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ABSTRACT

Mitigating bias in automated decision-making systems, specifically deep learning
models, is a critical challenge in achieving fairness. This complexity stems from
factors such as nuanced definitions of fairness, unique biases in each dataset, and
the trade-off between fairness and model accuracy. To address such issues, we
introduce FairVIC, an innovative approach designed to enhance fairness in neural
networks by addressing inherent biases at the training stage. Unlike other methods
that require a user-defined declaration of what it means to be fair, FairVIC inte-
grates an abstract concept of fairness through variance, invariance and covariance
terms into the loss function. These terms aim to minimise the model’s dependency
on protected characteristics for making predictions, thus promoting fairness. Our
experimentation consists of evaluating FairVIC against other comparable bias mit-
igation techniques, on a number of datasets known for their biases. Additionally,
we conduct an ablation study to examine the accuracy-fairness trade-off. We also
extend FairVIC by offering multi-objective lambda recommendations, allowing
users to train a fairer model with a set of weights that are tuned best for their ap-
plication. Through our implementation of FairVIC, we observed a significant im-
provement in fairness across all metrics tested, without compromising the model’s
accuracy. Our findings suggest that FairVIC presents a straightforward, out-of-
the-box solution for the development of fairer deep learning models, thereby of-
fering a generalisable solution applicable across many tasks and datasets.

1 INTRODUCTION

With the ever-increasing utilisation of Artificial Intelligence (AI) in everyday applications, Neural
Networks (NNs) have emerged as pivotal tools for Automated Decision Making (ADM) systems in
industries such as healthcare (Esteva et al., 2017), finance (Dixon et al., 2017), and recruitment (Var-
darlier & Zafer, 2020). However, the inherent bias embedded in datasets and subsequently learned
by these models poses significant challenges to fairness. Such a bias can lead to adverse decisions
affecting real lives. For instance, several studies have shown how bias in facial recognition tech-
nologies disproportionately misidentifies individuals of certain ethnic backgrounds (Birhane, 2022;
Cavazos et al., 2020), leading to potential discrimination in law enforcement and hiring practices.

Real-world consequences exemplify the urgent need to address these challenges at the core of AI
development. Ensuring fairness in deep learning models presents complex challenges, primarily due
to the black-box nature of these models, which often complicates understanding and interpreting
decisions. Moreover, the dynamic and high-dimensional nature of the data involved, combined
with nuances in fairness definitions, further complicates the detection and correction of bias. This
complexity necessitates the development of more sophisticated, inherently fair algorithms.

Previous mitigation strategies dealing with algorithmic bias – whether through pre-processing, in-
processing, or post-processing – have significant limitations. Pre-processing techniques, which at-
tempt to cleanse biased data, are labour-intensive, dependent on expert intervention (Salimi et al.,
2019), and often insufficient to eliminate all biases. Current in-processing methods frequently lead
to unstable models and often rely heavily on ad-hoc fairness metrics. Post-processing techniques,
which adjust model predictions directly, ignore deeper issues without addressing the underlying bi-
ases in the data and model. These approaches lack stability, generalisability, and the ability to ensure
fairness across multiple metrics (Berk et al., 2017).
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In this paper, we introduce FairVIC (Fairness through Variance, Invariance, and Covariance), a
novel approach that embeds fairness directly into neural networks by optimising a custom loss func-
tion. This function is designed to minimise the correlation between decisions and protected charac-
teristics while maximising overall prediction performance. FairVIC integrates fairness through the
concepts of variance, invariance, and covariance during the training process, making it more princi-
pled and intuitive, and universally applicable to diverse datasets. Unlike previous methods, FairVIC
offers a robust, out-of-the-box solution that introduces a more abstract concept of fairness to sig-
nificantly reduce bias. Our experimental evaluations demonstrate FairVIC’s ability to significantly
improve performance in all fairness metrics tested without compromising prediction accuracy. We
compare our proposed method against comparable in-processing bias mitigation techniques, such
as adversarial and constraint approaches, and highlight the improved, robust performance of the
FairVIC model.

Our contributions in this paper are multi-fold:

• A novel, out-of-the-box in-processing bias mitigation technique for neural networks.
• An extension to dynamically tune the lambda weights during training, alleviating hyperpa-

rameter selection and fine-tuning from the user.
• A comprehensive experimental evaluation, using a multitude of comparable methods on a

variety of metrics across several datasets, including different modalities such as tabular and
text.

• An extended analysis of our proposed method to examine its robustness.

This paper is structured as follows: Section 2 discusses current approaches to mitigating bias
throughout each processing stage. Section 3 describes any preliminary details for this work, includ-
ing the fairness metrics used in the evaluation. Section 4 outlines our method and its lambda-tuning
extension, including how each term in our loss function is calculated and an algorithm detailing
how these terms are applied. Section 5 describes the experiments carried out, Section 6 outlines the
results with discussion, and Section 7 concludes this work. Any extra information, including the
dataset metadata and any extra experiments, is to be found in the Appendix.

2 RELATED WORK

There exist three broad categories of mitigation strategies for algorithmic bias: pre-processing, in-
processing, and post-processing. Each aims to increase fairness differently by acting upon either the
training data, the training step, or the predictions outputted by the model, respectively.

Pre-processing methods aim to fix the data before training, recognising that bias is primarily an
issue with the data itself (Caton & Haas, 2020). In practice, this can be done a number of different
ways, such as representative sampling, or re-sampling the data to reflect the full population (Shekhar
et al., 2021; Ustun et al., 2019), reweighing the data such that different groups influence the model in
a representative way (Calders & Žliobaitė, 2013; Kamiran & Calders, 2012), or generating synthetic
data to balance out the representation of each group (Jang et al., 2021). Another set of approaches
utilises causal methods to delineate relationships between sensitive attributes and the target variables
within the data (Chiappa & Isaac, 2019; Kusner et al., 2017; Russell et al., 2017). Such techniques
as these are labour-intensive and do not generalise well, requiring an expert with knowledge of the
data to manually process each case of a new dataset (Salimi et al., 2019). They also cannot provide
assurances that all bias has been removed – a model may draw upon relationships between features
that lead to bias, which are hard for the expert to spot.

In-processing methods aim to train models to make fairer predictions, even upon biased data. There
are a plethora of ways in which this has been done. For example, Celis et al. (2019) and Agarwal
et al. (2018) utilise a chosen fairness metric and perform constraint optimisation during training.
This has the effect that a single fairness metric needs to be chosen, introducing human bias, and this
metric must perfectly capture the bias within the data to effectively mitigate it. Therefore, fairness
cannot be achieved across multiple definitions in this way. Another approach involves incorporating
an adversarial component during model training that penalises the model if protected characteris-
tics can be predicted from its outputs (Zhang et al., 2018; Wadsworth et al., 2018; Xu et al., 2019).
These methods are often effective but their main shortcoming is seen in their instability. Finally,
the most relevant comparisons from previous work to our proposed method are regularisation-based
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techniques that incorporate fairness constraints or penalties directly into the model’s loss function
during training. There are a number of ways that this can be done, such as through data augmentation
strategies to promote less sensitive decision boundaries (Chuang & Mroueh, 2021) or by incorpo-
rating fairness adjustments into the boosting process (Cruz et al., 2023). The performance of these
models differs from approach to approach, and those that work by constraining the model by a fair-
ness metric directly suffer from the issue of human bias and misrepresenting the bias within the
data/model.

Post-processing techniques involve adjusting model predictions or decision rules after training to
ensure fair outcomes. In practice, decision thresholds have been adjusted for different groups to
achieve equal outcomes in a particular metric (Hardt et al., 2016). Alternatively, labels near the
decision boundary can be altered to favour less biased outcomes (Kamiran et al., 2012; 2018). Cali-
bration (Kim et al., 2018; Noriega-Campero et al., 2019) adjusts the predictions of the model directly
so that the proportion of positive instances is equal across each sub-group. This category of methods
can oversimplify fairness, and they do not fix the underlying issue within the model. For those tech-
niques that require the specification of a single fairness metric, the same issue applies surrounding
this choice as before.

There lies a number of issues which have not yet been solved in parallel within one technique. These
are: stability, generalisability, equal improvements to fairness across metrics (Berk et al., 2017), and
built without requirements for user-induced definitions of fairness. In this paper, we solve all these
requirements for an effective, out-of-the-box approach to mitigate bias through FairVIC.

3 PRELIMINARIES

3.1 VICREG

Variance-Invariance-Covariance Regularization (VICReg) (Bardes et al., 2021) has previously been
used in self-supervised learning to tackle feature collapse and redundancy. It maximises variance
across features to ensure the model produces diverse outputs for different inputs, minimises invari-
ance between augmented representations of the same input to enhance stability, and reduces covari-
ance among features to capture a broader range of information. VICReg is confined to this specific
context and objective, and the application of these principles outside of self-supervised methods
remains largely unexplored. In contrast, FairVIC extends these principles to supervised learning
for bias mitigation. This adaptation addresses the challenges of fairness in decision-making sys-
tems, expanding the application of VIC principles beyond their original scope and offering a novel,
generalisable solution to fairness in supervised learning models.

3.2 GROUP FAIRNESS METRICS

In this section, we introduce notation and state the fairness measures that we use to quantify bias.

Equalized Odds Difference requires that both the True Positive Rate (TPR) and False
Positive Rate (FPR) are the same across groups defined by the protected attribute, where
TPR = TP

TP+FN and FPR = FP
FP+TN (Hardt et al., 2016). Therefore, we calculate

max (|FPRp − FPRu| , |TPRp − TPRu|), where u represents the unprivileged groups and p the
privileged group and 0 signifies fairness.

Average Absolute Odds Difference averages the absolute differences in the false positive rates and
true positive rates between groups, defined as 1

2 (|FPRu − FPRp| + |TPRu − TPRp|), where u
represents the unprivileged groups and p the privileged group, with 0 signifying fairness.

Demographic Parity Difference evaluates the difference in the probability of a positive prediction
between groups, aiming for 0 to signify fairness. Formally, DP = |P (Ŷ = 1|u) − P (Ŷ = 1|p)|,
where u represents the unprivileged groups, p the privileged group, and Ŷ = 1 a positive predic-
tion (Dwork et al., 2012).

Disparate Impact compares the proportion of positive outcomes for the unprivileged group to that
of the privileged group, with a ratio of 1 indicating no disparate impact, and therefore fairness.
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Denoted as DI = P (Ŷ=1|u)
P (Ŷ=1|p) , where u represents the unprivileged groups, p the privileged group,

and Ŷ = 1 a positive prediction (Feldman et al., 2015).

3.3 INDIVIDUAL FAIRNESS

While FairVIC aims to increase group fairness, the invariance term promotes direct improvements
in individual fairness. This can be observed in our evaluations through counterfactual fairness.
Counterfactual fairness ensures that decisions made by an algorithm are fair even when considering
hypothetical (counterfactual) scenarios. For each individual, the sensitive attribute is switched to
assess the model’s ability to perform equally in both the original and counterfactual scenarios.

Formally, if u denotes the unprivileged group, p the privileged group and Ŷ is the decision outcome,
then the model is considered counterfactually fair if Ŷu = Ŷp for different groups u and p of the
sensitive attribute while all non-sensitive features remain the same.

4 APPROACH

We propose FairVIC (Fairness through Variance, Invariance, and Covariance), a novel loss function
that enables a model’s ability to learn fairness in a robust manner. FairVIC is comprised of three
terms: variance, invariance, and covariance. Optimising for these three terms encourages the model
to be stable and consistent across protected characteristics, thereby reducing bias during training.
By adopting this broad, generalised approach to defining bias, FairVIC significantly improves per-
formance across a range of fairness metrics. This makes it an effective strategy for reducing bias
across various applications, ensuring more equitable outcomes in diverse settings.

4.1 FAIRVIC TRAINING

To understand how FairVIC operates, it is crucial to define variance, invariance, and covariance
within the context of fairness:

Variance: This aims to stop stereotyping by decreasing the reliance upon an individual’s protected
characteristic as a trivial solution, instead looking for more unique relations and providing model
stability. The loss equation therefore penalises deviation in the protected attribute from its mean,
encouraging the model to be fair by minimising these variations.

Lvar = max

(
0, 1−

√
E
[
(P − E[P ])

2
]
+ ε

)
(1)

where P is the protected attribute, and ε = 1e−4 to ensure numerical stability.

Invariance: This ensures consistent results for similar inputs, e.g. if two candidates have the same
qualifications and skills, but are from different religions, this variation should not influence the
decision and therefore promotes individual fairness. The loss term here should directly penalise the
variance of the protected attribute, promoting invariance with respect to it.

Linv = E
[
(P − E[P ])

2
]

(2)

where P is the protected attribute.

Covariance: This aims to reduce the model’s dependency on protected characteristics to make
predictions, and to ensure decisions are made independently of them and promotes group fairness.
The loss equation therefore minimises this covariance.

Lcov =

√∑(
(ŷ − E[ŷ])⊤ · P

)2
N

(3)

where ŷ is the model’s prediction, P is the protected attribute, and N is the number of samples.
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Algorithm 1 FairVIC Loss Function

1: Input: Model M , Epochs E, Batch size B, Data D, Protected attribute P , Weights
(λacc, λvar, λinv, λcov)

2: Output: Trained Model M
3: Initialise M
4: for e ∈ E do
5: Shuffle data D
6: for each batch {(X,Y )} ∈ D with size B do
7: Ŷ ←M(X)
8: Calculate FairVIC Loss:
9: Lacc ← AccuracyLoss(Y, Ŷ )

10: Lvar ← VarianceLoss(P )
11: Linv ← InvarianceLoss(P )

12: Lcov ← CovarianceLoss(Ŷ , P )
13: Ltotal ← λaccLacc + λvarLvar + λinvLinv + λcovLcov
14: Compute gradients ∇Ltotal ← ∂Ltotal

∂M
15: Update model parameters M ←M − α∇Ltotal

During the training of a deep learning model, the model iterates over epochs E. Data is shuffled into
batches, upon which the model predicts to produce a set of predictions Ŷ . Typically, the true labels Y
and predictions Ŷ are then passed into a suitable accuracy loss function (e.g., binary cross-entropy,
hinge loss, Huber loss, etc.) and the resulting loss attempts to be minimised by an optimiser.

In the case of FairVIC, in addition to computing a suitable accuracy loss Lacc, we also calculate
our three novel terms Lvar, Linv, and Lcov using Equations 1, 2, and 3 respectively. Each of these
individual loss terms is then multiplied by its respective weighting factor λ and summed to form
the total loss Ltotal. Subsequently, gradients are computed, and the optimiser adjusts the model
parameters with respect to this combined loss. Further details are provided in Algorithm 1.

The multipliers λ enable users to balance the trade-off between fairness and predictive perfor-
mance, which is typical in bias mitigation techniques. Assigning a higher weight to λacc directs
the model to prioritise accuracy while increasing the weights of (λvar, λinv, λcov) shifts the focus
towards enhancing fairness in the model’s predictions. In our implementation, the lambda co-
efficients (λacc, λvar, λinv, λcov) are constrained such that their sum equals one. In other words,
λacc = 1−λvar−λinv−λcov. This normalisation ensures the optimisation will not produce multiple
solutions in the form {k.λacc, k.λvar, k.λinv, k.λcov}, k ∈ R.

4.2 MULTI-OBJECTIVE LAMBDA TUNING

To address the challenges associated with hyperparameter selection and tuning, specifically sur-
rounding the multipliers λ used to balance the trade-off between fairness and predictive performance,
we introduce an adaptive multi-objective gradient descent extension to FairVIC aimed to dynami-
cally adjust the λ parameters during the models training. Optimising λ multipliers this way, instead
of on performance metrics, helps to ensure models are trainable and adaptable, addressing the dif-
ferentiability issues metrics often present. Crucially, this approach also reduces the risk of human
biases influencing the model, as it allows for the direct integration of fairness-focused adjustments,
avoiding the unintentional reinforcement of existing disparities.

This process, seen in Algorithm 2, first involves converting the existing λ multipliers
(λacc, λvar, λinv, λcov) to trainable variables that can be adjusted during training. To optimise these,
we employ gradient descent. The gradients of the loss L with respect to each λi are computed as
follows:

∂L

∂λi
=

∂Li

∂λi
+

∂R

∂λi
(4)

where R is a regularization term to penalise overfitting towards large or small values. To ensure no
single λi disproportionately influences the optimization process, the gradients are scaled:

5
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Algorithm 2 Multi-Objective Lambda Tuning in FairVIC

1: Input: Initial λ values (λbinary, λvar, λinv, λcov), Learning rate αλ

2: Output: Optimised λ values
3: for each training epoch do
4: for each batch do
5: Compute gradients ∇ ∂L

∂λi
= ∂Li

∂λi
+ ∂R

∂λi

6: Scale gradients g̃λi =
gλi

∥gλi
∥+ϵ

7: Fine-tune multipliers λi ← λi − αλg̃λi

g̃λi =
gλi

∥gλi∥+ ϵ
(5)

where gi is the gradient of L with respect to λi, and ϵ is a small constant to avoid division by zero.
This normalization step prevents the dominance of larger gradients, promoting a more balanced and
effective adjustment of the λ values during training. Finally, the multipliers λ are updated according
to these gradients g̃λi

and the learning rate α automatically.

The introduction of this multi-objective lambda tuning extension to FairVIC reduces the need for
extensive manual hyperparameter selection and tuning, thereby decreasing the risk of introducing
associated biases into the model. This not only streamlines model development but also effectively
abstracts the complexity of manual hyperparameter optimization, thereby enhancing usability and
reducing the scope for human error in the tuning process.

5 EXPERIMENTS

In our experimental evaluation, we assess the performance of FairVIC1 against a set of comparable
in-processing bias mitigation methods on a series of datasets known for their bias. Here, we describe
the datasets used and the methods we compare against.

5.1 DATASETS

We evaluate FairVIC on four datasets that are used as benchmarks in bias mitigation evaluation
due to their known biases towards certain subgroups of people within their sample population.
These datasets allow for highlighting the generalisable capabilities of FairVIC across different de-
mographic disparities.

Tabular datasets. The main body of evaluation is done using three tabular datasets: Adult In-
come (Becker & Kohavi, 1996), COMPAS (Angwin et al., 2022), and German Credit (Hofmann,
1994), all of which are binary classification tasks. Adult Income aims to predict whether an indi-
vidual’s income is > $50K or ≤ $50K. It is known for its gender and racial biases in economic
disparity. The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)
dataset is frequently used for evaluating debiasing techniques. It has a classification goal of predict-
ing recidivism risks and is infamous for its racial biases. Finally, the German Credit dataset was
used to assess creditworthiness by classifying individuals as either good or bad credit risks, with
known biases related to age and gender (Kamiran & Calders, 2009).
Language dataset. To show the ability of FairVIC to work for different data modalities, we also
utilise CivilComments-WILDS – a natural language dataset. We take a sample of 50K comments
from the dataset, which is comprised of a collection of comments on the Civil Comments platform.
The binary classification goal is to label comments as toxic or non-toxic. Our sample is stratified
to retain the same proportion of toxic comments as in the original dataset. We take ethnicity as the
protected characteristic where comments are marked as white or non-white (Koh et al., 2021).

Detailed metadata for each dataset, including our selections for protected groups, can be found in
Appendix A.1.

1The code for our FairVIC implementation is available at: https://anonymous.4open.science/
r/FairVIC-BEE7
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5.2 COMPARABLE TECHNIQUES

To highlight the performance of FairVIC, we evaluate against five comparable in-processing bias
mitigation methods. These are:

Adversarial Debiasing. This method leverages an adversarial network that aims to predict protected
characteristics based on the predictions of the main model. The primary model seeks to maximise its
own prediction accuracy while minimising the adversary’s prediction accuracy (Zhang et al., 2018).
Exponentiated Gradient Reduction. This technique reduces fair classification to a sequence of
cost-sensitive classification problems, returning a randomised classifier with the lowest empirical
error subject to a chosen fairness constraint (Agarwal et al., 2018).
Meta Fair Classifier. This classifier allows a fairness metric as an input and optimises the model
with respect to regular performance and the chosen fairness metric (Celis et al., 2019).
Fair MixUp. This technique generates synthetic samples by linearly interpolating between pairs of
training data points by protected attribute to smooth decision boundaries. The loss function is then
further constrained by a fairness metric (Chuang & Mroueh, 2021).
FairGBM. This method uses a gradient-boosting decision tree model that integrates fairness con-
straints directly into the boosting process by adjusting the loss function to account for fairness met-
rics (Cruz et al., 2023).

Alongside this, a baseline-biased model was established that was a neural network with binary cross-
entropy loss only. Details on the neural network architecture/ hyperparameters used for both the
baseline model and the FairVIC model can be found in Appendix A.2.

6 EVALUATION

6.1 CORE RESULTS ANALYSIS

To assess the prediction and fairness performance of FairVIC2 and state-of-the-art approaches, we
test all methods across each tabular dataset to enable a fair comparison. Table 1 shows these results.
We have also provided Figure 1, which visualises the absolute difference from the ideal value of
each metric, highlighting how far each method deviates from perfect accuracy and fairness on the
Adult Income dataset. For the COMPAS and German Credit datasets, similar figures can be found
in Appendix B.1 in Figures 3 and 4.

Across all three datasets, the baseline performs poorly in fairness but obtains higher performance
scores, which is expected. For example, in the Adult Income dataset, the baseline model shows a
relatively high accuracy (0.8517), while exhibiting poor fairness with regard to Disparate Impact
(0.3278). The baseline highlights the need for a bias mitigation approach that works across all
metrics simultaneously, as the low bias in terms of Equalised Odds (0.0810) and Absolute Odds
(0.0662) alone could misleadingly suggest that the model is fair, rather than that the bias needs to be
captured differently. This has the effect that approaches requiring a single fairness constraint, such
as Exponentiated Gradient Reduction, often leave significant bias unaddressed in the data.

Overall, FairVIC outperforms all other comparable methods by demonstrating consistent improve-
ments in both fairness and accuracy retention. As seen in Figure 1, our FairVIC model achieves the
lowest cumulative absolute error from perfect accuracy and fairness in the Adult Income dataset, ef-
fectively balancing the fairness-accuracy trade-off. The trend is consistent across the COMPAS and
German Credit datasets as well. FairVIC is only second to Fair MixUp in the German Credit dataset
by an absolute difference of ≈ 0.0271, perhaps due to Fair MixUp’s approach coincidentally cap-
turing the specific type of bias that is present in this data only. Comparatively, in the Adult Income
and COMPAS datasets Fair MixUp performs poorly, ranking seventh and third place respectively in
terms of absolute differences. This again exemplifies the ability of FairVIC’s approach to generalise
across datasets, making it a more versatile solution.

Other comparable methods are generally not as effective as FairVIC, each exhibiting different short-
comings. For instance, MetaFair never improves upon the baseline in cumulative absolute difference
from the ideal value, while Exponentiated Gradient Reduction struggles to balance the improve-

2Multi-objective lambda recommendations were applied to FairVIC to obtain the results in Table 1, see
Section 6.4
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Table 1: FairVIC accuracy and fairness results, compared with the base biased model, and five other
comparable methods for bias mitigation in-processing for each of the three tabular datasets.

Dataset Model Accuracy F1 Score Equalized Odds Absolute Odds Demographic Parity Disparate Impact
Baseline (Biased) 0.8517 ± 0.0021 0.6475 ± 0.0214 0.0810 ± 0.0308 0.0662 ± 0.0219 -0.1580 ± 0.0218 0.3278 ± 0.0271
Adversarial Debiasing 0.8065 ± 0.0048 0.4773 ± 0.0708 0.2127 ± 0.0828 0.1172 ± 0.0443 -0.0405 ± 0.0679 0.7874 ± 0.2185
Exponentiated Gradient Reduction 0.8027 ± 0.0026 0.4056 ± 0.0052 0.0238 ± 0.0115 0.0167 ± 0.0061 -0.0601 ± 0.0026 0.4602 ± 0.0237
Meta Fair Classifier 0.5171 ± 0.0602 0.4744 ± 0.0219 0.4826 ± 0.0894 0.2935 ± 0.0497 -0.2098 ± 0.0542 0.7140 ± 0.0812
Fair MixUp 0.7755 ± 0.0098 0.4565 ± 0.0414 0.1395 ± 0.0795 0.1074 ± 0.0568 -0.1368 ± 0.0524 0.3921 ± 0.1654
FairGBM 0.8731 ± 0.0026 0.7122 ± 0.0079 0.0658 ± 0.0131 0.0583 ± 0.0092 -0.1707 ± 0.0044 0.3363 ± 0.0151

Adult
Income

FairVIC 0.8306 ± 0.0078 0.5484 ± 0.0492 0.2812 ± 0.0392 0.1539 ± 0.0251 -0.0136 ± 0.0243 0.9407 ± 0.1569
Baseline (Biased) 0.6619 ± 0.0175 0.6280 ± 0.0206 0.3095 ± 0.0744 0.2540 ± 0.0683 -0.2889 ± 0.0651 0.6085 ± 0.0853
Adversarial Debiasing 0.6581 ± 0.0185 0.6253 ± 0.0124 0.1707 ± 0.0694 0.1363 ± 0.0504 -0.0902 ± 0.1367 0.8982 ± 0.2614
Exponentiated Gradient Reduction 0.5574 ± 0.0169 0.2981 ± 0.0407 0.0630 ± 0.0333 0.0432 ± 0.0231 -0.0393 ± 0.0257 0.9545 ± 0.0293
Meta Fair Classifier 0.3471 ± 0.0147 0.4312 ± 0.0380 0.2951 ± 0.1038 0.2257 ± 0.1095 0.2526 ± 0.1070 2.5876 ± 0.6627
Fair MixUp 0.6012 ± 0.0234 0.5502 ± 0.0443 0.1225 ± 0.0763 0.0883 ± 0.0493 -0.0680 ± 0.0808 0.8964 ± 0.1242
FairGBM 0.6440 ± 0.0151 0.6254 ± 0.0153 0.2015 ± 0.1128 0.1466 ± 0.0961 0.0881 ± 0.1225 1.2828 ± 0.4058

COMPAS

FairVIC 0.6522 ± 0.0216 0.6079 ± 0.0374 0.0867 ± 0.0401 0.0571 ± 0.0270 -0.0294 ± 0.0554 0.9598 ± 0.0850
Baseline (Biased) 0.7325 ± 0.0232 0.8170 ± 0.0199 0.2101 ± 0.0871 0.1464 ± 0.0685 -0.1728 ± 0.1009 0.7860 ± 0.1241
Adversarial Debiasing 0.5815 ± 0.1513 0.6302 ± 0.2581 0.1020 ± 0.0418 0.0737 ± 0.0404 -0.0657 ± 0.0335 0.8084 ± 0.2130
Exponentiated Gradient Reduction 0.7465 ± 0.0300 0.8321 ± 0.0208 0.1232 ± 0.0631 0.0796 ± 0.0348 -0.1084 ± 0.0746 0.8692 ± 0.0896
Meta Fair Classifier 0.7575 ± 0.0260 0.8291 ± 0.0229 0.2215 ± 0.1112 0.1444 ± 0.0810 -0.1052 ± 0.1315 0.8601 ± 0.1755
Fair MixUp 0.6865 ± 0.0426 0.7740 ± 0.0381 0.1359 ± 0.0692 0.0925 ± 0.0422 -0.0189 ± 0.0728 0.9781 ± 0.1082
FairGBM 0.7460 ± 0.0348 0.8255 ± 0.0283 0.1922 ± 0.0906 0.1345 ± 0.0756 -0.1539 ± 0.0773 0.8081 ± 0.0915

German
Credit

FairVIC 0.7200 ± 0.0383 0.8110 ± 0.0342 0.1914 ± 0.0718 0.1367 ± 0.0581 0.0140 ± 0.1289 1.0247 ± 0.1653

Figure 1: Absolute differences from the ideal value (e.g., perfect accuracy and fairness) in perfor-
mance (left) and fairness (right) metrics of comparable techniques, sorted in ascending order, on the
Adult Income dataset.

ments across all fairness metrics, often prioritising Equalised and Absolute Odds over Disparate Im-
pact, particularly in the Adult Income dataset. Similarly, the Adversarial Debiasing model, though
initially promising and achieving second place after FairVIC in the Adult Income and COMPAS
datasets, fails to maintain its performance on the German Credit dataset, where its results fall below
even the baseline.

Overall, FairVIC’s ability to consistently balance the trade-off between fairness and accuracy, adapt
to various datasets, and handle all fairness metrics comprehensively makes it the most effective
method. Its consistent performance across different datasets, as evidenced by the lowest cumulative
absolute error in performance and fairness, solidifies its superiority over other comparable methods.

6.2 INDIVIDUAL FAIRNESS ANALYSIS

To emphasise further FairVIC’s ability to perform well across all fairness metrics, we also evaluate
upon individual fairness by outputting the results of the counterfactual model, as described in Sec-
tion 3.3. The full results, alongside the absolute difference in averages for each metric across the
regular and counterfactual models, are seen in Table 6 in Appendix B.3.

The FairVIC model shows considerable promise in enhancing individual fairness across different
datasets when compared with the baseline models. The counterfactual results from the FairVIC
model generally exhibit lower absolute differences in metrics, particularly in the COMPAS and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

German Credit datasets. For example, in the German Credit dataset, the mean absolute difference
across all six metrics between the regular and the counterfactual baseline model is ≈ 0.0348, while
for FairVIC’s regular and counterfactual models it is lower at≈ 0.0106. This suggests a more stable
and fair performance under counterfactual conditions. This capability highlights FairVIC’s strength
in not only addressing group fairness but also ensuring that individual decisions remain consistent
and fair when hypothetical scenarios are considered.

6.3 LAMBDA ABLATION STUDY ANALYSIS

The FairVIC loss terms are combined with binary cross entropy for training the NN to enable op-
timisation of both accuracy and fairness, minimising the trade-off. The effect of FairVIC on the
overall loss function can be increased and decreased by changing the weight λ for each FairVIC
term. To evaluate this effect, we train a number of neural networks with the architecture described
in Appendix A.2, with a different λacc weighting each time. In this initial experiment, we evaluate
the effect of weighting the FairVIC loss terms equally, so that λvar = λinv = λcov = (1−λacc)

3 , where
0 < λacc < 1. The performance and fairness measures for each model are listed in Table 7 in
Appendix C, and visualisations for the absolute difference in performance and fairness from ideal
values for each run are visualised in Figure 2.

Figure 2: Absolute difference from the ideal value for performance (green) and fairness (blue) met-
rics of FairVIC with varying λacc values across all tabular datasets. The FairVIC terms are weighted
equally, such that λacc + λvar + λinv + λcov = 1.

In Figure 2, the trade-off between accuracy and fairness is evident. As λacc increases, predictive
performance improves, but the fairness metrics deviate further from the ideal value. In contrast,
when λacc is lower, fairness improves, but this time with only a negligible drop in accuracy. This
suggests that lower λacc values provide a better overall performance balance.

To evaluate upon the effect of each individual VIC term within the loss function, we can suppress
the lambda terms from two out of three of variance, invariance, and covariance to leave only one
remaining. We keep λacc = 0.1 since the previous lambda experiment showed this to be most
effective, while the chosen FairVIC loss term is given a weighting of 0.9. The performance and
fairness results for each experiment with different weightings are listed in Table 8.

It can be concluded that each term has a different effect. Variance is shown to have the lowest stan-
dard deviation across all metrics and all data in Table 8, offering stability to FairVIC. Utilising only
the covariance term has the greatest effect on group fairness, as seen in Table 8. The effect of only
adding weighting to the invariance term can be assessed using Table 6. The invariance term aims
to give similar outputs to similar inputs, therefore it should have more of an effect towards individ-
ual fairness. Table 6 corroborates this hypothesis, as the FairVIC Individual model (FairVIC with
only individual loss weighted to 0.9) consistently has a lower absolute difference than the baseline
between the regular and counterfactual models across all metrics and tabular datasets, signalling
greater individual fairness. Therefore, we conclude that the combination of all three terms would
aim to improve both group and individual fairness, and increase stability.

9
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Table 2: Lambda recommendations provided by the Multi-Objective Lambda tuning extension, for
all four datasets.

Recommended λ

Dataset λacc λvar λinv λcov

Adult Income 0.10 0.10 0.10 0.70
COMPAS 0.10 0.10 0.10 0.70
German Credit 0.10 0.10 0.10 0.70
CivilComments-WILDS 0.10 0.10 0.15 0.65

6.4 MULTI-OBJECTIVE LAMBDA TUNING ANALYSIS

To extend FairVIC, we propose a Multi-Objective Lambda Tuning Algorithm as described in Sec-
tion 4.2. Upon application to all four datasets, the following results were outputted as seen in
Table 2. Each individual λ was weighted equally (= 0.25) at the start of training and converged to
the recommended values.

For all datasets, a recommendation of λacc of 0.10 is given. This is the same conclusion that was
drawn through our trade-off study, in Section 6.3, as the lower the λacc, the higher the fairness. Out
of the three VIC loss terms, covariance is assigned with the highest weighting. This corroborates
the findings of the ablation study in Table 8, where covariance held the heaviest weighting on group
fairness results. Variance and invariance are recommended weights of 0.10 to 0.15 for use for all
datasets. Both of these components being lower is to be expected, due to their low effect on group
fairness. However, as discussed in Section 6.3, both of these terms hold a positive effect through
variance offering stability and invariance improving individual fairness. Therefore, the combination
of all four terms with these weights allows for effective results throughout in the FairVIC model, as
seen in the final results in Table 1.

6.5 LANGUAGE DATASET RESULTS

To show FairVIC’s versatility across data modalities, our approach was applied to the
CivilComments-WILDS dataset. The results are shown in Table 3, where FairVIC uses the lambda
recommendations as shown in Section 6.4.

From Table 3, the same trend can be seen as in the tabular dataset results, where FairVIC gives
fairer results across all tested fairness metrics, the most notable being the improvement to disparate
impact from 1.2069 to 1.0087. The model also shows good stability throughout. Therefore, FairVIC
is not confined to one modality. The use of a different model architecture also proves FairVIC’s
adaptability to be utilised within different neural networks.

Table 3: FairVIC and baseline comparison results of both performance and fairness for the
CivilComments-WILDS dataset.

Model Accuracy F1 Score Equalized Odds Absolute Odds Demographic Parity Disparate Impact
Baseline 0.8993 ± 0.0026 0.4094 ± 0.0448 0.1491 ± 0.0363 0.1198 ± 0.0257 0.1621 ± 0.0257 1.2069 ± 0.0430
FairVIC 0.8962 ± 0.0038 0.2813 ± 0.1142 0.0854 ± 0.0495 0.0455 ± 0.0260 0.0082 ± 0.0082 1.0087 ± 0.0088

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced FairVIC, an in-processing bias mitigation technique that introduces
three new terms into the loss function of a neural network- variance, invariance, and covariance.
Across our experimental evaluation, FairVIC significantly improves scores for all fairness metrics
compared to previous comparable methods which typically aim to improve only upon a single met-
ric. This balance showcases FairVIC’s strength in providing a robust and generalisable solution
applicable across various tasks and datasets. We also presented an extension to automatically tune
the weights of each term during training and conducted a full ablation study to analyse the effect
of each term in FairVIC. Future work would look to extend FairVIC to consider multiple protected
characteristics simultaneously and expand its utility to image datasets.
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A EXPERIMENT DETAILS

A.1 DATASET METADATA

Detailed metadata for each dataset, including our selection of privileged group, can be found in
Table 4. Note that for CivilComments-WILDS, the number of features is obtained by combining the
protected characteristic and the toxicity label with the 50 tokenised text features.

Table 4: Metadata on all four experimental datasets.

Dataset Adult Income COMPAS German Credit CivilComments-WILDS
No. of Features 11 8 20 52
No. of Rows 48,842 5,278 1,000 50,000
Target Variable income two year recid credit toxicity
Favourable Label >50K (1) False (0) Good (1) Non-Toxic (0)
Unfavourable Label <=50K (0) True (1) Bad (0) Toxic (1)
Protected Characteristic sex race age race
Privileged Group male (1) Caucasian (1) >25 (1) white (1)
Unprivileged Group female (0) African-American (0) <=25 (0) non-white (0)

A.2 NEURAL NETWORK CONFIGURATION

The configurations for the neural networks utilised for both the tabular and language data can be
seen in Table 5. It should be noted that the language dataset architecture also included scheduled
learning rate reduction. To obtain results, each model was run 10 times over random seeds, with a
randomised train/test split each time. The averages and standard deviations were the outputted from
across all 10 runs.

Table 5: Experimental model setup and parameters.

Parameter Tabular Datasets Language Dataset
Neural Network Architecture Dense(256, 128, 64, 32) BiLSTM(64,32), Dense(64, 32)
No. of Epochs 200 50
Batch Size 256 256
Optimiser Adam AdamW
Learning Rate 5e-2 5e-5
Dropout Rate 0.25 0.50
Regularisation L1(1e-4)L2(1e-3) L1(1e-4)L2(1e-3)

All models were run with minimal and consistent data preprocessing. While some models, such as
MetaFair, may underperform due to their reliance on specific sampling techniques, all comparable
methods are treated uniformly as in-processing techniques. This allows them to be applied out-of-
the-box to any dataset, ensuring a fair evaluation across models.

B FULL TRAINING RESULTS

In addition to the results and analysis presented in Section 6, this section provides supplementary
experiments and figures.

B.1 RESULTS VISUALISATIONS FOR THE COMPAS AND GERMAN CREDIT DATASET

Following the analysis discussed in Section 6.1 regarding Figure 1, the absolute difference from
the ideal value for the COMPAS and German Credit datasets can be visualised in Figures 3 and 4
respectively. Analysis regarding these additional figures can be found in Section 6.1.
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Figure 3: Absolute difference from the ideal value in performance (left) and fairness (right) metrics
of comparable techniques, sorted in ascending order, on the COMPAS dataset.

Figure 4: Absolute difference from the ideal value in performance (left) and fairness (right) metrics
of comparable techniques, sorted in ascending order, on the German Credit dataset.

B.2 FEATURE IMPORTANCES

Figure 5 shows the feature importance of the baseline and FairVIC models across three tabular
datasets. In all baseline models, the protected attributes show some importance to the decision-
making process, such as in the COMPAS dataset, where race is a dominant feature. Combined with
the results presented in Section 6.1, this suggests that the baseline models are prone to using the
protected attribute to propagate bias. Additionally, proxy variables (highlighted with their impor-
tance in black), which are strongly correlated with the protected attributes, further show how bias
can be perpetuated in the baseline model. For example, in the Adult Income dataset, relationship
has a mean feature importance of 0.0124. This indicates that even though the model appears to have
limited reliance on the protected attribute sex (which is among the least used features), it may still
propagate bias through proxies such as relationship.

In contrast, the FairVIC models for all three datasets demonstrate a strong reduction in the mean
importance of protected attributes and proxy variables. This reduction is due to the three additional
terms used in FairVIC- variance, invariance, and covariance. We can see that the covariance term
exactly minimises the model’s dependency on the protected characteristic, which, in combination
with results in Section 6.1, suggests a fairer decision-making process. The reduction in proxy vari-
ables should also be noted. Not only does FairVIC successfully reduce the reliance on the protected
attribute, but it can also reduce the reliance on any features strongly correlated to the protected
attribute. For example, in the Adult Income dataset, sex and relationship have a strong negative
correlation (−0.58) meaning a model cannot only propagate bias through the use of sex but also
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through the use of relationship which we see the baseline model rely upon. The FairVIC model sees
the mean feature importance of relationship drop by approximately a third and the importance of
sex drop by half. This shows FairVIC’s ability to mitigate both direct and indirect biases, leading to
more equitable outcomes.

(a) Adult Income dataset.

(b) COMPAS dataset.

(c) German Credit dataset.

Figure 5: Mean feature importances for the baseline and FairVIC models across three tabular
datasets. The protected attribute (green) and strong proxy variables to the protected attribute (black)
are annotated for their exact feature importance.

B.3 INDIVIDUAL FAIRNESS RESULTS

Following the analysis found in Section 6.2, Table 6 shows the individual fairness on both the base-
line and FairVIC models using their counterfactual model results. In the Adult Income dataset,
the mean absolute difference across all six metrics combined for the baseline model is ≈ 0.0034,
while for FairVIC it is ≈ 0.0064. In the COMPAS dataset, the mean absolute difference across all
six metrics combined for the baseline model is ≈ 0.013, while for FairVIC it is ≈ 0.0050. Fair-
VIC improves individual fairness against the baseline model in two of the three tabular datasets and
consistently achieves a significantly low mean, further highlighting the effectiveness of FairVIC.

For discussion on the FairVIC Individual model individual fairness results, see Section 6.2.
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Table 6: Counterfactual (CF) model results and absolute differences (ADs) for the baseline, FairVIC
(λacc, var, inv = 0.1, λcov = 0.7), and FairVIC Invariance (λacc = 0.1, λinv = 0.9, λvar, cov = 0.0)
models.

Dataset Model Accuracy F1 Score Equalized Odds Absolute Odds Demographic Parity Disparate Impact
Baseline 0.8517 ± 0.0021 0.6475 ± 0.0214 0.0810 ± 0.0308 0.0662 ± 0.0219 -0.1580 ± 0.0218 0.3278 ± 0.0271
Baseline CF 0.8507 ± 0.0032 0.6451 ± 0.0237 0.0767 ± 0.0266 0.0627 ± 0.0226 -0.1561 ± 0.0220 0.3353 ± 0.0433
Baseline AD 0.0010 ± 0.0038 0.0024 ± 0.0319 0.0043 ± 0.0407 0.0035 ± 0.0315 0.0019 ± 0.0310 0.0075 ± 0.0511
FairVIC Invariance 0.8498 ± 0.0039 0.6506 ± 0.0229 0.0959 ± 0.0314 0.0820 ± 0.0272 -0.1715 ± 0.0295 0.3164 ± 0.0274
FairVIC Invariance CF 0.8487 ± 0.0055 0.6522 ± 0.0204 0.0967 ± 0.0360 0.0837 ± 0.0317 -0.1742 ± 0.0333 0.3224 ± 0.0245
FairVIC Invariance AD 0.0011 ± 0.0067 0.0016 ± 0.0307 0.0008 ± 0.0478 0.0017 ± 0.0418 0.0027 ± 0.0445 0.0060 ± 0.0368
FairVIC 0.8306 ± 0.0078 0.5484 ± 0.0492 0.2812 ± 0.0392 0.1539 ± 0.0251 -0.0136 ± 0.0243 0.9407 ± 0.1569
FairVIC CF 0.8323 ± 0.0052 0.5641 ± 0.0390 0.2781 ± 0.0481 0.1541 ± 0.0303 -0.0155 ± 0.0257 0.9246 ± 0.1437

Adult
Income

FairVIC AD 0.0017 ± 0.0094 0.0157 ± 0.0628 0.0031 ± 0.0621 0.0002 ± 0.0393 0.0019 ± 0.0354 0.0161 ± 0.2128
Baseline 0.6619 ± 0.0175 0.6280 ± 0.0206 0.3095 ± 0.0744 0.2540 ± 0.0683 -0.2889 ± 0.0651 0.6085 ± 0.0853
Baseline CF 0.6560 ± 0.0094 0.5989 ± 0.0287 0.3240 ± 0.0655 0.2584 ± 0.0568 -0.2892 ± 0.0571 0.6323 ± 0.0714
Baseline AD 0.0059 ± 0.0199 0.0291 ± 0.0353 0.0145 ± 0.0991 0.0044 ± 0.0888 0.0003 ± 0.0866 0.0238 ± 0.1112
FairVIC Invariance 0.6598 ± 0.0118 0.6252 ± 0.0212 0.2858 ± 0.0810 0.2402 ± 0.0794 -0.2776 ± 0.0805 0.6202 ± 0.0969
FairVIC Invariance CF 0.6584 ± 0.0155 0.6133 ± 0.0272 0.2724 ± 0.0892 0.2222 ± 0.0762 -0.2583 ± 0.0756 0.6528 ± 0.0887
FairVIC Invariance AD 0.0014 ± 0.0195 0.0119 ± 0.0345 0.0134 ± 0.1205 0.0180 ± 0.1100 0.0193 ± 0.1104 0.0326 ± 0.1314
FairVIC 0.6522 ± 0.0216 0.6079 ± 0.0374 0.0867 ± 0.0401 0.0571 ± 0.0270 -0.0294 ± 0.0554 0.9598 ± 0.0850
FairVIC CF 0.6444 ± 0.0171 0.6096 ± 0.0481 0.0983 ± 0.0400 0.0608 ± 0.0250 -0.0269 ± 0.0587 0.9571 ± 0.1087

COMPAS

FairVIC AD 0.0078 ± 0.0275 0.0017 ± 0.0609 0.0116 ± 0.0566 0.0037 ± 0.0368 0.0025 ± 0.0807 0.0027 ± 0.1380
Baseline 0.7325 ± 0.0232 0.8170 ± 0.0199 0.2101 ± 0.0871 0.1464 ± 0.0685 -0.1728 ± 0.1009 0.7860 ± 0.1241
Baseline CF 0.7315 ± 0.0505 0.8158 ± 0.0406 0.1432 ± 0.0926 0.1095 ± 0.0669 -0.1246 ± 0.0831 0.8403 ± 0.1092
Baseline AD 0.0010 ± 0.0556 0.0012 ± 0.0452 0.0669 ± 0.1271 0.0369 ± 0.0957 0.0482 ± 0.1307 0.0543 ± 0.1653
FairVIC Invariance 0.7125 ± 0.0238 0.8003 ± 0.0203 0.1665 ± 0.0977 0.1268 ± 0.0682 -0.1191 ± 0.0864 0.8450 ± 0.1129
FairVIC Invariance CF 0.7070 ± 0.0263 0.7929 ± 0.0211 0.2022 ± 0.0645 0.1411 ± 0.0381 -0.1450 ± 0.0620 0.8103 ± 0.0761
FairVIC Invariance AD 0.0055 ± 0.0355 0.0074 ± 0.0293 0.0357 ± 0.1171 0.0143 ± 0.0781 0.0259 ± 0.1063 0.0347 ± 0.1362
FairVIC 0.7200 ± 0.0383 0.8110 ± 0.0342 0.1914 ± 0.0718 0.1367 ± 0.0581 0.0140 ± 0.1289 1.0247 ± 0.1653
FairVIC CF 0.7280 ± 0.0214 0.8184 ± 0.0158 0.1965 ± 0.0818 0.1265 ± 0.0520 0.0316 ± 0.0672 1.0404 ± 0.0847

German
Credit

FairVIC AD 0.0080 ± 0.0439 0.0074 ± 0.0377 0.0051 ± 0.1088 0.0102 ± 0.0780 0.0176 ± 0.1454 0.0157 ± 0.1857

B.4 MODEL REPRESENTATION ANALYSIS

An example latent space visualisation from the baseline model and FairVIC can be seen in Fig-
ure 6. In the baseline model, we observe a separation between subgroups, where women (subgroup
0) are predominantly located in the upper region and men (subgroup 1) in the lower region of the
latent space. This separation suggests that the baseline model’s representations may be influenced
by the protected attribute, leading to the biased decision-making reported in Table 1. In contrast,
the FairVIC model shows a more condensed and overlapping distribution of both subgroups within
the same latent space. This indicates, alongside results in Table 1 and feature importance in Fig-
ure 5a that FairVIC has successfully reduced the model’s reliance on the protected characteristic
and any proxy variables, thereby promoting more equitable representations. The overlapping and
compact structure in the FairVIC latent space demonstrates that similar data points, regardless of
their subgroup membership, are mapped closer together, ensuring that the model’s predictions are
not unfairly biased towards one group over the other.

Figure 6: An example latent space visualization from one random seed of a baseline model and a
FairVIC model on the Adult Income dataset. Subgroup (1) represents male individuals, and sub-
group (0) represents female individuals.
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B.5 MODEL OPTIMIZATION ANALYSIS

Figure 7 illustrates the loss landscapes of the baseline and FairVIC models on the Adult Income
dataset. Both models exhibit smooth loss surfaces, indicating that they are relatively well-optimized.
The baseline model (left) shows a stable loss landscape with a slight gradient. The FairVIC model
(right), despite incorporating additional fairness constraints, maintains a similarly smooth surface.
This demonstrates that the inclusion of variance, invariance, and covariance terms in the loss func-
tion does not introduce instability or optimization challenges.

Figure 7: An example loss landscape visualisation from one random seed of a baseline model and a
FairVIC model on the Adult Income dataset.

B.6 CONVERGENCE ANALYSIS

Alongside showing that the FairVIC model is relatively well-optimized, in this section we establish
the conditions under which the FairVIC loss function converges. The full FairVIC loss function is
defined as:

Ltotal = λaccLacc + λvarLvar + λinvLinv + λcovLcov (6)

where each term is non-negative and is weighted by a corresponding λ such that λacc +λvar +λinv +
λcov = 1. To consider convergence, we first consider the differentiability of each component in
Equation 6. Lacc, in our experiments, is represented as binary cross-entropy loss and is differentiable
with respect to the model parameters θ. The variance term Lvar, seen in Equation 1, is differentiable
except at the points where:

√
E
[
(P − E[P ])

2
]
= 0 (7)

However, this is mitigated by the stability term ϵ, where ϵ > 0, to ensure that this condition is rarely
met. The invariance term Linv, seen in Equation 2, is differentiable as it is a quadratic function of
P . Therefore, it is differentiable with respect to the model parameters θ. The covariance term Lcov,
seen in Equation 3, is differentiable for positive inputs, with the derivative 1

2
√
x

for x > 0. However,
this derivative approaches infinity as x→ 0, therefore, the gradient is not Lipschitz continuous near
zero. For typical values encountered during training, it remains differentiable with respect to θ.

We now establish the conditions under which FairVIC converges during optimisation. The gradients
of the loss components are Lipschitz continuous almost everywhere and the loss function is bounded
below by zero, we can guarantee converge to a critical point using gradient descent this is provided
the learning rate η satisfies the condition 0 < η < 2

L , where L is the Lipschitz constant of the
gradient of Ltotal. Under these conditions specifically, the following descent property holds:
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Ltotal(θ
(t+1)) ≤ Ltotal(θ

(t))− η∥∇θLtotal(θ
(t))∥2 + Lη2

2
∥∇θLtotal(θ

(t))∥2 (8)

As t → ∞, the norm of the gradient Ltotal(θ
(t)) converges to zero, indicating convergence to a

critical point.

C LAMBDA ABLATION STUDY RESULTS

Tables 7 and 8 show the full results for each model when the weights on the FairVIC terms are
adapted. Table 7 shows the effect of changing λacc while keeping the FairVIC terms equal where
λvar, inv, cov = 1−λacc

3 , and Table 8 sets λacc = 0.1, and suppresses two FairVIC terms to explore
the effect of only utilising one term at a time. For full discussion and analysis of the results of the
lambda ablation study, see Section 6.3.

Table 7: Performance and fairness results for FairVIC on the three tabular datasets, where the Fair-
VIC terms are weighted equally, such that λacc + λvar + λinv + λcov = 1.

Dataset λacc λvar,inv,cov Accuracy F1 Score Equalized Odds Absolute Odss Demographic Parity Disparate Impact
0.10 0.30 0.8385 ± 0.0044 0.5957 ± 0.0302 0.2292 ± 0.0524 0.1255 ± 0.0338 -0.0368 ± 0.0267 0.8044 ± 0.1546
0.20 0.26 0.8428 ± 0.0027 0.6174 ± 0.0144 0.1889 ± 0.0522 0.0994 ± 0.0276 -0.0583 ± 0.0166 0.6959 ± 0.0731
0.30 0.23 0.8488 ± 0.0031 0.6374 ± 0.0163 0.0908 ± 0.0437 0.0564 ± 0.0181 -0.1042 ± 0.0212 0.5114 ± 0.0603
0.40 0.20 0.8493 ± 0.0034 0.6408 ± 0.0144 0.0407 ± 0.0100 0.0328 ± 0.0102 -0.1284 ± 0.0140 0.4225 ± 0.0348

Adult
Income

0.50 0.16 0.8501 ± 0.0027 0.6451 ± 0.0122 0.0485 ± 0.0120 0.0374 ± 0.0146 -0.1390 ± 0.0150 0.3926 ± 0.0257
0.10 0.30 0.6425 ± 0.0131 0.5848 ± 0.0338 0.0915 ± 0.0386 0.0698 ± 0.0342 -0.0226 ± 0.0708 0.9745 ± 0.1178
0.20 0.26 0.6557 ± 0.0128 0.6121 ± 0.0235 0.1145 ± 0.0708 0.0806 ± 0.0465 -0.1036 ± 0.0624 0.8471 ± 0.0859
0.30 0.23 0.6510 ± 0.0129 0.5993 ± 0.0211 0.1251 ± 0.0497 0.0870 ± 0.0342 -0.0873 ± 0.0638 0.8740 ± 0.0849
0.40 0.20 0.6544 ± 0.0152 0.6059 ± 0.0259 0.1340 ± 0.0568 0.1019 ± 0.0531 -0.1167 ± 0.0734 0.8318 ± 0.1030

COMPAS

0.50 0.16 0.6643 ± 0.0116 0.6128 ± 0.0225 0.2071 ± 0.0851 0.1564 ± 0.0766 -0.1850 ± 0.0772 0.7459 ± 0.0969
0.10 0.30 0.7145 ± 0.0317 0.8026 ± 0.0275 0.1123 ± 0.0650 0.0723 ± 0.0414 -0.0503 ± 0.0510 0.9385 ± 0.0638
0.20 0.26 0.7275 ± 0.0238 0.8132 ± 0.0195 0.1665 ± 0.1037 0.1196 ± 0.0818 -0.1088 ± 0.1009 0.8626 ± 0.1238
0.30 0.23 0.7385 ± 0.0315 0.8234 ± 0.0238 0.1832 ± 0.0790 0.1327 ± 0.0514 -0.0526 ± 0.0877 0.9369 ± 0.1057
0.40 0.20 0.7330 ± 0.0259 0.8190 ± 0.0202 0.1085 ± 0.0571 0.0877 ± 0.0502 -0.1022 ± 0.0752 0.8706 ± 0.0953

German
Credit

0.50 0.16 0.7335 ± 0.0319 0.8188 ± 0.0257 0.1208 ± 0.0589 0.0931 ± 0.0545 -0.0833 ± 0.0683 0.8929 ± 0.0851

Table 8: Performance and fairness results for FairVIC on the three tabular datasets, with only one
FairVIC term (λvar, λinv, or λcov) weighted at a time.

Dataset λacc λvar λinv λcov Accuracy F1 Score Equalized Odds Absolute Odss Demographic Parity Disparate Impact
0.10 0.90 0.00 0.00 0.8518 ± 0.0032 0.6620 ± 0.0074 0.0950 ± 0.0261 0.0808 ± 0.0178 -0.1761 ± 0.0107 0.3235 ± 0.0335
0.10 0.00 0.90 0.00 0.8498 ± 0.0039 0.6506 ± 0.0229 0.0959 ± 0.0314 0.0820 ± 0.0272 -0.1715 ± 0.0295 0.3164 ± 0.0274Adult

Income
0.10 0.00 0.00 0.90 0.8321 ± 0.0070 0.5640 ± 0.0437 0.2507 ± 0.0758 0.1382 ± 0.0457 -0.0256 ± 0.0348 0.8743 ± 0.2136
0.10 0.90 0.00 0.00 0.6499 ± 0.0142 0.5924 ± 0.0321 0.2634 ± 0.0286 0.2097 ± 0.0238 -0.2349 ± 0.0226 0.6872 ± 0.0285
0.10 0.00 0.90 0.00 0.6598 ± 0.0118 0.6252 ± 0.0212 0.2858 ± 0.0810 0.2402 ± 0.0794 -0.2776 ± 0.0805 0.6202 ± 0.0969COMPAS
0.10 0.00 0.00 0.90 0.6504 ± 0.0169 0.6182 ± 0.0258 0.0984 ± 0.0565 0.0694 ± 0.0486 0.0007 ± 0.0718 1.0155 ± 0.1383
0.10 0.90 0.00 0.00 0.7385 ± 0.0316 0.8207 ± 0.0269 0.1597 ± 0.0614 0.1330 ± 0.0497 -0.1386 ± 0.0724 0.8209 ± 0.0951
0.10 0.00 0.90 0.00 0.7125 ± 0.0238 0.8003 ± 0.0203 0.1665 ± 0.0977 0.1268 ± 0.0682 -0.1191 ± 0.0864 0.8450 ± 0.1129German

Credit
0.10 0.00 0.00 0.90 0.7155 ± 0.0374 0.8023 ± 0.0321 0.2321 ± 0.1504 0.1565 ± 0.1000 0.0945 ± 0.0979 1.1274 ± 0.1427
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