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ABSTRACT

Accessing machine learning models through remote APIs has been gaining more
prevalence following the recent trend of scaling up model parameters for increased
performance. Even though these models exhibit remarkable ability, detecting out-
of-distribution (OOD) samples is still an important issue concerning the safety of
the end users, as these samples may induce unreliable outputs from the model.
In this work, we propose an OOD detection framework, MixDiff, that is applica-
ble even when the model parameters or its activations are not accessible to the end
user. To bypass the access restriction, MixDiff applies an identical input-level per-
turbation to a given target sample and an in-distribution (ID) sample that is similar
to the target and compares the relative difference of the model outputs of these two
samples. MixDiff is model-agnostic and compatible with existing output-based
OOD detection methods. We provide theoretical analysis to illustrate MixDiff’s
effectiveness at discerning OOD samples that induce overconfident outputs from
the model and empirically show that MixDiff consistently improves the OOD de-
tection performance on various datasets in vision and text domains.

1 INTRODUCTION

Recent developments in deep neural networks (DNNs) opened the floodgates for a wide adaptation
of machine learning methods in various domains such as computer vision, natural language pro-
cessing, and speech recognition. As these models garner more users and widen their application
area, the magnitude of impact that they may bring about when encountered with a failure mode also
increases. One of the causes of these failure modes is when an out-of-distribution (OOD) sample is
fed to the model. These samples are problematic because DNNs often produce unreliable outputs if
there is a large deviation from the in-distribution (ID) samples that the model has been validated to
perform well.

OOD detection is the task of determining whether an input sample is from ID or OOD. Several
studies explore measuring how uncertain a model is about a target sample relying on the model’s
output (Hendrycks & Gimpel, 2017; Liu et al., 2023b). While these methods are desirable in that
they do not assume access to the information inside the model, they can be further enhanced given
access to the model’s internal activations, (Sun et al., 2021) or its parameters (Hsu et al., 2020).
However, the access to the model’s internal states is not always permitted. As the trend of offering
machine learning models themselves as a service continues, these models often find themselves
interacting with the end user through remote APIs (Sun et al., 2022b). This limits the utilization
of rich information inside the model (Huang et al., 2021), as well as the modification possibilities
(Sun & Li, 2022) that can be effectively used to detect OOD samples. In this work, we explore ways
to bypass this access restriction through the only available modification point, namely, the models’
inputs.

Data samples in the real world may contain distracting features that can negatively affect the model’s
performance. Sometimes these distractors may possess characteristics resembling a class that is
different from the sample’s true label. In this case, the model’s predictions could become uncertain
as it struggles to decide which class the sample belongs to. Similarly, the model could put too
much importance on a feature that resembles a certain in-distribution characteristic, outputting an
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Figure 1: (a): Class activation map of an OOD sample (train) for the predicted class (bus) exhibits a
high degree of sensitivity when an auxiliary image (camel) is mixed to it. The same class activation
map of an image of an actual bus is more robust to the same perturbation. (Top 2 classes are
shown). (b): Average distance of the CAMs of high confidence class and the ground truth class after
perturbation (averaged over each OOD class).

overconfident prediction, even though the sample does not belong to any of the classes that the model
was tasked to classify.

We start from the intuition that the contributing features in a misclassified sample, either misclas-
sified as ID or OOD, will tend to be more sensitive to perturbations. In other words, these features
that the model has overemphasized will be more brittle when compared to the actual characteristics
of the class that these features resemble. Take as an example the image that is at the top left corner
of Figure 1a. This sample is predicted to be a bus with a high confidence score, despite it belong-
ing to an OOD class train. When we exact a perturbation to this sample by mixing it with some
other auxiliary sample, the contribution of the regions that led to the model’s initial prediction is
significantly reduced as can be seen by the change in the class activation maps (CAM) (Chen et al.,
2022b). However, when the same perturbation is applied to an actual image of a bus, the change is
significantly less abrupt. The model’s prediction scores show a similar behavior. Figure 1b shows
that the distance between the CAMs of the unperturbed and perturbed versions of an OOD sample’s
predicted class tends to be higher compared to its ground truth class, even though the OOD sample
had a high confidence score for that class. Experimental details are in Appendix E.8.

Motivated by the above idea, we propose an OOD detection framework, MixDiff, that exploits the
perturb-and-compare approach without any additional training. MixDiff employs a widely used data
augmentation method Mixup (Zhang et al., 2018) as the perturbation method. Its overall procedure
is outlined as follows: (1) perturb a target sample by applying Mixup with an auxiliary sample and
get the model’s prediction by feeding the perturbed target sample to the model; (2) perturb an ID
sample (oracle sample in Figure 1a) of the predicted class by following the same procedure; (3)
compare the uncertainty scores of the perturbed samples. By comparing how the model’s outputs of
the target sample and a similar ID sample behave under the same perturbation, MixDiff augments
the limited information contained in the model’s prediction scores. This gives MixDiff the ability to
better discriminate OOD and ID samples, even when the model’s unperturbed prediction scores are
almost identical.

We summarize our key contributions and findings as follows: (1) We propose an OOD detection
framework, MixDiff, that can enhance existing OOD scores in constrained access environments
where only the models’ inputs and outputs are accessible. (2) We provide a theoretical insight
as to how MixDiff can mitigate the overconfidence issue of existing output-based OOD scoring
functions. (3) MixDiff consistently improves various output-based OOD scoring functions when
evaluated on OOD detection benchmark datasets in constrained access scenarios where existing
methods’ applicability is limited.

2 RELATED WORK

Output-based OOD scoring methods Various works propose OOD scoring functions measuring
a classifier’s uncertainty from its prediction scores. Some of these methods rely solely on the model’s
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prediction probability. Maximum softmax probability (MSP) (Hendrycks & Gimpel, 2017) utilizes
the maximum value of the prediction distribution. Steinhardt & Liang (2016); Thulasidasan et al.
(2021) use Shannon entropy as a measure of uncertainty, while GEN (Liu et al., 2023b) proposes a
generalized version of the entropy score. KL Matching (Hendrycks et al., 2022) finds the minimum
KL divergence between the target and ID samples. D2U (Yilmaz & Toraman, 2022) measures
the deviation of output distribution from the uniform distribution. If we take a step down to the
logit space, maximum logit score (MLS) (Hendrycks et al., 2022) utilizes the maximum value of
the logits. Energy score (Liu et al., 2020) takes LogSumExp over the logits for the OOD score.
While these output-based methods possess a desirable property, i.e., relaxed assumption on model
accessibility, the information contained in them tends to be limited. This motivates us to investigate
the perturb-and-compare approach as an additional source of information.

Enhancing output-based OOD scores Another line of work focuses on enhancing the aforemen-
tioned output-based OOD scores to make them more discriminative. ODIN (Liang et al., 2018)
and G-ODIN (Hsu et al., 2020) utilize Softmax temperature scaling and gradient-based input pre-
processing to enhance MSP (Hendrycks & Gimpel, 2017). ReAct (Sun et al., 2021) alleviates the
overconfidence issue by clipping the model’s activations if they are over a certain threshold. BAT
(Zhu et al., 2022) uses batch normalization (Ioffe & Szegedy, 2015) statistics for activation clipping.
DICE (Sun & Li, 2022) leverages weight sparsification to mitigate the over-parameterization issue.
Recently, methods that are based on activation or weight pruning approaches (Djurisic et al., 2023;
Ahn et al., 2023) also have been proposed. Our work can be viewed as an OOD score enhancement
method in constrained access environments, where models’ gradients, activations, and parameters
are not accessible, leaving the model inputs as the only available modification point.

Utilization of deeper access for OOD scoring Several studies exploit the rich information that
the feature space provides when designing OOD scores. Olber et al. (2023); Zhang et al. (2023)
utilize ID samples activations for comparison with a target sample. Models’ inner representations
are employed in methods that rely on class-conditional Mahalanobis distance (Lee et al., 2018; Chen
et al., 2022c; Ren et al., 2021). ViM (Wang et al., 2022) proposes an OOD score that complements
the Energy score (Liu et al., 2020) with additional information from the feature space. Sun et al.
(2022c) use the target sample’s feature level KNN distance to ID samples. GradNorm (Huang
et al., 2021) employs the gradient of the prediction probabilities’ KL divergence to the uniform
distribution. Zhang & Xiang (2023) show that decoupling MLS (Hendrycks et al., 2022) can lead to
increased detection performance if given access to the model parameters. However, these methods
are not applicable to black-box API models where one can only access the model’s two endpoints,
i.e., the inputs and outputs.

Robustness to adversarial attacks Overparameterized DNNs are known to be susceptible to
adversarial attacks (Liu et al., 2023a; Wang et al., 2023b). One of such attacks is data poison-
ing attack where attackers modify parts of the training data with the purpose of inducing cer-
tain undesirable outputs from the model at inference time (He et al., 2023). Similar to our ap-
proach, data augmentation techniques such as Mixup (Zhang et al., 2018; Yun et al., 2019) are
shown to be effective at defending such attacks Borgnia et al. (2021b;a). In OOD detection task,
Chen et al. (2022a; 2021); Azizmalayeri et al. (2022) show that OOD detectors can also be suscep-
tible to adversarial attacks, where the target sample is modified for malicious purposes to induce
either high or low confidence scores from the classifier model.

3 METHODOLOGY

In this section, we describe the working mechanism of MixDiff framework. MixDiff is comprised
of the following three procedures: (1) find ID samples that are similar to the target sample and
perturb these samples by performing Mixup with an auxiliary sample; (2) perturb the target sample
by performing Mixup with the same auxiliary sample; (3) measure the model’s uncertainty of the
perturbed target sample relative to the perturbed ID samples. We now provide a detailed description
of each procedure.

Oracle-side perturbation We feed the given target sample, xt, to a classification model f(·) and
get its prediction scores for K classes, Ot, and the predicted class label, ŷt, as shown in Equation 1.
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Figure 2: The overall figure of MixDiff with the number of Mixup ratios, R = 1, the number of
classes, K = 6, the number of auxiliary samples, N = 3, and the number of oracle instances,
M = 2. We omit Mixup ratio r for simplicity. Step 1: the target sample’s prediction is computed
from the classifier f(·). The oracle samples corresponding to the predicted class are selected. Step
2: the oracle samples are perturbed with the auxiliary samples. Then, we calculate the OOD score
for each perturbed oracle sample, followed by computing the average for each auxiliary sample.
Step 3: we perturb the target sample with the same auxiliary samples. As in the previous step, we
compute the OOD score of the perturbed target samples. Step 4: we compare the OOD scores of
the perturbed target and the perturbed oracles.

Ot = f(xt) ∈ RK , ŷt = argmax(Ot) (1)

Next, we assume a small set of M labeled samples, Ωk = {(x∗m, y∗k)}Mm=1, for each class label k.
We refer to these samples as the oracle samples. From these, we take the samples that are of the
same label as the predicted label ŷt. Then, we perturb each oracle sample, x∗m, by performing Mixup
with an auxiliary sample, xi ∈ {xi}Ni=1, with Mixup rate λr.

x∗mir = λrx
∗
m + (1− λr)xi, where y∗k = ŷt (2)

We feed the perturbed oracle sample to the classification model f(·) and get the model’s prediction
scores, O∗

mir = f(x∗mir) ∈ RK . Then, we average the perturbed oracle samples’ model outputs,
to get Ō∗

ir = 1
M

∑M
m=1O

∗
mir. Finally, we compute the perturbed oracle samples’ OOD score,

s∗ir ∈ R, with an arbitrary output-based OOD scoring function h(·) such as MSP and MLS, i.e.,
s∗ir = h

(
Ō∗

ir

)
∈ R.

Target-side perturbation We perturb the target sample xt with the same auxiliary samples
{xi}Ni=1, as xir = λrxt + (1− λr)xi, and compute the OOD scores of the perturbed target sample
as follows:

Oir = f(xir) ∈ RK , sir = h(Oir) ∈ R (3)

Comparison of perturbed samples’ outputs From perturbed target’s and oracles’ uncertainty
scores, (s∗ir, sir), we calculate the MixDiff score for the target sample, xt, as shown in Equation 4.
We average the differences between the two scores over the auxiliary samples and the Mixup ratios.
This measures the model’s uncertainty score of the target sample relative to similar ID samples
when both undergo the same Mixup operation with an auxiliary sample xi. We describe the overall
procedure of MixDiff in Algorithm 1 and Figure 2.
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MixDiff =
1

RN

R∑
r=1

N∑
i=1

(sir − s∗ir) (4)

As a final step, we multiply the MixDiff score by a scaling hyperparameter γ and simply add this
to the base OOD score of the target sample, h(xt), to inject additional information gained from the
perturb-and-compare approach.

Algorithm 1 Computation of MixDiff Score
Require: target sample xt, set of auxil-
iary samples {xi}Ni=1, set of Mixup rates
{λr}Rr=1, set of oracle samples for all K
classes {Ωk}Kk=1 where Ωk = {(x∗m, y∗k)}Mm=1,
classifier model f(·), OOD scoring function
h(·)

1: Ot = f(xt)
2: ŷt = argmax(Ot)
3: {(x∗m, y∗k)}Mm=1 ← Ωk,where y∗k = ŷt
4: for i ∈ {1, . . . , N} do
5: for r ∈ {1, . . . , R} do
6: for m ∈ {1, . . . ,M} do
7: O∗

mir ← f(λrx
∗
m + (1− λr)xi)

8: end for
9: s∗ir ← h

(
1
M

∑M
m=1O

∗
mir

)
10: Oir ← f(λrxt + (1− λr)xi)
11: sir ← h(Oir)
12: end for
13: end for
14: MixDiff← 1

RN

∑R
r=1

∑N
i=1(sir − s∗ir)

Practical implementation We note that the
oracle-side procedure can be precomputed since it
does not depend on the target sample. The target-
side computations can be effectively parallelized
since each perturbed target sample can be pro-
cessed by the model, independent of the others. In
our implementation, we organize the perturbed tar-
get samples in a single batch. Further speedup can
be gained in remote API environments as API calls
are often handled by multiple nodes. This scenario
is similar to Ning et al. (2023), where concurrent
API calls are employed to enhance latency in re-
mote API environments.

3.1 THEORETICAL ANALYSIS

To better understand how and when our method
ensures performance improvements, we present a
theoretical analysis of MixDiff. We use a similar
theoretical approach to Zhang et al. (2021), but to-
wards a distinct direction for analyzing a post hoc
OOD scoring function. Proposition 1 reveals the
decomposition of the OOD score function into two
components: the OOD score of the unmixed clean
target sample and the supplementary signals introduced by Mixup.
Proposition 1 (OOD scores for mixed samples). Let pre-trained model f(·) and base OOD score
function h(·) be twice-differentiable functions. and xiλ = λxt + (1− λ)xi be a mixed sample with
ratio λ ∈ (0, 1). Then OOD score function of mixed sample, h(f(xiλ)), is written as:

h(f(xiλ)) = h(f(xt)) +

3∑
l=1

ωl(xt, xi) + φt(λ)(λ− 1)2, (5)

where limλ→1 φt(λ) = 0,

ω1(xt, xi) = (λ− 1)(xt − xi)
T f ′(xt)h

′(f(xt))

ω2(xt, xi) =
(λ− 1)2

2
(xt − xi)

T f ′′(xt)(xt − xi)h
′(f(xt))

ω3(xt, xi) =
(λ− 1)2

2
(xt − xi)

T f ′(xt)(xt − xi)
T f ′(xt)h

′′(f(xt)).

We analyze MixDiff using the quadratic approximation of h(f(xiλ)), omitting the higher order
terms denoted as φt(λ) in Equation 5. We verify how well the sum of the OOD score of the pure
sample and omega approximates the OOD score of the mixed sample in Equation 5. As shown
in Figure 3a, with a larger λ, approximation errors are smaller, as ω(xt, xi) =

∑3
l=1 ωl(xt, xi)

decreases. The result of this observation is that ω(xt, xi) represents the impact caused by Mixup
since it increases as λ decreases. Then the additional signals caused by Mixup are from the first and
second derivative of f(·) and h(·) and the difference between the input sample and the auxiliary
sample.

We argue that perturbing both target and oracle samples and then comparing the results of them can
be beneficial for OOD detection. Through Theorem 1, we demonstrate the effect of our perturb-and-
compare strategy, MixDiff, on a simple linear model setup.
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(a) (b) (c) (d)

Figure 3: (a) Approximation error in Equation 5. Without higher-order terms, we can reasonably ap-
proximate the OOD score of mixed sample with decomposed terms. (b) Syntactic data distribution.
Data is sampled from four independent Gaussian distributions, with two considered ID samples for
each class and the other two as OOD samples. We train a logistic regression with this dataset. (c)
The results of the prediction of the trained model. (d) Although the target sample is a hard OOD
sample, there are auxiliary samples that guarantee MixDiff is positive under some reasonable con-
ditions introduced in Theorem 1.

Theorem 1. Let h(x) and f(x) be a MSP and linear model, wTx+ b, where w, x ∈ Rd, and b ∈ R,
respectively. First we assume that the confidence of any arbitrary oracle sample f(xm) is sufficiently
large, such that 0 < σ′′(ft)

σ′′(fm) < 1. Additionally, we assume that 0 < f(xm)f(xt), f(xt) = f(xm)+

c,where c > 0 (i.e., xt is one of the hard OOD samples to which the model have more confidence
than corresponding oracle sample, xm). For the binary classification task, there exists xi such that

h(f(xt))− h(f(xm)) +

3∑
l=1

(ωl(xt, xi)− ωl(xm, xi)) > 0. (6)

In Theorem 1, we show that when the OOD sample is a high-confidence sample, i.e., a hard OOD
sample, there exists an auxiliary sample xi that can be used to calibrate the overemphasis via MixD-
iff’s perturb-and-compare mechanism. This provides a theoretical ground for our approach’s effec-
tiveness at discerning OOD samples that may not be detected by existing methods1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We elaborate on the implementation details and present the descriptions on baselines. Other details
on datasets and evaluation metrics are provided in Appendix E.

Implementation details Following the zero-shot OOD detection approach (Esmaeilpour et al.,
2022; Ming et al., 2022; Wang et al., 2023a) that utilizes pre-trained vision-language models’ zero-
shot classification capability, we employ CLIP ViT-B/32 model (Radford et al., 2021) as our clas-
sification model without any finetuning on ID samples. We construct the oracle set by randomly
sampling M samples per class from the train split of each dataset. For a given target sample, we
simply use the other samples in the same batch as the auxiliary set. We note that in this simple
setup, the auxiliary samples do not require labeling and may even contain OOD samples. Instead of
searching hyperparameters for each dataset, we perform one hyperparameter search on Caltech101
(Fei-Fei et al., 2004) and use the same hyperparameters across all the other datasets, which is in line
with a more realistic OOD detection setting (Liang et al., 2018) 2.

Baselines We take MSP (Hendrycks & Gimpel, 2017), MLS (Hendrycks et al., 2022), energy score
(Liu et al., 2020), Shannon entropy (Lakshminarayanan et al., 2017) and MCM (Ming et al., 2022)
as the output-based training-free baselines. We also include methods that require extra training for
comparison. ZOC (Esmaeilpour et al., 2022) is a zero-shot OOD detection method based on CLIP

1Proof and details of Proposition 1 and Theorem 1 are in Appendix B and C, respectively. We also show
that Theorem 1 holds for MLS and Entropy in Appendix C.

2We provide more details of implementation in Appendix E.
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Method Training-free CIFAR10 CIFAR100 CIFAR+10 CIFAR+50 TinyImageNet Avg.

CSI (Tack et al., 2020) ✗ 87.0±4.0 80.4±1.0 94.0±1.5 97.0 76.9±1.2 87.0
CAC (Miller et al., 2021) ✗ 80.1±3.0 76.1±0.7 87.7±1.2 87.0 76.0±1.5 84.9
CLIP+CAC (Miller et al., 2021) ✗ 89.3±2.0 83.5±1.2 96.5±0.5 95.8 84.6±1.7 89.9
ZOC † (Esmaeilpour et al., 2022) ✗ 91.5±2.5 82.7±2.8 97.6±1.1 97.1 82.6±3.1 90.3

MixDiff+ZOC † ✗ 92.2±2.5 82.8±2.4 98.2±1.2 98.5 82.9±3.3 90.9

MSP (Hendrycks & Gimpel, 2017) ✓ 88.7±2.0 78.2±3.1 95.0±0.8 95.1 80.4±2.5 87.5
MLS (Hendrycks et al., 2022) ✓ 87.8±3.0 80.0±3.1 96.1±0.8 96.0 84.0±1.2 88.8
Energy (Liu et al., 2020) ✓ 85.4±3.0 77.6±3.7 94.9±0.9 94.8 83.2±1.2 87.2
Entropy (Lakshminarayanan et al., 2017) ✓ 89.9±2.6 79.9±2.5 96.8±0.8 96.8 82.2±2.3 89.1
MCM (Ming et al., 2022) ✓ 90.6±2.9 80.3±2.1 96.9±0.8 97.0 83.1±2.2 89.6

MixDiff+MSP ✓ 89.2±1.6 80.1±2.8 96.7±0.8 96.9 81.6±2.6 88.9
MixDiff+MLS ✓ 87.9±2.1 80.5±2.2 96.5±0.7 96.9 84.5±0.9 89.3
MixDiff+Energy ✓ 85.6±2.2 78.3±2.7 95.4±0.8 95.9 83.6±1.1 87.8
MixDiff+Entropy ✓ 90.7±1.8 81.0±2.6 97.6±0.8 97.6 82.9±2.4 90.0
MixDiff+MCM ✓ 91.4±1.8 81.4±2.6 97.5±0.9 97.7 83.9±2.2 90.4

Table 1: Average AUROC scores for five datasets. The highest and second highest AUROC scores
from each block are highlighted with bold and underline. The value on the right side of ± denotes
the standard deviation induced from 5 different OOD, ID class splits. † indicates the evaluation
setting described in Appendix E.4.

(Radford et al., 2021) that requires training a separate candidate OOD class name generator. CAC
(Miller et al., 2021) relies on train-time loss function modification. CAC shows the best performance
among the train-time modification methods that are compatible with CLIP. We take CAC trained
with the same CLIP ViT-B/32 backbone as a baseline (CLIP+CAC) (Esmaeilpour et al., 2022).

4.2 LOGITS AS MODEL OUTPUTS

First, we assume a more lenient access constraint whereby logits are provided as the model f(·)’s
outputs. This setup facilitates validation of MixDiff’s OOD score enhancement ability on both the
logit-based and probability-based scores. Note that, in this setup, the perturbed oracle samples’
probability-based OOD scores are computed after averaging out M perturbed oracle samples in the
logit-space, i.e., Ō∗

ir = 1
M

∑M
m=1O

∗
mir.

Method Training-free AUROC (↑) FPR95 (↓) AUCPR (↑)
ZOC † ✗ 82.7±2.8 64.0±6.9 94.1±1.0

MixDiff+ZOC † ✗ 82.8±2.4 65.2±12.0 95.0±0.7

MSP ✓ 78.2±3.1 60.4±5.3 91.4±1.9

MLS ✓ 80.0±3.1 62.3±5.2 92.9±1.6

Energy ✓ 77.6±3.7 65.4±4.2 91.9±1.9

Entropy ✓ 79.9±2.5 58.8±5.2 92.0±1.7

MixDiff+MSP ✓ 80.1±2.8 60.1±4.8 92.3±1.5

MixDiff+MLS ✓ 80.5±2.2 62.5±4.1 92.9±1.2

MixDiff+Energy ✓ 78.3±2.7 65.9±3.4 92.1±1.4

MixDiff+Entropy ✓ 81.0±2.6 58.4±4.8 92.6±1.5

Table 2: Performance comparison with various
metrics.

The results in Table 1 show that the perturb-
and-compare approach is effective at enhancing
output-based OOD scores, to a degree where one
of the training-free methods, MixDiff+MCM, out-
performing a training-based method CLIP+CAC
(Miller et al., 2021). Equipping MixDiff with the
best performing non-training-free method, ZOC
(Esmaeilpour et al., 2022), also yields perfor-
mance improvements3. Table 2 presents a com-
prehensive performance analysis of MixDiff in re-
lation to other baselines, utilizing commonly em-
ployed metrics for OOD detection studies. Our findings show MixDiff can boost OOD detection
performance, particularly in FPR95 and AUCPR as well as AUROC.

4.3 PREDICTION PROBABILITIES AS MODEL OUTPUTS

We now take a more restricted environment where the only accessible part of the model is its output
prediction probabilities. To the best of our knowledge, none of the existing OOD score enhancement
methods are applicable in this environment. Logits are required in the case of Softmax temperature
scaling (Liang et al., 2018). ODIN’s gradient-based input preprocessing (Liang et al., 2018) or
weight pruning methods (Sun & Li, 2022) assume an access to the model’s parameters. The model’s
internal activations are required in the case of activation clipping (Sun et al., 2021) and activation
pruning (Djurisic et al., 2023). We take a linear combination of entropy and MSP scores with a
scaling hyperparameter tuned on the Caltech101 dataset as a baseline (MSP+Entropy). The re-

3We provide details on adaptation of MixDiff with ZOC in Appendix E.
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Method Access CIFAR10 CIFAR100 CIFAR+10 CIFAR+50 TinyImageNet Avg.

MSP (Hendrycks & Gimpel, 2017) Prediction prob. 88.7±2.0 78.2±3.1 95.0±0.8 95.1 80.4±2.5 87.5
Entropy (Lakshminarayanan et al., 2017) Prediction prob. 89.9±2.6 79.9±2.5 96.8±0.8 96.8 82.2±2.3 89.1
MSP+Entropy Prediction prob. 89.9±2.6 79.9±2.5 96.8±0.8 96.8 82.2±2.3 89.1

MixDiff+MSP (Prediction probabilities) Prediction prob. 89.4±1.3 80.0±2.8 96.5±0.8 96.8 81.8±2.4 88.9
MixDiff+Entropy (Prediction probabilities) Prediction prob. 91.1±1.6 80.9±2.6 97.1±0.8 97.3 82.9±2.3 89.9
with unlabeled oracle Prediction prob. 91.0±1.6 80.5±2.9 97.1±0.8 97.3 82.7±2.1 89.7
with oracle as auxiliary Prediction prob. 90.6±1.7 81.1±2.0 97.3±0.7 97.4 82.9±2.2 89.9
with random ID as auxiliary Prediction prob. 90.8±1.5 81.1±2.1 96.8±1.0 96.8 82.9±2.3 89.7
with perturb only Prediction prob. 89.4±2.9 79.5±2.7 97.1±0.9 97.2 81.6±2.5 89.0
with random ID as oracle Prediction prob. 89.5±2.8 79.6±2.7 97.1±0.9 97.3 81.7±2.5 89.0

Random score from uniform distribution Prediction label 49.6±0.5 49.8±1.1 49.8±0.7 50.1 49.8±0.4 49.8

MixDiff with random ID as auxiliary Prediction label 62.4±4.1 59.4±6.2 65.6±1.5 65.4 63.3±2.8 63.2
MixDiff with oracle as auxiliary Prediction label 61.9±3.7 55.1±7.1 59.9±1.1 59.8 55.6±2.7 58.4

DML (Zhang & Xiang, 2023) Activation 87.8±3.0 80.0±3.1 96.1±0.8 96.0 84.0±1.2 88.8
ASH (Djurisic et al., 2023) Activation 85.2±3.8 75.4±4.4 92.5±0.9 92.4 77.2±3.1 84.5

Table 3: AUROC scores on more restricted access scenarios. The upper, middle blocks contain
results on the environment where only the prediction probabilities, prediction labels are available,
respectively. The lower block’s methods require models’ inner activations

sults are presented in Table 3. Even in this constrained situation, MixDiff can effectively enhance
output-based OOD scores by utilizing additional information gained from the perturb-and-compare
approach, while MSP score fails to provide entropy score any meaningful performance gain.

Ablations We present the ablation results of MixDiff framework in Table 3 to illuminate each
component’s effect on performance. We take MixDiff+Entropy for these experiments. First, we
progressively increase the homogeneity of auxiliary samples by changing the in-batch auxiliary
samples, which may contain OOD samples, to random ID samples (random ID as auxiliary), and to
the other oracle samples with the same predicted label as the target (oracle as auxiliary). Removal
of the comparison part of the perturb-and-compare approach by adding only the perturbed target’s
scores without comparing with the perturbed oracles’ scores results in performance degradation
(perturb only). On the oracle side, randomly choosing oracle samples instead of finding similar
oracle samples using the predicted class label leads to decreased performance (random ID as oracle).
We show that utilization of pseudo-oracle is possible by selecting top-M most similar samples from
M × K unlabeled ID samples with similarity calculated from the dot product of the prediction
probabilities of the target and the unlabeled oracle samples (unlabeled oracle).

4.4 PREDICTION LABELS AS MODEL OUTPUTS

We push the limits of the model access by assuming that only the predicted class labels are available
without any scores attached to them. We apply MixDiff by representing the model’s predictions
as one-hot vectors and taking the difference between the perturbed target’s predicted label and the
corresponding perturbed oracles’ average score for that label in Equation 4. As there is no base
OOD score applicable in the environment, we use the MixDiff score alone. The results in Table 3
show that MixDiff is applicable even in this extremely constrained access environment.

4.5 ROBUSTNESS TO ADVERSARIAL ATTACKS

Method CIFAR10 CIFAR100

Clean In Out Both Clean In Out Both

Entropy 89.88 47.42 13.77 2.678 79.87 36.86 14.38 2.21
MixDiff+Entropy 90.64 54.71 31.77 9.084 81.11 47.42 31.40 9.08
MixDiff Only 88.16 61.00 40.28 20.45 78.05 58.84 44.19 27.48

Table 4: AUROC scores on various attack scenarios.
”In”/”Out” indicates all of the ID/OOD samples are
adversarially modified. ”Both” indicates all of the
ID, OOD samples are adversarially modified. MixD-
iff Only refers to the score in Equation 4.

In adversarial attack of an OOD detector,
the attacker creates a small, indistinguish-
able modification to a target sample with
the purpose of increasing (decreasing) the
model’s confidence for a given OOD (ID)
sample (Chen et al., 2022a; 2021; Aziz-
malayeri et al., 2022). These modifications
can be viewed as injection of certain artifi-
cial features, specifically designed to induce
more confident or uncertain outputs from the
model. Our motivation in Section 1 suggests that these artificial features may also be less robust to
perturbations. We test this by evaluating MixDiff under adversarial attack. The results in Table
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4 indicate that the contributing features that induce ID/OOD misclassification are less robust to
perturbations and that MixDiff can effectively exploit such brittleness. Detailed description of the
experimental setup is in Appendix E.6.

4.6 EXPERIMENTS ON OUT-OF-SCOPE DETECTION TASK

Out-of-scope detection We take the MixDiff framework to out-of-scope (OOS) detection task to
check its versatility in regard to the modality of the input. To reliably fulfill users’ queries or instruc-
tions, understanding the intent behind a user’s utterance forms a crucial aspect of dialogue systems.
In the intent classification task, models are tasked to extract the intent behind a user utterance.
While there has been an inflow of development in the area for the improvement of classification per-
formance (Kumar et al., 2022; Zhang et al., 2022), there is no guarantee that a given query’s intent is
in the set of intents that the model is able to classify, especially in a real-world setting. Out-of-scope
detection task (Chen & Yu, 2021; Zhan et al., 2021) concerns with detection of such user utterances,
so that it would refrain from performing an unintended action when the intent belongs to none of the
intents listed in an intent classifier.

MixDiff with textual input Unlike images whose continuousness lends itself to a simple Mixup
operation, the discreteness of texts renders Mixup of texts not as straightforward. While there are
several works that explore Mixup of text, most of these require access to the model parameters (Yoon
et al., 2021; Kong et al., 2022; Guo et al., 2019). This limits the MixDiff framework’s applicability
in an environment where the model is served as an API (Sun et al., 2022b;a), which is becoming
more and more prevalent with the rapid development of large language models (Brown et al., 2020;
OpenAI, 2023; Touvron et al., 2023). Following this trend, we assume a more challenging envi-
ronment with the requirement that Mixup be performed on the input level. To this end, we simply
concatenate the text pair and let Mixup happen while the pair is inside the model (Hao et al., 2023).

Method CLINC150 Banking77 ACID TOP Average

MSP 93.02 85.43 88.98 90.01 89.36
MLS 93.56 85.02 88.91 90.06 89.39
Energy 93.61 84.99 88.83 90.06 89.37
Entropy 93.29 85.59 88.87 90.02 89.44

MixDiff+MSP 93.42 85.75 89.18 90.68 89.76
MixDiff+MLS 93.88 85.46 89.24 90.35 89.73
MixDiff+Energy 93.89 85.51 89.18 90.35 89.73
MixDiff+Entropy 93.67 85.98 89.13 90.68 89.87

Table 5: Average AUROC scores for out-of-
scope detection task.

Experimental setup We run OOS detection ex-
periments using 4 intent classification datasets:
CLINC150 (Larson et al., 2019), Banking77
(Casanueva et al., 2020), ACID (Acharya & Fung,
2020), TOP (Gupta et al., 2018). Following Zhan
et al. (2021); Lin & Xu (2019), we randomly split
the provided classes into in-scope and OOS in-
tents, with in-scope intent class ratios of 25%,
50%, 75%. For the intent classification model,
we finetune the BERT-base model (Devlin et al.,
2019) on the in-scope split of each dataset’s train set. For each in-scope ratio, we construct 10 in-
scope, OOS splits with different random seeds and evaluate the test set containing the entirety of the
intent classes.

Results We report the average AUROC scores in Table 5, each of which is averaged over the
in-scope class ratios as well as the class splits. Even with a simple Mixup method that simply
concatenates the text pair, MixDiff consistently improves the performance across diverse datasets.
The results suggest that the MixDiff framework’s applicability is not limited to images and that the
framework can be applied to other modalities with an appropriate perturbation method.

5 CONCLUSION

In this paper, we present a new OOD detection framework, MixDiff, that boosts OOD detection per-
formance in constrained access scenarios. MixDiff is based on the perturb-and-compare approach
that measures how the model’s confidence in the target sample behaves compared to a similar ID
sample when both undergo an identical perturbation. This provides an additional signal that cannot
be gained from the limited information of the target sample’s model output alone. We provide theo-
retical grounds for the framework’s effectiveness and empirically validate our approach on multiple
degrees of restricted access scenarios, the most extreme of which is where only the model’s predic-
tion labels are available. Our experimental results show that MixDiff is an effective OOD detection
method for constrained access scenarios where the applicability of existing methods is limited.
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6 REPRODUCIBILITY

We make an anonymized version of our code that we have used to run the experiments
in the paper available. The implementation for the experiments on the more restricted ac-
cess scenarios where only the models’ prediction probabilities or class labels were accessi-
ble, is made available at: https://anonymous.4open.science/r/mixdiff hard. The implementation
for the experiments where logits were available as models’ prediction scores is available at:
https://anonymous.4open.science/r/mixdiff easy. The latter includes the out-of-scope detection ex-
periments as well as output-based OOD score baselines.

7 ETHICS

We note that the pre-trained models, namely, CLIP (Devlin et al., 2019) and BERT (Radford et al.,
2021), that we have used in our experiments may contain social biases as these models are trained
on large amounts of unfiltered data on the Web. How these biases manifest when deciding whether
a sample is OOD or ID is crucial for fairness, since it is possible for these biases to negatively
affect the model’s decision process. Future work may explore how the models’ biases may affect
MixDiff’s OOD detection process and selection of oracle or auxiliary samples that induce unbiased
out-of-distribution detection.
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A NOTATION

Notation Definition

f(·) Classifier model.
h(·) Arbitrary output-based OOD score function.
M The number of oracle samples of each class.
R The number of Mixup ratios.
N The number of auxiliary samples that will be mixed with the oracle or target samples.
Ωk Set of oracle sample and label pairs for the k-th class.
Ω Set of oracle sample and label pairs of all classes, {Ωk}Kk=1.
λr r-th Mixup ratio.
xt The target sample.
xir Mixed sample from the target xt and i-th auxiliary sample with Mixup ratio of λr.
x∗mir Mixed sample from the m-th oracle sample i-th auxiliary sample with Mixup ratio of λr.
Oir The prediction scores from the mixture of the target and i-th auxiliary sample with the Mixup ratio λr.
O∗

mir The prediction scores from the mixture of the m-th oracle and i-th auxiliary sample with the Mixup ratio λr.
Ō∗

ir The mean of {O∗
mir}Mm=1 along the subscript m.

sir OOD score induced by Oir.
s∗ir OOD score induced by Ō∗

ir.
γ The scaling hyperparameter to which the MixDiff score will be multiplied.

B PROOF OF PROPOSITION 1

Proposition 1 (OOD score function for mixed samples). Let pre-trained model f(·) and base OOD
score function h(·) be a twice-differentiable function. and xiλ = λxt+(1−λ)xi be a mixed sample
with ratio λ ∈ (0, 1). Then base OOD score function of mixed sample, h(f(xiλ)), is written as:

h(f(xiλ)) = h(f(xt)) +

3∑
l=1

ωl(xt, xi) + φt(λ)(λ− 1)2 (B.1)

where limλ→1 φt(λ) = 0,

ω1(xt, xi) = (λ− 1)(xt − xi)T f ′(xt)h′(f(xt))

ω2(xt, xi) =
(λ− 1)2

2
(xt − xi)T f ′′(xt)(xt − xi)h′(f(xt))

ω3(xt, xi) =
(λ− 1)2

2
(xt − xi)T f ′(xt)(xt − xi)T f ′(xt)h′′(f(xt)).

Proof of Proposition 1. Let ψt(λ) = h(f(xiλ)) which is modified function of h(f(xiλ)) having λ
as an input. If h(·) and f(·) are twice differentiable w.r.t each input. By the second-order Taylor
approximation,

ψt(λ) = ψt(1) + ψ′
t(1)(λ− 1) +

1

2
ψ′′
t (1)(λ− 1)2 + φt(λ)(λ− 1)2, (B.2)

where limλ→1 φt(λ) = 0.

ψ′
t(λ) =

∂xiλ
∂λ

∂f(xiλ)

∂xiλ

∂h(f(xiλ))

∂f(xiλ)
= (xt − xi)T f ′(xiλ)h′(f(xiλ))

Since ∂
∂λ (xt − xi)

T f ′(xiλ)h
′(f(xiλ)) = ∂

∂λ [(xt − xi)
T f ′(xiλ)]h

′(f(xiλ)) + (xt −
xi)

T f ′(xiλ)
∂
∂λ [h

′(f(xiλ))] and ∂
∂λ (xt − xi)

T f ′(xiλ) = (xt − xi)T f ′′(xiλ)(xt − xi),

ψ′′
t (λ) = (xt−xi)T f ′′(xiλ)(xt−xi)h′(f(xiλ))+(xt−xi)T f ′(xiλ)(xt−xi)T f ′(xiλ)h′′(f(xiλ))

When λ = 1

ψ′
t(1) = (xt − xi)T f ′(xt)h′(f(xt))

ψ′′
t (1) = (xt − xi)T f ′′(xt)(xt − xi)h′(f(xt)) + (xt − xi)T f ′(xt)(xt − xi)T f ′(xt)h′′(f(xt))
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Fianlly, we derive Equation B.1 in proposition 1 as

h(f(xiλ)) = h(f(xt)) + (λ− 1)(xt − xi)T f ′(xt)h′(f(xt)) (B.3)

+
(λ− 1)2

2
(xt − xi)T f ′′(xt)(xt − xi)h′(f(xt)) (B.4)

+
(λ− 1)2

2
(xt − xi)T f ′(xt)(xt − xi)T f ′(xt)h′′(f(xt)) (B.5)

+ φt(λ)(λ− 1)2.

C PROOF OF THEOREM 1

Theorem 1. Let h(x) and f(x) be a MSP and linear model, wTx+ b, where w, x ∈ Rd, and b ∈ R,
respectively. First we assume that the confidence of any arbitrary oracle sample f(xm) is sufficiently
large, such that 0 < σ′′(ft)

σ′′(fm) < 1. Additionally, we assume that 0 < f(xm)f(xt), f(xt) = f(xm)+

c,where c > 0 (i.e., xt is one of the hard OOD samples to which the model have more confidence
than corresponding oracle sample, xm). For the binary classification task, there exists xi such that

h(f(xt))− h(f(xm)) +

3∑
l=1

(ωl(xt, xi)− ωl(xm, xi)) > 0. (C.6)

Proof of Theorem 1. Considering MSP in binary classification task, MSP = −max(σ(f(x)), 1 −
σ(f(x))). f ′(x) = w, f ′′(x) = 0,

h′(f(x)) =

{
−σ′(f(x)) if f(x) > 0

σ′(f(x)) otherwise

h′′(f(x)) =

{
−σ′′(f(x)) if f(x) > 0

σ′′(f(x)) otherwise

σ(·) denotes the sigmoid function. Assuming the target input is one of hard OOD samples that can
be interpreted as f(xt) = f(xm) + c and h(f(xt)) < h(f(xm)) where 0 < f(xm) < f(xt), 0 < c
and 0.5 < σ(f(xm)) < σ(f(xt)). Then h(f(xt))−h(f(xm)) = −σ(f(xt))+σ(f(xm)). −0.5 <
−σ(f(xt)) + σ(f(xm)) < 0.

Equation C.6 is equivalent to Equation C.7 as ω2 = 0 under the assumption that f(x) is a linear
model.

h(f(xt))− h(f(xm)) + (ω1(xt, xi)− ω1(xm, xi)) + (ω3(xt, xi)− ω3(xm, xi)) > 0 (C.7)

ω1(xt, xi)− ω1(xm, xi) = (λ− 1)[(xt − xi)Tw(−σ′(f(xt)))− (xm − xi)Tw(−σ′(f(xm)))]
(C.8)

= (λ− 1)[(f(xi)− f(xt))σ′(f(xt))− (f(xi)− f(xm))σ′(f(xm))]
(C.9)

= (λ− 1)[(f(xi)− f(xt))σ′(f(xt))− (f(xi)− f(xt) + c)σ′(f(xm))]
(C.10)

= (λ− 1)[(f(xi)− f(xt))(σ′(f(xt))− σ′(f(xm)))− cσ′(f(xm))].
(C.11)

Because we assume 0 < f(xm) < f(xt), σ′(f(xt)) − σ′(f(xm)) < 0, and 0 < λ < 1, (λ −
1)(f(xi) − f(xt))(σ′(f(xt)) − σ′(f(xm))) ≥ 0 when f(xi) − f(xt) ≥ 0. When (ω1(xi, xi) −
ω1(xm, xi)) ≥ 0,

f(xi) ≥ f(xt) +
cσ′(f(xm))

σ′(f(xt))− σ′(f(xm))
. (C.12)

f(xi) denotes the confidence of the model with respect to auxiliary sample xi. When f(xi) satisfies
the above condition, Equation C.7 holds when

ω3(xt, xi)− ω3(xm, xi) ≥ 0.5. (C.13)
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Let 0 < τ = h′′(f(xt))
h′′(f(xm)) < 1, then

[(xt − xi)Tw]2h′′(f(xt))− [(xm − xi)Tw]2h′′(f(xm)) ≤ 0.5. (C.14)

[(f(xt)− f(xi))2τ − (f(xm)− f(xi))2]h′′(f(xm)) ≤ 0.5. (C.15)

Because of h′′(f(xt)) < 0,

(f(xt)− f(xi))2τ − (f(xm)− f(xi))2 ≤
0.5

h′′(f(xt))
(C.16)

(f(xt)− f(xi))2τ − (f(xt)− c− f(xi))2 ≤
0.5

h′′(f(xt))
. (C.17)

Let t = f(xt)− f(xi), then

t2τ − (t− c)2 = (τ − 1)t2 + 2ct− c2. (C.18)

By reformulating the Equation C.18 with respect to f(xi), we obtain the following expression.

(τ − 1)f(xi)
2 − 2((τ − 1)f(xt) + c)f(xi) + (τ − 1)f(xt)

2 + 2cf(xt)− c2 − 2σ′′(f(xm)) ≤ 0.
(C.19)

When 0 < τ < 1, the Equation C.19 is a concave quadratic function with respect to f(xi) and the
discriminant of the Equation C.19 with respect to f(xi) is positive and The value of the right side of
C.12 exists between the two solution values for which C.19 equals zero with respect to f(xi).

Lemma 1. Considering Entropy OOD score function in binary classification task, Entropy =
−(σ(f(x)) log(σ(f(x))) + (1 − σ(f(x))) log(1 − σ(f(x)))). f ′(x) = w and f ′′(x) = 0. Let
us assume prediction scores of a hard OOD sample and an oracle sample are f(xt), f(xm) >
0, f(xt) = f(xm) + c, c > 0, then −ϵ < h(f(xt)) − h(f(xm)) < 0, where −ϵ < 0 denotes the
lower bound of the difference between the OOD scores of the target and oracle samples. Followed
by Equation C.11,

(λ− 1)(f(xt)− f(xm))(h′(f(xt))− h′(f(xm))) + (λ− 1)ch′(f(xm)).

Because the sign of h′(f(xm)) is a negative when f(xm) > 0, (λ − 1)ch′(f(xm)) ≥ 0.
h(f(xt))−h(f(xm))+(ω1(xt, xi)−ω1(xm, xi)) ≥ 0, where (λ−1)(f(xt)−f(xm))(h′(f(xt))−
h′(f(xm))) ≥ ϵ.

f(xi) ≥ f(xt)−
ϵ

(λ− 1)(h′(f(xt))− h′(f(xm)))
, if h′(f(xt))− h′(f(xm)) > 0 (C.20)

f(xi) ≤ f(xt)−
ϵ

(λ− 1)(h′(f(xt))− h′(f(xm)))
, if h′(f(xt))− h′(f(xm)) < 0 (C.21)

Under the assumption that f(xi) satisfies the above condition, Equation C.6 holds when

ω3(xt, xi)− ω3(xm, xi) ≥ 0. (C.22)

Let τ = h′′(f(xm))
h′′(f(xt))

> 0, then we follow the same step in Equation C.15 - Equation C.18. There
exists xi such that it satisfies Equation C.22 and Equation C.21.
Lemma 2. Considering MLS OOD score function in binary classification task, MLS = -f(x). Equa-
tion C.6 is equivalent to Equation C.23 as ω2 = ω3 = 0 because f ′′(x) = h′′(f(x)) = 0.

h(f(xt))− h(f(xm)) + ω1(xt, xi)− ω1(xm, xi) > 0 (C.23)

The right hand-side of Equation C.23 is written as

− f(xt) + f(xm) + (1− λ)[(f(xt)− f(xi))− (f(xm)− f(xi))] (C.24)
=− f(xt) + f(xm) + (1− λ)(f(xt)− f(xm)) (C.25)
=− λf(xt) + λf(xm). (C.26)

If xt is an OOD sample and f(xm) > f(xt) where f(xt), f(xm) > 0, Equation C.23 holds.
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(a) MixDiff + Entropy (b) MixDiff + MLS

Figure 4: The first figure in (a) and (b) compares the OOD score between the mixed target sample’s
OOD score and the approximated OOD score. The second figure in (a) and (b) shows the example of
auxiliary samples and oracle samples that satisfy the condition to guarantee that MixDiff is positive.

D EXPERIMENTAL VALIDATION OF PROPOSITION 1 AND THEOREM 1

We experimentally ensure the proposition 1 and theorem 1 when the base OOD score function is
Entropy and MLS, respectively. We verify the theorem 1 on the synthetic dataset consisting of 2-
dimensional features. In the second figure in Figure 4a, we plot the OOD target sample, an oracle
sample that has the same class as the prediction of the target sample, and auxiliary samples that
satisfy the condition that makes MixDiff positive. In the second figure in Figure 4b, We show only
the target sample, the oracle samples, and the oracle samples that meet the condition for having a
positive MixDiff. Due to the assumption of binary classification with a linear model, it eliminates
the effect of auxiliary samples.

E EXPERIMENTAL DETAILS

E.1 EXPERIMENTAL SETUP

We evaluate MixDiff within the setting where the class names of OOD samples and the OOD labels
are unavailable at train time. This is a more challenging experimental setting compared to the
environment where the OOD class names or its instances are known during the training phase.
We follow the same setup as in Esmaeilpour et al. (2022), and evaluate our method on five OOD
detection benchmark datasets: CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al.,
2009), CIFAR+10 (Miller et al., 2021), CIFAR+50 (Miller et al., 2021), TinyImageNet (Le & Yang,
2015).

Each dataset’s ID and OOD (known and unknown) class splits are composed of as follows. CI-
FAR10 (Krizhevsky et al., 2009): the dataset’s 10 classes are randomly split into 6 ID classes and
4 OOD classes. CIFAR100 (Krizhevsky et al., 2009): consecutive 20 classes are assigned to be
ID classes and the remaining 80 classes are assigned to be OOD classes. CIFAR+10 (Miller et al.,
2021): 4 non-animal classes of CIFAR10 are ID classes, 10 randomly sampled animal classes from
CIFAR100 are OOD classes. CIFAR+50 (Miller et al., 2021): 4 non-animal classes of CIFAR10 are
ID classes, 50 randomly sampled animal classes from CIFAR100 are OOD classes. TinyImageNet
(Le & Yang, 2015): considers 20 randomly sampled classes as ID classes and the remaining 180
classes as OOD classes.

For CIFAR10, CIFAR+10, CIFAR+50 and TinyImageNet, we follow the same ID, OOD class splits
as in Miller et al. (2021); Esmaeilpour et al. (2022). For CIFAR100, we use the same class splits as in
Esmaeilpour et al. (2022). Each dataset contains 5 splits, except for CIFAR+50, which is consisted
of only one ID, OOD class split. Figure 9a shows each method’s average AUROC scores averaged
over the five datasets. All of the results in the upper block of the Table 1 are from Esmaeilpour et al.
(2022) except for ZOC and MixDiff+ZOC.

E.2 EVALUATION METRICS

We compare our method with the baseline methods using the metrics that are commonly employed
for OOD detection tasks. AUROC is Area Under the Receiver Operating Characteristic where the
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receiver operating characteristic represents the relationship between false positive rate (FPR) and
true positive rate (TPR) for all of the threshold range. FPR95 denotes the False Positive Rate when
the threshold satisfies 95% TPR. AUCPR is Area Under the Curve of Precision and Recall. It
is a useful performance measure, especially with an imbalanced dataset. For AUCPR, we set the
detection threshold to be the value that satisfies 95% TPR.

E.3 HYPERPARAMETER SEARCH ON CALTECH101

Figure 5: AUROC scores averaged over
the five datasets.

We construct each known-unknown class split for Cal-
tech101 dataset (Fei-Fei et al., 2004) by randomly sam-
pling 20 classes as ID, and setting aside the rest as OOD,
making a total of 3 splits. We conduct grid search over the
following hyperparameter configurations: M ∈ {15, 10},
N ∈ {14, 9}, R ∈ {7, 5}, γ ∈ {2.0, 1.0, 0.5}. We
use the numbers that evenly divide the interval [0, 1] into
R + 1 segments as the values of the Mixup ratios. For
example, when R = |Λ| = 3, the set of Mixup ratios is
Λ = {0.25, 0.5, 0.75}. We select the configuration with
the highest average AUROC score for each method. For
the environment where the model outputs are the logits,
the resulting hyperparameters are M = 15, N = 14,
R = 7, and γ = 2 for all methods.

For MSP+Entropy linear combination baseline, we tune the scaling factor η = b × 10a, by
conducting grid search over the following configurations: a ∈ {−4,−3,−2,−1, 0, 1, 2, 3, 4},
b ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} and the score to which η is multiplied (MSP or Entropy).

E.4 ADAPTATION OF MIXDIFF WITH ZOC

ZOC (Esmaeilpour et al., 2022) utilizes a candidate OOD class name generator. MixDiff framework
is applied to ZOC by averaging out each of the perturbed images’ candidate OOD logits as follows:
log( 1

C

∑C
i=1 exp (oi)) where C and oi are the number of generated OOD class names from the

image and the i-th OOD class logit, respectively. This effectively means that the logits in the per-
turbed oracle and target samples’ outputs have a dimension of K + 1 instead of K in the following
equations: O∗

mir = f(x∗mir) ∈ RK and Oir = f(xir) ∈ RK .

We 200 randomly chosen samples per split were used as ZOC’s token generation module requires
a large amount of computation to process the entire set of mixed images. Also, in this case, the
hyperparameters were tuned on each of the target datasets to alleviate variability issues.

E.5 PRACTICAL IMPLEMENTATION

For each target sample xt, MixDiff generatesN mixed samples, each of which withR Mixup ratios.
Similarly, it generates N × R mixed samples for each of M oracle samples. If we follow the in-
batch setup where the samples that are in the same batch as the target sample are used as the auxiliary
samples, MixDiff requires processing of BNR + BMNR mixed samples, denoting the batch size
as B = N + 1.

We avoid BNR + BMNR repeated forward passes by putting each set of the entire Mixup re-
sults, including the ones that are mixed with itself, into two tensors of sizes that are prefixed with
(B,B,R) and (B,M,B,R), one for the mixed images of targets and auxiliary samples, the other
for the mixed images of oracles and auxiliary samples, respectively. After computing the yet-to-
be-averaged MixDiff scores within a tensor of size (B,B,R), we zero out the diagonal entries in
the first two dimensions, (B,B), eliminating the scores from the target images that are mixed with
itself. Then, we take the average of the last two dimensions, (B,R), yielding B MixDiff scores for
each of the B test samples.

We also note that in practice the set of Ō∗
ir prediction scores corresponding to the oracle samples

mixed with the other in-batch samples do not need to be computed for every single test batch. One
can use a fixed set of samples as an auxiliary set and precompute each of the mixed oracle logits Ō∗

ir
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by mixing these samples with the oracle samples. When a test batch arrives, each of the samples
in the batch will then be independently mixed with these fixed auxiliary samples. Not only does it
reduce the compute cost, there is no dependency on the test batch size in regard to OOD detection
performance, since the auxiliary samples are no longer drawn from the test batch.

E.6 EXPERIMENTAL DETAILS ON ADVERSARIAL ATTACK

We take the same experimental setup as the OOD detection experiments with identical datasets and
backbone model. We use projected gradient descent (PGD) attack (Madry et al., 2018) with ϵ = 1

255
and attack step size of 10. Following Chen et al. (2022a), cross entropy with the uniform distribution
is used as the loss function when attacking ID samples, and Shannone entropy is used as the loss
function when attacking OOD samples.

E.7 EXPERIMENTAL DETAILS ON OUT-OF-SCOPE TASK

We run out-of-scope detection experiments using 4 intent classification datasets. CLINC150 (Larson
et al., 2019) dataset is consisted of samples spanning across 10 general domains including ”utility”
and ”travel”, with each sample belonging to one of 150 intent classes. Banking77 (Casanueva et al.,
2020) is a dataset specializing in banking domain and has 77 intent classes. ACID (Acharya &
Fung, 2020) is an intent detection dataset with 175 intents, consisted with samples of customers
contacting an insurance company. TOP (Gupta et al., 2018) is a dataset with the intents organized in
a hierarchical structure and is consisted of queries related to navigation and event. For TOP dataset,
we use the root node’s intent as the intent label for the query, as in Yilmaz & Toraman (2022).

For CLINC150 and TOP datasets, we keep the original OOS intents in the OOS split. More
specifically, CLINC150 dataset’s ”oos” class and TOP dataset’s intent classes that are prefixed
with ”IN:UNSUPPORTED” (Yilmaz & Toraman, 2022). We also set aside 4 intents in TOP
dataset that have too small number of samples to be reliably split into train and validation sets,
as OOS intents. These intents are ”IN:GET EVENT ATTENDEE”, ”IN:UNINTELLIGIBLE”,
”IN:GET EVENT ORGANIZER”, and ”IN:GET EVENT ATTENDEE AMOUNT”. This leaves
the dataset with 12 original in-scope intent classes, excluding the OOS intent classes.

To assume an environment where the test time in-scope ratio is unknown, we evaluate OOS de-
tection performance on multiple inner in-scope ratios, 25%, 50%, 75%, for each inner split. We
leave out the splits with the number of inner in-scope intents less than 2. An intent classification
model is trained for each of these inner in-scope splits following the same procedure as described
above. After training, we perform OOS detection on the outer in-scope validation set and select the
hyperparameter set with the highest average AUROC score.

We further split the train set of the in-scope samples into more in-scope, OOS splits and use these
to search MixDiff’s hyperparameters. For a given oracle sample, we use the other oracle samples
in the same class as the auxiliary samples. For ease of comparison between the logit-based and
probability-based OOD scoring functions, we take the setup where the model f(·)’s outputs are in
the logit space for both cases.

We explore three configurations with respect to the position of the auxiliary sample in a concatenated
text pair: (1) prepending the auxiliary sample at the front of an oracle or the target sample; (2)
appending the auxiliary sample at the end of an oracle or the target sample; (3) a combination of
both, analogous to the setting of 2 Mixup ratios in image Mixup (R = 2). We conduct grid search
over the following hyperparameters: M ∈ {5, 10, 15, 20, 25, 30}, γ ∈ {0.5, 1.0, 2.0}, and three
auxiliary sample concatenation methods as described above. We note that the number of auxiliary
samples is determined as N = M − 1, since we use the other oracle samples in the same class as
the auxiliary samples. We provide the average AUROC scores for each in-score ratio in Table 6.

E.8 VERIFICATION EXPERIMENT OF THE MOTIVATION

Our primary hypothesis is that OOD samples are more susceptible to perturbations compared to
ID samples of the predicted class of the target (oracle). To test this hypothesis, we utilize class
activation map (CAM) Chen et al. (2022b) to observe changes in the model’s attention areas before
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Method In-scope ratio CLINC150 Banking77 ACID TOP Average

MSP (Hendrycks & Gimpel, 2017)

25% 93.07±1.8 84.29±3.7 89.39±1.6 93.68±4.5 90.11
50% 93.26±0.6 85.80±3.2 88.61±1.3 88.90±5.2 89.14
75% 92.74±0.8 86.20±3.6 88.93±1.8 87.44±7.0 88.83
Avg. 93.02 85.43 88.98 90.01 89.36

MLS (Hendrycks et al., 2022)

25% 93.06±2.0 83.01±3.8 88.96±1.4 93.10±4.5 89.53
50% 93.77±0.6 85.63±3.2 88.77±1.0 88.30±6.2 89.12
75% 93.85±0.8 86.43±3.8 89.00±1.5 88.77±6.1 89.51
Avg. 93.56 85.02 88.91 90.06 89.39

Energy (Liu et al., 2020)

25% 93.09±2.1 82.96±3.8 88.87±1.4 93.10±4.5 89.51
50% 93.82±0.6 85.64±3.2 88.70±1.0 88.30±6.2 89.12
75% 93.91±0.8 86.36±3.8 88.93±1.5 88.78±6.1 89.50
Avg. 93.61 84.99 88.83 90.06 89.37

Entropy (Lakshminarayanan et al., 2017)

25% 93.23±1.8 84.28±3.8 89.27±1.6 93.68±4.5 90.12
50% 93.52±0.6 86.02±3.3 88.53±1.2 88.91±5.2 89.25
75% 93.11±0.8 86.48±3.8 88.81±1.7 87.46±7.0 88.97
Avg. 93.29 85.59 88.87 90.02 89.44

MixDiff+MSP

25% 93.57±1.7 84.77±3.6 89.66±1.6 93.68±4.6 90.42
50% 93.57±0.6 86.11±3.0 88.77±1.2 89.65±4,6 89.53
75% 93.12±0.8 86.36±3.4 89.10±1.6 88.71±6.1 89.32
Avg. 93.42 85.75 89.18 90.68 89.76

MixDiff+MLS

25% 93.57±2.0 83.56±3.7 89.37±1.4 93.16±4.4 89.92
50% 94.02±0.6 86.02±3.3 89.01±1.0 88.84±5.8 89.47
75% 94.04±0.7 86.81±3.6 89.33±1.3 89.04±6.0 89.81
Avg. 93.88 85.46 89.24 90.35 89.73

MixDiff+Energy

25% 93.59±2.0 83.51±3.7 89.28±1.4 93.17±4.4 89.89
50% 94.01±0.6 86.27±2.9 88.95±1.0 88.83±5.8 89.52
75% 94.07±0.8 86.74±3.7 89.32±1.3 89.05±6.0 89.80
Avg. 93.89 85.51 89.18 90.35 89.73

MixDiff+Entropy

25% 93.70±1.7 84.79±3.7 89.55±1.6 93.70±4.5 90.44
50% 93.84±0.6 86.42±3.1 88.74±1.2 89.65±4.7 89.66
75% 93.48±0.8 86.74±3.6 89.09±1.5 88.68±6.2 89.50
Avg. 93.67 85.98 89.13 90.68 89.87

Table 6: Average AUROC scores for out-of-scope detection task. The numbers on the right side of±
represent standard deviation. The numbers in the ”Average” column are the average AUROC scores
reported in that row. The numbers in a ”Avg.” row are the average of the AUROC scores reported in
that column. The highest and second highest average AUROC scores are highlighted with bold, and
underline, respectively.

and after the Mixup operation when inferring classes. The results of our experiment, which support
our hypothesis, are presented in Figure 6.

The experiment was conducted using CLIP ViT-B/32 and followed the same settings as in the OOD
detection experiments on CIFAR100. We initially collected OOD samples that were misclassified
as ID by the MSP score, with the purpose of collecting samples for which the model exhibited high
confidence. We then filtered these samples to include only those classes with at least five samples
per class. For each sample, an auxiliary sample for mixup was randomly selected from an ID class,
excluding the class with the highest confidence for that sample.

We compared the CAM of OOD samples before and after Mixup. The CAMs were processed
through min-max normalization, and values below 0.8 were clipped to be zero. We then measured
the L1 distance between the two CAMs. To observe the difference in CAM before and after Mixup
for OOD class samples, we used the text prompt of the class predicted by the model. Conversely,
for ID class samples, we used the text prompt of the ground truth.

Figure 6 compares the average distance in CAM for each class, considering the prompts as either a
high confidence class or a ground truth class. A smaller distance implies less variation due to per-
turbation, suggesting that the features that the model focuses on are highly relevant to the respective
class. On the other hand, a larger distance indicates a greater variation due to perturbation, which
could mean that the features that the model focuses on are either less relevant to the class or incor-
rectly identified as relevant features. The results in Figure 6 indicate how perturbations can be used
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Figure 6: The average pixel-wise difference of the CAM images is measured before and after mixing
the OOD samples with an auxiliary sample. The high confidence class and the ground truth class
represent the classes used for the prompts in CAM. We observed how much fluctuations in the areas
where the model focuses when the OOD samples are perturbed by arbitrary signals such as mixing
with an auxiliary sample.

(a) (b)

Figure 7: (a) Pearson correlation between the scores of different OOD scoring functions. (b) Error
rate at TPR95 for each method. For multiple methods, error means both were incorrect.

to assess the reliability of the features that lead to a high level of confidence in the input predictions
of the model.

E.9 COMPARISON WITH OTHER OOD SCORING FUNCTIONS

To validate whether MixDiff scores have extra information which is not captured by existing other
OOD scores, we calculate pair-wise correlation among OOD scores in Figure 8a, and evaluate the
error rate of OOD detection by each OOD score in Figure 8b. All results from this subsection
are derived from CIFAR100 test set. As shown in Figure 8a, MixDiff scores exhibit a weaker
correlation with other OOD scores, which implies that MixDiff scores contain additional information
that is absent in other scores. Consequently, MixDiff can correct certain wrong decisions of existing
methods (verified in Figure 8b), when adopted with them together. From these results, we argue
that the perturb-and-compare approach is helpful for stable OOD detection and MixDiff effectively
provides such an advantage.
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(a) (b)

Figure 8: Difference between the average uncertainty scores of OOD and ID samples belonging to a
given interval of MSP score. The x-axis represents the average MSP score of the interval. (a) Under
the threshold with the threshold set by TPR95 of MSP. (a) Over the threshold with the threshold set
by TPR95 of MSP.

We divide the MSP score into five intervals of the same length and plot the difference of the average
of the scores of OOD and ID samples in the same interval. We also plot the difference of the average
of the MixDiff scores of OOD and ID samples belonging to the same MSP score interval. Figure
8 shows that for similar values MSP score, the uncertainty score from MixDiff among the OOD
samples is significantly higher than that of the ID samples. This demonstrates that, even when
two ID, OOD samples’ MSP scores are almost identical, the MixDiff scores can still provide a
discriminative edge.

E.10 SENSITIVITY ANALYSIS

(a) (b)

Figure 9: (a) Performance change in regard to the number
of oracle samples, M . (b) Performance change in regard to
the number of Mixup ratios, R.

Figure 9b shows changes in AUROC
score on the CIFAR100 dataset in re-
gard to the number of Mixup ratios,
R. We fix the other hyperparameters
and only vary R. For all OOD scor-
ing functions, logits are used as the
model f(·)’s outputs when comput-
ing perturbed oracles’ OOD scores.

E.11 COMUTATIONAL
COST ANALYSIS

Figure 10 shows AUROC scores of
MixDiff+Entropy for various values
R and N evaluated on CIFAR100.
MixDiff starts to outperform the en-
tropy score with only two additional
forward passes (N = 2, R = 3). The model outputs from f(·) are prediction probabilities and the
number of oracle samples, M , is fixed at 15.

E.12 PROCESSING TIME ANALYSIS

We analyze the average processing time required to process one target sample. We fix the number
of oracle samples, M , to be 15 and use the other oracle samples as the auxiliary samples (N=14).
This is the same as the oracle as auxiliary setup in the ablation studies portion of the main paper
(Section 3. Figure 11 depicts the average processing time along with the number of Mixup ratios, R.
As the additional perturbed samples can be effectively processed in parallel, MixDiff’s effectiveness
can be exploited without incurring prohibitive processing time as the rapid increase in performance
at the small values of R indicates. When we allow multiple target samples to be batched together,
MixDiff’s processing time further decreases (MixDiff BS=100).
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Figure 10: AUROC scores of MixDiff+Entropy with varing values of N and R (top). AUROC score
of Entropy (bottom). Both methods are evaluated on CIFAR100.
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Figure 11: Blue lines represent the average processing time per target sample. BS denotes the batch
size of target samples. Red lines represent AUROC scores of MixDiff+Entropy and entropy OOD
scoring function evaluated on CIFAR100.
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F QUALITATIVE ANALYSIS

Figure 12: Visualize the distribution of the OOD score using a kernel density estimate plot. The
density curves in each column denote the distribution of the base OOD score functions (MSP and
Entropy), MixDiff scores, and MixDiff + base scores, respectively. The red vertical line in the
figures above represents the 95% TPR threshold for each OOD score (base OOD, MixDiff, and
MixDiff+base OOD) function.

MSP MixDiff+MSP MLS MixDiff+MLS Energy MixDiff+Energy Entropy MixDiff+Entropy ZOC MixDiff+ZOC

Threshold (95 % TPR) -0.938 -1.007 -28.44 -29.42 -0.287 -0.297 0.358 0.071 0.604 0.598
ID over threshold (↓) 0.688 0.663 0.667 0.625 0.684 0.645 0.656 0.628 0.731 0.725
ID under threshold (↑) 0.296 0.322 0.322 0.360 0.304 0.340 0.331 0.358 0.263 0.268
OOD over threshold 0.949 0.950 0.947 0.947 0.945 0.947 0.938 0.947 0.947 0.949
OOD under threshold 0.048 0.047 0.050 0.049 0.051 0.048 0.060 0.050 0.051 0.049

Table 7: The integral of the density curve (Figure 12) of the ID and OOD samples divided by the
threshold for each methodology. (↓ means lower is better and ↑ means higher is better.)

F.1 THE INTEGRAL OF THE DENSITY CURVE

Figure 12 plots the score distribution of the base OOD score function and MixDiff+base function.
Table 7 shows the area under the distribution curves of In-distribution (ID) and Out-of-distribution
(OOD) samples separated by the threshold for each approach. The distribution in Figure 12 shows
that the base functions generally have a narrow range of scores, while MixDiff + base functions have
a relatively wide range. We interpret this result as the MixDiff score being added to the base score,
which adjusts the score of ID and OOD to alleviate overlapping. In Table 7, adding the MixDiff
score increases the distribution area of OOD samples with higher scores and ID samples with lower
scores relative to the threshold while decreasing the distribution area of OOD samples with lower
scores and ID samples with higher scores. For all OOD scoring functions, logits are used as the
model f(·)’s outputs when computing perturbed oracles’ OOD scores.

F.2 3D LOGITS AND AUXILIARY SAMPLES

To see the effect of MixDiff in the logit level, we plot the logits of the target, oracle, and the corre-
sponding mixed objects in Figure 13. For all OOD scoring functions, logits are used as the model
f(·)’s outputs when computing perturbed oracles’ OOD scores.
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(a) MixDiff+MSP

(b) MixDiff+MLS

(c) MixDiff+Energy

(d) MixDiff+Entropy

Figure 13: Logit level changes when mixing the same auxiliary samples for target and oracle. The
first row of 3d logits in Figure 13a-13c implies even though there is an OOD sample that is indis-
tinguishable from the oracles at the logit level, the difference could be captured by mixing up with
auxiliary samples. The figures in the second row in Figure 13a-13c show the 3d logits of the ID
sample whose class is the same as the oracle samples. The two graphs to the right of each figure
show the OOD scores and thresholds for the base OOD score function and MixDiff+base for the
OOD and ID target samples, respectively.

G LIMITATIONS AND FUTURE WORK

Time and space complexity MixDiff is effective at bypassing a black-box model’s access restric-
tion for OOD detection, but bypassing the access restriction comes with a certain computational
overhead. For each target sample xt, MixDiff requires processing of N ×R mixed samples. While
these samples can be effectively processed in parallel and the MixDiff framework outperforming the
baselines only with small values of R, it nonetheless remains as a drawback of the MixDiff frame-
work. Further research is called for reducing the computational and space complexity of MixDiff
framework. We note that the mixed oracle, auxiliary samples need only be processed once and
require negligible compute and memory thereafter.
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Intermediate state extraction MixDiff framework as we have presented extracts the model’s pre-
diction scores of oracle-auxiliary mixed samples as intermediate states. These intermediate states
are then averaged along the number of oracle samples to reduce the variance induced by instance
specific characteristics of the oracle samples. The intermediate state extraction procedure can be eas-
ily generalized to incorporate other OOD score functions. Taking a concrete example, in the case of
Mahalanobis distance based OOD detection methods (Lee et al., 2018; Chen et al., 2022c; Ren et al.,
2021), the intermediate states could be the features that are used to construct the class-conditional
Gaussian distributions. One extreme case would be taking the final OOD scores of oracle-auxiliary
mixed samples as the intermediate states and averaging these OOD scores along the number of or-
acle samples. We have run extensive experiments on the output-based OOD scores, such as MSP
and MLS, and leave the intermediate state extraction choices in other OOD score functions as future
work.

Other forms of inputs MixDiff framework can be easily extended to incorporate inputs from other
modalities. The experiments on the out-of-scope detection task serve as an example of these kinds
of extensions. This input level Mixup makes the framework applicable to environments where the
access to the model parameters cannot be assumed. It also grants the freedom to design better mixup
methods that are specific to the format of the input or the task at hand. But this freedom comes at the
cost of having to devise a mixup mechanism for each input format and task. For example, the simple
concatenation of samples that we have utilized in OOS detection experiments on the out-of-scope
detection task has the limitation that it cannot be applied if the input sequence is too long, due to
quadratic time and space complexity of Transformers (Vaswani et al., 2017). A future research can
be conducted in the direction of forgoing this self-imposed requirement that the mixup operation
be performed in the input level. Allowing mixup of model activations may pave the way for more
broadly applicable form of the framework, albeit with a possible degradation in performance.

Selection of auxiliary samples We have experimented in the paper with three auxiliary sample
selection methods, one using the in-batch samples and the other two using the oracle or random ID
samples as the auxiliary samples. Our preliminary experiments showed performance degradation
when the number of auxiliary samples, N , is too small. We hypothesize that this is due to the fact
that while on average MixDiff can effectively discern the overemphasized features by comparing
mixed oracle-auxiliary and mixed target-auxiliary samples, there is a certain degree of variance in the
MixDiff score, requiringN and, to some degree,R to be over certain value for reliable performance.
There may be an auxiliary sample that is more effective at discerning an overemphasized feature of
a given target sample, but this is subject to change depending on the target sample. We leave the
exploration of better auxiliary sample selection methods, either by careful selection of auxiliary
samples or by making the procedure instance-aware and possibly learnable, as future work.
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