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Abstract

Graph neural networks (GNNs) are often trained on individual datasets, requiring specialized
models and significant hyperparameter tuning due to the unique structures and features of
each dataset. This approach limits the scalability and generalizability of GNNs, as models
must be tailored for each specific graph type. To address these challenges, we introduce
GRAPHFM, a scalable multi-graph pretraining approach designed for learning across diverse
graph datasets. GRAPHFM uses a Perceiver-based encoder with learned latent tokens to
compress domain-specific features into a shared latent space, enabling generalization across
graph domains. We propose new techniques for scaling up graph training on datasets of
different sizes, allowing us to train GRAPHFM on 152 distinct graph datasets, containing a
total of 7.4 million nodes and 189 million edges. This allows us to study the effect of scale
on pretraining across domains such as molecules, citation networks, and product graphs, and
show that training on diverse datasets improves performance over single-source pretraining.
Additionally, pretraining with a mixture of synthetic and real graphs enhances adaptability
and stability, leading to competitive performance with state-of-the-art models across various
node classification tasks. This approach reduces the burden of dataset-specific training
and provides a single generalist model capable of performing across multiple diverse graph
structures and tasks. Code is available at https://github.com/nerdslab/GraphFM.

1 Introduction

Graphs are a fundamental data structure in biology, social systems, and recommendation platforms (Hamilton
et al., 2017b)). However, many graph neural network (GNN) architectures are specialized for particular
regimes and struggle to generalize across others (Topping et al.; [Yan et al., [2022; |Zhu et al.l |2020)). Methods
that perform well on homophilic graphs, such as citation networks, often degrade on heterophilic graphs that
are common in social or biological domains (Abu-El-Haija et al.l [2019; [Yan et al. 2022)). This specialization
fragments model development and limits scalability, since each dataset class often requires architecture
redesign and extensive hyperparameter tuning (Galkin et al.; [Wang et al., |2025; [Zhao et all 2024b)). A
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generalist approach that performs robustly across diverse graph structures without per-dataset customization
is therefore highly desirable.

A central challenge is to integrate graphs that differ in topology, features, and size while still enabling transfer
of useful inductive biases across domains. Without a shared representation space or vocabulary for graph
structure, learned patterns do not transfer reliably (Galkin et al). At the same time, experience from language
and vision suggests that scaling model capacity and data diversity can unlock transferable capabilities (Wei
et al.; [Kaplan et al., 2020)). Realizing similar benefits for graphs requires architectures that can process large
and heterogeneous inputs efficiently while preserving domain-invariant structure (Xia & Huang) 2024]).

We introduce GRAPHFM, a multi-graph pretraining framework that addresses these needs. GRAPHFM uses
a Perceiver-style encoder (Jaegle et al.l 2021; |Azabou et al., [2023al) in which a fixed set of learnable latent
tokens attends to the input node sequence through cross-attention. The latent tokens act as virtual nodes
that compress each graph into a compact representation, which decouples compute from graph size and
creates a shared latent space across datasets. This design provides a common interface for heterogeneous
graphs and supports efficient scaling.

To train our generalist model, we curate a corpus of 152 datasets for pretraining, including 80 real-world
graphs from multiple domains and 72 synthetic graphs that enrich underrepresented regimes such as low
homophily. The full corpus contains more than 7.4 million nodes and 163.9 million edges. We exclude popular
benchmark datasets from pretraining in order to evaluate generalization on unseen graphs.

Our experiments reveal that scaling both model capacity and data diversity produces consistent and
measurable gains in generalization on graphs unseen during training. As we increase model size from 389K
to 75M parameters and the number of pretraining tokens from 200K to 7.3M, performance on unseen
datasets improves monotonically, with the largest model achieving a 2.1% increase in accuracy over smaller
configurations. Training on diverse domains further enhances this effect: adding biological graphs improves
accuracy even on citation datasets, and including synthetic graphs leads to the strongest overall results.
Beyond accuracy, GRAPHFM exhibits strong generalist behavior with minimal adaptation. Using a fixed
learning rate and weight decay, our lightweight MLP fine-tuning (MFT) approach achieves rapid convergence
within 10 to 20 steps and strong out-of-the-box performance, while node-decoder fine-tuning (NFT) achieves
competitive performance with other state-of-the-art graph transformers. Finally, our sensitivity analysis
shows that GRAPHFM maintains stable performance across a wide range of hyperparameters, unlike GCN
and NAGphormer, which are highly sensitive to parameter settings. Together, these results demonstrate
that a single pretrained model can provide robust, transferable representations across heterogeneous graphs
without per-dataset tuning.

The main contributions of this work are as follows:

e Scalable Pre-training Approach: We introduce a scalable framework for pretraining on diverse
graphs using a Perceiver-based encoder with latent tokens, which efficiently handles graphs with
varying sizes and topologies. Our approach includes advanced multi-graph sampling techniques that
optimize GPU utilization, enabling large-scale pretraining across a wide range of graph datasets.

e Demonstration of Benefits from Across-Graph Pretraining: We show that pretraining on
diverse graphs significantly improves the model’s ability to generalize and transfer knowledge to unseen
graphs. To further enrich diversity, we incorporate synthetic graphs that capture underrepresented
structures such as low-homophily patterns and show that this can help improve performance. This
demonstrates that a generalist model can leverage common structural features across different datasets
to outperform specialized models.

e Scaling Analysis and Impact of Multi-Graph Pretraining: We provide the first scaling
analysis for multi-graph pretraining on different domains, showing that larger models pretrained on
more diverse graph datasets result in better generalization.
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2 Background

In this section, we provide background on graph transformers, focusing on tokenization of graphs and
positional encodings.

2.1 Transformers and Self-Attention

Transformers model sequential data by operating on a set of tokens X = [xy,...,xx], where dependencies
are captured through self-attention (Vaswani, [2017)):

— QK '
Attn(Q, K, V) = boftmax< N ) V,
with Q, K,V denoting learned projections of the input tokens. Extending this framework to graphs requires
a tokenization scheme that maps graph-structured inputs into a sequence of tokens, while incorporating
structural information derived from the adjacency matrix.

2.2 Tokenization of Graphs

Given a graph G = (V,£) with node features {ui}pjl, each node v; € V is represented by a token embedding
that concatenates a projection of its raw features with a positional encoding:

@; = MLP(u;) € R%, x; = (;;p;) € R& o,

where MLP denotes a multi-layer perceptron, (-;-) is concatenation, and p; € R% encodes structural
information from the graph topology. The complete graph is then expressed as a sequence of tokens,

X = [X17X23"'?X|V‘]'

Since graphs lack a canonical node ordering, the tokenization scheme must be permutation-invariant, ensuring
that reindexing nodes does not alter the resulting sequence.

2.3 Positional Encodings and Sign-Invariance

To incorporate structural information, each token is assigned a positional embedding derived from the graph
topology. A standard approach is to use the eigenvectors of the normalized Laplacian £ = I — D~Y/2AD=1/2,
where A is the adjacency matrix and D the degree matrix. Let vq,..., v, denote the first k eigenvectors of
L, corresponding to the smallest eigenvalues. For node i, we construct a vector

k
Si = [V1i,V2i,- .., Vii] € R”,

where v;; is the ¢-th entry of eigenvector v;. These eigenvector values provide a continuous notion of position
that captures global graph structure and are invariant to permutations of node indices.

A key limitation of spectral encodings is the non-uniqueness of Laplacian eigenvectors: each eigenvector can
be multiplied by —1 without affecting validity, and for repeated eigenvalues, any orthonormal basis of the
eigenspace may be chosen. As shown in[Lim et al. these ambiguities make raw eigenvectors unsuitable as
features, since they can lead to unstable and inconsistent encodings across graphs.

To address this, SignNet introduces functions that are provably invariant to both global sign flips and basis
changes (Lim et al.), while retaining the ability to approximate common positional encodings such as heat
kernels and random walks. This property is particularly important in our multi-graph pretraining setting,
where consistent positional encodings are required to align structural information across different graphs.
We pass s; through SignNet to obtain the final positional embedding p; € R%. This transformation ensures
that the resulting positional encoding are both sign- and basis-invariant, while preserving global structural
information across graphs.



Published in Transactions on Machine Learning Research (12/2025)

Graph encoder Node decoder
Repeat for all nodes
-
@) Self Self
@) Cross Attention > Attention Linear
O —f > L > O z00 O > > Classifier > ;
o Attention g O o2 Yi
o P Wpere W
O ‘3 00 00§
Learned ¥ o§° Q
Latent Tokens ’;‘ QQ L’\o‘\ xL XM
SO &
© &

features of
target node

context for
node decoding

features of
random walk nodes

Figure 1: Overview of GraphFM architecture and multi-graph training approach: The input node-level tokens
are passed through a cross-attention layer, followed by multiple self-attention layers to generate a compressed graph-level
representation (latents). We decode node-level properties by creating a spatial sequence with features from a query node, a
subset of its neighbors (sampled via a random walk; see Appendix and the latents, which is then processed by a node
decoder that uses self attention across the sequence.

3 Methods

In this section, we describe our method, including the model architecture and tokenization (Section ),
our proposed multi-task node decoder for jointly solving node classification and regression tasks by querying
from the latent space (Section ), and efficient tools for scaling (Section that allowed us to build a
large pretrained model that could integrate the extreme diversity in our pretraining set.

3.1 Model

3.1.1 Tokenizing Diverse Graphs with a Perceiver Encoder

Each graph is represented as a sequence of tokens, as described in Section |2l Formally, let D = {G, _qu1

denote a dataset of G graphs, where each graph G, = (V,, &) has node features {ui}f\fl, with N, = |[Vgy|. For
each graph, we construct a token sequence X, = [x1,...,x Ng], where each token x; combines a projection of
the node features with a positional encoding (see Section [2)).

To enable training across diverse graphs with heterogeneous node features and sizes, we map all graphs into a
shared latent space using a Perceiver encoder (Jaegle et al.). The encoder learns a fixed set of latent query
tokens that attend to the input graph via cross-attention, producing a compact latent representation. In
the context of graphs, this can be viewed as routing communication between distant nodes through a small
number of learnable virtual nodes that summarize the input graph (Figure .

Specifically, we maintain a shared sequence of K learned latent tokens Zo = [zo 1, ..., Zo k], Where zg; € RP
and K < Ny (we use K = 512 in this work). Each graph’s node embeddings are compressed into this latent
space through a cross-attention operation:

Vdy

where the queries Q = W Z, are projections of the learnable latent tokens, and the keys and values,
K, =W;X, and V, = W,X,, are projections of the graph’s token embeddings. The projection matrices
(W4, Wi, W) are shared across all graphs. This is followed by L self-attention blocks operating in the latent
space, yielding the final sequence of K latent tokens, Z2"*. Each block uses standard transformer components
with pre-normalization and feed-forward layers (Vaswani, [2017). The overall complexity is O(K N, + LK?),
which is significantly lower than the O(Ng2) cost of full self-attention when K < Nj.

() QK
Z,’ = Cross-Attn(Q, Ky, V) = Zg + softmax Vg, (1)

Compressing each graph into a fixed set of latent virtual nodes enables the model to learn a shared vocabulary
across graphs and domains, capturing recurring semantic and topological motifs. Moreover, because the bulk
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of computation occurs in the latent space, this design naturally accommodates graphs of variable sizes while
maintaining constant computational cost per graph.

3.1.2 Node decoder

Our encoder model is designed to do the bulk of the computation when processing the graph. To be able
to readout node-level features, we developed a multi-task node decoder that combines the virtual node
embeddings learned by our encoder Zgut with local information from a node and its neighbors to create
a sequence SZ that can be processed by a transformer to produce a final node-level estimate of its class
information.

The sequence Sf] for the i*® node can be represented as:

Si = (Xi; Tself)a (X./\/’,_1 5 7-neighbor> ce (XN_T; 7-neighbor)a (Z?ut; Tlatent) cee (Z([)élt; Tlatent) 5 (2)
g i i

~ v ~

node neighbors virtual latent nodes

where x and Tyype denote the features and their token type (latent, self, or neighbor), respectively, and /\/f
denotes the j*™ neighbor selected in the neighborhood of node i. We use a small encoder-only transformer
with a depth of M to obtain a final set of embeddings S;’O‘lt for node i. Note that the complexity is

NgM(K +T+1)* < N7.

3.1.3 Multi-task pretraining on a variety of node classification and regression tasks

In the end, a per-dataset linear classifier (or regressor) W:;,F is tasked with producing the final predictions ;
for node %, mapping the final embedding of node ¢, the first token in the Sg sequence in Eq. 2| to the output
space as:

i = WShou,

The linear projection effectively translates the node-level embeddings into task-specific outputs, such as class
labels for classification or continuous values for regression. The model handles a wide variety of tasks across
different datasets, e.g., citation graphs are trained to predict academic fields, and co-purchasing graphs are
used to predict product categories. Each dataset has an arbitrary label space, varying not only in the number
of labels but also in the nature and semantics of the output classes.

Since the model is trained end-to-end, it learns how to optimally route and query information on graphs to
maximize the performance on the various pre-training tasks. The virtual nodes allow for longer-range and
global interactions to be encoded in the virtual node embeddings, and uses this information along with the
local information provided by the node’s neighbors.

3.2 Important ingredients for training on diverse graphs
3.2.1 Muilti-graph packing

Typically when creating batches for training graph transformers, padding is used to extend the smaller graphs
to have the same size as the largest graph in the batch (Rampasek et al.l 2022} [Ying et al., 2021). This
approach is likely inherited from the transformer architectures found in other domains where the context
window (or sequence length) is usually fixed. But for graphs, the problem with padding is particularly
pronounced when there is a significant size disparity among different graphs in the same batch. Alternative
solutions exist, and in particular, the graph community have been pioneers in batching variable-sized graphs.
Message-passing frameworks combine multiple graphs into a single large graph over which message passing is
conducted (Fey & Lenssen| 2019; [Krell et al.l 2022)). However, these out-of-the-box implementations are not
suited for transformers which use fully-connected attention.

To address this, we simply batch graphs by concatenating their node tokens into a single sequence, and use
Flash Attention (Daoj, 2023)) to efficiently handle these variable-length sequences. This eliminates superfluous
padding and leads to improved computational efficiency during training.
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3.2.2 Balanced GPU utilization with the DistributedSSSampler

During multi-GPU distributed training, a global batch
is formed by randomly sampling graphs from different

datasets, which is then equally split among the GPUs. = L’aiel'” e n
Naively splitting the batch can lead to unbalanced GPU 020 B N =64.6=1376

utilization. On one hand, we can have a large batch of
relatively small graphs, and another where we can only
have a batch with one or two very large graphs. This
means that we would be forced to lower the batch size,
to avoid going out of memory when multiple large graphs 0.05 \
are batched together. Our Distributed Snake Strategy /\/__/‘
Sampler (DistributedSSSampler) employs a bl.dlrgctlonal 0.00 : : | : : \
filling strategy, where graphs, sorted by their size, are 50 60 70 80 90 100
distributed in a snake-like pattern, initially assigned to GPU Memory Usage (%)
GPUs from right to left, then left to right and so on. This  pigure 2: The computational benefits of using our
method effectively pairs large graphs with small ones in multi-graph sampling approach: GPU memory uti-
subsequent passes, preventing the concentration of multi- lization du%"ing distributed training using the defau'lt bgtch
lel hs on the same GPU. thus achieving efficient sampler with 8 GPUs (left), compared to our Distribut-
ple large grap , » VIS acl & etiiel edSSSampler with N = 4 (middle, 4 GPUs and 1 gradient
load balancing and uniform GPU utilization. A detailed accumulation step) and N = 64 (right, 8 GPUs and 8 gra-
algorithm and more details are provided in Appendix dient accumulation steps). The total batch size is N x b.

We show the effectiveness of this approach in Figure [2]

where we demonstrate significantly lower variance in GPU load compared to the default PyTorch batch
sampler and near 100% utilization. The effectiveness is more pronounced the more GPUs are usecﬂ This
subsequently allows us to use substantially larger batch sizes, resulting in further improvement in stability
and a significant 2-4x speed-up in training time.

3.2.3 Overall time and memory savings

In total, our largest model, trained on all the pretraining data, takes ~6 days to train on 8 A40 GPUs for 300
epochs. With our distributed sampler, each epoch takes approximately 56 minutes (0.93 hours), compared
to 299.04 minutes (~5 hours) with the standard distributed sampler. By using the distributed sampler, we
observe a speedup of approximately 5.53x, reducing the total training time from 33 days to 6 days. Please
refer to Appendix [C] for an ablation study on the proposed sampler and multi-graph packing methods.

4 Datasets

In standard practice, one would train on individual datasets, one at a time. However, to build our large
multigraph model, we needed to curate a large dataset of graphs that have varied structures, features, and
tasks.

Datasets used for pretraining. For pre-training, we curated a large set of 80 real-world graph datasets from
the PyTorch Geometric library (Fey & Lenssen, 2019) and Network Repository (Rossi & Ahmed) (Figure |3)).
These datasets span a wide range of domains, including: citation networks, product recommendation graphs,
webpage traffic graphs, biological protein-protein interactions, and molecular graphs, and vary in their
degree of heterophily (extent to which neighbors share the same class or node-level labels). Each dataset
contributes unique structural patterns and tasks, providing a rich source for our model to learn diverse
graph representations. In addition to these real-world datasets, we generated 72 synthetic graphs (Tsitsulin
et al} [2022)) that vary in their hetero- and homophily ratios, and overall size and density (see Appendix .
We note that most datasets used in popular benchmarks were left out of pretraining to enable meaningful
evaluation of generalization performance on new unseen test datasets

IThe same effect can be obtained using gradient accumulation when resource bound. See Appendix
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Figure 3: Characteristics of graph datasets used to train GraphFM: From left to right, we compute the histograms
of the homophily ratio, average degree, number of nodes and number of edges of all 152 graphs used during training. The
homophily ratio provides a measure of how frequently a node is directly connected to other nodes from the same class.

In Figure 3] we show a summary of various graph statistics, including the number of nodes and edges, the
average degree of each node, and the homophily ratio of the graph. The homophily ratio ranges from 0 to
1 and encodes the average amount of nodes with nearest neighbors from the same class. When comparing
our real-world datasets with the synthetic graphs added to the mix (Figure [3]), we see a good amount of
overlap between most features except for the average degree. The average degree of realworld graphs spans a
larger range, and the synthetic graphs have a more limited range. We also find an enrichment of heterophilic
graphs with low homophily ratio in the added synthetic data. In total, we counted more than 7.4M nodes
and 163.9M edges across all 152 datasets used for pretraining. We point the reader to Appendix [B.1] for a
detailed description of all datasets.

Datasets for evaluating generalization to unseen graphs To evaluate how general and transferable
the learned representations are, we evaluate the model on a set of unseen graph datasets that were excluded
during training (see Appendix . These 10 datasets include academic collaboration networks such as
“Coauthor-CS” and “Coauthor-Physics” (Sinha et al. [2015) as well as webpage link datasets like “Chameleon”
and “Squirrel” (Rozemberczki et al., |2021). The latter are particularly challenging due to their low homophily
ratios, where nodes are less likely to connect to others of the same class.

The unseen datasets were not included during training but may share structural similarities with the training
data. The label and feature space of these graphs are entirely new to the model, making them suitable
for testing generalization. Evaluating on such unseen datasets allows us to examine whether the learned
representations can effectively generalize to new graphs with similar structural properties.

5 Results
5.1 Experimental Setup

Training: To train all of our models, we employed the LAMB optimizer with a learning rate
of 1074, The learning rate is scheduled based on a linear warmup of 2 epochs, followed by cosine decay until
the end of training. We use bfloat16 mixed-precision and Flash Attention for higher compute
efficiency while training. We trained our largest model (75M parameters) for 300 epochs with a batch size of
320 (~6.4 days) on 8 NVIDIA A40 GPUs. We point the reader to further details on the architecture and
model training in Appendix

Baselines: We compared GRAPHFM against six baseline models that were consistently reported in both
heterophilic and homophilic benchmarks. This included two GNN-based models: GCN (Kipf & Welling]
and GAT (Velickovic et al., 2017); two transformer-based models: SAN (Kreuzer et al., 2021)) and
NAGphormer (Chen et al.); and two heterophily-based models: MLP and H2GCN . For
all of the baseline models, we include the best reported accuracy, and when there are no reported results
for a dataset we extensively tuned each model as in standard practice (see Appendix |[B.4)). We also provide
additional baselines in Appendix reported for subsets of the datasets tested.
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Evaluation: To evaluate the quality of the learned representations, we fine-tuned the model on datasets
that were excluded from pre-training. We employed two fine-tuning strategies for this purpose. The first
strategy, low-resource MLP fine-tuning (MFT), involves freezing both the encoder and node decoder
weights, allowing updates only to the feature MLP. This approach evaluates near out-of-the-box performance
by leveraging the pretrained model’s representations with minimal additional training. The second strategy,
combined MLP and node decoder fine-tuning (NFT), provides more flexibility by adapting both the
feature MLP and the pretrained node decoder weights, enabling the model to better align with the unseen
graph data that it’s finetuned on.

For all fine-tuning experiments, we fixed the learning rate to 102 and the weight decay to 10~° across
all datasets, optimizing with the AdamW optimizer (Loshchilov & Hutter|). In our NFT experiments, we
additionally applied a gradual unfreezing strategy to update the node decoder weights. Further details are

provided in Appendix

5.2 Experiments
Q1: Is it possible to build a large model spanning many domains?

Recent efforts in graph neural networks (GNNs) have A
shown success in training models on many graphs (Beaini

et al.l 2024} Mao et al., |2024)). However, these approaches 0.75 = *"e
primarily focus on graphs with homogeneous structures, 0.74 -

limiting their ability to generalize across different types 2 072%‘”3“ 0732

of graphs. In this experiment, we aim to address a more g ., %73 L] 0.730 X
ambitious question: can we effectively train a large model %% 072 o4 o724 /0-725
on diverse, multi-graph datasets that vary significantly in g 5 T

their topologies, features, and downstream classification § E 0.71 = /

tasks? Our goal is to determine whether a generalist model g 070 o 4 e 389K
can span multiple graph domains and improve performance oco o 0% 18M
on new unseen datasets through diverse pretraining. -@— 75M

0.68 I T I LR R | 1

We trained three different model sizes: a small model with 105 108 107

389K parameters, a medium model with 18M parameters, B
and a large model with 756M parameters. Each model
was pretrained on progressively larger datasets containing /
different amounts of graph data, ranging from 200K tokens 94 — °

(small), to 2M tokens (medium), and finally to 7.3M tokens o

(large), created by taking random subsets of the largest
dataset (refer to Appendix for more details). The _®— Coauthor-CS

datasets span a variety of real-world graph types and Amazon-Photo
structures, as described in Section 4 For the largest scale T T T T T T[T

of data, we also introduced synthetic graphs into the mix to 105 Soc  Soc+Bio Al 107
further test the model’s ability to generalize across highly number of tokens seen

diverse graph structures. The synthetic graphs provided during pretraining

additional variability in both topologies and node features, gigyre 4: Scaling analysis showing how increasing
allowing us to assess how well the model can handle graph model and data scale impacts downstream perfor-

data that extends beyond typical real-world scenarios. mance: (A) Average accuracy across test datasets (MFT)
for model sizes (389K, 18M, 75M) and token counts (200K,

To evaluate how well the pretrained models generalize to 2M, 7.3M) seen during pre-training, using random splits of

new, unseen data, we applied our lightweight MLP fine- the pre-training data. (B) Accuracy (MFT) on Coauthor-
. . CS (citation domain) and Amazon-Photo (co-purchasing

tuning approach (MFT) on a set of nine held-out datasets. network) for the 75M model across different domain-wise

These include four homophilic datasets (Coauthor-CS, pre-training splits.

Coauthor-Physics, Amazon-Photo, and Amazon-Comp)

and five heterophilic datasets (Texas, Wisconsin, Actor, Squirrel, and Chameleon). As illustrated in Figure ,

we observe that performance on unseen test datasets improves consistently as the data size increases. Notably,
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the largest model, trained on the full 7.3M tokens, achieves a 2.1% improvement in accuracy compared to the
smaller models.

We further stratified our pretraining dataset to investigate the effects of cross-domain training by creating
three models: (i) “Soc” with social domain graphs (1.3M tokens), (ii) “Soc 4+ Bio” with social and biological
graphs (2M tokens), and (iii) “All” with all data, including synthetic graphs (7.3M tokens). As shown
in Figure , adding biological datasets improved performance on both Coauthor-CS (citation domain)
and Amazon-Photo (co-purchasing network). This suggests that performance continues to scale even if the
additional data is from seemingly unrelated domains (refer to Appendix for additional results from
removing synthetic graphs during pretraining).

We want to note that the domains used in this analysis were chosen largely for practical reasons, since they
provided the largest sets of available datasets for comparison. As such, they should not be viewed as definitive
boundaries, but rather as a convenient stratification to explore the effects of cross-domain pretraining.

These results underscore the importance of both model scale and data diversity. With more data diversity
and larger models, the pretrained model demonstrates stronger generalization capabilities. This scaling
analysis provides strong evidence that cross-domain pretraining enables better performance, further validating
the benefits of training on diverse datasets. Detailed configurations for each model size are provided in

Appendix

Q2: How does our generalist approach compare with others?

Next we wanted to understand how our generalist model compares to specialized single-graph approaches. To
do this, we evaluated the performance of our largest model (75M) trained on all of the data on standard
node classification benchmarks. We focused on the mean rank across datasets as a key metric, providing
insight into the model’s consistency across diverse graph types. Unlike specialist models that require extensive
hyperparameter tuning for each dataset, in MFT we use a single hyperparameter configuration across all
evaluations. In the case of NFT, we only have two hyperparameters to tune corresponding to our unfreezing

schedule (refer to Appendix |A.3.2)).

Figure |§| shows the mean rank of our model compared to Average Rank of Models
several common baselines, including message-passing ar- 0 6.20
chitectures such as GCN (Kipf & Welling} [2016) and GAT - o

(Velickovic et al., [2017)), heterophily-based models such as
H2GCN (Zhu et al.| |2020)), and transformer-based architec-
tures such as SAN (Kreuzer et al.l 2021)) and NAGphormer
(Chen et al.). The NFT fine-tuning strategy achieved the
best overall rank, demonstrating its flexibility to adapt
to a range of graph structures. In addition, the MFT
strategy was the second best method and had even lower I
variance, indicating stable performance of our pretrained 1

models across datasets with varying characteristics. ! T T T T T T T T
MLP GAT GCN SAN H2GCN NAG GF:ADFTFM Gri‘pFl’]rFM

Specialist models like H2GCN and NAGphormer (NAG) Mol

exhibit high variability in their ranking because they per- Figure 5: Mean rank of various models across 10 test graph
. o . datasets not seen during training (lower is better). Error

form well on certain datasets but worse on others. H2GCN [ " 12t e standard deviation of the ranks.

is designed for heterophilic graphs, while NAG is optimized

for homophilic ones. A more detailed comparison to specialist models, including per-dataset performance,

can be found in Appendix

4.70

3.30

Mean Rank
(accross 10 test datasets)
1

These patterns highlight the trade-offs inherent in models tailored for specific graph types, which may
impact their consistency across diverse datasets. In contrast, our single model, using a fixed hyperparameter
configuration, maintains a competitive ranking across all datasets without requiring dataset-specific tuning.
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Figure 6: Analysis of the learning dynamics showing GraphFM achieves faster and more stable convergence
compared to baseline single dataset models: Learning dynamics for 100 (A) random GCN and (B) NAG (NAGphormer)
models compared against our lightweight finetuned model GraphFM (MFT) for four datasets. GRAPHFM works out of the box
and achieves rapid learning on new datasets with few training steps, while the other approaches are less stable and often require
early stopping with decreased performance over training.

Q3: How does our model generalize out-of-the-box?

Chameleon
A major challenge in applying graph-based models is the extensive 06 — 1.756
tuning often required to achieve competitive performance. Most _
models are highly sensitive to hyperparameters like learning rate, 0.5 — E g
depth, and weight decay. Tuning these hyperparameters, especially § g’g
across datasets with different graph topologies and sizes, requires E 04 g g
significant time and computational resources, and even then, finding ] E: ."-"?ge:.- % g
a good configuration can be difficult (Guo et al., 2022} Tsitsulin| 034 % z*
o al, 2022). -
0.000

In contrast, GRAPHFM offers strong out-of-the-box performance G(I;N GrapthM
without requiring any significant tuning. To demonstrate this, Coauthor-CS
we evaluated GRAPHFM using the same fixed learning rate and 1118
weight decay across multiple datasets (learning rate = 1073, weight -uq%w Se—T—
decay = 107°) and observed stable and high performance across all 099 o
datasets (Figure[6). Fine-tuning GRAPHFM with our simple MFT 3 N Eé
strategy resulted in low variance and rapid convergence, without S 08 tmnns §g
the need for extensive hyperparameter exploration. This makes § §§
GRAPHFM highly efficient and cost-effective compared to models 07 . <
that require substantial tuning. : °

06 = : 0.000
To highlight this contrast, we compared the performance of GéN G rap'hFM

GRrRAPHFM with 109 randomly configured versions of GCN Figure 7: Comparison of model sensitivity.
and the best performing transformer-based NAGphormer (Chen| The performance of GON and GRAPHFM for
et al))(Figure [6). Both baseline models exhibit a wide range of 100 different random hyperparameters on
performance depending on the hyperparameter choices, with some Chameleon and Coauthor-CS. Star denotes

. R L. . . the model with the optimal hyperparameters,
configurations leading to significant instability or poor results. For .. 4 the color indicates the fo-distance between
instance, in the Texas dataset, GCN required exhaustive exploration the optimal solution and each model’s hyper-

of hyperparameter settings to find a stable and effective configura- parameters.
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tion. Similarly, NAGphormer’s performance fluctuated greatly depending on the dataset and the selected
parameters, further emphasizing the cost of tuning.

Additionally, GRAPHFM demonstrates quick convergence, reaching near-optimal performance within 10-20
training steps (Figure @, in stark contrast to GCN which required considerably more iterations to converge.
This efficiency is a direct result of leveraging a pretrained model, which allows GRAPHFM to start from a
robust initialization and quickly adapt to the target task. The reduced need for hyperparameter tuning and
faster convergence further solidify the advantages of pretraining in minimizing computational overhead and
time-to-solution. Ultimately, our results position GRAPHFM as a cost-effective and reliable choice for a wide
range of node classification tasks.

Q4: How stable are the solutions?

Graph-based models are highly sensitive to hyperparameter configurations, where even small deviations from
optimal settings can lead to substantial performance degradation. This sensitivity poses significant challenges
for ensuring stable and robust deployment. Thus, we wanted to examine the stability of model performance
by exploring the performance landscape around the optimal hyperparameter configuration. We analyze
the performance of both a GCN and GRAPHFM (MFT) on Coauthor-CS (homophilic) and Chameleon
(heterophilic) datasets for different hyperparameters around the optimal hyperparameters (Figure [7)). This set
of hyperparameters is marked with a star, and other models are colored based on the normalized ¢5-distance
of their hyperparameter vectors to the optimal hyperparameter vector. For GRAPHFM, we observe that
the distribution is concentrated around the optimal point, suggesting low sensitivity to the choice of the
hyperparameters used for finetuning. We also observe that the relationship between hyperparameter deviation
and performance is linear. On the other hand, for the GCN model, small deviations in hyperparameters can
lead to large changes in performance, suggesting instability of the model with respect to the hyperparameters
and a much noisier landscape around the optimal model.

6 CO, Emissions

Training our largest model took 1228.8 A40 hrs, totaling an energy usage of 368kWh. The GPUs were housed
and powered at an academic datacenter in Georgia, with a carbon energy intensity of 0.35 kgCOge/kWh and
Power Usage Effectiveness of 1.15, the resulting emissions were approximately 148kg of COqeq.

7 Related Work

Graph foundation modeling approaches. Foundation models have achieved significant success for
language, vision and time-series data (Radford et al. 2018; Dehghani et al., |2023} Das et al., [2024)). These
models are pre-trained on large datasets and can be adapted to a wide range of downstream tasks, effectively
utilizing both prior knowledge from the pre-training stage and data from the downstream tasks to enhance
performance (Brown et all 2020). The concept of foundation models has recently extended into graph
learning, leading to the development of Graph Foundation Models (GFMs) (Ibarz et al., 2022} Beaini et al.)
2024; |Galkin et al.; [Mao et al., [2024). These models aim to generalize across diverse graph-structured data
by leveraging large-scale pretraining, similar to foundation models in vision and language domains.

Initial GFM efforts primarily focused on domain-specific GFMs, where shared structures and feature
vocabularies simplify pretraining. For example, Mole-BERT utilizes pretraining to improve property prediction
specifically for molecules and materials (Xia et al.). Additionally, large-scale models like MatterSim (Yang
et al.l [2024])), designed to predict molecular behaviors across different elements and conditions.

Beyond domain-specific applications, Graph Foundation Models (GFMs) are increasingly being developed for
general-purpose tasks across diverse graph domains. Similarly, recent advancements have explored scaling laws
in graph models, showing that larger models can lead to improved transfer learning and generalization (Liu
et al., b)), consistent with our work which shows that scale improves performance. Models like Triplet-GMPNN
(Ibarz et al.| [2022) and ULTRA (Galkin et al.) tackle foundational tasks in algorithmic reasoning and
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knowledge graphs respectively, but they are still grounded in narrow domains. Other recent efforts have
leveraged LLMs to unify graph inputs via textual representations (Liu et al.l a)).

Recent work has also begun addressing the more challenging problem of cross-domain generalization, where
graphs differ significantly in topology, size, and feature space. For instance, GraphProp (Sun et al.l 2025)
and GFSE (Chen et al., 2025|) focus on structural generalization by pretraining on topological properties
such as random walk embeddings. GCOPE (Zhao et al., [2024a) and MDGPT (Yu et al., [2024)) incorporate
domain-aware components like virtual coordinators or learnable domain tokens to encode domain-specific
priors. GraphAny (Zhao et all |2024b|) proposes a fully inductive model that ensembles predictions from
analytically derived LinearGNNs. While a lot of progress has been made most existing models are constrained
by limited dataset scale—GraphProp and GFSE were trained on 5-8 datasets, and GraphAny only on
1—making it difficult to assess generalization robustness. In contrast, GraphFM is pretrained on 152 graph
datasets (7.4M nodes, 189M edges), offering an unprecedented testbed to study scale and diversity effects.

Scaling up graph transformers. Graph transformers bypass standard local learning rules in GNNs by
allowing all nodes on the graph to interact through self-attention (Dwivedi & Bresson| |2020). However, due to
the high computational cost and benefits of the inductive bias in message passing, a number of methods have
been proposed to move beyond full self-attention or combine transformers with GNNs. One class of methods
combine transformer blocks with GNNs, including GraphTrans (Wu et al.l 2021), GraphGPS (Rampéasek
et al.} 2022), and SAT (Chen et al., [2022)). Another strategy is to reduce the computational complexity by
using the transformer module on a coarsened or compressed graph. For instance, ANS-GT (Zhang et al.,
2022) introduced a node-sampling-based graph transformers, incorporating hierarchical attention and graph
coarsening, and Gapformer (Liu et al.}|2023)) uses k-hops local pooling and global pooling to coarsen the large
graph into a smaller set of nodes. Exphormer (Shirzad et al.l 2023) coarsens the graph by doing computation
through expander graphs (Deac et all|2022). This idea of compression has also been studied through the lens
of “skeletonization” (Cao et all 2024)) where they learn to identify uninformative background nodes and use
this information to achieve competitive performance with as little as 1% of the nodes in the graph. Many
of these approaches leverage virtual nodes to facilitate message passing across large graphs; however, the
compression techniques used in these works are often based on heuristics like pooling layers or expander
graphs, in contrast to our work where the compression is fully learned through the use of the Perceiver
encoder to aggregate information into a set of latent tokens.

8 Conclusion

In this paper, we introduced GRAPHFM, a multi-graph pretraining framework for scalable learning across
diverse graph datasets. We curated 152 datasets for pretraining, including 80 real-world graphs and 72
synthetic graphs, totaling more than 7.4M nodes and 163.9M edges. Standard benchmark datasets were
excluded from pretraining to enable evaluation on unseen graphs. The synthetic corpus enriched low-homophily
regimes and complemented the real-world distributions, which had a broader range of average degrees. This
mixture provided a varied training signal across topology, feature space, and label structure.

Our scaling study shows clear benefits from both model capacity and data diversity. Across three model sizes
(389K, 18M, 75M parameters) and increasing numbers of pretraining tokens (200K, 2M, 7.3M), accuracy
on held-out datasets improved monotonically, with the largest model trained on 7.3M tokens achieving a
2.1% gain over smaller configurations. Domain-stratified experiments further indicate that adding biological
graphs improves performance on citation and co-purchase datasets, and that including synthetic graphs yields
the strongest overall results. These findings support the view that diversity, not only size, is a key driver of
transferable representations.

We evaluated two adaptation strategies on unseen datasets. Low-resource MFT freezes the encoder and
node decoder, and adjusts only the feature MLP; NFT additionally updates the node decoder with gradual
unfreezing. NFT achieved the best mean rank across ten test graphs, while MFT ranked second with lower
variance, which indicates stable generalization without dataset-specific tuning. Learning-dynamics analyses
show that GRAPHFM reaches near-optimal accuracy within 10 to 20 steps with a single fixed learning rate
and weight decay across tasks, while GCN and NAGphormer exhibit broad performance variability and
frequent instability under random hyperparameters.
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Sensitivity analyses around the optimal hyperparameters reveal a smooth and forgiving landscape for
GRAPHFM. Accuracy degrades approximately linearly with distance from the best settings, which suggests
robustness to modest deviations and reduces the operational burden of fine-grained tuning. In contrast, GCN
exhibits sharp drops for small changes in configuration, which complicates practical deployment. Together,
these results position GRAPHFM as a cost-effective and reliable starting point for new graphs, including
challenging low-homophily settings.

Looking ahead, we expect further gains from expanding the pretraining corpus to additional structured
domains such as meshes, point clouds, and knowledge graphs, and from broadening the task palette beyond
node classification to include link prediction, graph-level prediction, and self-supervised objectives. Progress
in synthetic graph generation and principled domain balancing should strengthen scaling trends and improve
robustness under distribution shift. A unified suite of cross-domain benchmarks, paired with standardized
adaptation protocols like MFT and NFT, can help establish repeatable scaling laws for graph learning and
accelerate the development of generalist graph foundation models.
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Appendix
A Additional Model Details

A.1 Model Configuration Details

We used pretrained 3 configuration of models—small (398K), medium (18M) and large (75M)—for our
analysis. Details of the configuration for each model are given in Table In the first cross-attention layer,
we used Flash Attention, whereas for all subsequent attention layers, we used Memory-Efficient Attention.
Both implementations were sourced from the xFormers library (Lefaudeux et al., [2022).

Table Al: Architectural details of GraphFM for different parameter sizes used in Section

Parameter Count 75M 18M 389K

Num Latents (K) 512 256 32
Latent Dimension 512 256 32
Cross-Attention
Heads 4 4 4
FFN hidden dim 2048 1024 128
Self-Attention
Depth (L) 12 10 4
Heads 8 4 4
FFN hidden dim 2048 1024 128
Node Decoder
Depth (M) 4 4 2
Heads 8 4 4
FEN hidden dim 2048 1024 128

A.2 Rescaling the learning rates for different graph sizes

When training on variable sized graphs, the MLP and linear decoder for each dataset receive updates based on
the number of nodes from their respective datasets present in the batch and thus smaller graphs get updated
less frequently when compared to large graphs. To mitigate this imbalance, we implemented dataset-specific
learning rates for the feature MLP and linear decoders. Since they receive updates less frequently, when
they do, we use a larger learning rate to update them. Without this adjustment, the weights of the common
Perceiver encoder and node decoder would advance more quickly than those of the dataset-specific components,
potentially leading to suboptimal learning for smaller datasets.

A.3 Fine-Tuning Strategies

In our evaluation of GraphFM'’s generalization capability, we employed two fine-tuning strategies aimed at
adapting the model to the unseen test datasets.

A.3.1 Low-resource MLP Fine-tuning (MFT)

This approach is designed to assess how well the pretrained model performs out-of-the-box on different test
graphs without extensive training. In MFT, we freeze the pretrained model and only fine-tune a lightweight
multi-layer perceptron (MLP) on top of the learned representations. This strategy allows us to quickly adapt
the model to new tasks while retaining the majority of the original learned parameters. MFT is particularly
useful in low-resource settings, where computational power or time is limited, as it requires minimal additional
training while still providing insight into how well the pretrained model generalizes. For all MFT experiments,
we used a learning rate of 1072 and a weight decay of 1075, optimized using the AdamW optimizer (Loshchilov
& Hutter)).

19



Published in Transactions on Machine Learning Research (12/2025)

A.3.2 MLP and Node Decoder Fine-tuning (NFT)

In contrast to MFT, the NFT strategy involves fine-tuning part of the model and is recommended when
sufficient computational resources are available and the goal is to extract the maximum performance from the
model. In NFT, we gradually unfreeze the node decoder, enabling the model to more effectively adapt to the
new dataset. Specifically, we set a predefined epoch U at which unfreezing begins, starting from the bottom
layers of the node decoder. After every S epochs, additional layers are unfrozen in a bottom-up manner,
facilitating gradual transition to full finetuning of the model. Concurrently, the learning rate is decayed by a
factor of 1.5 each time a new layer is unfrozen, ensuring controlled parameter updates. For all datasets, we
tune the hyperparameters U and S, with U set to 10, 20, or 30 epochs and S set to 5 or 10 epochs. This
gradual unfreezing mitigates training instability, as smaller perturbations are made to higher-level feature
representations. As a result, NF'T allows for better adaptation, particularly for unseen testing datasets, and
is well suited for cases where exploiting the capacity of pretrained models is critical.

B Additional Details on Datasets

B.1 Pretraining datasets

The largest model (75M parameters) was trained on 80 real world and 72 synthetic datasets. The real world
datasets and their characteristics are given in Table [A3]

The synthetic datasets were created using the GraphWorld (Palowitch et al.l [2022) using the Stochastic Block
Model (Holland et all [1983). The generator parameters are listed in Table In the graph generation
process, the node homophily ratio is varied. The homophily is given by the following formula:

1 {(v,w) : w e N@W)Ayy = yuw}
v 2 M) ’

where V denotes the set of all nodes in the graph, N (v) denotes all the neighbors of an arbitrary node v,
and y, denotes the class membership of the node v € V. We classify datasets into homophilic datasets and
heterophilic datasets based on the homophily score: datasets with homophily > 0.5 are classified as homophilic
datasets and heterophilic datasets otherwise.

B.2 Details on small and medium scale dataset

The small and medium scale datasets, as discussed in Section [5.2] were created by taking a random subset of
the large dataset(80 real and 72 synthetic).

Dataset subset for small scale data: The following datasets were used to train models with small
scale data: Wiki, BlogCatalog, Roman-empire, Minesweeper, Tolokers, Questions, Twitch-EN, Twitch-FR,
Twitch-PT, Twitch-RU, DeezerEurope, GitHub, LastFMAsia, Airports-USA, Airports-Europe, PolBlogs and
EmailEUCore

Dataset subset for medium scale data: The following datasets were used to train models with medium
scale data: Wiki, BlogCatalog, Roman-empire, Minesweeper, Tolokers, Questions, Twitch-EN, Twitch-FR,
Twitch-PT, Twitch-RU, DeezerEurope, GitHub, LastFMAsia, Airports-USA, Airports-Europe, PolBlogs
and EmailEUCore, Reddit, Reddit2, Flickr, Yelp, PPI, Facebook, Amazon-ratings, Minesweeper, Twitch-
DE, Twitch-ES, FacebookPagePage, Airports-Brazil, penn94, reed98, amherst41, johnshopkins55, genius,
CitationFull-CiteSeer, CitationFull-Cora-ML and CitationFull-PubMed

B.3 Details on social and biology domain datasets

The social and biology datasets, as discussed in Section and Section included the following subsets:
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Table A2: Graphworld generator parameters for synthetic graphs

Parameter Name Description Values
nvertex Number of vertices in the graph. [32, 500000]
p/q ratio The ratio of in-cluster edge prob-  [0.1, 10.0]
ability to out-cluster edge proba-
bility.
avg. degree The average expected degrees of [1.0, 20.0]
the nodes.
feature center distance The variance of feature cluster [0.0, 5.0]

centers, generated from a multi-
variate Normal.

num clusters The number of unique node la- (2, 6]
bels.
cluster size slope The slope of cluster sizes when [0.0, 0.5]

index-ordered by size.

power exponent The value of the power law expo- [0.5, 1.0]
nent used to generate expected
node degrees.

Dataset subset for social domain: The following datasets were used to train the social-specific model:
fb-CMU-Carnegie49, Yelp,Wiki, BlogCatalog, Facebook, Twitch-DE, Twitch-EN, Twitch-ES, Twitch-FR,
Twitch-PT, Twitch-RU, DeezerEurope, GitHub, FacebookPagePage, LastFMAsia, penn94, reed98, amherst41,
johnshopkins55, genius and soc-pokec.

Dataset subset for biology domain: The following datasets were added as part of the biology domain
to train the combined social and biology model: BZR, DD, DD199, DD21, DD242, DD244, DD349, DD497,
DD6, DD68, DD687, DHFR, ENZYMES, ENZYMES118, ENZYMES123, ENZYMES295, ENZYMES296,
ENZYMES297, ENZYMESS, KKI, OHSU, PROTEINS-full, Peking-1, Tox21_p53, gene, proteins-all and
PPI.

B.4 Finetuning Datasets

For our evaluations, we held out a number of datasets that are used for standard benchmarks in both larger
scale node classification and heterophilic graphs.

B.4.1 Homophilic Datasets

We use five real-world datasets, Amazon Computers and Amazon Photos (McAuley et al., [2015), Coauthor
CS and Coauthor Physics (Sinha et all [2015) and Obgn-Arxiv (Hu et al., [2020). Key statistics for the
different datasets are listed in Table in the finetuning-section. The experimental setup follows that of
(Luo et al., [2022), where we split the dataset into development and test sets. All the hyperparameter tuning
is done on the development set and the best models are evaluated on the test set. The runs are averaged over
20 random splits to minimize noise. We follow a 60:20:20% train/val/test split for the Amazon and Coauthor
datasets. For Obgn-Arxiv we follow the experimental setup used in (Hu et al., |2020). The results for the
Coauthor-Physics, Coauthor-CS, and Amazon-Photos obtained from in Table have been sourced from
(Liu et al., |2023). The results for the Amazon-Comp dataset are taken from (Hoang et al., [2023) except for
MLP which was obtained from (Luo et al., 2022).
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Table A3: Pre-Training Datasets and their characteristics

‘ Dataset Number of Graphs Nodes Edges Homophily Ratio Excess Homophily Average Degree Node Features Node Classes Learning Rate
BA-1_10_60-L5 1 804 46410 0.2 0.0004 115.45 1 5 0.0014
BA-2 24 60-L2 1 10693 639750 0.5 0.0014 119.66 1 2 0.0087
BZR 405 35.75 76.71 0.42 0.0192 0.07 1 53 0.0082
CL-100K-1d8-L9 1 92482 373989 0.11 0.0005 8.09 1 9 0.00064
CL-10K-1d8-L5 1 10000 44896 0.2 0.0037 8.98 1 5 0.00096
DD 1178 284.32 1431.32 0.07 0.0015 0.058 1 89 0.00085
DD199 1 841 1902 0.067 0.0144 4.52 1 20 0.00085
DD21 1 5748 14267 0.07 0.0103 4.96 1 40 0.00085
DD242 1 1284 3303 0.08 0.0265 5.14 1 20 0.00042
DD244 1 291 822 0.074 0.0180 5.65 1 20 0.00085
DD349 1 897 2087 0.05 0.0067 4.65 1 20 0.00085
DD497 1 903 2453 0.06 0.0068 5.43 1 20 0.0028
DD6 1 4152 10320 0.07 0.0126 4.97 1 20 0.00085
DD68 1 775 2093 0.072 0.0048 5.4 1 20 0.0028
DD687 1 725 2600 0.06 0.0050 717 1 20 0.0028
DHFR 756 42.43 89.09 0.32 0.0189 0.04 3 53 0.0018
ENZYMES 600 32.63 124.27 0.67 0.1768 0.09 18 3 0.0020
ENZYMES118 1 96 121 0.58 0.4375 2.52 1 2 0.00087
ENZYMES123 1 90 127 0.52 0.7111 2.82 1 2 0.0076
ENZYMES295 1 124 139 0.71 0.8387 2.24 1 2 0.0076
ENZYMES296 1 126 141 0.72 0.8095 2.24 1 2 0.00087
ENZYMES297 1 122 149 0.65 0.8360 2.44 1 2 0.0020
ENZYMESS8 1 88 133 0.77 0.8181 3.02 1 2 0.0076
ER-AvgDeg10-100K-L2 1 99997 499332 0.50 0.0019 9.99 2 2 0.0049
ER-AvgDegl0-100K-L5 1 99997 499332 0.20 0.0014 9.99 1 5 0.0013
KKI 83 26.96 96.84 0 0.0 0.39 1 189 0.0012
MSRC-21 563 77.52 396.65 0.74 0.0968 0.13 1 24 0.0063
MSRC-21C 209 40.28 193.20 0.61 0.0581 0.27 1 22 0.0017
MSRC-9 221 40.58 193.21 0.69 0.0881 0.26 1 10 0.009
OHSU 79 82.01 399.32 0 0.0002 0.56 1 189 0.0095
PLC-40-30-L5 1 11025 437979 0.2 0.0003 79.45 1 5 0.0086
PLC-60-30-L2 1 117572 7045181 0.5 6.2980 119.84 1 2 0.0013
PROTEINS-full 1113 39.06 145.63 0.97 0.1916 0.05 2 8 0.0063
Peking-1 85 39.31 154.71 0 - 0.44 1 189 1 0.0027
SW-10000-6-0d3-1.2 1 10000 30000 0.5 0.0026 6 1 2 0.00096
SW-10000-6-0d3-L5 1 10000 30000 0.2 0.0012 6 1 5 0.0088
SYNTHETIC 300 100 392 0.18 0.0374 0.16 1 8 0.0018

0 | TerroristRel 1 881 8592 0.92 0.7433 19.51 1 2 0.0033
£ | Tox21_p53 1 153563 314046 0.62 0.0009 4.09 1 46 0.00054
E fb-CMU-Carnegie49 1 249967 0.5 0.0697 75.33 1 3 0.0010
| gene 1 1672 0.4 0.5557 3.03 1 2 0.012
E proteins-all 1 162088 0.66 0.3710 7.46 1 3 0.00075
reality-call 1 27058 51200 0.9 0.0 15 1 0.0071
Reddit 1 232965 114615892 0.76 0.6529 983.98 602 41 0.0035
Reddit2 1 232965 23213838 0.78 0.6913 199.29 602 41 0.0035
Flickr 1 89250 899756 0.31 0.1340 20.16 500 7 0.0051
1 716847 13954819 - - 300 100" 0.00031
Wi 1 2405 17981 0.71 0.6053 4973 17 0.0012
BlogCatalog 1 5196 17981 0.40 0.2680 132.21 8189 6 0.0099
PPI 1 56944 1612348 0.63 - 56.63 50 1211t 0.0016
Facebook 1 4039 88234 0.99 - 43.69 1283 193 1 0.0011
Roman-empire 1 22662 65854 0.05 0.0208 5.81 300 18 0.0074
Amazon-ratings 1 24492 186100 0.38 0.1266 15.2 300 5 0.00082
Minesweeper 1 10000 78804 0.68 0.0094 15.76 7 2 0.0088
Tolokers 1 11758 1038000 0.59 0.1801 176.56 10 2 0.0022
Questions 1 48921 307080 0.84 0.0790 12.55 301 2 0.0061
Twitch-DE 1 9498 315774 0.64 0.1691 66.49 128 2 0.0023
Twitch-EN 1 7126 TTTT4 0.59 0.1711 21.82 128 2 0.0010
Twitch-ES 1 4648 123412 0.59 0.1634 53.10 128 2 0.0011
Twitch-FR 1 6551 231883 0.54 0.0306 70.79 128 2 0.0010
Twitch-PT 1 1912 64510 0.58 0.1333 67.47 128 2 0.0012
Twitch-RU 1 4385 78993 0.63 0.0787 36.02 128 2 0.0011
DeezerEurope 1 28281 185504 0.52 0.03038 13.11 128 2 0.0070
GitHub 1 37700 578006 0.84 0.3778 30.66 128 2 0.0065
FacebookPagePage 1 22470 342004 0.88 0.8198 30.44 128 2 0.00085
LastFMAsia 1 7624 55612 0.87 0.7656 14.59 128 18 0.0092
Airports-Brazil 1 131 1074 0.46 0.1303 16.39 131 4 0.0013
Airports-Europe 1 399 5995 0.40 0.1930 30.05 399 4 0.0015
Airports-USA 1 1190 13599 0.69 0.2371 22.85 1190 4 0.0092
PolBlogs 1 1490 19025 0.91 0.8233 25.54 1 2 0.0013
EmailEUCore 1 1005 25571 0.36 0.2354 50.89 1 42 0.0032
penn94 1 41554 2724458 0.51 0.0278 131.11 4814 2 0.0064
reed98 1 962 37624 0.52 0.0213 78.22 745 2 0.0032
amherst41 1 2235 181908 0.53 0.0385 162.78 1193 2 0.011
Jjohnshopkins55 1 5180 373172 0.55 0.0628 144.08 2406 2 0.0025
genius 1 421961 984979 0.62 0.08040 4.67 12 2 0.00040
CitationFull-CiteSeer 1 4230 10674 0.95 0.9437 5.04 602 6 0.0011
CitationFull-Cora-ML 1 2995 16316 0.78 0.7401 10.89 2879 7 0.0028
CitationFull-PubMed 1 19717 88648 0.80 0.6641 8.99 500 3 0.00087
soc-pokec 1 1632803 30622564 0.44 - 37.51 500 3 0.00019
1 Multi label binary classification.
Table A4: Fine-Tuning Datasets and Their Characteristics
Dataset Number of Graphs Nodes Edges Homophily Ratio Average Degree Node Features Node Classes
Actor 1 7600 30019 0.21 7.89 932 5
Amazon-Computers 1 13752 4491722 0.77 71.51 767 10
Amazon-Photo 1 7650 238162 0.82 62.26 745 8
Coauthor-CS 1 18333 163788 0.80 17.86 6805 15
Coauthor-Physics 1 34493 495924 0.93 28.75 8415 5
Chameleon 1 2277 36101 0.23 31.70 2325 5
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B.4.2 Heterophilic Datasets

We use five real-world datasets with graphs that have a homophily level < 0.30, Texas, Wisconsin and Actor
(Pei et al., [2020) and Chameleon and Squirrel (Rozemberczki et al.| [2021)). Key statistics for the different
datasets are listed in Table in the finetuning-section. We follow the experimental setup in (Pei et al.|
2020), and use the same 10 train/val/test splits that are provided. The results for GCN based methods and
heterophily based methods in Table have been taken from (Azabou et al., [2023b]), and the results for
transformer based methods have been taken from (Liu et al., [2023)

B.5 Standard hyperparameter search grid for baselines

The hyperparameter search space grid used for tuning baselines for Table [A(]is detailed in Table

Table A5: Hyperparameter Search Space

Hyperparameter Type Range
Hidden Dim Categorical {16, 32, 64, 128}
Depth Categorical {1, 2}
Dropout Uniform [0.0, 0.9]
Learning Rate Log uniform [5e-5, be-1]
Weight Decay Log uniform [le-5, le-2]

B.6 Detailed Comparison with Specialist Models

On both homophilic and heterophilic benchmarks (Table , GraphFM performs on par with state-of-the-art
specialist models trained from scratch on each dataset. While the best-performing baseline model varies
across datasets, GraphFM consistently ranks among the top three: the NFT fine-tuning strategy achieves the
highest average rank overall, while MFT is tied for second place with NAG. Furthermore, MFT demonstrates
significantly lower variance in rank compared to NAG, whose rankings display a more bimodal distribution
across datasets. This indicates that GraphFM provides more stable performance across diverse graph
structures.

Specialist models such as H2GCN and NAG show variability in performance due to their design focus.
H2GCN, tailored for heterophilic graphs, performs strongly on heterophilic datasets but struggles with
homophilic ones. Conversely, NAG, optimized for homophilic graphs, excels in homophilic settings but is
less effective on heterophilic datasets. These results highlight the trade-offs inherent in models designed for
specific graph types, limiting their generalization capabilities across diverse datasets.

In contrast, GraphFM achieves strong performance across all datasets without requiring extensive hyper-
parameter tuning, unlike the specialist models that were fine-tuned for each dataset. By using a single

Table A6: Results on a variety of homophilic and heterophilic node classification benchmarks. From left to right,
we show different message passing and graph transformer architectures, and then GRAPHFM in both the lightweight MLP-only
finetuning (MFT) and node decoder finetuning (NFT). The top three numbers are bold, with the highest in bright red fading to
black. Models are ranked on all 10 datasets and the average and standard deviation ranking is at the bottom.

‘ GCN MLP GAT H2GCN ‘ SAN NAG GraphFM-MFT  GraphFM-NFT
2 Physics 95.384+0.20 95.124+0.26 95.1440.28 96.284+0.13 | 96.83+0.18 96.66+0.16 96.6410.17 96.77+0.12
] CS 94.06+0.16 92.9940.51 93.61+0.14 94.0240.31 94.16+0.36 95.00+0.14 95.19+0.21 95.24+0.18
% Photo 85.94+1.18 88.6640.85 87.13%+1.00 91.56+0.80 | 94.17+0.65 94.64+0.60 93.014+1.82 94.37+0.35
5 Computer 89.471+0.46 84.63 90.78+0.13  89.33+0.27" | 89.83+0.16 91.22+0.14 89.9510.83 90.07+0.21
= Ogbn arxiv 70.40+0.10  52.63+0.12 67.561+0.12 68.2940.67 69.17+0.15 68.2140.02" 69.96+0.21 70.01 + 0.18
] Texas 55.144+5.16  80.81+3.31  52.16+6.63  84.86+7.23 | 60.17£6.66 68.37+5.27" 80.81£2.76 82.16+3.24
% Wisconsin 51.76+3.06  85.2943.31  49.414+4.09 87.65+4.98 | 51.37£2.08 68.2345.99" 83.134+2.35 83.62+3.21
% Actor 27.3241.10  36.63+0.70  27.44%0.89 35.70£1.00 27.32%+1.10 34.334+0.94" 36.29+0.63 38.01£1.07
kst Chameleon 38.44+1.92 46.21+2.99 38.4441.92  60.1142.15 | 44.3241.73"  57.39+0.02" 58.64+1.24 59.12+1.64
= Squirrel 31.52+0.71 28.77+1.56 36.77+1.68 36.48+1.86 | 30.92+2.14"  49.93+0.07" 42.80+1.54 42.98+1.62
Avg Rank (Homophilic) 52+£26 7.6 £0.9 6.0 £ 2.2 5.6 £0.9 34£15 2.8 £20 34£09 2.0 £0.7
Avg Rank (Heterophilic) 6.6 £ 0.5 4.0£25 6.6 £ 1.7 24+£19 6.6 £ 0.5 40+ 17 32+04 2.0£0.7
Avg Rank (Overall) 59+19 58 £2.6 6.3 £ 1.9 4.0£22 5.0=£20 34+19 33£07 2.0+£0.7

" This result was missing from existing literature and was obtained through extensive hyperparameter tuning.
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hyperparameter configuration (learning rate = 10~3), GraphFM consistently achieves competitive rankings.
Additionally, the NFT fine-tuning strategy provides significant benefits for challenging datasets such as
Amazon-Photos and Actor, as allowing parts of the model to remain learnable enables better adaptation to
out-of-distribution datasets.

C Additional Details on Multi-Graph Training

One key aspect of our work is testing scale. Thus, to build a 103
model across large amounts of diverse graph data, we developed °
a number of approaches for efficient training and multi-GPU

usage. 102

o /

. . . . . . 0
Note: Removing chaining made it impossible to run the largest 10 l l l
graphFM graphFM graphFM

model (75M parameters) with our available computational re- “sampler ~sampler

sources (8 A40 GPUs). Therefore, we performed the ablation Figure Al: Ablation for GPU optifififations:

using the medium-sized model. This highlights the significance Epoch time in minutes on removing various gpu
T . X optimizations proposed for GRAPHFM.

of our optimization techniques, which enabled us to scale up

and run such large models efficiently.

Figure [AT] shows an ablation study the epoch time for various
GPU optimizations we have proposed in Section [3.2] The epoch
time was calculated using the medium-sized model with 18M
parameters, as detailed in Appendix [A-1]

epoch time (minutes)

C.1 DistributedSSSampler

In designing this sampler, we prioritized ensuring that it neither introduces bias into the data sampling
process nor alters the distribution of the graphs from the datasets. Its primary function is to enhance batch
construction and distribution across GPUs.

First, the sampler defines a set of NV buckets with a fixed node budget B, where N can be the number of
GPUs and B is the node-level batch size. The graphs (across all GPUs) are sorted in descending order
based upon their size. The sampler then employs a bidirectional filling strategy within the buckets. The
distribution process, as described in Algorithm [I] involves distributing graphs in a snake-like pattern, initially
filling from right to left, then switching to left to right and so on. When a graph is added to a bucket, it
uses up part of the budget, equal to its size. This method effectively pairs larger graphs with smaller ones in
subsequent passes, preventing the concentration of multiple large graphs on the same GPU, thus achieving
efficient load balancing and uniform GPU utilization. Figure [A2JA shows an overview of how the sampler
distributes the graphs into buckets. We find that stability is improved with a larger number of buckets N
(Figure ) When the number of GPUs is fixed, we can achieve a larger N by using gradient accumulation,
which artificially increases the number of buckets by a factor equal to the number of accumulation steps,
without biasing the sampling process.
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Figure A2: Multi-GPU utilization: A: A diagram visualizing our sample distribution strategy. B: GPU memory utilization
during distributed training when using the default batch sampler vs. our DistributedSSSampler for N=4 and N=64 buckets.
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Algorithm 1 Distribute graph nodes into virtual GPU buckets

1: input: Batch size B, Bucket count N, Graphs in the dataset G = {Go, Gy, ...}, Subgraphs sampled for
this minibatch g™ = {G{*, G, ...}

2: precondition: ), |G"| =N x B

3: initialize:

4: buckets < array of N empty arrays # will store subgraphs in each bucket
5: counts < array of N zeroes # will store number of nodes in each bucket
6: b+ 0 # bucket index
7 d+1 # direction
8: Sort G according to node-counts in G, largest graph goes first

9: for all GI" in G™ do

10:  while |G"| > 0 do

11: if counts[b] < B then

12: # insert a part of G/ into bucket b

13: n + min(|G"|, B — counts[b])

14: counts[b] < counts[b] +n

15: append first n nodes of G to buckets[b]

16: remove first n nodes from G}

17: end if

18: # go to the next bucket, switching direction at the boundaries

19: b<b+d

20: if b> N or b < 0 then

21: d+ —d

22: b« b+d

23: end if

24:  end while

25: end for

26: return buckets
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C.2 GraphSAINT Random Walk Sampler

Efficient neighborhood sampling for large graphs is crucial for our node decoder, as traditional methods
for k-hop neighborhood sampler often become computationally prohibitive with the increasing size and
complexity of the graph data. To overcome these limitations, we have adopted the GraphSAINT Random
Walk Sampler (Zeng et al.), specifically designed for efficient sampling in large-scale graphs.

C.3 RAM Optimization in Multi-GPU Environments

In multi-GPU training environments, efficient use of system memory is crucial, especially when handling
large graph datasets. Traditional approaches lead to substantial memory redundancy, as each GPU process
typically loads a complete dataset into system RAM. This results in each process duplicating the dataset in
system memory, leading to inefficient memory usage and potential system overload.

To address this, we utilize a shared memory management approach using Python’s
multiprocessing.Manager() to coordinate dataset access across multiple GPU processes.  This
method ensures that each dataset is loaded into RAM only once, regardless of the number of GPUs, thereby
avoiding duplication and conserving memory resources.

D Additional Experiments

D.1 Separating pretraining datasets into different domains

We further stratified our pretraining dataset to investigate
the effects of cross-domain training, and created three
models that contained: (i) graph datasets from “social 0.75

0.76 =

0.750

domains” including product graphs and citation networks >§

(1.3M tokens), (ii) both the social datasets and all bio- §§ * 0.735
logical graphs in the dataset (Bio+Soc, 2M tokens), and 84 073 -

(iii) compare with our model trained on all data including S 0.722
sytunthetic graphs (7.3M tokens). g § 2 0714

When comparing graph features across social and bio- 071 7

logical domains, we found distinct structural differences: 0.70 : : : :
biological datasets generally exhibited higher levels of het- Soc  Soc+Bio alldata all data
erophily, lower average degree, and fewer edges, whereas et

social graphs showed more homophily, higher degrees, and Figure A3: Domain Scaling: Average accuracy across
den?,er connections (Flgur.e ) Synthetlc .graphs' added IOlIrllsdeiefrfleIt‘:ISIf:lsz(iztssoi‘tsdérslng MFT) for models trained
a wide range of characteristics, particularly increasing the

number of heterophilic graphs used in pretraining, which contributed to a broader diversity of features
(Figure ) To isolate the contribution of synthetic graphs, we further stratified the pretraining data to
include only real-world datasets.

All three models were then fine-tuned on four homophilic datasets (coauthor-CS, coauthor-physics, amazon-
photos, and amazon-computers) and five heterophilic datasets (Texas, Wisconsin, Actor, Squirrel, and
Chameleon) held out for fine-tuning.

As shown in Figure incorporating biological datasets, despite being seemingly unrelated to the target
domains, improves performance on unseen test datasets, with mean accuracy increasing from 0.714 (Soc)
to 0.722 (Soc + Bio). This suggests that knowledge learned from the biology domain positively impacts
performance in other domains. Extending pretraining to all available real-world datasets from Table
yields additional improvements, with mean accuracy reaching 0.735. Finally, adding synthetic graphs boosted
performance even more, with a mean accuracy of 0.750, indicating that diversity (not just domain specific
data) is the key to improving generalization.
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Figure A4: Characteristics of graph datasets used to train GraphFM: From left to right, we compute the histograms
of the homophily ratio, average degree, number of nodes and number of edges of all 152 graphs used during training. The
homophily ratio provides a measure of how frequently a node is directly connected to other nodes from the same class.

D.2 Scaling analysis breakdown for different test datasets

The main text reports the average effect of scaling. In Figure we provide a dataset-level breakdown.
While all datasets benefit from increased model and data scale, the magnitude of improvement varies, with
more challenging datasets (e.g., Chameleon) showing larger relative gains compared to easier ones (e.g.,
Coauthor-Physics).

D.3 Ranking of different models

Average Rank of Models

We compare the mean rank of GraphFM against special-

ist baselines across the 10 out-of-distribution datasets (Fig- T oo T
ure|A6)). Unlike baseline models that require extensive hyper- T -
4.70

parameter tuning for each dataset, we evaluated GraphFM 400

using a fixed configuration (learning rate = 1073) for both
MFT and NFT strategies. For NFT, we additionally applied

a simple unfreezing schedule (Appendix [A.3.2]).

3.30

Mean Rank
(accross 10 test datasets)
I

As shown in Figure [A6] NFT achieves the best overall rank,

while MFT achieves the second-best rank with the lowest . I
variance. Specialist models such as H2GCN and NAG show S N S S L B
higher variability in rank due to their specialization for het- Model R
erophilic and homophilic graphs, respectively. A detailed Figure A6: Mean rank of various models accross 10

per-dataset comparison is provided in Appendix unseen test datasets (lower is better).

D.4 Generalization to Graph Classification

To further evaluate the generalization of GRAPHFM, we conducted additional experiments on graph-
level classification using molecular datasets—MUTAG and PROTEINS. In this setting, we extend the
GRAPHFM architecture by adding a cross-attention—based graph decoder following the Perceiver encoder.
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Figure A5: Accuracy as the model and dataset size are increased. Results are shown for four datasets, Chameleon and Wisconsin
(heterophilic), and Coauthor Physics and Amazon Photo (homophilic).

This decoder aggregates information from the latent tokens to produce graph-level representations, which are
then used for label prediction.

We apply MLP fine-tuning while keeping the cross-attention muple A7:  Graph classification results for
decoder learnable. Table [AT] shows GRAPHFM achieves sub- GrapHFM (baselines reported from (Guan et al))).

stantial improvements over existing graph transformer and

message-passing baselines, demonstrating strong adaptability =~ Model MUTAG PROTEINS
to graph-level prediction tasks. GCN 74.6 £ 7.7 73.1+£3.8
. GraphSAGE 749 £ 8.7 73.8£3.6
We note that the current version of GRAPHFM does not handle GT 755+ 7.9 68.4 + 3.3
edge features, which is why MUTAG and PROTEINS were Gjiaphmmer T44£T74 68.4+£3.7
) . . ’ N . SAT 8l.4+82  TLT£35
chosen for this experiments. Nevertheless, the strong results SpecFormer 837480 790 £ 1.9

on these benchmarks indicate that the model architecture is GraphFM (ours) 93.8 £ 6.6 76.4 + 3.7
capable of generalizing to graph-level classification.

D.5 Additional Baselines

The main text presents a comparison of GRAPHFM with baselines that are more consistently reported across
the literature. Table [A8|and Table [A9] provides additional baselines for all the unseen test datasets.

D.6 GraphAny Comparisons

GraphAny is primarily designed for zero-shot transfer, whereas our focus with GraphFM is on supervised
and fine-tuned performance across diverse benchmarks. As shown in GraphAny’s absolute
accuracy remains significantly below that of fine-tuned methods. On average, GraphFM outperforms
GraphAny by 7.11% across datasets. For example, on ogbn-arziv, the best GraphAny model achieves 58.68%
accuracy, compared to 70.01% with GraphFM after fine-tuning. These results highlight that while GraphAny
demonstrates potential for zero-shot settings, substantial performance gains can still be obtained through
multi-graph pretraining and task-specific adaptation with GraphFM.
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Table A8: Results on node classification tasks for large graph datasets. We report the accuracy (%) with standard deviation
over 10 splits (OOM indicates Out of Memory).

Method Photo Physics CS ogbn-arxiv Comp
GCN-based methods

GCN (Jiang et al.|[2019 85.944+1.18  95.384£0.20  94.06£0.16  70.40£0.10  89.47 + 0.46
GGCBW 2022’} 57.84£14.6 95.89+£0.21 89.9442.24  62.71£1.76 -
APPNP (Klicpera et al.| [2019) 84.7141.25 95.04+£0.31  87.49+0.48  70.20£0.16  90.18 + 0.17
GCNII (Chen et al.|[2020 67.06+1.74 94.8840.32 84.23+0.78  69.7840.16 -

GAT qvqmléll:rlﬁ'ﬂ 87.13£1.00 95144028 93.61+£0.14  67.56+0.12  90.78 + 0.13
GATv2 (Brody et al. 81.5243.23 95.0240.32 88.46+0.61  68.8440.13 -
supeerqxﬂlﬁﬂ 85.83£1.29 95114026  88.11+£0.43  66.99+0.07 -

Heterophily-based methods
MLP (LeCun et al.| 2015) 88.66:£0.85 95.12:+£0.26  92.99+£0.51  52.63+0.12 84.63
MixHop (Abu-El-Haija et al.|[2019)  93.24+0.59 96.3440.22  93.88+0.63  70.83+0.30 -
H2GCN (Jing et al.|[2024) 91.56+0.70 96.2840.13  94.02£0.31  68.2940.67  89.33 + 0.27
FAGCN (Bo et al.[[2021 87.534+0.75 95.8640.12 91.824+0.54  66.1240.02 -
GPRGNN (Chien et al.[[2021 92.2740.44 96.06£0.21  93.60£0.36  68.28+£0.21  89.32 + 0.29
Graph Transformer-based methods

SAN (Kreuzer et al.|[2021) 94.174+0.65 96.83+0.18  94.16+0.36  69.17+0.15  89.83 £ 0.16
Graphormer (Ying et al.[|2021) 85.20+4.12 OOM OOM OOM OOM
LiteGT (Chen ct al.| 2021 - OOM 92.16+0.44 OOM -
UniMP (Wang et al.| 2025 92.4940.47 96.8240.13  94.20£0.34  73.1940.18 -

DET (Guo et al.|[2022) 91.4440.49  96.3040.18  93.34+0.31  55.7040.30 -
NAGphormer (Chen et al.) 94.6440.60 96.66+0.16  95.000.14  68.21 + 0.021  91.22 + 0.14
GRAPHFM -MFT 93.01£1.82 96.64£0.17  95.19+0.21  65.29£0.16  89.95 + 0.83
GrAPHFM -NFT 94.3740.35 96.77£0.12  95.24+0.18  70.01£0.18  90.07 + 0.21

Table A9: Results on node classification tasks for heterophilic graphs. We report the test accuracy across many heterophilic
graph benchmark datasets. The standard deviation is reported across 10 train/test splits.

Method Texas ‘Wisconsin Actor Squirrel Chameleon
GCN-based methods

GCN (Jiang et al.|[2019) 55.14 £ 5.16 51.76 + 3.06 27.32 + 1.10 31.52 + 0.71 38.44 + 1.92

GAT (Velickovic et al.[[2017) 52.16 £ 6.63 49.41 +£4.09 27.44 +0.89 36.77 £ 1.68 48.36 + 1.58

GraphSAGE (Hamilton et al.| |2017aﬁ 82.43 + 6.14 81.18 & 5.56 34.23 £ 0.99 41.61 £ 0.74 58.73 £+ 1.68
Heterophily-based methods

MLP (LeCun et al.||2015) 80.81 £4.75 8529 +£3.31 36.63 £ 0.70 28.77 £ 1.56 46.21 + 2.99
HH-GCN (Azabou et al. 2023bl 71.89 + 3.46 79.80 +4.30 35.12 4+ 1.06 47.19 +1.21 60.24 + 1.93
HH-GAT mJ'QOBb 80.54 + 4.80 83.53 + 3.84 36.70 &+ 0.92 46.35 &+ 1.86 61.12 + 1.83
HH-GraphSAGE (Azabou et al.|[2023b)  85.95 + 6.42 85.88 £ 3.99 36.82 £ 0.77 45.25 £ 1.52 62.98 + 3.35
MixHop (Abu-El-Haija et al.|[2019) 7784+ 7.73 7588 £4.90 32224234 43.80 £ 1.48 60.50 + 2.53
GGCN (Yan et al.|[2022) 84.86 4+ 4.55 86.86 & 3.29 37.54 & 1.56 55.17 & 1.58 71.14 + 1.84
H2GCN (Jing et al.[[2024) 84.86 4+ 7.23 87.65 +4.98 35.70 = 1.00 36.48 = 1.86 60.11 + 2.15
LINKX (Lim et al.| [2021) 74.60 + 8.37 7549 + 5.72  36.10 + 1.55 61.81 & 1.80 68.42 + 1.38
Graph Transformer-based methods

SAN (Kreuzer et al.|[2021) 60.17 + 6.66 51.37 +3.08 27.12+ 259 39.92 &+ 2.14 44.32 + 1.73
UniMP (Wang et al.| 2025) 73.51 + 8.44 79.60 &+ 5.41  35.15 & 0.84 - -

NAGphormer (Chen et al.) 63.51 + 5.85 62.55 & 6.22 34.33 & 0.94 49.93 & 0.07 57.39 &+ 0.02
Gapformer (Liu et al.|[2023) 80.27 4 4.01 83.53 £3.42  36.90 + 0.82 - -

GRAPHFM -MFT 80.81 £ 2.76 83.13 £ 2.35 36.29 & 0.63 42.80 &= 1.54 58.64 + 1.24
GRAPHFM -NFT 82.16 + 3.24 83.62 +3.21 38.01 & 1.07 42.98 +1.62 59.12 + 1.64
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Table A10: Comparison of GraphFM and GraphAny on node classification datasets.

Dataset GCN MLP GAT GraphAny  GraphAny GraphFM  GraphFM
(Arxiv) (Wisconsin) (MFT) (NFT)
Comp 58.82 298 85.83 £0.86 87.01 £0.50 83.04 £1.24 82.09 +1.22 95.13 £0.45 95.44 £ 0.47
Photo 68.20 = 0.88 91.88 £ 0.79 91.86 = 1.07 90.60 £ 0.82 90.18 = 0.91 93.01 £ 1.82 94.37 £ 0.35
CS 85.88 £ 0.93 81.83 £0.71 8847 £0.79 90.45 £ 0.59 90.85 £ 0.63 95.10 £ 0.21 95.24 £ 0.18
Physics 87.43 £1.98 93.93 £ 0.37 93.01 £0.89 92.69 £ 0.52 92.54 + 043 96.54 £ 0.17 96.77 £ 0.12
Arxiv 55.50 + 0.23 71.74 £0.29 73.65 £ 0.11 58.68 £ 0.17 57.79 £ 0.56 69.96 £ 0.21 70.01 £ 0.18
Chameleon 36.62 £ 0.87 64.69 + 2.21 67.76 +£ 0.72 62.59 £ 0.86 60.09 + 1.93 58.64 + 1.24 59.12 + 1.61
Squirrel 30.36 £ 0.78 47.07 £ 0.71 46.69 = 1.44 46.70 £ 0.95 42.34 & 3.46 42.80 £ 1.54 42.98 £ 1.62
Texas 48.65 £ 4.01 31.55 £ 2.71 50.45 + 241 7297 +£2.71 7351 +£1.21 80.51 £2.76 82.16 £ 3.24
Wisconsin ~ 66.67 + 5.31 37.25 + 1.64 52.94 +3.18 71.77 £5.66 71.18 £5.08 70.92 £ 1.52 73.63 £ 1.87
Actor 33.95 £ 0.80 28.55 £ 0.68 27.30 £0.22 28.60 £ 0.21 29.51 £ 0.55 36.29 £ 0.63 38.01 £ 1.07
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