization on the imaginary part ℑ(w). The S4D-Legs initialization is
an approximation on the original S4-Legs initialization (Gu et al., 2022b) by taking diagonal part
of the diagonal plus low-rank HiPPO-Legs matrix. In Figure 8, 9, 10, we plot the magnitude of
the SSM output value given the S4D-Legs initialization for both zero real part and negative real
part cases. The experiment settings follow the guidelines we introduce before with only a change
on the initialization of ℑ(w). We can see that for S4D-Legs initialization, our conclusion still
holds in the sense that negative real part is stable at initialization for all all the scaling that we
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considered in this paper, while for zero real part, the dependencies of ∆ on L varies for different
sequence autocorrelation. We also compare the effects of real parts on optimization with S4D-Legs
initialization. The results are shown in Figure 11 and we obtain consistent results as the S4D-Lin
initialization. One interesting finding is that on the decorrelated sMNIST dataset, the comparison
between Figure 5 (Right) and Figure 11 (Right) shows that the S4D-Lin initialization outperforms
the S4D-Legs initialization in both zero real part and negative real part cases.

Figure 8: The expected magnitude of the SSM output value on synthetic sequences with S4D-Legs
initialization and different autocorrelation. The real part ℜ(w) = −0.5 follows the common practice
and we consider four dependencies between the timescale ∆ and the sequence length L.

Figure 9: The expected magnitude of the SSM output value on synthetic sequences with S4D-Legs
initialization and different autocorrelation and different dependencies between ∆ and L. The real
part ℜ(w) is set to be zero.

Figure 10: The expected magnitude of the SSM output value for S4D-Legs initialization on sequen-
tial image datasets with different resize rates (ranging from 0.5 to 4) and different dependencies
between ∆ and L.

B AUXILIARY LEMMAS

In this section, we provide the description for Itô’s isometry and a few auxiliary lemmas that we will
need for the proofs of Theorem 4.1, Proposition 4.2 and Theorem 4.3.

Lemma B.1. If ℜ(z) ≤ 0, then ∣∣∣∣ez − 1

z

∣∣∣∣ ≤ 1.
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Figure 11: (Left) Training a diagonal SSM (3) with S4D-Legs initialization on a task that requires
long-term memory. The learned memory function ρ̃ effectively captures the spike in long-range
dependencies. However, it struggles to do so when the real part is negative. (Middle) Test loss on
the long-term memory task when initializing ℜ(w) = 0 and ℜ(w) = −0.5. (Right) Test accuracy
for training a diagonal SSM with S4D-Legs initialization on decorrelated sequential MNIST dataset
with different real parts at initialization.

Proof. Notice that

|ez − 1|
|z|

=

∣∣∫ z

0
esds

∣∣
|z|

≤
∫ z

0
|es||ds|
|z|

=

∫ z

0
eℜ(z)|ds|
|z|

≤
∫ z

0
|ds|
|z|

= 1,

which finishes the proof.

Lemma B.2 (Itô’s isometry). Let W : [0, T ] × Ω → R denote the canonical real-valued Wiener
process defined up to time T > 0, and let X : [0, T ]×Ω → R be a stochastic process that is adapted
to the natural filtration of the Wiener process. Then

E

(∫ T

0

Xt dWt

)2
 = E

[∫ T

0

X2
t dt

]
,

where E denotes expectation with respect to classical Wiener measure.

Lemma B.3 (Gershgorin circle theorem). Let A be a complex n × n matrix, with entries aij . For
i ∈ {1, . . . , n}, let Ri be the sum of the absolute value of the non-diagonal entries in the i-th row:
Ri =

∑
j ̸=i |aij |. Let D(aii, Ri) ⊆ C be a closed disc centered at aii with radius Ri. Then every

eigenvalue of A lies within at least one of the discs D(aii, Ri).

Lemma B.4. For any t ∈ R,

∞∑
n=1

1

n2 + t2
= − 1

2t2
+

π

2t
coth(πt).

Proof. This is a side result of the Basel problem. The related proof can be found in the Wiki page.
We omit it here.

Lemma B.5. For any vj , vk ∈ R, we have∫ ∞

0

e−s cos(vjs) cos(vks)ds =
1

2

(
1

1 + (vj − vk)2
+

1

1 + (vj + vk)2

)
.
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Proof. Notice that∫ ∞

0

e−s cos(vjs) cos(vks)ds

=
1

2

∫ ∞

0

e−s cos((vj − vk)s)ds+
1

2

∫ ∞

0

e−s cos((vj + vk)s)ds

=
1

2

∫ ∞

0

ℜ (exp (−s+ i · (vj − vk)s)) ds+
1

2

∫ ∞

0

ℜ (exp (−s+ i · (vj + vk)s)) ds

=
1

2
ℜ
(

1

1− i · (vj − vk)
+

1

1− i · (vj + vk)

)
=
1

2

(
1

1 + (vj − vk)2
+

1

1 + (vj + vk)2

)
.

C PROOF OF THEOREM 4.1

In this section, we prove the upper bound on the second moment of the model output value in
Theorem 4.1.

Proof. First, we may express the model output yL in a matrix form. To do so, we rewrite c as a
2m × 1 vector (ℜ(c1), . . . ,ℜ(cm),ℑ(c1), . . .ℑ(cm))⊤ that contains the real and imaginary part of
c, and let V to be a 2m× L Vandermonde-like matrix

V :=



ℜ
(

e∆w1−1
∆w1

e∆w10
)

ℜ
(

e∆w1−1
∆w1

e∆w11
)

· · · ℜ
(

e∆w1−1
∆w1

e∆w1(L−1)
)

...
...

...

ℜ
(

e∆wm−1
∆wm

e∆wm0
)

ℜ
(

e∆wm−1
∆wm

e∆wm1
)

· · · ℜ
(

e∆wm−1
∆wm

e∆wm(L−1)
)

−ℑ
(

e∆w1−1
∆w1

e∆w10
)

−ℑ
(

e∆w1−1
∆w1

e∆w11
)

· · · −ℑ
(

e∆w1−1
∆w1

e∆w1(L−1)
)

...
...

...

−ℑ
(

e∆wm−1
∆wm

e∆wm0
)

−ℑ
(

e∆wm−1
∆wm

e∆wm1
)

· · · −ℑ
(

e∆wm−1
∆wm

e∆wm(L−1)
)


.

Then yL can be written in a matrix form

yL = ∆ · c⊤V Jx,

where J ∈ RL×L is a row reversed identity matrix, i.e.

J =


0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

 .

Furthermore, we may connect V with a standard Vandermonde matrix VL, by noticing that

ΦV = DVL,

where VL is a 2m×L complex Vandermonde matrix with 2m nodes e∆w1 , e∆w̄1 , . . . , e∆wm , e∆w̄m :

VL =



1 e∆w̄1 · · · e∆w̄1(L−1)

...
... · · ·

...
1 e∆w̄m · · · e∆w̄m(L−1)

1 e∆w1 · · · e∆w1(L−1)

...
... · · ·

...
1 e∆wm · · · e∆wm(L−1)


∈ C2m×L,
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Φ is a scaled unitary matrix

Φ :=



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

i 0 · · · 0
0 i · · · 0
...

...
. . .

...
0 0 · · · i

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−i 0 · · · 0
0 −i · · · 0
...

...
. . .

...
0 0 · · · −i


∈ C2m×2m.

with ΦΦH = ΦHΦ = 2I2m, and D is a diagonal matrix

D =



e∆w̄1−1
∆w̄1

. . .
e∆w̄m−1
∆w̄m

e∆w1−1
∆w1

. . .
e∆wm−1
∆wm


∈ C2m×2m.

Hence, we have V = 1
2Φ

HDVL. Notice that both ℜ(∆wj) and ℜ(∆w̄j) are non-positive, then
by Lemma B.1 we have ∥D∥ ≤ 1. Now combining it with V = 1

2Φ
HDVL and the fact that the

exchange matrix J is an orthogonal matrix, then when ℜ(wj) ≤ 0 for all j, we have

Ec,x[y
2
L] = Ec,x

[(
∆ · c⊤V Jx

)2]
= ∆2Ec

[
c⊤V JEx[xx

⊤]JV ⊤c
]

≤ ∆2

2
Ec[∥c∥2]λmax(E[xx⊤])λmax(VLV

H
L )

≤ ∆2m

2
λmax(E[xx⊤]) Tr(VLV

H
L )

= ∆2mλmax(E[xx⊤])

m∑
j=1

((
e∆ℜ(wj)

)0
+ · · ·+

(
e∆ℜ(wj)

)L−1
)

= ∆2m2Lλmax(E[xx⊤]),

which finishes the proof.

D PROOF OF PROPOSITION 4.2

In this section, we show the proof for Proposition 4.2.

Proof. Since Gj,k =
∫∞
0

ℜ(ewjs)ℜ(ewks)ds, then for any ξ ∈ Rm, we have

ξ⊤Gξ =

∫ ∞

0

 m∑
j=1

ξjℜ(ewjs)

2

ds ≥ 0.

Hence, G is positive semi-definite for both real-valued w and complex-valued w. Let ξ⊤Gξ = 0,
then

∑m
j=1 ξjℜ(ewjs) = 0 for s ≥ 0.

When a ∈ Rm, we take the discrete time points s = 0, 1, . . . ,m to form m equations. Note that
ℜ(ewjs) = ewjs. If wj are distinct, then the Vandermode matrix given by w1, . . . , wm is invertible,
indicating that the only solution for

∑m
j=1 ξjℜ(ewjs) = 0 is ξj = 0 for j = 1, . . . ,m. Thus, G is

positive definite in that case.
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When w ∈ Cm with distinct imaginary parts, we can always find a scaling factor γ > 0 such that
eγw1 , . . . , eγwm , eγw̄1 , . . . , eγw̄m are distinct, where w̄ is the conjugate of w. Then by the argument
of Vandermonde matrix, the only solution of the equation

∑m
j=1 ξje

wjs+
∑n

j=1 ξ̂je
w̄js = 0 for s ≥

0 is that ξj = ξ̂j = 0 for j = 1, . . . ,m. Since 2ℜ(ewjs) = ewjs + ew̄js, then
∑m

j=1 ξjℜ(ewjs) = 0
only has zero solution.

Combining these two cases we finish the proof.

E PROOF OF THEOREM 4.3

In this section, we prove Theorem 4.3 based on the Gershgorin circle theorem (Lemma B.3).

Proof. First, we need to bound both the diagonal entry and the off-diagonal sum. The diagonal entry
Gj,j =

1
2 (1 +

1
1+4v2

j
), which can be bounded as

1

2

(
1 +

1

1 + 4v2j

)
≤ Gj,j ≤ 1, j = 1, . . . ,m.

For the off-diagonal sum, we have ∀j = 1, . . . ,m,

2Rj = 2
∑
k ̸=j

|Gj,k|

=
∑
k ̸=j

1

1 + (vj − vk)2
+
∑
k ̸=j

1

1 + (vj + vk)2

<

∞∑
k=1

2

1 + δ2k2
+

∞∑
k=1

1

1 + (vj + vk)2
− 1

1 + 4v2j

<

∞∑
k=1

2

1 + δ2k2
+

∞∑
k=1

1

1 + v2j + v2k
− 1

1 + 4v2j

<

∞∑
k=1

2

1 + δ2k2
+

∞∑
k=0

1

1 + v2j + δ2k2
− 1

1 + 4v2j

=
2

δ2

∞∑
k=1

1

1/δ2 + k2
+

1

δ2

∞∑
k=1

1

(1 + v2j )/δ
2 + k2

+

(
1

1 + v2j
− 1

1 + 4v2j

)
,

where the first inequality is due to the fact that the minimal separation distance minj ̸=k |vj−vk| ≥ δ,
and the last inequality is because vj > 0 and reordering {vk}k≥1 does not affect the result for∑∞

k=1
1

1+v2
j+v2

k
. Then by Lemma B.4, we have

2

δ2

∞∑
k=1

1

1/δ2 + k2
+

1

δ2

∞∑
k=1

1

(1 + v2j )/δ
2 + k2

<
3

δ2

∞∑
k=1

1

1/δ2 + k2

=
3

δ2

(
−δ2

2
+

πδ

2
coth

(π
δ

))
= −3

2
+

3π

2δ
coth

(π
δ

)
.

Hence we have,

Gj,j −Rj >
1

2

(
1 +

1

1 + 4v2j

)
− 1

2

(
−3

2
+

3π

2δ
coth

(π
δ

))
− 1

2

(
1

1 + v2j
− 1

1 + 4v2j

)

>
5

4
− 1

2
max

(
1

1 + x2
− 2

1 + 4x2

)
− 3π

4δ
coth

(π
δ

)
> 1.19− 3π

4δ
coth

(π
δ

)
.
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Under the same argument, we get

Gj,j +Rj < 1 +
1

2

(
−3

2
+

3π

2δ
coth

(π
δ

))
+

1

2
max

(
1

1 + v2j
− 1

1 + 4v2j

)

<
1

4
+

3π

4δ
coth

(π
δ

)
+

1

2
max

(
1

1 + v2j
− 1

1 + 4v2j

)

=
5

12
+

3π

4δ
coth

(π
δ

)
.

Combining the two bounds and Lemma B.3, we finish the proof.
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