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Abstract

Research on Large Language Models (LLMs) increasingly focuses on identifying
mechanistic explanations for their behaviors, yet the field lacks clear principles
for determining when (and how) findings from one model instance generalize to
another. This paper addresses a fundamental epistemological challenge: given
a mechanistic claim about a particular model, what justifies extrapolating this
finding to other LLMs—and along which dimensions might such generalizations
hold? I propose five potential axes of correspondence along which mechanistic
claims might generalize, including: functional (whether they satisfy the same
functional criteria), developmental (whether they develop at similar points during
pretraining), positional (whether they occupy similar absolute or relative positions),
relational (whether they interact with other model components in similar ways),
and configurational (whether they correspond to particular regions or structures
in weight-space). To empirically validate this framework, I analyze “1-back at-
tention heads” (components attending to previous tokens) across pretraining in
random seeds of the Pythia models (14M, 70M, 160M, 410M). The results reveal
striking consistency in the developmental trajectories of 1-back attention across
models, while positional consistency is more limited. Moreover, seeds of larger
models systematically show earlier onsets, steeper slopes, and higher peaks of
1-back attention. I also address possible objections to the arguments and proposals
outlined here. Finally, I conclude by arguing that progress on the generalizability
of mechanistic interpretability research will consist in mapping constitutive design
properties of LLMs to their emergent behaviors and mechanisms.

1 Introduction

The field of mechanistic interpretability aims to uncover the internal structures (e.g., circuits or
representations) that give rise to observable behavior in Large Language Models (LLMs) and other
neural network-based systems [Olah et al., 2020, Merullo et al.| [2023} |2024]. This research has
the potential to deliver novel insights about the behavior of LLMs and even help build safer, more
aligned models. Yet the scientific study of LLMs has yet to establish firm epistemological foundations:
although connectionist models have of course been studied for decades [Elman, 1990, McClelland and
Rumelhart, |1981]], mechanistic interpretability of LLMs is still arguably in a “pre-paradigmatic” stage
[Olah et al., 2020} (Gurnee et al., 2023 Olah,[2023|] and requires further refinement of what constitutes
an explanation [[Ayonrinde and Jaburi, [2025alb]]. The field thus faces a number of challenges relating
to how knowledge is produced and evaluated. Some of these challenges have been discussed in recent
literature, e.g., accurately benchmarking model “capabilities” [Raji et al.,[2021} [Ivanoval 2023} |Saxon
et al.| 2024]], but others have received only cursory treatments.
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In this paper, I focus on the question of generalizability, specifically of mechanistic claims about
LLMs. For instance, given a particular claim about the circuits present in a particular model instance,
which aspects of this claim might generalize across model instances and which do not—and
what principles can we use to guide those scientific generalizations? I first argue that the field
currently lacks a coherent theory of generalizability, and point to several potential features that might
help predict whether two model instances share the same mechanisms (Section[2)). This raises the
question of what it means for two circuits to be the “same” in the first place (Section [3). Building on
recent research, I propose several potential axes of correspondence along which mechanistic claims
could plausibly generalize (Section [3.I), and also enumerate functional criteria that help identify
which kinds of mechanisms we might expect to be robust across models (Section [3.2). I then validate
the utility of the proposed theoretical framework in an empirical study focusing on the positional and
developmental properties of “1-back attention heads” across random seeds of models in the Pythia
suite (14M, 70M, 160M, 410M) [Biderman et al.,[2023] [van der Wal et all [2025]] (Section[). I find
striking inter-seed developmental consistencies within each model; developmental milestones are
also highly correlated across models, albeit with some subtle differences in timing. Finally, I consider
and respond to possible objections (Section [5).

2 Samples, populations, and the generalizability problem

Many scientific disciplines aim to draw general conclusions about the target of inquiry. This approach,
sometimes called “nomothetic”, contrasts with a more descriptive approach aimed at characterizing
individual cases (“idiographic*) [Beckl [1953]]. In certain fields (e.g., Cognitive Science), this target
of inquiry (e.g., human cognition) is too large or abstract to be observed in its entirety: consequently,
researchers rely on samples to make inferences about the underlying population of interest. When
drawing generalizations is the goal of scientific inquiry, this unbiased sample should be representative
of the population of interestE]

Research on mechanistic interpretability is arguably nomothetic in nature [Li et al., 2015 |Olah et al.}
2020, [Olahl 2023]], i.e., the aim is to produce generalizable or “universalizable” claims about model
behaviors or mechanisms. Of course, in practice, interpretability research is not (and cannot be)
conducted on the entire “population” of possible LLMs; rather, it is conducted on specific model
instances. Here, we define a “model instance” m 4 ¢, p as a system with some particular architecture
A, initialized with some particular parameter set 6, and trained on some particular dataset DE] While
some recent work has begun to explore the issue of typologizing model instances [Klabunde et al.
2025, |Yax et al.l [2024]], clear principles remain elusive: what would constitute a “representative
sample” of LLMs? This makes it difficult for researchers to specify the “population of interest” in
any particular study, or to explain the rationale behind which model instances were sampled.

Thus, given a mechanistic claim obtained by studying a particular model instance (or instances), what
(if anything) have we learned about model instances not in the sample? For instance, if researchers
identify a putative “circuit” in GPT-2, what other language models are likely to possess that same
circuit—and on what basis could we justify this extrapolation? In principle, the answer to these
questions should be informed by the factors known to influence the behaviors and mechanisms of
individual model instances, such as: architectural properties like model size [Kaplan et al., {2020,
Biderman et al.|[2023| Riviere et al.| [2024} Schrimpf et al., 2021]] or depth [Mueller and Linzen| 2023
Petty et al.,|2023]; the amount and variety of training data [Kaplan et al.| 2020, |Grieve et al.| 2025,
Aryabumi et al., 2024} Chang et al., 2024} (Conneau et al., 2020, Zhang et al., [2025]]; and the initial
parameters of a model [Bencomo et al.| 2025, McCoy and Griffiths, [2023| Marinescu et al., [2024,
Hu et al., |[2025| [Frankle and Carbin, 2018, Belrose and Scherlis, 2024].

Indeed, some recent work has taken exactly this approach [[Tigges et al., 2024]], mapping the de-
velopmental trajectories of multiple circuits (e.g., subject-verb agreement) among models in the
Pythia suite [Biderman et al., [ 2023]]; one crucial finding of this work was that these trajectories were
relatively aligned across model sizes (see also[3.1I). Another potentially relevant piece of evidence

IThis is not always the case: for instance, in Cognitive Science research, English speakers from Western,
industrialized countries have long been overrepresented, threatening the external validity of claims made on the
basis of those samples [Henrich et al.; 2010, |Blasi et al.| [2022].

Note that additional axes of variation could augment this definition (e.g., particular prompts), which would
further complicate the question of identifying a suitable reference class.



comes from work on the Platonic Representation Hypothesis [Huh et al.l |2024], which predicts
that we should observe more representational convergence between larger models trained on larger
volumes of data—if this hypothesis is correct, we might also expect larger, better language models to
converge on more similar mechanistic solutions.

The question of which model instances will develop a particular kind of circuit is no doubt challenging.
Yet this framing points to a further, even more philosophically complicated challenge: what does it
even mean to assert that two different models have the “same” circuit?

3 In what ways are two circuits the “same”?

Interpretability research typically involves the application of specific techniques to particular model
instances, allowing researchers to determine which model components (e.g., which attention heads)
perform a particular function or embed a specific concept [Clark et al., 2019, [Wang et al.| 2022}
Olsson et al.| 2022| [Merullo et al.| 2023} [Manning et al.} 2020, Merullo et al.} 2024 [Park et al., 2025/
Zhang et al.,|2024]|. The result of applying such techniques might (for example) consist in a set of
head indices believed to correspond to that function, e.g., (L3, H1), (L4, H2). If a researcher’s goal
is idiographic (i.e., characterizing a given model instance), identifying this set might be sufficient: the
circuit has been mapped in a particular model. But if a researcher’s goal is nomothetic (i.e., drawing
generalizations about other models), they face the question of what, in particular, could plausibly be
generalized across model instances.

Yet, with some exceptions [Binhuraib et al.,2024], the position of a head within a layer in the standard
transformer architecture is arbitrary: even among models with the same architecture trained on the
same data, there is no intrinsic reason to expect that (L3, H;—1) should consistently perform the same
function, as opposed to some other head in the same layer (L3, H;x1). Thus, what exactly do we
mean when we assert that two circuits in different model instances are “‘the same”?

3.1 Axes of Potential Correspondence

Here, I take inspiration from research in neurophysiology: although mechanistic heterogeneity in
biological networks is well-attested [Prinz et al.| 2004, researchers nonetheless strive to make
generalizations about cell types and cell functions using various axes of correspondence. These
include gene expression [Mukamel and Ngai, [2019]], putative function [Moser et al., 2008} |Knierim:
et al.,[1995] |Alexander and Nitz, |2015]], temporal patterns [Riviere et al.,[2022} |Riviere and Rangel,
2017]), and anatomical connectivity [Bates et al.,[2019} [Haber and Schneidman), |2022]]. Mechanistic
interpretability researchers might therefore identify analogous axes of potential correspondence
between model instances:

* Function: Intuitively, the minimal standard for asserting circuit identity across model
instances is whether components in each instance meet certain functional definitions, regard-
less of where in each model those components are located [Tigges et al.,[2024]]. Here, a
claim might look like: Attention headﬂ performing function X were identified across model
instances my, ..., Mny.

* Position: One might also expect certain functions to be performed by components in similar
positions across models. Here, researchers might differentiate between absolute position
(e.g., always layer 3) and relative position (e.g., middle layers) [Riviere et al.| 2024, |Cheng
and Antonello} [2024]]. Here, a claim might look like: Attention heads performing function
X were identified at a layer depth of 0.5 across model instances my, ..., My,

* Developmental: Just as human development is associated with particular milestones [Murray
et al.,[2007]], some functions might plausibly emerge at similar points in the course of training,
e.g., after having encountered a given number of tokens. Indeed, empirical research suggests
that multiple specialized circuits begin forming at around 2B-10B tokens [Tigges et al.,
2024] |Olsson et al., 2022, Riviere and Trott, 2025] ivan der Wal et al., [2025| |Jumelet et al.|
2024]; we might also expect such findings to be marked by relative discontinuities or “phase
transitions” during development [[Chen et al., 2023} |Hu et al.| [Kangaslahti et al.,[2025]]. Here,

3Note that this framework could in principle be applied to any model component at varying levels of
granularity; attention heads are simply used as an illustrative example.



a claim might look like: Attention heads performing function X emerged after 2B tokens
were observed across model instances m1, ..., My,.

Relational: Model components could also be defined in terms of how they interact with
other components. For example, induction circuits consist of an “induction head” and a
“previous token head” [Olsson et al., 2022, Singh et al.,|2024]]. Similarly, [Zhang et al.| 2024]
report analogous circuit structures across model instances trained on different languages
(or different combinations of languages). Here, a claim might look like: Attention heads
performing function X were identified in the layer immediately following attention heads
performing function' Y across model instances mq, ..., ma,.

* Configurational: Finally, particular functions or concepts might correspond to particular
geometric configurations (e.g., in weight-space or activation-space). Here, a claim might
look like: Attention heads performing function X consistently occupied Y region of weight-
space across model instances mq, ..., My,.

This list is not exhaustive, but rather, provides a set of initial organizing principles that help ground
claims about which mechanisms might generalize across model instances (and how). For example, this
framework suggests that induction heads might be particularly promising candidates as generalizable
model components. Induction heads participate in induction circuits, which are responsible for
detecting whether a given token ¢ has appeared earlier in a sequence (e.g., position s), then predicting
that the subsequent token will be the one that previously occurred at position s + 1 [Elhage et al.|
2021} Olsson et al., [2022]. Notably, induction heads satisfy multiple of the criteria discussed above:
first, heads meeting the functional definition emerge in model instances of various sizes [[Olsson
et al.| [2022 [Singh et al., |2024]); second those heads follow similar developmental trajectories during
training [Singh et al.| [2024]; third, they (by definition) share a common relational structure with other
heads, i.e., they participate in induction circuits [[Olsson et al.| 2022} Singh et al.| |2024]); and fourth,
they tend to occupy similar relative positions across model instances [Olsson et al.,|[2022].

3.2 On finding plausible mechanistic candidates

Mechanistic interpretability research aimed at identifying robust, generalizable model components
might also benefit from focusing on identifying plausible candidates for mechanistic functions.
The relative “success” of induction heads in this regard points to two additional criteria that may
prove useful. First, their function is closely tied to the units over which models operate (i.e., token
sequences) and was not defined a priori in terms of abstract human constructs—in this sense, they
may even satisfy the definition of “concept enrichment” explored by |Ayonrinde|[2025]]. Crucially,
tracking previous sequences of tokens in the context is an intuitive solution to the problem faced by
language models (predicting upcoming tokens); there is thus a clear link between induction head
function and the language model training objective.

Second, while this operation is very concrete, it may be amenable to compositional abstraction
[Olsson et al., 2022]: in some cases, induction heads may attend not only to exact repetitions of a
token but more abstract correspondences (i.e., “types”). This could make them relevant for in-context
learning, or ICL [Olsson et al., 2022 |Singh et al.| |2024]], which in turn suggests that they could play
a useful explanatory role in higher-level accounts of LLM behavior. Although there is debate about
the extent to which induction heads are directly involved in ICL [Yin and Steinhardt, [2025| [Feucht
et al., |2025]], efforts to connect microscopic phenomena to macroscopic behavior [Olahl 2023|] can
serve as a useful “North Star” for future research.

4 1-back Attention: An Empirical Case Study

If generalizability is to be a realistic ambition, then we should hope to observe some degree of
robustness across minimally different model instances, such as different random seeds of the same (or
similar) architecture trained on the same data.

The current section presents an empirical study exploring this question, focusing on 1-back attention
heads—defined as heads that direct attention from some target token to the immediately preceding
token [[Clark et al., 2019]. From a definitional perspective, these 1-back heads satisfy the proposed
criterion of closely tracking the actual units over which models operate (i.e., token sequences; see
Section[3.2)); as with induction heads (see Section [3.2), tracking the immediately preceding token



seems intuitively helpful for making predictions about upcoming tokens, therefore tying the putative
function of these heads to the overall training objective of the model.

Because 1-back heads are likely very useful—and also quite simple in terms of their behavior—one
might expect them to emerge across many model instances, including small models, making them a
suitable test case for the proposed axes of correspondence (Section [3.1). For the reference class, 1
limit the analysis to (arguably) the simplest possible “population”: different random seeds of four
model architectures (Pythia-14M, Pythia-70M, Pythia-160M, Pythia-410M) trained on the same data
[Biderman et al.| 2023]]. Note also that the approach adopted below focuses on characterizing the
behavior of these heads (in terms of their attention patterns), which is a necessary but not sufficient
prerequisite for firmly establishing their function as 1-back heads.

This approach allows us to address three related research questions:

RQ1 To what extent do we observe inter-seed and inter-model regularities in terms of the de-
velopmental trajectories and relative position of 1-back heads? Here, we find striking
developmental regularities, consistent with prior work on other model components [Jumelet
et al.,[2024} |Olsson et al.| 2022, [Tigges et al.,|2024]]; evidence for positional regularity is
more mixed.

RQ2 What divergences do we observe across model instances, and which (if any) properties allow
us to predict these divergences? Here, I find that larger models show an earlier onset of
1-back heads than smaller models, a steeper slope of 1-back attention over pretraining, and a
higher peak of 1-back attention.

RQ3 What predicts convergences in developmental trajectories across model instances? Here,
different seeds of the same architecture show the strongest correlation; when comparing
model instances of different sizes, higher correlations were predicted by the size of each
model being compared.

A link to a GitHub repository with code and data required to reproduce these analysis can be found at
https://github.com/seantrott/mechinterp_generalizability,

4.1 Methods

I selected the Pythia suite of auto-regressive English models [Biderman et al.,|2023]], focusing on the
nine random seeds released for Pythia-14M, 70M, 160M, and 410M [van der Wal et al.| 2025]. Each
model was assessed at 16 training checkpoints (i.e., all available checkpoints up to and including
step 1000, followed by step 1000, 50000, 100000, and 143000). As described in [Biderman et al.
[2023]], each model was trained on approximately 300B tokens. All models were accessed through
the HuggingFace transformers library [Wolf et al.| [2020] and run on a 2022 Mac laptop. The Pythia
models are licensed under an Apache License, Version 2.0.

Each model at each checkpoint was presented with sentences from the Natural Stories Corpus
[Futrell et al., 2021]]. The Natural Stories Corpus consists of 10 English-language stories, each
containing approximately 1000 words. This served as a repository of naturalistic sentences with
which to probe attention head behavior (note that the behavior of attention heads was remarkably
consistent across different stories; see Appendix [B). The corpus is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

The goal was to assess the developmental and positional properties of putative 1-back attention heads.
Here, “1-back attention” was defined as directing attention from a target token to the immediately
preceding token. For each head in each model (at each checkpoint), I calculated the average 1-back
attention for each sentenceﬂ More precisely, if Ay (4, j) represents the attention assigned by head h
from token ¢ to token j, and n represents the number of tokens in a given sentence I calculated:

“Note that qualitatively identical results for the developmental analyses (though not the positional analyses)
were obtained with alternative operationalizations, such as the ratio between the average 1-back attention and
the average self-attention. The two metrics were generally highly correlated within each model at the final
step (r > 0.68 for all models). Average 1-back attention was favored in the final analysis because it did not
depend upon arbitrary assumptions about the appropriate baseline; moreover, because the attention scores are
normalized, the average 1-back attention can be interpreted as the proportion of attention directed by a given
head to previous tokens.
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Figure 1: Maximum 1-back attention for each seed of Pythia 14M, 70M, 160M, and 410M. Dark
black line indicates average across each seed for that model. Red reference line indicates predictions
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Note that 7 starts at 2 to exclude the first token in the sequence. All analyses and visualizations were
conducted in R [R Core Team, [2025]].

4.2 Results

4.2.1 RQ1: Inter-seed consistency

First, I asked about the developmental and positional consistency of putative 1-back attention across
different seeds of the same architecture. As depicted in Figure[T] different seeds of the same model
showed striking regularity in their developmental trajectories. Even different models exhibited
remarkably similar patterns: selective 1-back attention tended to emerge around 10 training steps,
corresponding to roughly 2B tokens of exposure. A generalized additive model (GAM) fit to all
data points from all models (i.e., the maximum attention at each step for each seed of each model)
using Log Training Step as a predictor achieved an R? = 0.95; as depicted in Figure the GAM’s
predictions (in red) are consistent with an expected onset in 1-back attention occurring between 512
and 2000 steps.

The position of these putative 1-back heads exhibited considerably more variance across seeds and
especially across models. Figure [2a]depicts the maximum 1-back attention at each layer of each
random seed for each model at the final pre-training step. For 14 M, 1-back heads tended to emerge
either in layer 3 or in layer 4E]; see also Appendix |A] Overall, positional consistency across model
architectures was relatively low, though there was some evidence for middle layers showing a peak in
1-back attention. A linear mixed effects model predicting average 1-back attention at the final step

>This echoes other work revealing bimodal distributions in the mechanisms and behaviors that emerge across
random seeds [Zhao et al} 2025]], and suggests that there might be multiple “attractors” in weight-space with the
respect to 1-back attention head emergence.
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Figure 2: Different random seeds of the same architecture showed considerable variance in where
putative 1-back attention heads formed.

from each individual head of each model instance revealed a significantly negative effect of Layer
Depth [8 = —0.11,SE = 0.005,p < 0.001], i.e., later layers were associated with significantly less
attention to previous tokens on average.

Together, these results point to a high degree of developmental correspondence in putative 1-back
attention heads across model instances in the Pythia suite, but also suggest a limited degree of
positional correspondence: 1-back heads are systematic in when but not where they appear.

4.2.2 RQ2: Model divergences in timing

Although 1-back attention heads were extremely consistent in when they developed across model
instances, subtle differences in timing are revealed by comparing the trajectory of each individual
model to the fit GAM predictions (Figure[I). Relative to the predictions, smaller models (like 14M1)
had a delayed onset of 1-back heads, a shallower slope of 1-back attention over time, and a reduced
peak; conversely, larger models (like 410M) showed a sharper slope and a higher peak.

To quantify these apparent divergences, I first operationalized each construct (onset, slope, and peak)
as follows. The onset of 1-back attention for a given seed was defined as the earliest step where the
change in maximum 1-back attention relative to the change in log training step (d,q+i,) exceeded
some threshold; in order to avoid dependence on a particular threshold, this was assessed for a
range of thresholds (0.01, 0.3) for each seed and averaged across the resulting values for that range.
Intuitively, this measure reflects the average earliest step at which 1-back attention sharply increased
for a given instanceE] The slope was identified by regressing the maximum 1-back attention at each
step against Log Training Step and extracting the resulting slope estimate. Finally, the peak was
defined as the maximum 1-back attention (i.e., across all steps for that seed).

Each measure was then regressed (in a separate linear mixed effects model) against Log Parameters,
with seed as a random intercept. Log Parameters was significantly related with each dependent
variable in the expected direction. That is, larger models displayed a reduced onser of 1-back attention
[ = —0.18, SE = 0.05,p < .001], increased slope [ = 0.01, SE = 0.003,p < .001], and a
higher peak [ = 0.07, SE = 0.01, p < 0.001]. These relationships are also depicted in Figure

4.2.3 RQ3: What predicts convergence?

A central question concerning generalizability is what, if anything, predicts that two model instances
will belong to the same “reference class” with some respect to some axis of correspondence (Section
B.1). As described in Section[4.2.1] I observed striking convergence in the developmental trajectories

SNote that the results are robust to different thresholds, as well as different operationalizations of 1-back
attention onset.
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Figure 3: Larger Pythia models tended to show a slightly earlier onser of 1-back attention, a higher
peak, and a steeper slope.

of 1-back attention across random seeds of the same model, and even relatively strong temporal
alignment between models of different sizes. Here, still focusing on the temporal axis, 1 asked a
related question: which properties predict higher temporal convergence between two model instances?

First, I calculated the Pearson’s correlation between every pair of 1-back attention trajectories (i.e.,
for each pair of model instances). Unsurprisingly, random seeds of the same architecture exhibited
substantially higher correlation (M = 0.99, SD = 0.04) on average than instances from different
architectures (M = 0.95,5SD = 0.003). I then constructed a linear regression with correlation
between each pair of model instances (r; ;) as a dependent variable; predictors included a factor
indicating whether the two instances were the Same Model, as well as the Number of Parameters
(Log10) of model m; and model m ;. Consistent with the descriptive results, Same Model positively
predicted higher r; ; [8 = 0.05, SE = 0.002, p < .001]; holding Same Model constant, both Number
of Parameter predictors were also positively related with higher r; ; [ = 0.03, SE = 0.002,p <
.001]. That is, stronger temporal convergence was observed among instances belonging to the same
architecture and among instances of larger (different) architectures; similar results are reported in the
Appendix (Section [C).

4.3 Discussion

The primary goal of this empirical case study was as a demonstration of viability for the proposed
axes of correspondence (Section [3.T)—specifically focusing on the positional and temporal axes
of model similarity. 1-back attention heads were selected because they were a well-established
phenomenon [Clark et al., 2019]] that would likely emerge in even small models, and which also
satisfied the proposed criteria for plausible mechanistic candidates (Section [3.2).

Concretely, the case study addressed three research questions. First, I observed considerable inter-
seed and inter-model convergence along the temporal axis (see Figure [I)), though there was less
positional consistency: 1-back heads were highly systematic in when but not where they emerged.
Second, I observed subtle timing differences as a function of model size: larger models showed an
earlier onset, steeper slope, and higher peak of 1-back attention (see Figure[2). Finally, inter-seed
temporal convergence was (unsurprisingly) highest among instances of the same architecture; among
instances of different architectures, temporal convergence was higher when both instances were larger
(Section[#.2.3)), possibly consistent with the Platonic Representation Hypothesis [Huh et al., [2024].
Together, these results suggest that at least when it comes to putative 1-back attention heads, model
mechanisms are more constrained by developmental features than positional ones, which is itself
informative about the nature of various constraints operating over head specialization.

A key limitation of this work is that candidate 1-back heads were defined in terms of their attentional
behavior—their functional role in model predictions was not investigated. Future work could conduct
further analyses to investigate the functional axis specifically, perhaps connecting these heads to
broader circuits in which they may or may not participate; the latter goal would also connect to other
potential proposed axes of correspondence, such as the relational structure of heads to other model
components.



5 Objections and Limitations

Thus far, I have argued: first, that generalizability is a central epistemological challenge in the science
of LLM interpretability; and second, that progress could be made by considering particular axes of
correspondence among model instances. I have also presented a case study illustrating the value of
using these proposed axes to guide empirical investigation. Here, I consider possible objections to
the key arguments in the paper, as well as potential replies to each objection.

Objection: Interpretability is idiographic, not nomothetic.

Reply: If interpretability is idiographic, then generalizability is indeed not a concern. That said,
interpretability research does (arguably) appear to be nomothetic in nature, with identifying “universal”
circuits as a high-level goal [[Olah et al.} 2020, |Olah, [2023]]. Further, as argued in|Olah et al.| [2020],
(near-)universality would also make interpretability a much more fractable field:

In the same way, the universality hypothesis determines what form of circuits
research makes sense. If it was true in the strongest sense, one could imagine a
kind of “periodic table of visual features” which we observe and catalogue across
models. On the other hand, if it was mostly false, we would need to focus on a
handful of models of particular societal importance and hope they stop changing
every year. There might also be in between worlds, where some lessons transfer
between models but others need to be learned from scratch. [Olah et al., [ 2020]

Objection: Automated interpretability techniques reduce the need for generalization, as putative
circuits can quickly be discovered in new model instances.

Reply: In a world of fully automated interpretability [Conmy et al.|[2023]], a suite of methods would
simply be applied to each model instance as necessary, perhaps reducing the need to speculate about
“unobserved* instances. However, my position is that a coherent theory of generalizability would
still be of value in such a world for two reasons. First, a theory of generalizability is, at root, an
articulation of what makes two model instances similar or different along some dimension; it is
not only useful for conducting research but could also be seen as a progress marker of research.
Second, in such a world there would presumably be vast empirical data characterizing large numbers
of individual model instances—a theoretical framework such as the one proposed here (Section
@ would give researchers a lexicon [Kuhnl, |1982 |Contreras Kallens and Dale} 2018]] to describe
observed convergences and divergences between model instances and make sense of this landscape.

Objection: The case study is limited—1-back heads are simple, and a narrow reference class
was chosen.

Reply: The goal of the case study was to investigate the viability of identifying correspondences
across model instances, which is why a simple phenomenon (1-back heads) was selected, as well as a
relatively narrow reference class (different seeds or sizes of the same underlying architecture trained
on the same data). The underlying logic was that if generalizability is to be a goal of interpretability
research, we should be able to establish it in at least this case, which perhaps reflects a “lower bound”
of tractability. The relative success of the case study suggests these axes of correspondence may serve
as fruitful guides for future work, which could expand to more complex circuits or mechanisms.

Objection: The functional axis is sufficient to establish circuit identity.

Reply: The functional axis of correspondence (Section [3.1)) is arguably the minimal standard for
establishing whether components of different model instances “do the same thing”. My argument
is not that other axes are necessary, but rather that they are additional organizing principles for
assessing similarities and differences between circuits. It is informative to be able to assert that two
circuits satisfy the same functional criteria but emerge at different timepoints in different models—
particularly if those divergences can be related to other points of departure between those models
(see Section .2.2). Moreover, finding correspondences along these other dimensions might also
strengthen our confidence in the robustness of a particular result or in the identity of circuits across
model instances: intuitively, two circuits seem more conceptually and mechanistically similar if
they not only satisfy the same functional definition [Wang et al., |2022]] but also exhibit similar
developmental trajectories (or converge along other axes of correspondence). That said, functional
alignment is probably the only strictly necessary axis to assert that two circuits are implementing the



same function; as in evolutionary biology, different systems often achieve the same goals or perform
the same computations in different ways.

Objection: Random seeds (and pretraining checkpoints) are not available for most models,
making generalizability too difficult to investigate.

Reply: Indeed, the problem is even worse—the space of actual model instances is also not itself a
representative sample of the distribution of possible models. With some exceptions [Biderman et al.|
2023]], available models are driven by specific research or commercial interests and not necessarily
with the goal of exhaustively characterizing the space of possible models. However, the fact that
generalizability will be hard to investigate is not a refutation of its epistemological importance for the
field of interpretability. Fully addressing the gap is beyond the scope of this paper (and will likely
require large-scale coordination between institutions in multiple sectors), but individual researchers
do still have options available to them, such as the Pythia suite [Biderman et al., 2023} jvan der Wal
et al.,2025]] and OLMo 2 [OLMo et al.,|2025]]. Moreover, not every interpretability study needs to
address every axis of correspondence: a study investigating developmental convergences across seeds
might focus on the Pythia suite [Biderman et al.l[2023]], but a study focused on positional or relational
consistency would not necessarily need pretraining checkpoints. Nonetheless, the field would clearly
benefit from a larger number of open-source models subjected to controlled training regimes.

6 The Path Forward

The shift from a pre-paradigmatic stage of research [Olah et al.l[2020,|Olah, 2023|] to more established
research practices and inferential principles will require a combination of theoretical and method-
ological refinement. In this paper, [ have argued that generalizability is a major epistemological gap
in the scientific study of LLM mechanisms. Yet enumerating challenges is often straightforward;
identifying markers of progress on those challenges can be much more difficult. In that spirit, I have
drawn on the growing body of existing research [Tigges et al., [2024] Zhang et al.l 2024, |Olsson et al.|
2022 to propose axes of correspondence that might serve as organizing principles with which to
guide questions about generalizability. I have also presented the results of a case study validating the
utility of this framework in identifying areas of convergence and divergence between model instances.
Moving forward, one marker to look for is the construction of a theoretically legible typology (or
“phylogeny”) that makes clearly articulable predictions about which pairs of model instances will
share similar mechanisms along which axes of correspondence.

7 Reproducibility Statement

A link to a GitHub repository with code and data required to reproduce these analyses can be found
athttps://github.com/seantrott/mechinterp_generalizability.
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(a) 1-back attention for layer 3 heads across Pythia- (b) 1-back attention for layer 4 heads across Pythia-
14M seeds and pre-training checkpoints. 14M seeds and pre-training checkpoints.

Figure 4: In each random seed of Pythia-14M, 1-back attention heads emerged at roughly similar
training checkpoints.

A Individual head trajectories in 14m

The developmental trajectories depicted in the primary manuscript collapsed across heads and layers
for the purpose of illustrating temporal patterns across all models tested. Here, I depict the trajectories
of 1-back attention for each individual head in each random seed of Pythia-14M for layer 3 (Figure

HMa) and layer 4 (Figure {ib)).

B Consistency across stories

One question that arises is about the generalizability of the results reported in the primary manuscript
across input sentences. That is, how dependent is the developmental trajectory observed upon the
corpus used to assess attention head function? To address this, I plotted the maximum 1-back
attention for each random seed of Pythia-14M for each story from the Natural Stories Corpus. The
developmental trajectories are extremely similar, with changes in attention beginning around 10°
training steps for all random seeds, for all stories.

C Multi-dimensional scaling of seeds

In the primary manuscript, I reported the average correlation between seeds belonging to the same
architecture and between seeds belonging to different architectures; a key finding was among seeds
of different architectures, stronger temporal convergences were observed when both instances being
compared were larger.

Another perspective on this result comes from embedding the correlation matrix of all model instances
in a 2D space using multi-dimensional scaling (MDS) [|Carroll and Arabiel [1998]]. As depicted in
Figure[f] the first MDS component appeared to track model size. Moreover, seeds of smaller models
(14 M) exhibited tight clustering and relatively larger separation from larger models.

I quantified this trend by first calculating the centroid among each set of seeds (i.e., for 14M, 70M,
etc.). I then calculated the Separation Ratio, defined as the mean distance of each centroid to other
centroids, divided by the mean distance of each point within a model class to the centroid of that
class. It decreases systematically with model size, reflecting the combination of wider internal spread
and closer inter-cluster proximity in larger models. The Separation Ratio systematically declined
with model size: 14M was the largest (11.4), followed by 70M (3.37), and 160M (2.42). The results
are nuanced, however, as 410M exhibited a larger Separation Ratio than 70M and 160M (4.0), though
still considerably smaller than 14M; see also Figure|T]

Together, this suggests that at least along the temporal axis, smaller model instances of the same archi-
tecture are relatively different from other models—conversely, larger models of different architectures
are relatively more similar to each other.
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for a given model, the maximum 1-back attention was calculated.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The goal of the paper is to argue that generalizability is a major epistemological
challenge in the study of LLMs, propose a theoretical framework for investigating it, and
present the results of a novel case study; the abstract and introduction summarizes this.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, there is an Objections and Limitations section devoted to identifying
limitations, particularly in the theoretical framework proposed (which is the central point of
the paper).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The results in the paper are empirical results and I have attempted to motivate
and contextualize them (including the assumptions behind various operationalizations, etc.);
there are no theoretical results depending on a proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The Methods section discloses the models run and data used as input to the
models; the Results section describes the details of specific operationalizations and statistical
analyses. Additionally, a link to a GitHub repository with code and data required to re-
produce these analysis can be found athttps://github.com/seantrott/mechinterp_
generalizability.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A link to a GitHub repository with code and data required to repro-
duce these analysis can be found at https://github.com/seantrott/mechinterp_
generalizability.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: No model training was performed.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical results are reported where relevant, including with standard errors
and significance. Additionally, figures displaying means also include confidence intervals
reflecting the standard error; other figures display the “raw” data.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The Methods section includes a sentence describing the compute environment
in which models were run.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Human-subjects data was not used, and all corpus data presented to the model
was extracted from a publicly available research corpus.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer:

Justification: The answer is “yes” if this includes the impact on the scientific community,
given that the goal of the work is to shape the research conversation around mechanistic
interpretability. But it is “no” otherwise, as the paper does not discuss broader societal
implications at length.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: No new corpus data or language models were created in this research; the data
outputs reflect the behavior of specific model components (attention heads) and are unlikely
candidates for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The language models and corpus data used in the paper are cited, and the
licenses for each are also described.
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13.

14.

15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All data and code is accompanied by documentation (though new assets are
minimal).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The focus of the research is LLMs, but LLMs were not used in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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