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Abstract

In recent years, LLM watermarking has emerged as an at-
tractive safeguard against AI-generated content, with prom-
ising applications in many real-world domains. However,
there are growing concerns that the current LLM watermark-
ing schemes are vulnerable to expert adversaries wishing to
reverse-engineer the watermarking mechanisms. Prior work
in ‘breaking’ or ‘stealing’ LLM watermarks mainly focuses
on the distribution-modifying algorithm of Kirchenbauer et al.
(2023), which perturbs the logit vector before sampling. In
this work, we focus on reverse-engineering the other promin-
ent LLM watermarking scheme, distortion-free watermarking
(Kuditipudi et al. 2024), which preserves the underlying token
distribution by using a hidden watermarking key sequence.
We demonstrate that, even under a more sophisticated wa-
termarking scheme, it is possible to ‘compromise’ the LLM
and carry out a ‘spoofing’ attack. Specifically, we propose a
mixed integer linear programming framework that accurately
estimates the secret key used for watermarking using only a
few samples of the watermarked dataset. Our initial findings
challenge the current theoretical claims on the robustness and
usability of existing LLM watermarking techniques.

1 Introduction
Recent advances in generative models have significantly im-
proved their capabilities and applicability across various real-
world domains. Notably, models like ChatGPT and other
LLMs can now generate text that closely resembles human-
written content. However, as generative models have been
rapidly adopted by both businesses and individuals, their is a
growing concern within the research community about their
potential for malicious use. To address this issue, a grow-
ing body of research around watermarking LLM-generated
text has recently emerged (Kirchenbauer et al. 2023; Kudi-
tipudi et al. 2024; Aaronson 2023; Piet et al. 2024; Zhang
et al. 2024a; Ning et al. 2024). The primary strategy in this
research involves embedding a hidden signal (i.e., a secret
watermark key) within the generated text, which can later be
reliably detected by any third party who possesses knowledge
of the secret watermark key.

While these watermarking techniques offer reliable and ro-
bust statistical guarantees to verify LLM-generated texts, they
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still fall short in addressing the potential attack models posed
by malicious actors (Jovanović, Staab, and Vechev 2024;
Zhang et al. 2024b; Pang et al. 2024; Wu and Chandrasekaran
2024; Gloaguen et al. 2024a,b). Previous research on LLM
watermarking often focuses on common attacks, such as de-
letion, insertion, or substitution, to simulate the behavior of
users attempting to evade content detectors. For instance, a
student might slightly modify a machine-generated essay,
altering a few sentences with the hope of avoiding detection
by their professor. However, a determined adversary could
go further by reverse-engineering the watermarking scheme.
By repeatedly querying the API of the watermarked LLM,
they could ‘steal’ the watermark by approximating the hid-
den secret key. Once estimated, the most significant threat is
spoofing, where an attacker generates (potentially harmful)
text that appears to be watermarked when it is not. If large
volumes of ‘spoofed’ content can be generated with minimal
computational effort, the watermark becomes effectively use-
less, undermining its intended purpose and damaging the
reputation of LLM providers by falsely attributing harmful
or incorrect content to them.

Prior work on watermark stealing attacks mostly studies
the distribution-modifying algorithm by Kirchenbauer et al.
(2023). In contrast, our focus is on distribution-free water-
marking (Kuditipudi et al. 2024), which does not change the
underlying token distribution. A major difference between
the two watermarking techniques is that Kuditipudi et al.
(2024) uses a randomized watermark key, creating a correl-
ation between the LLM-generated text and this secret key.
During detection, a third party with knowledge of this secret
watermark key can efficiently check for this correlation and
verify whether the text is watermarked or not. With this ap-
proach in mind, we propose a mixed integer linear program-
ming model that can accurately estimate the secret watermark
key and enable ‘spoofing’ attacks with only a few samples
from the watermarked LLM. Overall, we make the following
contributions:
• We provide a framework that accurately estimates the

secret watermark key used by the distortion-free water-
marking algorithm (Kuditipudi et al. 2024). We show that
our mixed integer linear programming is robust to water-
marked input after it is shifted and corrupted by the LLM
user.

• With this secret watermark key estimation, we demon-



Algorithm 1: Binary watermarked text generation
Input: Watermark key sequence ξ ∈ Ξn, generation length

m, language model p, token sets R and G over
vocabulary V .

Output: Generated string y ∈ Vm.
1: for j ∈ [m] do
2: Pj(G) =

∑
xl∈G p(xl|y:i−1)

3: if ξj > Pj(G) then
4: yj = 1
5: else
6: yj = 0
7: return Generated binary string y

strate a simple ‘spoofing’ attack with a high success rate
for both the stylized setting of binary vocabulary and a
real-world LLM.

2 Methodology
This section outlines the process of generating watermarked
text from an LLM and converting it into binary sequences,
introduces the mixed integer linear programming approach
for secret watermark key estimation, and details the detection
procedure for watermarked text.

2.1 Generation and Interaction Protocol
Let V be a discrete set of vocabulary. Let R and G represent
two disjoint sets of vocabulary tokens, such that R∩ G = ∅
and R ∪ G = V . Let p : V∗ → ∆(V) be an autoregressive
language model that maps a string of arbitrary length to a
distribution over the vocabulary ∆(V). Given a prefix x ∈
V∗, we write p(·|x) as the distribution of the next token. Let
Ξ denote the space of watermark key elements; for simplicity
we assume each element of a random key sequence {ξi}mi=1 ∈
[0, 1] . The interaction protocol is as follows:

1. The LM provider shares a random key sequence ξ ∈ Ξ
with the detector, and the sets R and G.

2. The user sends a prompt x ∈ V∗ to the LM provider.
3. The LM provider generates binary text Y ∈ V∗ as Y =

generate(x, ξ,R,G).
4. The user publishes text Ỹ , which is either 1) as-is or edited

version of Y or 2) text independent of Y .

5. The detector determines if Ỹ is watermarked or not.

Algorithm 1 provides detail on the binary watermarked
text generation. In order to convert tokens to binary values,
for every token generation step we calculate the probability
mass for all tokens in the sets R and G, namely P(R) and
P(G)1. The generation of the jth binary token is equal to yi =
I (ξj > Pj(G)), where I(·) is the indicator function. Note that
the binary conversion is a simplifying step we adopt in this
work. One could generate text following Algorithm 1 by
sampling the token yj from the G set of tokens if ξj > P(G),
and from the R set if not.

1By construction, P(R) = 1− P(G).

2.2 Watermark Key Estimation
Given n samples of generated binary strings {yi}ni=1 of
length m, we propose to use a linear programming approach
to estimate the underlying watermark key ξ∗ used for the
generation of those samples. For each watermark key ξ∗j in
the sequence, our proposed approach estimates a lower bound

¯
ξ∗j and an upper bound ξ̄∗j to construct an estimation interval
[
¯
ξ∗j , ξ̄

∗
j ], with the estimated key selected to be the mid-point

of this interval.
We consider 3 cases, which methodologically build on

each other:

1. no alteration: the available binary strings yi are available
as-generated,

2. watermark key shifting: the elements of underlying key
ξ∗ have been shifted by an unknown amount ki before the
generation of each binary string yi, and

3. corruption: some of the binary strings yi are corrupted,
and hence not reliable for estimation.

No Alteration Case. For ease of notation, let the probab-
ility mass of the set G for the ith sample in the jth token be
defined as qij . We solve the following linear program to estim-
ate simultaneously all the lower bounds

¯
ξ∗ for the watermark

key sequence:

¯
ξ∗ = minimize

¯
ξ∗j∈Rm

m∑
j=1¯

ξ∗j (1)

s.t.
¯
ξ∗j ≥ I(yij = 1)qij ∀i, j

The form of the constraint mirrors the generation process
of the binary string y. For the jth token in the ith sample
to be yij = 1, then it must be that ξ∗j > qij , so qij should
be included as a lower bound for ξ∗j . Conversely, if yij = 0,
then the lower bound should be 0, i.e., the ith sample does
not provide any information on lower bounding ξ∗j . In other
words, this linear program finds the maximum of the lower
bounds given by the samples yi.

For estimating the upper bounds, we solve an equivalent
linear program to the above:

ξ̄∗ = maximize
ξ̄∗j∈Rm

m∑
j=1

ξ̄∗j (2)

s.t. ξ̄∗j ≤ I(yij = 0)(qij − 1) + 1 ∀i, j,

for which the constraints again include the information
carried by the samples yi for upper bounding ξ∗.

Watermark Key Shifting Case. In this setup, each sample
watermark key might have been shifted by an unknown
amount ki ∈ [0, ...m] ⊂ N0, i.e., for the ith sample the
watermark key would be ξ∗0 = ξ∗0+ki

2. To account for that,

2We assume the watermark key sequence starts from the begin-
ning if the sum of the indexes exceeds the length of the watermark
key.



we introduce a set of binary variables zki ∈ {0, 1} in the lin-
ear program, where zki = 1 if the sample i has been shifted
by an amount k, and zki = 0 otherwise. The resulting lower
bounds mixed integer linear program is as follows:

¯
ξ∗ = minimize

¯
ξ∗j∈Rm z0,...,zm∈{0,1}n

m∑
j=1¯

ξ∗j (3)

s.t.
¯
ξ∗j ≥ I(yij+k = 1)qij+k − C(1− zki ) ∀i, j, k
m∑

k=1

zki = 1 ∀i,

where C > 1 ∈ R. The intuition behind the constraints is
that only the constraint relative to the correct shift k should
be satisfied in each sample i; in this form, if zki = 0, i.e.,
the sample i has not been shifted by k, then the constraint
becomes automatically satisfied and is vacuous. An equival-
ent form for the upper bound optimization can be written by
adapting the constraints from problem (2).

Samples Corruption Case. In this final setting, we allow
the mixed integer programming to ignore a pre-set amount
of samples T so to make it robust to sample-level corruption.
Such types of corruption can go from single token substi-
tution to adversarial attacks, such as purposely injecting yi
samples completely independent of the watermark key ξ∗. To
achieve this, we introduce a further n-dimensional boolean
variable v ∈ {0, 1}n, where vi = 1 indicates the mixed in-
teger programming has chosen to ignore the sample i. The
resulting mixed integer linear program for determining the
lower bounds is equal to:

¯
ξ∗ = minimize

¯
ξ∗j∈Rm z0,...,zm,v∈{0,1}n

m∑
j=1¯

ξ∗j (4)

s.t.
¯
ξ∗j ≥ I(yij+k = 1)qij+k − C(1− zki ) ∀i, j, k
m∑

k=1

zki ≥ (1− vi) ∀i
n∑

i=1

vi ≤ T,

where a value of vi = 1 allows for all constraints for
sample i to be vacuous. As in the other cases, an equivalent
form for the upper bound optimization can be written by
adapting the constraints from problem (2).

2.3 Detection
For detection, the detector uses a hypothesis test defined as:

H0 : Ỹ is not watermarked (5)

H1 : Ỹ is watermarked (6)

Specifically, with T samples, the detector computes a p-value
with respect to a test statistic ϕ : V∗ × Ξ∗ → R for H0,
i.e., Ỹ is independent of ξ. The output of detection progress
is a non-asymptotic p-value: if ϕ returns a small p-value then
the text is likely to be watermarked; otherwise if the p-value
is large then the text is likely not watermarked. Hence, our

goal is to design a test statistic ϕ such that p̂ will be small
when Ỹ is watermarked. To this end, we rely on the notion
of alignment cost d : (V∗ × Ξ∗) → R to measure the quality
of a match between a subsequence of the input text and a
subsequence of the watermark key. Then, the test statistics
ϕ can be set as the minimum alignment cost between any
length k subsequences of text and the watermark key.

3 Experimental Analysis
The main question raised in the previous section is whether
our method of secret key estimation is capable of reliably
‘stealing’ the watermark used by the distortion-free water-
marking algorithm (Kuditipudi et al. 2024) in a real-world
LLM. In this section, we empirically evaluate our ‘spoofing’
attack across three different scenarios mentioned above using
both synthetic data and tokens generated from a watermarked
LLM (OPT-125M model Zhang et al. 2022).

3.1 Evaluate Secret Watermark Key Estimation
using Synthetic Data

We evaluate the estimated watermark keys, denoted as ξ̂ ,
using synthetic data by varying both the text length m and
the number of possible shifts in each sample k. The synthetic
data are generated by randomly sampling both the watermark
keys and the probability mass in the set G from a uniform
distribution ξ∗i , q

i
j ∼ U [0, 1] for all i, j. Figure 1 illustrates

how the average L1 error in watermark key estimation (i.e.,
1/m

∑
j |ξ̂j − ξ∗j |), decreases as the number of samples n in-

creases. As expected, while the estimation problem becomes
more challenging with increases in text length m, the number
of possible shifts k , or the presence of corrupted samples,
the error tends to reduce with more samples. We also note
that in the sample corruption case, if the number of corrupted
samples is larger than the upper bound T for the boolean
variable v in the optimization problem (4), the optimization
problem is unable to ignore all corrupted samples, and a lar-
ger sample size does not necessarily imply a better estimation
error. We report the mean and standard deviation of the es-
timation error over 10 runs (where in each run we change
the random seed for the generation of the watermark keys as
well as the probability mass in the set G).

3.2 Breaking the Watermarks in OPT-125M LLM
For our watermark stealing experiments, we utilize the OPT-
125M model (Zhang et al. 2022). To replicate a variation of
language modeling scenarios, we generate our binary text
using 100 random prompts generated from ChatGPT (Rad-
ford et al. 2019). We then follow the methodology outlined
by (Kuditipudi et al. 2024) for watermark detection, where
the block size is set equal to the length m of each sample
text. This process involves comparing blocks of the binary
sequence to the secret key using a test statistic which is then
used to calculate a p-value for determining whether the se-
quence is watermarked.

As seen in Figure 2 and Figure 3, we vary the text length
m while fixing the watermark key length to 256 and report
median p-values of our spoofed watermarked text for 100
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Figure 1: Average estimation error for the watermark keys versus sample sizes, in the no-alteration (left), the shifting case
(center), and the sample corruption case (right), using synthetic data. The estimation error decreases as more samples n are
available, although the text length m, the potential shift k and the number of corrupted samples make the estimation problem
more challenging. We report the mean and standard deviation over 10 runs (see text for more details).

samples. We also evaluate the robustness of our watermark
key estimation to the two other attacks, shifting and corrup-
tion, mentioned above. These attacks enable us to adjust the
degree of alteration of our watermarked text. For the exper-
iments done in this paper, we set our corruption rate = 5%,
the shifting amount, k = 2, and vary the text length m.
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Figure 2: Median p-value of watermarked text generated
using the true secret key for varying text length m. Figure
shows the performance of the generated binary text. Across
the text length for of OPT-125M model, the median p-values
decrease rapidly with increasing text length m plateauing
after 25 text length.

As mentioned in section 2.1, we initially generate binary
text using the key sequence provided by the LM provider.
Since this binary text is generated with the true secret key,
it serves as the baseline against which our secret key es-
timation attacks are compared. With a watermark detection
threshold of p < 0.05, it requires approximately 20 binary
texts m before our generated text can be detected as fully
watermarked. For binary texts generated exceeding roughly
25, watermark detection tends to yield p-values close to zero.
We compare our binary texts generated from the estimated
secret key (fig 3) against the texts generated from using the
true secret key (fig 1).

Our watermark key estimations are competitive with that
of the true key as the generated texts follow the same pattern

of requiring about 20 binary texts generated before the water-
mark can be detected. The ‘spoofing’ also shows good results
with regard to shifting the elements of the underlying key, as
this has little to no effect on the p-value with results similar
to the key estimation with no alterations. This is not the case
when corrupting a percent of the binary texts as this degrades
the quality of the watermarked text, requiring more than 45
generated binary texts before the watermark can be detected.

Overall, our results demonstrate that reliable spoofing of
binary texts on the OPT-125M language model (Zhang et al.
2022) is possible using our mixed linear programming attack
for watermark key estimation, even with various types of at-
tacks and only a few samples of the watermarked text. Similar
to the binary text generated from the true secret key, longer
texts have to be generated to achieve stronger watermark
detection.
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Figure 3: Median p-value of watermarked text generated us-
ing our mixed linear programming framework to accurately
estimate the secret watermark key. Figure shows the perform-
ance using our watermark key estimation ‘spoofing’ on the
three cases of attacks -no alteration, corruption, and shifting.
Across the text length m for OPT-125M model, the median
p-values of decrease with increasing text length m.



4 Conclusion and Future Work
This work highlights the effectiveness of our mixed linear
programming framework in accurately estimating the secret
watermark key used by the distortion-free watermarking al-
gorithm. We demonstrate that this framework is robust to
input shifts and corruption introduced by the LLM user,
as evidenced by the results that closely match those of the
distortion-free watermarking method. Moving forward, we
plan to extend our approach from the binary generative text
to cover the full vocabulary of an LLM. Additionally, we aim
to explore the impact of varying the corruption rate and the
k parameters, examining how these factors affect watermark
detection as the length of the generated binary text increases.
We also intend to test our framework with different LLMs.
These investigations could offer valuable insights and drive
further advancements in the field.

Disclaimer. This paper was prepared for informational pur-
poses by the Artificial Intelligence Research group of JPMor-
gan Chase & Co. and its affiliates ("JP Morgan”) and is not a
product of the Research Department of JP Morgan. JP Mor-
gan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reli-
ability of the information contained herein. This document is
not intended as investment research or investment advice, or
a recommendation, offer or solicitation for the purchase or
sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.

Impact Statement. As outlined in prior research, water-
marking plays a crucial role in addressing social issues such
as detecting plagiarism, tracing text origins, and combat-
ing misinformation. Our work investigates vulnerabilities in
LLM watermarking that could potentially be exploited by
attackers to break the watermark mechanism, posing risks to
the owners or users of the model. However, we believe that
our research has a positive societal impact by revealing the
current weaknesses of watermarking methods, highlighting
the need for stronger, more reliable systems, and advocating
for improved evaluation frameworks. Ultimately, this work
contributes to advancing the field toward more effective LLM
watermarking solutions.
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