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Abstract

This paper studies simple transformers on a high-order Markov chain, where the
model must incorporate knowledge from multiple past positions, each with different
statistical importance. We show that transformers learn the task incrementally, with
each stage induced by the acquisition or copying of information from a subset of
positions via a sparse attention pattern. Notably, the learning dynamics transition
from competitive, where all heads focus on the statistically most important attention
pattern, to cooperative, where different heads specialize in different patterns. We
explain these dynamics using a set of simplified differential equations, which
characterize the stage-wise learning process and analyze the training trajectories.
Overall, our work provides theoretical explanations for how transformers learn in
stages even without an explicit curriculum and provides insights into the emergence
of complex behaviors and generalization, with relevance to applications such as
natural language processing and algorithmic reasoning.

1 Introduction

Knowledge is often compositional and hierarchical in nature. As such, understanding complex
concepts often requires an incremental approach, where simpler concepts are learned first and then
combined to form more complex ideas. Such incremental approaches are crucial for various cognitive
tasks, including language comprehension, problem-solving, and decision-making in humans and has
been recapitulated in machine learning in various settings [Saxe et al., 2019]. In particular, language,
is inherently hierarchical, e.g., understanding a sentence requires understanding the meanings of indi-
vidual words, phrases, and their structure. Consequentially, there has been interest in understanding
incremental learning behavior of transformers in sequential tasks [Abbe et al., 2023b, Edelman et al.,
2024], particularly in how they build upon previously learned information to understand and generate
language [Chen et al., 2024a].

The elementary operation that is needed to compose information is copying, which is used to duplicate
data and then perform downstream computations. In language, copying is essential for tasks such as
text generation, where the model must replicate certain phrases or structures from the input to produce
coherent and contextually relevant output [Elhage et al., 2021, Olsson et al., 2022], and, as a means to
aggregate information from multiple parts of a text to form a comprehensive understanding. Copying
is also a fundamental operation in algorithmic reasoning, where it is often necessary to duplicate
intermediate results to perform further computations. Transformers implement this operation across
different positions via sparse attention patterns which pushes their parameters to diverge. Therefore,
the dynamics of how these circuits are established and its implications on reasoning, generalization
and emergence are crucial to grasp the inner workings of transformers.
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Figure 1: (Top left) The task is based on a high-order Markov chain, where the next token depends on
multiple past tokens with different importance weights. The context is divided into different groups
of positions, each aggregated and processed by an associated feature matrix A⋆

k of various importance
which is represented by the size of the feature matrix. (Top right) An idealized representation of the
task in a multi-head single-layer attention. Each head represents an individual sparse attention pattern
required to solve the task. (Bottom left) Transformers learn the task incrementally, with each stage
corresponding to the acquisition of a sparse attention pattern which is indicated by the KL divergence
between predictors A⋆

1:i that only depends a subset of relevant positions as defined in Equation (3)
and the transformer. (Bottom right) The learning dynamics transition from competitive, where all
heads focus on the statistically most important pattern (indicated by high combined attention on the
main diagonal), to cooperative, where different heads specialize in different patterns.

In this paper, we study single-block decoder-based transformers and the formation of sparse attention
circuits during training. Sparse attention circuits are the building blocks that allow models to duplicate
information from one part of the input to another, enabling the integration of information across
multiple positions. We show that they are learned incrementally, with the model first acquiring the
ability to copy from the most statistically important pattern, as they provide the most significant
improvement in prediction accuracy, and then progressively learning the less important patterns. Inter-
estingly, we observe an initial dynamics where all heads compete to learn the most important pattern,
followed by a transition to a cooperative phase where different heads specialize in different patterns.
We explain these dynamics using a set of simplified differential equations, after simplifications to the
architecture and the task. This leads to connections to tensor factorization which is a well-studied
problem [Arora et al., 2019, Razin et al., 2021, Li et al., 2021, Jin et al., 2023]. The setting and our
main contributions are summarized schematically in Figure 1.

2 Stage-wise Formation of Sparse Attention Patterns

We consider a classification task that is based on a discrete Markov chain of order w with states in a
dictionary D with |D| = d. We treat each element of this dictionary as a one-hot vector in Rd. The
sequences are generated as follows:

x−w+1, . . . , x0
i.i.d.∼ D , and for all t ∈ [T ] , xt ∼ softmax

 h∑
k=1

A⋆
k

∑
i∈I(k)

αixt−i

 , (1)

where A⋆
k ∈ Rd×d are fixed feature matrices, I(k) are disjoint sets that partition {0, . . . , w − 1}

and αi are importance weights which verify
∑

i∈I(k) αi = 1 for all k ∈ [h]. As I(k) and A⋆
k can

be permuted without changing the data generation process, we assume without loss of generality
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Figure 2: The sum of learned attention patterns at different stages of training where blue, yellow and
green colors correspond to different heads. The main diagonal does not have the same intensity as the
other positions as it is learned via the skip connection directly from the input.

that ∥A⋆
1∥ ≥ ∥A⋆

2∥ ≥ . . . ≥ ∥A⋆
h∥ and that I(1) contains the most important positions, i.e., those

associated with the largest feature norms.

One particular choice of interest is to have I(k) to be contiguous blocks of indices that start from the
most recent position, i.e., for some 0 < i1 < i2 < . . . < ih−1 < w − 1,

I(1) = {0, . . . , i1}, I(2) = {i1 + 1, . . . , i2}, . . . , I(h) = {ih−1 + 1, . . . , w − 1} . (2)

This choice is inspired by the natural language where nearby tokens that complete the text into a
word or a short phrase should have more statistical correlation over the distant tokens. Notably, when
each of the I(k) are singletons, the resulting operation is copying from a particular position.

We train single-block decoder-based transformers with h heads on sequences sampled as in Equa-
tion (1) by minimizing the cross entropy loss over the full sequence except the initial tokens
x−w+1, . . . , x0 that are not sampled from the process. The details of the architecture, optimiza-
tion and choice of ground truth are provided in Section B.

We observe that the transformers learn the task incrementally, with each stage corresponding to
the acquisition of a sparse attention pattern as in Figure 2. All heads start at uniform due to the
initialization. Then, they first mainly focus on the positions in I(1) as they are the most statistically
important positions. At this stage, the heads compete to learn from these positions, resulting in
overlapping attention patterns. Later, heads gradually specialize in different patterns, with one head
learning from the positions in I(2) while the other finally focusing on I(3).

In order to understand the dynamics in the function space, we train models with different maximum
context lengths c = 4, 8, 12, e.g., when c = 4, the model can only access and learn from the positions
in I(1). In Figure 3 (right), we plot the Kullback-Leibler (KL) divergence between the predictions
of these transformers and the transformer without any context length restriction. We observe that
the transformers first approach the model with c = 4 and then c = 8 before finally reaching the full
model with c = 12. This indicates that the transformers not only learn the attention patterns but also
simultaneously learn the feature matrices associated with these patterns.

Similarly, we study the KL divergence pattern when comparing the predictions of the transformers
with restricted context lengths to the ground truths that only depend on restricted positions:

fA⋆
1:i
(xt−1, . . . , xt−w) = softmax

 i∑
k=1

A⋆
k

∑
j∈I(k)

αjxt−j

 . (3)

This is plotted in Figure 3 (left) where we see an identical pattern. These are similar to what Edelman
et al. [2024] observed for in-context Markov chain where stages are characterized by sub-n-grams.

2.1 Representation with a Simplified Multi-Head Attention

Here, we construct a simple representation on a single-layer multi-head attention that solves the task.
Let X ∈ Rd×(T+w) be the input data matrix with columns x−w+1, . . . , x0, x1, . . . , xT . We assume
that the positional information is encoded using one-hot vectors in RT and concatenated to the data as

follows: X̃ =

(
X

IT+w

)
∈ R(d+T+w)×(T+w). Then, the transformer takes X̃ as input and produces
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Figure 3: (Left) KL divergence between the ground truths that only depend on the positions in I(1),
I(1) ∪ I(2) and I(1) ∪ I(2) ∪ I(3), and the predictions of the transformer with unrestricted context
length. (Right) KL divergence between the predictions of the transformers with restricted context
lengths c = 4, 8, 12 and the transformer without any context length restriction.

the output Y ∈ Rd×T with columns y0, . . . , yT−1 as follows:

yt = softmax

(
H∑

k=1

VkX̃a
(k)
t

)
, a

(k)
t = softmax

(
MT−t

(
X̃⊤K⊤

k Qkxt

))
,

where Qk,Kk, Vk ∈ R(d+T+w)×(d+T+w) are the query, key and value matrices of the head k,
respectively and Mp sets the last p entries to −∞ to apply causal masking.

For head k, we set the value matrix Vk = A⋆
k and a

(k)
t to be a positional-only attention corresponding

to I(k) with the following sparse pattern

1

|I(k)|

0, . . . , 0︸ ︷︷ ︸
t entries

,11∈I(k) ,11∈I(k) , . . . ,11∈I(k)︸ ︷︷ ︸
w entries

, 0, . . . , 0︸ ︷︷ ︸
(T−t) entries

 .

Here, the first t entries correspond to the irrelevant tokens in the context and the last (T − t) entries
are zeroed out due to the causal masking. Among the relevant tokens in the intermediate w positions,
the attention focuses on the indices in I(k) as they can be processed altogether with the same feature
matrix Vk = A⋆

k. As the target patterns are sparse, the parameters of the attention need to diverge
to infinity to exactly learn this operation. In practice, we expect finite values that approximate
these sparse attention patterns. These attention patterns can be learned based on the positional
information: K⊤

k Qk = λ
∑

i∈I(k)

∑T+w
p=w ed+p−ie

⊤
d+p , where λ > 0 is a scaling constant and ei

is the i-th standard basis vector in Rd+T . As λ → ∞, the attention scores converge to the desired
sparse pattern. Note that this construction is not unique as there are many Qk and Kk that can
realize the same attention pattern. In particular, as there are h heads to learn, the construction has
a permutation symmetry among the heads. The permutation symmetry is key in understanding the
learning dynamics, as we show in Section 3.

3 Training Dynamics on Regression Variant

Consider the following regression task associated to any distribution PX and Pξ

(x1, . . . , xT ) ∼ PX , ξ ∼ Pξ , with y⋆(X) =

h∑
k=1

A⋆
kXs⋆k + ξ , (4)

where s⋆k ∈ RT is the vector with entries αi for i ∈ I(k) and zero otherwise. For this section,
we set |I(k)| = 1 for all k for simplicity. Let m⋆

k = ∥A⋆
k∥F , V ⋆

k = A⋆
k/m

⋆
k for all k ∈ [h] with

m⋆
1 > m⋆

2 > . . . > m⋆
h without loss of generality. We need some assumptions:

Assumption 1. The noise is zero-mean, i.e., E[ξ] = 0 and the data is normalized, i.e.,

∀i, j ∈ [T ] , E [⟨xi, xj⟩] = 1i=j .
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Assumption 2. The feature matrices are orthogonal, i.e.,

∀i, j ∈ [h] , ⟨V ⋆
i , V

⋆
j ⟩ = Tr

(
(V ⋆

i )
⊤V ⋆

j

)
= 1i=j .

We use the following model based on Section 2.1 for learning:

yθ(X) =

h∑
k=1

VkXsk , sk = softmax(qk) , where θ = (V1, . . . , Vh, q1, . . . , qh) .

We set the loss to the mean square loss and study the gradient flow dynamics of the population loss.
The notational details and the proofs are given in Section D.

Proposition 1 reinterprets this dynamics as a gradient flow of a tensor factorization problem.
Proposition 1. The gradient flow dynamics is equivalent to a gradient flow on the following loss:

L(θ) = 1

2
∥G− P ∥2F , where P =

h∑
k=1

Vk ⊗ sk and G =

h∑
k=1

m⋆
k (V

⋆
k ⊗ s⋆k) .

Attention Reparameterization. Note that due to the softmax operation,
∑

i qi is always constant
and thus we can restrict qk to have a zero mean. This implies a one-to-one correspondence between
qk and sk in the subspace of zero-mean vectors. Therefore, we analyze the dynamics in terms of sk:

V̇k = (G− P ) sk , ṡk = Π(sk)
2
(
V ⊤
k (G− P )

)
, where Π(s) =

(
diag(s)− ss⊤

)
. (5)

Numerical Simulations. We simulate these differential equations with initialization Vi = 0 and
si ≈ 1

T 1T . We present the results in Section C.6.

We show that the competitive phase of the learning dynamics can be described by the symmetric
initialization s1(0) = sk(0), V1(0) = Vk(0) for all k. This leads to the following coupled dynamics:

V̇ =
(
Gs−H∥s∥2V

)
, ṡ = Π(s)2

(
V ⊤G−H∥V ∥2F s

)
.

Theorem 1. Assume that the initialization verifies the following for all k ∈ [h]:
⟨V (0), V ⋆

1 ⟩ ≥ ⟨V (0), V ⋆
k ⟩ ⟨s(0), s⋆1⟩ ≥ ⟨s(0), s⋆k⟩ . (6)

Then, the dynamics of V and s converge to the following fixed point:

V (∞) =
m⋆

1

H
V ⋆
1 , s(∞) = s⋆1 . (7)

Theorem 1 is based on an ordering argument. As long as the initialization verifies the ordering
condition in Equation (6), the dynamics of V and s are such that V̇ and ṡ reinforces the same order.
In Section D.1, we remark that the initialization in Theorem 1 can be further relaxed to a wider basin.

Standalone, Theorem 1 does not explain what happens when the heads do not start with the same
initialization. Theorem 2 establishes that when many heads are initialized with a small deviation
from the symmetric initialization, the deviation from the symmetric initialization is bounded for a
finite time that we can precisely control. Therefore, the initialization determines the coupling time of
different heads after which they might start to diverge.
Theorem 2. Assume that V (0) and s(0) such that ∀k ∈ [h]: ∥V (0) − Vk(0)∥F ≤ ϵ and ∥s(0) −
sk(0)∥2 ≤ ϵ, where ϵ ≪ 1. Then, there exists a universal constant c1 such that

∥Vk(t)− V (t)∥F ≤ ϵec1t and ∥sk(t)− s(t)∥2 ≤ ϵec1t , ∀t ∈
[
0,

1

−c1 log ϵ

]
.

4 Conclusion

In this work, we have provided a simple but rich task in which transformers need to implement
multiple sparse attention patterns. We have shown that it captures the essence of position-dependent
incremental learning in transformers. The learning dynamics start competitive where all the heads try
to learn the most important pattern. We explain this stage via a coupled dynamics of the attention
matrices. After this stage, the heads start to collaborate where the offshooting head learns to predict
the other patterns. Our results capture the interplay of sparsity of attention patterns and the learning
dynamics of transformers. This is crucial for understanding behavior of transformers in real-world
tasks such as reasoning and natural language processing.
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Organization of the Appendix

The appendix is organized as follows,

• Section A discusses the related work.
• Section B provides the experimental details.
• Section C presents additional experiments.
• Section D provides the proofs of the theoretical results.

A Related Work

Our work is at the intersection of incremental learning and n-gram models.

Incremental learning. Plateau-like learning curves are a common feature in neural network training.
Early analyses, such as Fukumizu and Amari [2000], attributed these behaviors to critical points in
supervised learning. Subsequent studies have examined similar dynamics in a variety of simplified
settings, including linear networks [Gissin et al., 2020, Saxe et al., 2019, Gidel et al., 2019, Arora
et al., 2019, Jacot et al., 2021, Li et al., 2021, Razin et al., 2021, Jiang et al., 2022, Berthier, 2022,
Pesme and Flammarion, 2023, Jin et al., 2023, Varre et al., 2023, 2024], ReLU models [Boursier
et al., 2022, Abbe et al., 2023a], and simplified transformer architectures [Boix-Adsera et al., 2023].
In transformer training, plateaus followed by sudden capability gains [Chen et al., 2024a, Kim et al.,
2024] are often observed in regression tasks [Garg et al., 2022, Von Oswald et al., 2023, Ahn et al.,
2024], and formal language recognition [Bhattamishra et al., 2023, Akyürek et al., 2024, D’Angelo
et al., 2025].

n-gram models. n-gram language models [Jurafsky and Martin, 2009] serve as a toy setting to
understand large language models. This perspective has motivated a range of studies: the optimization
landscape has been characterized in Makkuva et al. [2024], expressivity over n-gram distributions has
been examined in Svete and Cotterell [2024] and sample complexity has been resolved in Yüksel
and Flammarion [2025]. Connections between ICL and the emergence of induction heads [Elhage
et al., 2021, Olsson et al., 2022], together with their acquisition via gradient descent [Nichani et al.,
2024], are drawn by Bietti et al. [2024]. Training dynamics on n-gram prediction tasks have also
been shown to progress in stages: intermediate solutions approximate sub-n-grams [Edelman et al.,
2024, Chen et al., 2024b], which later are formalized as near-stationary points by Varre et al. [2025].

B Experimental Details

Ground truth. We sample feature matrices A⋆
k uniformly over orthogonal matrices and then scale

with positive scalars mk. These constants are chosen geometrically, i.e., mk = mh−kb0 where
m > 1 is the multiplicative constant and b0 > 0 is the base scale. This results in an importance
hierarchy in the feature matrices whereas features within the same matrix has the same importance.
For simplicity, we choose αi = 1/|I(I−1(i))| where I−1 is the inverse of I . Lastly, we choose I(k)
as in Equation (2) with the same length intervals of size w/h.

Architecture and optimization. The full model has a standard single-layer transformer decoder
architecture as discussed in Section 2. It uses absolute positional encodings with learnable embedding
and unembedding matrices and has the configuration shown in Table 3. The minimal model, as
described in ??, removes layer normalization, dropout, residual connections, key and output attention
matrices and the MLP layer. It uses one-hot positional encodings and does not have embedding
and unembedding matrices. Both the full model and the minimal model are trained with the same
optimization hyperparameters listed in Table 2, and the same synthetic data generation process
described in Table 1. The main difference in the learning task between the two models is the interval
lengths |I(k)| of the Markov process: the full model uses intervals of length 4, while the minimal
model uses intervals of length 2, as summarized in Table 4.

We train the n-gram models using the same architecture and optimization hyperparameters as the full
transformer model but training with windows of size n sliding over the full sequence.
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Table 1: Synthetic dataset parameters

Parameter Value

Heads h 3
Dictionary size d 50
Multiplicative constant m 1.7
Base scale b0 10
Sequence length T 20
Train samples 9000
Test samples 3000
Seed 0

Table 2: Optimization hyperparameters

Parameter Value

Steps 2000
Batch size 3000
Gradient clipping 1.0
Optimizer AdamW
Weight decay 0.01
Learning rate 0.003
Scheduler ReduceLROnPlateau
Patience 10
Factor 0.5

Table 3: Transformer configuration

Parameter Value

Hidden dimension 255
Feedforward dimension 64
Dropout 0.1
Initialization scale 1
Number of blocks 1
Number of heads 3

Table 4: Markov process intervals

Full Minimal

|w| 12 6
I(1) {1, 2, 3, 4} {1, 2}
I(2) {5, 6, 7, 8} {3, 4}
I(3) {9, 10, 11, 12} {5, 6}

C Additional Experiments

We run additional experiments to study incremental learning behavior under different settings which
we summarize below:

• We identify the minimal architecture that exhibits incremental learning and then execute
ablation studies with initialization scale and multiplicative constant in Section C.1,

• We study the impact of incremental learning in generalization performance in Section C.2.
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Figure 4: (Left) Excess loss of the minimal architecture with different initialization scales. (Right)
Excess loss of the minimal architecture with different multiplicative constants m that determine the
importance hierarchy.

• We show that multi-pass training with finite data yields the same behavior as infinite data in
Section C.3

• We perform experiments with reversed importance and non-uniform interval lengths in
Section C.4.

• We study the impact of weight decay in Section C.5
• Finally, we present our numerical simulations in Section C.6.

C.1 Ablation Studies

In order to isolate the essential components that drive the incremental learning behavior, we simplify
the architecture by removing some components. First, we remove any components such as layer
normalization and residual connections that are not present in the idealized construction in ??. Then,
we reduce the product K⊤

k Qk to a single matrix Ak as there is a symmetry between Kk and Qk. All
of these changes individually or combined do not alter the incremental learning behavior. We plot the
learning behavior of this simplified model in Figure 1.

We also perform ablation studies with this minimal architecture. We first vary the initialization scale
of the attention matrices Ak and set value matrices to be zero. While initializing Ak, we use uniform
distribution over [−u, u] where u is the initialization scale. Figure 4 (left) shows that the speed of
incremental learning is affected by the initialization scale, with smaller scales resulting in slower
learning. At the extreme u = 0, we observe that the model only learns a single pattern and does
not progress further. This is because of the symmetry between the heads, which requires a small
perturbation to break.

We also vary the multiplicative constant m that determines the structure in the data generation process.
Figure 4 (right) shows that the number of steps diminish to two for m = 1, where there is no
importance ordering. Qualitatively, this model first learns a single pattern and then the other two are
learned simultaneously. For m = 1.3 and m = 1.5, we still observe three distinct stages, but the
stages are intertwined for m = 1.3 where bumps in the loss landscape are less pronounced.

C.2 Dataset Size and Generalization

We study the effect of the dataset size on the incremental learning behavior. As we decrease the
dataset size and cross some critical thresholds, we observe that the number of stages that occur in
training decreases, as seen in Figure 5 (left). Figure 5 (right) plots the KL divergence between the
predictions of the model with different context lengths and the trained transformer. The trend is
similar to the one observed in Figure 3 but with different number of bumps for each dataset size.

This points towards a beneficial regularization from the training trajectory which leads to misspecified
models, i.e., models that are not able to learn the task perfectly as they have a shorter context
length. Yüksel et al. [2025] argue that such misspecification can be beneficial in low-data regimes,
making learning statistically feasible. Notably, transformers with early stopping seem to select the
misspecification length automatically, hinting at potential sample complexity gains in these settings.

11



0 250 500 750 1000
Step

0

1

2

3

Be
st

 E
xc

es
s L

os
s

0 250 500 750 1000
Step

1

2

3

4

5

KL
 D

iv
er

ge
nc

e

600 samples

0 250 500 750 1000
Step

1

2

3

4
2000 samples

0 250 500 750 1000
Step

0

1

2

3
9000 samples

600 2000 9000 online 4-gram 8-gram 12-gram

Figure 5: The impact of the dataset size on the incremental learning behavior. (Left) The best
validation loss as a function of the dataset size. (Right) The KL divergence between the predictions
of the model with different context lengths and the trained transformer. Dashed lines indicate the first
step that obtains the best excess loss.

C.3 Infinite Data

Instead of training on a finite dataset of 9000 samples, we train the model with infinite data by
sampling a new batch of data at each step. This removes any effect of overfitting in incremental
learning. We observe in Figure 6 and Figure 7 that the model still exhibits the same behavior. This
experiment is run with the minimal architecture described in Section C.1.
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Figure 6: Attention patterns over the training steps with online sampling of data.
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Figure 7: Validation loss and KL divergence over the training steps with online sampling of data.

C.4 Reverse Order

We reverse the order of importance of the intervals such that the most important interval is the
furthest one. Figure 8 and Figure 9 show the results when I(3) = {12, 13}, I(2) = {8, 9, 10, 11}
and I(1) = {0, 1, 2, 3, 4, 5, 6, 7} which reveals the same behavior as the original order. We also note
that it is generally easier to observe incremental learning behaviour when the most important interval
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is the furthest one. This indicates that the learning dynamics is impacted by the sequential structure
of the task. This experiment is run with the full architecture described in Section B.
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Figure 8: Attention patterns over the training steps with reversed order of importance and varying
interval lengths.
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Figure 9: Validation loss and KL divergence over the training steps with reversed order of importance
and varying interval lengths.

C.5 Weight Decay

We also study the impact of weight decay on the learning dynamics. We observe almost no difference
in the learning dynamics when weight decay is not applied so we do not report the results.

C.6 Simulations

The square loss associated with θ is given as follows:

L(θ) = 1

2
Ex1,...,xT ,ξ

[
∥yθ(X)− y⋆(X, ξ)∥2

]
. (8)

We present numerical simulations of the gradient flow dynamics of the loss in Equation (8) with the
following parameters: d = 50, T = 40, h = 3, |I(k)| = 1 for all k ∈ [h], m = 1.7, λ = 0. We
initialize the value parameters Vi to 0 and the attention patterns si to 1

T 1T + ϵi where ϵi are sampled
from Gaussian distribution with zero-mean and ϵIT covariance with ϵ = 10−6. Figure 10 shows the
evolution of the attention patterns sk, the value parameters Vk and the loss over time.

The results aligns with the transformer experiments in Section 2. Similar to the transformer experi-
ments, the heads first learn from the position (1) and then the position (2) and finally the position (3).
The time scales of these stages are clearly separated where the first stage is the fastest and the third
stage is the slowest. Notably, at first, all heads tries to learn from the position (1) as it is related to
the most important feature. After this competition phase, the heads start to learn from the position
(2) and then the position (3) where they specialize in different patterns. Here, they cooperate to
learn from the position (3). In particular, the first head offsets feature (3) as the third head’s residual
attention on the first position results in a cross term.
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D Missing Proofs

Tensor Notation. We construct tensors that are sum of outer products of matrices and vectors,
i.e., M =

∑h
k=1 Bk ⊗ vk where Bk ∈ Rd×d and vk ∈ RT . The product X⊤M denotes X⊤M =∑h

k=1⟨Bk, X⟩vk whereas the product Mv denotes Mv =
∑h

k=1 Bk⟨vk, v⟩. The inner product
between two tensors M =

∑h
k=1 Bk ⊗ vk and N =

∑h
k=1 B

′
k ⊗ v′k is denoted by ⟨M ,N⟩ =∑h

k=1⟨Bk, B
′
k⟩⟨vk, v′k⟩. The Frobenius norm of a tensor M is given by ∥M∥F =

√
⟨M ,M⟩.

Proposition 1. The gradient flow dynamics is equivalent to a gradient flow on the following loss:

L(θ) = 1

2
∥G− P ∥2F , where P =

h∑
k=1

Vk ⊗ sk and G =

h∑
k=1

m⋆
k (V

⋆
k ⊗ s⋆k) .
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Proof. We start by some computations. Note that for any vectors v1, v2 ∈ RT , we have:

E
[
(Xv1) (Xv2)

⊤
]
=

T∑
i=1

T∑
j=1

(v1)i(v2)jE
[
xix

⊤
j

]
= ⟨v1, v2⟩Id .

Also, for any vectors v1, v2 ∈ RT and any matrix Q ∈ Rd×d, we have:

E
[
v1X

⊤QXv2
]
=

T∑
i=1

T∑
j=1

(v1)i(v2)jE
[
x⊤
i Qxj

]
=

T∑
i=1

T∑
j=1

(v1)i(v2)j Tr
(
QE

[
xjx

⊤
i

])
= ⟨v1, v2⟩Tr(Q) .

By selecting v2 = ei for all i ∈ [d], we get:

E
[
v1X

⊤QX
]
= Tr(Q)v1 .

First, the derivative with respect to Vi is as follows:

∂L(θ)
∂Vi

= EX,ξ

[
(fθ(X)− f⋆(X, ξ)) (Xsi)

⊤
]

=

h∑
j=1

Vj⟨si, sj⟩ −
h∑

j=1

m⋆
j ⟨si, s⋆j ⟩V ⋆

j .

Next, the derivative with respect to qi is as follows:

∂L(θ)
∂qi

=
(
diag(si)− sis

⊤
i

)
EX,ξ

[
X⊤V ⊤

i (fθ(X)− f⋆(X, ξ))
]

=
(
diag(si)− sis

⊤
i

) h∑
j=1

⟨Vi, Vj⟩sj −
h∑

j=1

m⋆
j ⟨Vi, V

⋆
j ⟩s⋆j

 .

Then, the gradient flow dynamics is as follows:

V̇i = −∇ViL(θ) = (G− P ) si

q̇i = −∇qiL(θ) = Π(si)
(
V ⊤
i (G− P )

)
.

This can be seen as a gradient ascent flow on the following loss:

L(θ) = 1

2
∥G− P ∥2F .

Lemma 1. Let s be a vector on the simplex that verifies s1 ≥ sj for all j ∈ [h]. Then, for any vector
v that verifies v1 ≥ vj for all j ∈ [h], we have for all j ∈ [h]:

(Π(s)v)1 ≥ (Π(s)v)j .

Proof. We have the following computations:

(Π(s)v)1 = s1 (v1 − ⟨s, v⟩)
(Π(s)v)j = sj (vj − ⟨s, v⟩) .

Then, we have:
(Π(s)v)1 − (Π(s)v)j ≥ (s1 − sj) (v1 − ⟨s, v⟩) ≥ 0 .
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Theorem 1. Assume that the initialization verifies the following for all k ∈ [h]:

⟨V (0), V ⋆
1 ⟩ ≥ ⟨V (0), V ⋆

k ⟩ ⟨s(0), s⋆1⟩ ≥ ⟨s(0), s⋆k⟩ . (6)

Then, the dynamics of V and s converge to the following fixed point:

V (∞) =
m⋆

1

H
V ⋆
1 , s(∞) = s⋆1 . (7)

Proof. Let R be the following set:

R = {(V, s) | ∀k ∈ [h], ⟨V, V ⋆
1 ⟩ ≥ ⟨V, V ⋆

k ⟩ and ⟨s, s⋆1⟩ ≥ ⟨s, s⋆k⟩} .

We prove that the flow is forward-invariant on R.

Fix any j ∈ [h]. Let wj = ⟨V, V ⋆
1 −V ⋆

j ⟩ and zj = ⟨s, s⋆1 − s⋆j ⟩. The flow of wj and zj are as follows:

ẇj = m⋆
1⟨s, s⋆1⟩ −m⋆

j ⟨s, s⋆j ⟩ −H∥s∥2wj ,

żj = Π(s)2
(
m⋆

1⟨V, V ⋆
1 ⟩ −m⋆

j ⟨V, V ⋆
j ⟩ −H∥s∥2zj

)
.

On the boundary of R, we have wj = 0 or zj = 0. If wj = 0, then ẇj ≥ 0 and if zj = 0, then
żj ≥ 0 by Lemma 1. Therefore, a flow that has started in R will remain in R for all time.

Now, consider the following Lyapunov function:

ϕ(V, s) = ⟨V,Gs⟩ − H

2
∥V ∥2F ∥s∥2 . (9)

The derivative of ϕ(V, s) is as follows:

∇V ϕ(V, s) = Gs−H∥s∥2V ,

∇sϕ(V, s) = V ⊤G−H∥V ∥2F s .
Therefore, the time derivative of ϕ:

ϕ̇(V, s) = ∥V̇ ∥2 + ∥Π(s)∇sϕ(V, s)∥2 ≥ 0 .

ϕ is optimized when V =
Gs

H∥s∥2
which leads to a finite value upper bound on ϕ(V, s). Therefore,

limt→∞ ϕ(V (t), s(t)) is finite and the flow converges to a stationary point of ϕ. That is, the flow
converges to a point that verifies:

Gs−H∥s∥2V = 0 , V ⊤G−H∥V ∥2F s ∈ ker(π(s)) . (10)

Note that, we have the following equality:

(Gs)⊤G =

h∑
j=1

m⋆
j

〈
V ⋆
j ,

h∑
k=1

m⋆
kV

⋆
k ⟨s⋆k, s⟩

〉
s⋆j =

h∑
j=1

(m⋆
j )

2⟨s⋆j , s⟩s⋆j .

Then, the stationary point verifies for any non-zero components of s:
h∑

j=1

(m⋆
j )

2⟨s⋆j , s⟩s⋆j = H2∥s∥2∥V ∥2F ⟨s⋆j , s⟩s⋆j + α1T , for some α ∈ R .

Any non-zero components of s needs to be processed with the same weight m⋆
j or otherwise this

condition is not satisfied. However, we have proven that the trajectories are forward-invariant on R
and that R is closed. Therefore, the flow converges to the stationary point

s = s⋆1 , V =
m⋆

1

H
V ⋆
1 .

Theorem 2. Assume that V (0) and s(0) such that ∀k ∈ [h]: ∥V (0) − Vk(0)∥F ≤ ϵ and ∥s(0) −
sk(0)∥2 ≤ ϵ, where ϵ ≪ 1. Then, there exists a universal constant c1 such that

∥Vk(t)− V (t)∥F ≤ ϵec1t and ∥sk(t)− s(t)∥2 ≤ ϵec1t , ∀t ∈
[
0,

1

−c1 log ϵ

]
.
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Proof. We write the flow of Vi and si in terms of the flow of V and s by new variables:

Wi = Vi − V , zi = si − s .

Let ϵ be the following quantity:

ϵ = max
j∈[h]

max{∥Wj∥F , ∥zj∥} .

We are interested in the regime where ϵ ≪ 1.

Recall that, ϕ(V, s) defined in Equation (9) is always non-decreasing. Therefore, V cannot grow

larger than
Gs

H∥s∥2
in norm or otherwise ϕ(V, s) would decrease. This is the optimal value of V for a

particular s. Thus, we have a time-independent upper bound |V | ≤ maxs
Gs

H∥s∥2
=

m⋆
1

H
.

Then, the flow of Wi and zi is as follows:

Ẇi = Gzi − P si +H∥s∥2V ,

żi = Π(si)
2
(
V ⊤
i (G− P )

)
−Π(s)2

(
V ⊤G−H∥V ∥2s

)
.

Note that, P can be rewritten as follows:

P =

h∑
j=1

Vj ⊗ sj = HV ⊗ s+

 h∑
j=1

Wj

⊗ s+ V ⊗

 h∑
j=1

zj

+

 h∑
j=1

Wj ⊗ zj

 .

This implies that:

V ⊤P = H∥V ∥2s+O
(
ϵ+ ϵ2

)
, P s = H∥s∥2V +O

(
ϵ+ ϵ2

)
.

We can rewrite the flow of zi as follows:

żi =
(
Π(si)

2 −Π(s)2
) (

V ⊤
i (G− P )

)
+Π(s)2

(
W⊤

i G− V ⊤
i P +H∥V ∥2s

)
.

Therefore, we have:
Ẇi = O(ϵ), żi = O(ϵ) .

The norm of Wi and zi are then evolve as follows:

˙̂∥Wi∥ =
Ẇi

⊤
Wi

∥Wi∥
≤ ∥Ẇi∥ = O(ϵ) .

We similarly derive that ∥żi∥ = O(ϵ).

This implies that ϵ verifies the equation:

ϵ̇ ≤ Cϵ , as long as ϵ ≪ 1 ,

where C is a constant that depends on the problem parameters H and G. From the Grönwall’s
inequality, we have:

ϵ(t) ≤ ϵ(0)eCt , as long as t ∈
[
0,

1

−C log ϵ(0)

]
.

D.1 Initialization of Theorem 1

We can relax the initialization condition of Theorem 1 via a Taylor expansion around t = 0. This
follows the approach of Zucchet et al. [2025], who have studied the escape time from this initialization
when the data covariance has 1

d and the loss has 1
T scaling, leading to a slowdown of order 1

dT
compared to our setting.
Remark 1. The initialization of interest is sk(0) ≈ 1

T 1T for all k ∈ [h] as seen in Figure 2. By
expanding the dynamics around this initialization with Vk ≈ 0 for all k ∈ [h], we get: V̇k(0) ≈
1
T G1T , ṡk(0) ≈ 0. Similarly, second-order local approximation shows that sk has the largest
increase towards the direction s⋆1. Therefore, we can quantify a wider basin of attraction for Theorem 1
as all Vk and sk move towards the initialization space defined by Equation (6).
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