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Abstract

Continual learning systems attempt to efficiently learn over time without forgetting previ-
ously acquired knowledge. In recent years, there has been an explosion of work on continual
learning, mainly focused on the class-incremental learning (CIL) setting. In this review, we
take a step back and reconsider the CIL problem. We reexamine the problem definition and
describe its unique challenges, contextualize existing solutions by analyzing non-continual
approaches, and investigate the implications of various problem configurations. Our goal is
to provide an alternative perspective to existing work on CIL and direct attention toward
unexplored aspects of the problem.

1 Introduction

In the past decade, machine learning has made tremendous progress on wide range of applications including
computer vision, natural language processing, robotics, and more. The dominant approach – deep learning
– generally performs well given large datasets in the i.i.d. setting, in which many passes may be made
over the same data during training. However, existing methods fail when new data arrives, as users must
either (i) store the old data and retrain jointly on both the old and new data, thus incurring significant
memory and computation costs, or (ii) choose between learning from the new data and retaining previously
learned knowledge. The trade-off described in (ii) is commonly known as the stability-plasticity dilemma
(Carpenter & Grossberg, 1988). Recent work on continual learning has focused on ways to balance the
stability-plasticity dilemma, with many solutions proposed to alleviate catastrophic forgetting, referring to
the loss of old knowledge when learning anew (McCloskey & Cohen, 1989).

In this review, we consider supervised classification problems in the continual setting. Specifically, we focus
on the class-incremental learning (CIL) problem setting, in which new classes of data are introduced over
time (Van de Ven & Tolias, 2019). We seek to thoroughly understand both the problem statement and
existing solutions, with a focus on unexplored directions.

Our work differs from recent continual learning review articles in several key ways, as summarized in Table 1.
First, we specifically address the CIL setting, unlike De Lange et al. (2021); Mundt et al. (2023); Wang et al.
(2024), and Verwimp et al. (2024). Second, we provide a novel categorization of existing approaches based
on the shortcomings of non-continual methods, thus motivating and contextualizing recent work. Third,
and perhaps most importantly, we focus on understanding and refining the CIL problem statement. This
differs from Belouadah et al. (2021); Mai et al. (2022); Masana et al. (2022) and Zhou et al. (2023), which
instead summarize and evaluate existing solutions. In particular, we investigate the challenging aspects of
the problem and analyze the properties of a successful CIL system.

Our main contributions are outlined below:

• In Section 2, we argue that the CIL problem should be redefined using constraints on memory and
compute. We show that a commonly used problem statement is imprecise and admits extremely
inefficient solutions.

• In Section 3, we describe key challenges introduced by CIL. We show that addressing these challenges
is both necessary and sufficient for solving the broader problem. In particular, we highlight the
importance of across-task discrimination and propose a corresponding performance metric.
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• In Sections 4 and 5, we consider “naive” approaches which were not designed for continual learn-
ing. We analyze their strengths, weaknesses, and required modifications in the CIL setting, thus
motivating existing work. Within this framing, we provide an overview of existing work.

• In Section 6, we investigate the dimensions of the CIL problem. We characterize when the problem is
easy versus hard, and describe how existing work addresses various problem configurations. Notably,
we investigate class-to-task assignment and provide a surprising example illustrating its importance.

• In Section 7, we conclude with suggestions for future work. Specifically, we argue that future solutions
can and should make assumptions regarding the data generating process, as certain aspects of the
world will remain fixed as new tasks are introduced.

Table 1: Brief summary of review articles on continual learning (CL) and class-incremental learning (CIL).

Review Submission Date Content

De Lange et al. (2021) 2019 Reviews and evaluates TIL approaches,
focused on relatively early work

Belouadah et al. (2021) 2020 Summarizes work on CIL with empirical evaluations
on image classification benchmarks

Mai et al. (2022) 2020 Focuses on empirical evaluations in the online
CIL setting over various performance metrics

Masana et al. (2022) 2020 Reviews work on CIL in the context of image classification with
evaluations across various task-splits and replay strategies

Mundt et al. (2023) 2020 Summarizes work on CL and establishes connections to
open-set recognition and active learning

Zhou et al. (2023) 2023 Reviews deep learning approaches to CIL with memory-aligned
evaluations on image classification benchmarks

Wang et al. (2024) 2023 Broad overview of work on CL covering computer vision,
natural language processing, reinforcement learning, etc.

Tian et al. (2024) 2023 Summarizes and evaluates CIL methods specifically
designed for the few-shot setting (FSCIL)

Verwimp et al. (2024) 2023 Outlines real-world CL applications in which “continual learning
is not a choice” and describes general directions for future work

Ours 2024 Defines the CIL problem statement under resource
constraints, describes properties of successful solutions

2 Problem Statement

In this section, we formally define our problem statement. We focus our discussion on the class-incremental
learning (CIL) setting as proposed in Van de Ven & Tolias (2019). We borrow notation and definitions from
Zhou et al. (2023) and Kumar et al. (2023). First, we state the objective of CIL, then we provide two forms
of restrictions imposed on potential solutions. These restrictions are crucial for ensuring that the problem is
well defined and that solutions are non-trivial (i.e., CIL could be trivially solved by storing and retraining
on all of the data, though this is highly inefficient). We argue that restrictions in the form of resource
constraints are more appropriate than restrictions on the availability of previously learned data.
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2.1 Class-Incremental Learning

In CIL, we wish to sequentially learn a set of tasks 1, . . . , T . For each task k ∈ {1, . . . , T}, we are given
a corresponding dataset Dk = {(xk

i , yk
i )nk

i=1} sampled from an unknown, underlying distribution Dk ∼ Tk.
Each task is a supervised classification problem with feature vectors xk

i ∈ X and categorical labels yk
i ∈ Yk.

One or more classes are included in each task, and classes are disjoint across tasks (Yk ∩ Yk′ = ∅, ∀k ̸= k′

and ∪T
k=1Yk = Y).

The overall goal is to learn a single classifier f : X → Y with strong generalization performance across
all classes. Task-identification information is not available to the model at inference. The classifier should
perform well on all previously observed classes after learning each task: after learning task k, performance
should be strong on all classes Y1:k. At task k, this goal can be expressed as learning f∗

k from the model’s
hypothesis space H such that:

f∗
k = argmin

fk∈H
E

(x,y)∼T1:k
[I(fk(x) ̸= y)] (1)

2.2 Restrictions while Learning

2.2.1 Old Restriction: Unavailability of Previous Data

Much of the existing work on CIL assumes that the data from previous tasks is not available when learning
the current task. Formally, when learning task k, the model can only access Dk, while D1:k−1 are inaccessible.
Many approaches to CIL (Kim et al., 2022; Van De Ven et al., 2021; Zhu et al., 2021a; Zhang et al., 2020a;
Tao et al., 2020) as well as a recent survey on deep CIL (Zhou et al., 2023) explicitly include this restriction
in the problem statement.

Completely restricting access to previous task data may appear reasonable. This restriction disallows trivial
approaches which would retrain on all of the data at every task. Additionally, security and/or privacy
concerns are often cited as a reason to restrict access to old data. However, we argue that this restriction is
both unnecessary and inadequate for building useful CIL systems. To understand why, consider the following
critiques.

Critique #1: Inefficient solutions are allowed. First, if the unavailability of previous data is the
only restriction (i.e., there are no other restrictions on memory and/or compute), then extremely inefficient
solutions are allowed. In a recent analysis on the ImageNet-1K dataset, Harun et al. (2023a) finds that
several highly-cited CIL algorithms actually use more compute1 than trivially retraining on all of the data
at every task! In one respect, such algorithms defeat the purpose of using continual learning.

Critique #2: Security and privacy violations may persist. Second, note that deep neural networks
have the capacity to essentially “memorize” training data (Zhang et al., 2017) and that decoding schemes
can be used to reconstruct data from a trained network (Haim et al., 2022). As discussed in Verwimp et al.
(2024), these observations lead us to question whether restricting access to old data truly addresses security
or privacy concerns, as sensitive data could simply be recovered from trained models. This concern is not
specific to deep neural networks – even simple generative or prototype-based classifiers may memorize data
or be susceptible to data leakage.

Critique #3: Imprecise problem definition. Third, if previous task data cannot be stored but previ-
ously learned model(s) can be stored, then it becomes necessary to formally answer the question “What is a
model?” or at least answer “What is the difference between a model and a dataset?” The existence of models
such as K-nearest neighbors – which stores the entire dataset – may make these questions difficult to answer.
Note that some early work has defined learning algorithms (models) with respect to data compression in the
PAC learning framework (Blumer et al., 1987; Takimoto & Maruoka, 1993), though these definitions have
not been referenced in the modern continual learning literature. For this reason, we argue that framing the
CIL problem based on the unavailability of previous data results in an imprecise problem definition.

1Measured in total number of backpropagation updates
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A note regarding relaxations of this restriction. We acknowledge that many approaches to CIL consider a
relaxation of this restriction in which a small subset of previous task data is available when learning the
current task (see the discussion on replay-based approaches in Section 5). In this framing, solutions are
typically allowed to store either a fixed number of samples per-class (Rolnick et al., 2019) or a fixed number
of total samples (Wang et al., 2023). While we feel that this framing is a step in the right direction, we argue
that it is still lacking. This is because (i) it does not include restrictions on compute, (ii) the number of
stored samples is constrained but the size of the predictive model is not, and (iii) unnecessary assumptions
are made regarding data storage. Drawback (i) allows computationally-inefficient solutions, which may be
undesirable for CIL applications. Drawback (ii) implies that the total memory cost – stored samples and
model parameters – may not be appropriately measured or constrained. Finally, drawback (iii) may introduce
artificial constraints limiting solution performance. For example, it may be suboptimal to store the same
number of samples for each class. Alternatively, learning task-specific models may be a better use of a given
memory budget as compared to storing task-specific samples.

2.2.2 New Restriction: Resource Constraints

An alternative framing of the CIL problem restricts solutions using resource constraints instead of restricting
access to previous task data. Recent work frames the continual learning problem as computationally con-
strained reinforcement learning (Kumar et al., 2023). In this framing, a continual learning agent attempts to
maximize its average reward2 under restrictions on memory and compute. For example, memory constraints
may limit the total size of a model, while computational constraints may limit the number of floating point
operations performed when learning each task.

Resource constraints prevent trivial retraining on all data at every task, either because storing the entire
dataset would require too much memory and/or because full retraining would be too computationally ex-
pensive. Because trivial retraining is infeasible, continual learning methods are necessary. We argue that
framing the CIL problem in terms of resource constraints rather than data availability results in a more
appropriate problem statement and will lead to the development of useful, real-world continual learning
systems.

Resource constraints can take many forms. For example, edge devices performing CIL may have strict latency
or power constraints, permitting only a small number of learning updates (Yoshikiyo et al., 2022; Wang et al.,
2022c). On the other hand, large GPU servers performing CIL may be relatively unconstrained with respect
to memory, and are instead constrained by the monetary cost of compute (e.g., renting large instances on
cloud computing platforms may be prohibitively expensive, see Prabhu et al. (2023b) for details). In this
case, it may be desirable to develop CIL algorithms which jointly optimize for classification performance
as well as computational efficiency. Here, resource constraints are not fixed, but rather become part of the
optimization objective.

In summary, we emphasize the importance of including application-specific resource constraints as part of the
CIL problem definition. Doing so avoids the issues caused by restricting the availability of previous task data:
resource constraints formally define the space of potential solutions and disallow loopholes, there is no need
to formally define “model” versus “data”, and the problem is not made artificially difficult by misconstrued
privacy or security concerns. In the following sections, we will consider the resource-constrained version of
the CIL problem statement.

2.3 Related Problem Statements

We briefly describe other continual classification problem statements below, based on the categorization
given in Van de Ven & Tolias (2019). While the focus of this work is CIL, note that the arguments for the
resource-constrained setting in Section 2.2 are applicable to CIL as well as TIL, DIL, and OCL, and extend
to continual learning problems even beyond classification.

Few-Shot Class-Incremental Learning (FSCIL). FSCIL involves continually learning new classes of
data given only a small number of samples per class. This setting is typically addressed using some form

2In CIL, average reward is equivalent to average negative log-loss (i.e., cross-entropy loss) over all classes.
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of pretraining: learning on a large, general-purpose dataset with many samples prior to continual learning.
FSCIL inherits the challenges of CIL described in Section 3.1, with the added difficulty of unreliable empirical
risk minimization, i.e., avoiding overfitting when learning from a small sample size (Wang et al., 2020).

Task-Incremental Learning (TIL). The TIL problem setting is very similar to that of CIL: new classes
are introduced incrementally, and the classifier must efficiently adapt while maintaining previously learned
knowledge. However, in TIL, task-identifiers are provided at inference. This removes the need for learning
across-task discrimination, discussed in Section 3.1. TIL can be viewed as an “easier” version of CIL.

Domain-Incremental Learning (DIL). In DIL, the set of classes is fixed, but the distribution of features
for each class changes over time. Similarly to CIL and TIL, the classifier must continually learn while miti-
gating forgetting. Unlike CIL and TIL, this challenge must be addressed at the level of feature distributions
rather than at the class-level. Task-identifiers are unavailable at inference. Therefore, the key challenges
described in Section 3.1 for CIL each have counterparts for DIL.

Online Continual Learning (OCL). OCL involves learning from small batches of data introduced incre-
mentally (Mai et al., 2022). This differs from (non-online) CIL, in which all of the data from a given class
is available when learning its corresponding task. In other words, samples from a single class may be split
across multiple timesteps. In the extreme case, samples may be introduced one-at-a-time. This introduces
the additional challenge of aggregating knowledge across timesteps for samples within a given class.

Note that OCL is a broad categorization which is not specific to classification. In addition, these problem
settings can be combined. For example, CIL + DIL + OCL is sometimes referred to as Task-Free Continual
Learning (TFCL), and requires adapting to new classes as well as feature distribution shifts in the online
setting (Aljundi et al., 2019a).

2.4 Real-world CIL Example: Social Media Post Classification

To motivate our problem statement, we outline a potential real-world system which fits the resource-
constrained CIL setting. We discuss the problem of real-time, social media post classification, with new
classes introduced incrementally. Classes could correspond to post content (text, images, or videos) with
applications for fraud detection, content moderation, targeted advertising, and more. Note that this prob-
lem may not be trivially solvable using hashtags or interest tagging, as posts may be implicitly referring
to a given topic and fraudulent content may be intentionally obfuscated. The problem may be framed as
“traditional” CIL or online CIL depending on how the data is collected and training is scheduled.

Popular social media platforms receive an extremely high volume of posts – on average, 500 million tweets are
shared every day (Sayce, 2022) – and new classes may be introduced in a short time period corresponding to
current events or newly developed types of fraud. Further, posts may need to be classified in near real-time
in order to avoid the spread of misinformation or limit online scams. These concerns motivate the resource-
constrained setting – the extremely high volume of posts necessitates computationally efficient learning, and
the real-time nature of the application requires a low inference cost.

In such a setting, the entire sequence of training data is stored by default (i.e., posts from several years
ago are available on a user’s profile and therefore must be stored on the platform’s server). This removes
the “unavailability of previous data” restriction discussed in Section 2.2 and places on the focus instead on
computational efficiency. Note that this shift in focus significantly changes the solution space. Solutions
leveraging K-nearest neighbors or other forms of locally-weighted learning may be appropriate, and such
techniques could be learned atop pretrained representations – see Prabhu et al. (2023b) for one such approach.

Such an approach may serve as a starting point, with modifications necessary to meet performance and
efficiency goals. For example, the pretrained representation may need to be continually fine-tuned in order
to improve classification accuracy, requiring some form of replay and/or knowledge distillation (see Section
5 for details). Further, even if all of the training data is stored, computational constraints may limit the
amount of data used when learning continually, necessitating an intelligent sampling strategy. Finally,
efficient inference techniques (e.g., forms of locality-sensitive hashing) may be required to meet near real-
time classification constraints. Note that the example of social media post classification is not unique:
applications ranging from cybersecurity to epidemiology involve similarly high volumes of data and may
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require fast inference. For further examples of real-world continual learning applications, we direct readers
to Verwimp et al. (2024).

3 Key Challenges

It is worth understanding what makes the CIL problem challenging as compared to learning in the non-
continual setting. We outline three main challenges: balancing stability and plasticity, learning across-task
discrimination, and transferring knowledge across tasks. None of these challenges are present when learning
in the non-continual setting, which can be thought of as a single task. We first describe these challenges
then discuss why they are significant.

3.1 Challenges

Balancing stability and plasticity. The stability-plasticity dilemma refers to the ability to learn new tasks
while maintaining previously learned knowledge (Carpenter & Grossberg, 1988). Loss of stability is typically
referred to as forgetting – or catastrophic forgetting (McCloskey & Cohen, 1989), due to its empirically
observed severity – and can be measured as the degradation of model performance on old tasks as new tasks
are learned. Lack of plasticity can be defined using intransigence (Chaudhry et al., 2018a). Intransigence
reflects a model’s inability to acquire new knowledge, measured as the difference in performance across the
continual and non-continual settings.

To provide formal definitions, we introduce notation3 originally proposed in Lopez-Paz & Ranzato (2017).
Let R ∈ RT ×T be the train-test performance matrix, with elements indicating some performance measure4

for a given classification model. Element Ri,j denotes the performance on the test set of task j immediately
after learning the training set of task i. We assume that tasks are learned in the order in which they are
presented: tasks 1, . . . i − 1 are learned in order before task i is learned. The amount of forgetting on task i
after learning tasks i + 1, . . . , j can be quantified as:

Fi,j = max
k∈{i,...,j−1}

Rk,i − Rj,i (2)

The max operation is included in order to account for backward knowledge transfer – see discussion following
Eq. 6 for details. The intransigence on task i after learning tasks 1, . . . , i − 1 can be quantified as:

Ii = R∗
i − Ri,i (3)

Here, R∗
i denotes the performance of a reference model on task i. This reference model is learned in the

non-continual setting, i.e., jointly trained on all data ∪T
k=1Dk. Performance in the non-continual setting is

often used as an upper bound for performance in the continual setting, and the corresponding performance
gap indicates an inability to continually learn new tasks. For fair evaluations, the reference model and
continual learning model should have similar architectures.

Learning across-task discrimination.5 At inference, CIL methods must perform classification across
all learned classes without the aid of task-identifiers. Namely, after learning task k, the model should be
able to perform classification over all classes Y1:k. This requires the ability to discriminate between classes
within each task and across all tasks. Note that the definitions of stability and plasticity defined above
are insufficient for ensuring that across-task discrimination is learned. This is because these definitions
only consider within-task performance. CIL solutions must include some mechanism to learn and maintain
across-task discrimination.

3We provide simplified notation for pairs of tasks – more detailed notation for overall forgetting and knowledge transfer are
given in Lopez-Paz & Ranzato (2017); Chaudhry et al. (2018b); Díaz-Rodríguez et al. (2018)

4Classification accuracy is commonly used as a performance measure. In general, measures should be chosen such that higher
values correspond to better performance.

5Across-task discrimination is sometimes called cross-task discrimination, inter-task separability, or inter-task confusion
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To formally define across-task discrimination, consider the normalized confusion matrix M j populated after
learning tasks 1, . . . , j. Matrix M j has dimensionality |Y1:j | × |Y1:j |,6 with element Mm,n indicating the
proportion of instances of class m which are predicted as class n after evaluation on a test set. In other
words, the rows of M j correspond to the actual classes, while the columns of M j correspond to the predicted
classes. To simplify notation, let Ci be the set of indices corresponding to the classes in task i. For example,
C1 = {1, . . . , |Y1|}, C2 = {|Y1| + 1, . . . , |Y1| + |Y2|}, and so on. Within a task, the assignment of indices to
classes is arbitrary. Consider a model which has learned tasks 1, . . . , j, and consider a task i such that i ≤ j.
The model’s across-task discrimination performance with respect to task i can be defined as:

AT Di,j = 1
|Ci|

∑
m∈Ci

∑
n∈Ci

M j
m,n (4)

This quantity simply measures how often the model predicts a class from the correct task at inference.
Visually, it corresponds to the values within a square subset of the confusion matrix along the diagonal.

Transferring knowledge across tasks. It is reasonable to assume that there will be similarity across tasks
in a given CIL application. Ideally, knowledge accumulated from old tasks should improve performance when
learning new tasks, and learning new tasks should also improve performance on old tasks. In other words,
both forward transfer and backward transfer are desirable. Consider two tasks, i and j, with i < j. The
forward transfer from earlier tasks 1, . . . , i to later task j can be measured as:

F W Ti,j = Ri,j (5)

This definition of forward transfer is equivalent to the model’s zero-shot performance on task j. The backward
transfer from later tasks i + 1, . . . , j to earlier task i can be measured as:

BW Ti,j = Rj,i − Ri,i (6)

This definition of backward transfer is similar to the negation of forgetting in Eq. 2. Forgetting measures
how much performance on an earlier task decreases when learning a later task, while backward transfer
measures how much performance on an earlier task increases when learning a later task. Note that Eq.
6 is not simply Eq. 2 negated – this is because both definitions are cumulative. For example, knowledge
may be transferred backward and later forgotten, or knowledge may forgotten and later re-learned through
backward transfer. Eqs. 2 and 6 account for such situations.

3.2 Why these challenges?

Successful within-task discrimination is a consequence of stability and plasticity. While within-
task discrimination is a necessary component of successful CIL systems, we do not include it as a key
challenge. Instead, we argue that achieving and maintaining strong within-task performance is a consequence
of sufficient stability and plasticity. Recall that Ri,j denotes the performance on task j after learning task
i. Strong within-task performance can be formalized as follows: immediately after task i is learned, Ri,j

should be sufficiently high for all previously learned tasks j ≤ i. This should hold for all tasks i ∈ {1, . . . , T}.
Note that the terms “strong performance” and “sufficiently high” are subjective, and can be defined based
on application-specific and/or task-specific criteria.

This formalization simply requires that performance be strong for the most recently learned task as well as for
all of the other previously learned tasks. Strong performance on the most recently learned task is equivalent
to low intransigence in Eq. (3). Maintaining performance on prior tasks is equivalent to low forgetting in
Eq. (2). Therefore, sufficient stability and plasticity results in successful within-task discrimination.

6We use vertical bars to indicate the number of elements within a set (cardinality). Here, |Y1:j | is the total number of classes
learned in tasks 1, . . . , j
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Learning across-task discrimination is necessary for CIL. As proved in Kim et al. (2022), strong
within-task discrimination and strong across-task-discrimination are together necessary and sufficient con-
ditions for strong CIL performance. In other words, a model will have strong overall performance if and only
if it is can accurately distinguish between classes from the same task and across classes from different tasks.
Learning and maintaining across-task discrimination is therefore a key challenge in CIL.

Strong across-task performance can be formalized as follows. Immediately after learning task i, AT Di,j (Eq.
4) should be sufficiently high for all previously learned tasks j ≤ i. This condition should hold for each task
i ∈ {1, . . . , T}. This formalization is very similar to the formalization of strong within-task performance,
with AT Di,j used instead of Ri,j . However, there is an important difference between the within-task
and across-task discrimination problems: the across-task problem grows as new tasks are introduced, while
each within-task problem has a fixed number of classes. It may be necessary to recalibrate performance
expectations as the number of tasks grows and across-task discrimination increases in difficulty.7

In addition, we argue that across-task discrimination is a larger part of the overall CIL problem as compared
to within-task discrimination. To provide evidence for this claim, we first discuss a commonly used CIL
benchmark – the split CIFAR-100 dataset – then discuss the general case. The CIFAR-100 dataset contains
100 classes, and is often divided8 into 10 tasks, each containing 10 classes, to form the “split” version for CIL
evaluations. Given a sample at inference, the model should predict its corresponding class out of the 100 total
classes learned. This requires distinguishing the correct class (i) versus 9 incorrect classes from the same task
and (ii) versus 90 incorrect classes from other tasks. In this example, across-task discrimination dominates
the CIL problem, as the model must predict across many more classes out-of-task versus within-task.

This observation extends beyond any specific dataset. Unless one task contains more than half of all of the
learned classes, it will always be true that across-task discrimination is a larger part of the CIL problem as
compared to within-task discrimination. While a couple of recent studies (Guo et al., 2023; Soutif-Cormerais
et al., 2024) focus specifically on the across-task discrimination problem in CIL, we are not aware of any prior
work which explicitly mentions this observation. This is noteworthy considering that many CIL approaches
heavily emphasize the avoidance of within-task forgetting while placing relatively little emphasis on across-
task discrimination – see Section 5 for details.

Knowledge transfer can improve both performance and resource efficiency. Exploiting knowledge
transfer between similar tasks could improve a model’s predictive performance and decrease both memory
and computational costs. For example, sharing parameters across tasks could decrease overall model size
compared to learning isolated submodels for each task. A model could exploit forward transfer (Eq. 5) by
initializing new, task-specific parameters to the values learned on a prior, similar task, thus reducing the
number of iterations required for convergence. Such approaches may be necessary to achieve a desired level
of predictive performance under resource constraints.

4 Naive Approaches

In this section, we discuss the application of traditional (i.e., non-continual) machine learning classifiers in
the CIL setting. This is “naive” in the sense that these models would be expected to fail in the CIL setting, as
they are not designed for continual learning. We discuss three types of classifiers: (1) a single discriminative
model for all tasks, (2) task-specific discriminative models, and (3) class-specific generative models. These
approaches are illustrated in Figure 1.

Some of the observations in this section may seem obvious or redundant in light of recent work on continual
learning. However, we feel that this section is important as it provides a principled way of developing
solutions to the CIL problem. This section also serves to contextualize existing work and provide insights for
potential future work. Table 2 and Table 3 summarize the main takeaways. Table 2 outlines how each naive
approach addresses the “Key Challenges” described in Section 3, while Table 3 outlines the memory and

7Across-task discrimination is generally harder given more tasks. For example, we would expect stronger performance when
discriminating between two tasks as compared to ten tasks. See Michel et al. (2023) for difficulty-adjusted metrics for CIL.

8Class-to-task assignment is typically performed randomly or based on the sequential class labels, e.g., classes 0 - 9 are
assigned to the first task, 10 - 19 assigned to the second class, etc.
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(a) Single Discriminative (b) Task-Specific Discriminative (c) Class-Specific Generative

Figure 1: Illustration of naive approaches to CIL. Two classification tasks are shown: dog versus cat and apple
versus orange, shown in light red and light blue boxes respectively. Stylized neural network implementations
for each approach are illustrated, with output node color corresponding to task. Discriminative approaches
include one output node for each class, used to predict P (y|x). The generative approach includes three
output nodes for each class, illustrating a variational autoencoder which attempts to reconstruct the input.
Importance sampling can then be used to predict P (x|y) – see the implementation described in Van De Ven
et al. (2021) for details. Task sequence illustration inspired by Zhou et al. (2023). Best viewed in color.

compute requirements for each approach, relevant to the resource-constrained problem statement defined in
Section 2.

4.1 Background: Generative and Discriminative Classifiers

Discriminative Classifiers. Probabilistic discriminative classifiers directly model P (y|x). Discrimina-
tively trained models such as logistic regression and neural network classifiers typically accomplish this by
optimizing for cross-entropy loss:

LCE = −
N∑

i=1

C∑
c=1

yi,c log ŷi,c (7)

where LCE is the cross-entropy loss on a training set with N samples and C classes. The true labels are
represented as y and the predicted labels are represented as ŷ. For sample i, yi and ŷi are C-dimensional
vectors indexed by c. yi is a one-hot vector and ŷi is a vector of predicted probabilities. A regularization
term penalizing large weights is often included in the overall loss, though this term is not relevant to our
discussion in this section.

Generative Classifiers. Probabilistic generative classifiers take an indirect approach to modelling P (y|x).
Namely, generative classifiers model the joint distribution P (x, y), factorized as P (x|y)P (y), then use Bayes’
rule for classification:

P (y|x) = P (x|y)P (y)
P (x) (8)

When classifying a single sample, the denominator P (x) is a constant and can be ignored. In the numerator,
P (y) can be modelled by simply counting the number of instances in a given class. Therefore, the key
challenge is modelling P (x|y). This can be accomplished by creating a separate generative model for each
class. These models can be very simple, such as Gaussian Naive Bayes, which represents each feature’s
distribution for a given class as a univariate Gaussian. Alternatively, more complex models such as variational
autoencoders could be used to learn each class conditional distribution.

4.2 Naive Approaches

Approach #1: Single Discriminative Model for All Tasks. We start by discussing the use of a
single, discriminatively-trained model in the CIL setting. For example, consider a neural network classifier
trained with cross-entropy loss. Before learning the first task, the network is instantiated with |Y1| neurons
in its output layer, corresponding to the number of classes in the first task. The network is trained until
convergence on the first task’s data D1. Next, |Y2| additional neurons with randomly-initialized weights are
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added to the network’s output layer prior to learning the second task. The network is trained to convergence
on the second task’s data D2, and the process repeats for the remaining tasks.

This approach will almost certainly result in severe forgetting, as it does not include any mechanism to
maintain knowledge learned on previous tasks. In other words, this approach highly favors plasticity over
stability. In addition, it is unlikely that across-task discrimination will be learned, given that the model
only performs discriminative learning within each task. Finally, partial knowledge transfer is realized. When
learning task k + 1, the model is initialized with knowledge from task k, thereby allowing forward transfer
between consecutive tasks.

The memory cost and inference compute required for a single discriminative model are both approximately
constant. Here, we assume that the number of output layer weights is small relative to the model’s total
number of weights. The required training compute scales linearly with the number of tasks.9

Approach #2: Task-Specific Discriminative Models. Instead of using a single discriminative model for
all tasks, separate discriminative models could be used for each specific task. For example, a neural network
with |Y1| output layer neurons could be trained on D1, then a separate, randomly-initialized network with
|Y2| output layer neurons could be trained on D2, and so on.

When using this approach, both stability and plasticity are achieved – an entirely new model is learned for
each task (plasticity), and models do not interfere with one another (stability). However, it is still unlikely
that across-task discrimination is learned – as previously discussed, learning within-task discrimination is
typically inadequate for performing across-task discrimination. Lastly, knowledge transfer will not be realized,
since task-specific models are completely separate and randomly-initialized.

The memory, training compute, and inference compute all scale linearly with the number of tasks in this
context, as new models must be allocated and trained for each task. As task identification is not provided
at inference, all models must be run when classifying test data.

Approach #3: Class-Specific Generative Models. Generative models serve as an alternative naive
solution to CIL. For example, consider training a separate variational autoencoder (VAE) to model the
conditional probability distribution P (x|yk) for each class k. When learning the first task, |Y1| VAEs are
each trained in parallel on class-specific subsets of T1. When learning the second task, |Y2| additional VAEs
are each trained in parallel on class-specific subsets of T2. This process repeats for all tasks.

In this approach, stability and plasticity are both achieved as additional model(s) are allocated for each task.
In addition, across-task discrimination is learned. This is because generative models are learned at the class-
level rather than at the task-level, therefore class-to-task assignment is irrelevant. Still, knowledge transfer
remains unrealized since class-specific models are learned independently.

Given that class-specific models are trained, the required memory, training compute, and inference compute
all scale linearly with the number of classes. At inference, all models are run and Bayes rule (more precisely,
the numerator of Eq. 8) is used to make predictions.

Interestingly, note that learning a generative classifier in the CIL setting is essentially the same as learning
a generative classifier in the non-continual setting, as discussed in Van De Ven et al. (2021). In other words,
training a generative classifier on a set of classes in the CIL setting will result in the exact same model as
training the classifier in the non-continual setting. This is because generative classifiers are trained at the
class-level, and do not require simultaneous access to data from multiple classes in order to learn (unlike
discriminative classifiers). As a result, the predictive performance of generative classifiers is unaffected by
both class-to-task assignment and task order.

9In practice, training compute may scale sublinearly with the number of tasks due to forward knowledge transfer, e.g.,
learning tasks 1, . . . , i may improve the convergence rate when learning task i + 1. In general, without any assumptions on the
task structure, training compute is O(T ).
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Table 2: Key challenges addressed by naive (i.e., non-continual) approaches to CIL. A red x-mark indicates
that a given challenge is unaddressed, while a green check mark indicates that a given challenge is addressed.
An asterisk indicates that a challenge is partially addressed.

Stability Plasticity Across-Task
Discrimination

Knowledge
Transfer

Single
Discriminative Model ✘ ✓ ✘ ✓∗

Task-Specific
Discriminative Models ✓ ✓ ✘ ✘

Class-Specific
Generative Models ✓ ✓ ✓ ✘

Table 3: Memory and compute requirements for naive (i.e., non-continual) approaches to CIL. The total
number of tasks to be learned is T , while the total number of classes to be learned is C. Note that C = |Y1:T |.

Memory Training
Compute

Inference
Compute

Single
Discriminative Model O(1) O(T ) O(1)

Task-Specific
Discriminative Models O(T ) O(T ) O(T )

Class-Specific
Generative Models O(C) O(C) O(C)

5 Existing Work

The observations in Section 4 suggest natural solutions to the CIL problem. Each of the three naive ap-
proaches serve as a starting point when developing CIL solutions, with modifications necessary to address
the key challenges described in Section 3 under the resource constraints described in Section 2. In this
section, we provide a high-level, non-comprehensive overview of existing work on CIL within this framing.
We cover the key ideas proposed in work published prior to September 2024. An illustration of existing work
is given in Figure 2. We describe the main categories of approaches and outline the key design choices for
each category.

5.1 Modifying a Single Discriminative Model: Replay and Regularization

To succeed in the CIL setting, a single discriminative model must be supplemented with mechanisms to
avoid forgetting (i.e., maintain stability) and learn across-task discrimination. The majority of work on the
CIL setting focuses on this direction (Zhou et al., 2023). Here, we discuss two categories of approaches –
replay and regularization – used to supplement discriminative models in the CIL setting.

Replay. This set of approaches allows models to revisit previous task data when learning new tasks. A
relatively small subset of previous task data is stored in a replay buffer. When new tasks arrive, the model is
trained jointly on the new task data as well as the old replay data. Because the loss (Eq. 7) is optimized over
samples from both the current task and previous tasks, forgetting is mitigated and across-task discrimination
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is learned. The data in the replay buffer is often referred to as class exemplars, and replay is sometimes
called rehearsal.10

In general, replay-based methods are designed with the goal of limiting the size of the replay buffer while
maintaining strong performance on previous tasks. The design of such methods requires answers to three
key questions: (1) Which samples should be stored? (2) How should these samples be stored? (3) How
should these samples be replayed during training?

To address question (1), previous work has proposed the use of herding algorithms (Welling, 2009) to select
“prototypical” samples (Rebuffi et al., 2017), maximizing sample diversity with respect to model gradi-
ent updates (Aljundi et al., 2019b), and selecting difficult-to-classify samples based on prediction entropy
(Chaudhry et al., 2018b).

Solutions proposed to address question (2) include storing learned representations (Iscen et al., 2020) or
compressed features (Zhao et al., 2021) rather than raw features, or learning a generative model in order to
create synthetic data for replay (Shin et al., 2017; Hu et al., 2018; Kemker & Kanan, 2017) (sometimes called
generative replay or pseudo-rehearsal). While generative replay approaches require learning a generative
model, this model is used to generate data for a downstream discriminative model, hence their grouping
with other discriminative models.

To answer question (3), most approaches (Rebuffi et al., 2017; Chaudhry et al., 2018b; Aljundi et al., 2019b;
Zhao et al., 2021; Iscen et al., 2020; Shin et al., 2017; Hu et al., 2018; Kemker & Kanan, 2017) use a
straightforward application of replay – for each task, the model minimizes the loss over both the current
task data and the previous task data from the replay buffer. Alternatively, some approaches (Lopez-Paz &
Ranzato, 2017; Wang et al., 2021; Zeng et al., 2019; Tang et al., 2021) frame learning the current task as
a constrained optimization problem in which model parameters may only be updated such that the loss on
the replay data does not increase (or increases only by a small amount).

Replay-based approaches have been observed to be biased towards the recently learned classes. This bias is
due to data imbalance, as there is typically much more data available in the current task as compared to
the previous tasks. Several methods have been proposed to mitigate this bias. These methods include the
addition of a simple rectification layer used to adjust predictions (Wu et al., 2019), making use of statistical
information from previous classes for de-biasing (Belouadah & Popescu, 2019), and compensating for bias
at the gradient level during optimization (Guo et al., 2023).

Regularization. This second set of techniques attempts to retain previously learned knowledge using a
regularization term in the loss function. This regularization term penalizes changes in model behavior with
respect to old tasks. Note that this penalty is used to mitigate forgetting, though it is typically insufficient for
learning across-task discrimination. Regularization approaches fall into two subcategories: parameter-based
and data-based regularization (De Lange et al., 2021).

Parameter-based regularization approaches attempt to retain parameter values which are important for
strong performance on previously-learned tasks. These parameters should not change when learning new
tasks, otherwise forgetting may occur. Intuitively, only the unimportant parameters for tasks 1, . . . , k may
be modified when learning task k + 1. Many approaches in this subcategory use Fisher Information as an
importance measure (Kirkpatrick et al., 2017; Lee et al., 2017; Chaudhry et al., 2018a; Yang et al., 2019;
2023b). Some approaches compute parameter importance after tasks have been learned (Kirkpatrick et al.,
2017) while others compute importance during learning (Zenke et al., 2017; Chaudhry et al., 2018a).

Data-based regularization methods typically leverage knowledge distillation to mitigate forgetting. Knowl-
edge distillation is traditionally used to transfer knowledge from a larger teacher model to a smaller student
model in an attempt to replicate the teacher’s performance using the student (Hinton et al., 2015). In con-
tinual learning, the model(s) trained on previous tasks serve as the teacher, and the model trained on the
current task serves as the student. The student model attempts to learn the current task while replicating
the performance of the teacher on previous tasks, accomplished via an additional distillation term in the
loss function. Distillation may be performed at the level of the logits – the final layer of the neural network

10More precisely, rehearsal refers to methods which use replay data for retraining (Bagus & Gepperth, 2021). Some methods
instead use replay data to generate constraints while learning new tasks.
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– (Li & Hoiem, 2017; Rebuffi et al., 2017; Zhang et al., 2020b; Hou et al., 2018; Smith et al., 2021; Lee
et al., 2019; Zhou et al., 2021) or at the level of the learned representation – an intermediate layer of the
network (Simon et al., 2021; Lu et al., 2022; Kang et al., 2022; Hu et al., 2021b). Some approaches (Rebuffi
et al., 2017; Zhao et al., 2020; Lee et al., 2019) combine data-based regularization with replay to improve
distillation performance using a set of exemplars from previous tasks.

Similar to replay, regularization-based approaches tend to be biased toward the current task data. In addition,
regularization-based approaches attempt to maintain separability across data within each previously learned
task, but are typically unable to learn separability across tasks. A number of methods have been proposed
in an effort to address these issues. (Zhao et al., 2020) and (Hou et al., 2019) ensure that weights have
comparable magnitudes across both old and new classes to achieve fair classification, (Ahn et al., 2021)
separates softmax activations in the output layer to avoid task-recency bias, and (Castro et al., 2018) uses
balanced fine-tuning to stabilize predictions.

(a) Data Replay (b) Parameter Regularization (c) Data Regularization

(d) Parameter Isolation (e) Template-Based

Figure 2: Illustration of existing work on CIL. Each subfigure depicts a stylized neural network, representing
the high-level idea behind a given category of approaches. “Template-based” approaches include generative
classifiers and hybrid models. These approaches match input samples to learned templates – class prototypes
or class-conditional distributions – in order to perform classification. Best viewed in color.

5.2 Modifying Task-Specific Discriminative Models: Parameter Isolation

Both stability and plasticity can be achieved by allocating separate discriminative models for each task.
However, this approach lacks mechanisms to learn across-task discrimination and exploit knowledge transfer.
In addition, learning completely separate models for each task may be inefficient with respect to memory
and compute. Parameter isolation methods address these challenges.

Parameter Isolation. This family of methods allocates sets of discriminatively-trained parameters (i.e.,
submodels) specific to each task that may not be modified when learning other tasks. Parameter isolation
is a simple way to avoid forgetting – if previously learned knowledge is never modified, then there is no
chance it will be overwritten when learning continually. However, parameter isolation methods introduce
a new problem: at inference, they require an additional task-selector model – used to predict the task
label – in order to choose the relevant task-specific submodel. In other words, most parameter isolation
approaches decompose the CIL problem into task prediction (TP) and within-task prediction (WP) (Kim
et al., 2022). Approaches to TP include using model prediction entropy to infer task label (Wortsman
et al., 2020), creating a separate network as a dedicated task predictor (Abati et al., 2020), and utilizing
out-of-distribution detection models (Kim et al., 2022).
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Parameter isolation methods can be divided into two subcategories – fixed architecture and dynamic archi-
tecture – based on their approach to WP. Fixed architecture methods start with a fixed-size network and
allocate task-specific subnetworks during training. Approaches to subnetwork allocation include the use of
weight masks (Serrà et al., 2018; Wortsman et al., 2020), genetic algorithms (Fernando et al., 2017), and
pruning (Mallya & Lazebnik, 2018). Alternatively, dynamic architecture methods do not have a fixed size,
and expand as necessary in order to learn new tasks. These approaches are concerned with efficiently expand-
ing model size as new tasks arrive in order to minimize memory cost while maintaining strong performance.
Various techniques have been proposed to accomplish this goal, including dynamically creating and deleting
neurons (Yoon et al., 2017), framing the problem as reinforcement learning (Xu & Zhu, 2018) or neural
architecture search (Li et al., 2019), using compression (Schwarz et al., 2018) or distillation (Wang et al.,
2022a) to lower the model’s memory footprint, and focusing expansion on specific components to better
transfer knowledge across tasks (Zhou et al., 2022b). Interestingly, Kim & Han (2023) finds that many CIL
methods heavily favor stability over plasticity, and proposes holding earlier layers stable while expanding
later layers in order to strike a fairer balance between old and new tasks.

5.3 Modifying Class-Specific Generative Models: Generative Classifiers, Hybrids, and Pretraining

Recall that generative classifiers are a natural fit for CIL – they achieve both stability and plasticity, and
learn across-task discrimination without requiring a task-prediction model. However, traditional generative
classifiers suffer from poor memory and compute scaling and lack mechanisms to leverage knowledge transfer.

In addition, the predictive performance of generative classifiers is typically inferior to that of discriminative
classifiers in the non-continual setting. This statement is supported by a wealth of theoretical and empirical
evidence, see Vapnik (1998) and Ng & Jordan (2001). At a high level, this is because generative classifiers
solve a more difficult problem – intermediately modelling P (x|y) – while discriminative classifiers solve
an easier problem – directly modelling P (y|x). Generative classifiers and hybrid generative-discriminative
models designed for CIL attempt to remedy these issues through modifications which improve resource
efficiency, leverage knowledge transfer, and boost predictive performance.

Generative Classifiers. In addition to the large body of work on discriminative classifiers for CIL, there
exists a smaller body of work focused on generative classifiers. Van De Ven et al. (2021) proposes generative
classifiers for the CIL setting and provides results with a class-specific variational autoencoders (VAEs) as a
proof-of-concept. Other approaches also utilize VAEs (Ye & Bors, 2021a; 2023) as well as generative adver-
sarial networks (GANs) (Ye & Bors, 2020; 2021b) but focus on ways to efficiently expand the architecture
and exploit knowledge transfer between submodels.

Hybrid Models. Some approaches cannot be cleanly categorized as generative or discriminative. These
approaches include prototype-based classifiers, one-class classifiers, and hybrid generative-discriminative clas-
sifiers. Many of these approaches retain the desirable properties of generative classifiers while avoiding the
drawbacks of strictly discriminative classifiers.

Prototype-based classifiers (Zhu et al., 2021b; De Lange & Tuytelaars, 2021) learn prototypical representa-
tions for each class and use nearest neighbor matching for classification. Similar to Naive Bayes, prototype-
based classifiers are natural continual learners, as new prototypes can be learned as new classes are introduced
(Grossberg, 2020; Ashtekar & Honavar, 2023). One-class classifiers (Hu et al., 2021a; Sun et al., 2022) learn
independent models for each class. These models are optimized to predict high values for in-class training
data – similar to conditional generative models – though one-class classifiers typically use different objective
functions (Hu et al., 2020).

The final set of approaches, hybrid generative-discriminative classifiers (Kirichenko et al., 2021), combines
the lack-of-forgetting of generative models with the strong classification ability of discriminative models.
Generative techniques can be used to model features “holistically” (Hu et al., 2021a), while discriminative
techniques can be used to enhance separation between classes. More generally, prospective modeling (Tian
et al., 2024) may be necessary to address the across-task discrimination challenge: when learning class i,
it is unclear which features will be discriminative against a future class j. Generative of pseudo-generative
techniques can be used to model both the features which are discriminative across the previously learned
classes and the features which may be discriminative with respect to future classes. Other approaches in this
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direction include allocating “virtual” or “reserved” space in the learned representation as a proxy for future
classes (Zhou et al., 2022a; Song et al., 2023; Zhou et al., 2022c).

Pretraining. Another category of approaches avoids continual representation learning through the use of
pretrained models. Wang et al. (2022e) and Wang et al. (2022d) introduce the idea of learning to prompt
for continual learning. These approaches learn to instruct pretrained transformers to perform tasks in
the continual setting. Other approaches learn simple generative classifiers on features produced by fixed
pretrained networks (Yang et al., 2023a; McDonnell et al., 2023). For example, Yang et al. (2023a) learns
a Naive Bayes classifier atop features generated by a network trained on ImageNet in order to perform
downstream image classification tasks.

Pretraining is particularly relevant in the few-shot setting (FSCIL), in which only a small amount of data
is available when learning each class. Many approaches to FSCIL focus on learning in the later network
layers with a fixed, pretrained representation. However, Shi et al. (2021) observes that FSCIL performance
improves when starting from a pretrained network which has converged to a flat local minima in the loss
landscape. In a flat local minima, small parameter changes will leave classification performance relatively
unaffected, thus mitigating forgetting while learning new classes. Other approaches to FSCIL utilize meta-
learning, or “learning how to learn”, typically accomplished through bi-level optimization. Chi et al. (2022)
extends the classic model-agnostic meta-learning (MAML) algorithm first proposed in Finn et al. (2017) for
the FSCIL setting.

6 Dimensions of the Problem

Given the abundance of work on CIL, it is natural to ask when each approach should be used. We argue
that the appropriate choice of approach depends on the specific dimensions of a given CIL problem. In
this section, we outline five such dimensions: resource constraints, task size, task similarity, task order, and
class-to-task assignment. We explain each dimension, describe how it influences the difficulty of the CIL
problem, and discuss how it is addressed by existing approaches.

Resource Constraints. Resource constraints are arguably the most important dimension of the CIL
problem: constraints on available memory and compute define the set of potential solutions. Generally
speaking, stricter resource constraints make the problem harder, while looser constraints make the problem
easier. For example, given no resource constraints, CIL can be trivially solved by retraining on all learned
data D1:k at every task k. This approach matches the predictive performance in the non-continual setting
and renders continual learning methods unnecessary. On the other hand, if an application requires tight
memory and/or compute budgets, then more care is required to design bespoke continual learning solutions.
These solutions should be designed with the goal of approaching – and ideally, matching – the predictive
performance of a model learned in the non-continual setting in which data from all the tasks is available.

Recent work indicates that replay may be the most promising deep learning solution to CIL under strict
resource constraints. Specifically, replay-based approaches have been shown to outperform regularization-
based and parameter isolation-based approaches when given comparable budgets for memory (Zhou et al.,
2023) and compute (Prabhu et al., 2023a). Notably, Harun et al. (2023b) proposes SIESTA – a wake-sleep
algorithm utilizing replay – which matches the performance of a non-continual learner on the ImageNet-1K
dataset under a tight compute budget. Other promising approaches for resource-efficient CIL with neural
networks include pretraining (McDonnell et al., 2023), layer-specific plasticity (Zhou et al., 2022b), dynamic
weight/gradient-masking (Wang et al., 2022c), and sharpness-aware minimization (Ren & Honavar, 2024).

Task Size. Performing CIL with larger tasks (tasks containing more classes) is typically easier than per-
forming CIL with smaller tasks. More precisely: for a chosen dataset, CIL methods tend to perform better
given a few large tasks as compared to many small tasks – see Masana et al. (2020) and Zhou et al. (2023)
for empirical evidence on the split CIFAR-100 and ImageNet-1K datasets. Consider the extreme cases: (i)
there is only one task containing all classes and (ii) each task contains a single class. Case (i) is equivalent
to the non-continual setting, so continual learning is unnecessary. Case (ii) is a version of CIL which does
not include within-task discrimination, as there is only one class-per-task. In other words, the CIL problem
in case (ii) is entirely across-task discrimination. For existing methods, learning across-task discrimination
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tends to be more challenging than learning within-task discrimination (Guo et al., 2023; Soutif-Cormerais
et al., 2024), therefore case (ii) can be categorized as the “most difficult” version of CIL.

To understand why, consider the following. Recall that discriminative classifiers require simultaneous access
to data from all classes in order to effectively learn, and that discriminative classifiers typically outperform
generative classifiers. As described in Section 5, across-task discrimination can be addressed in one of two
ways: with a discriminative classifier supplemented by replay, or with a generative/pseudo-generative clas-
sifier. Resource constraints restrict the amount of old data stored and/or the number of learning updates
completed during replay, thus limiting the performance of discriminative approaches. On the other hand,
generative/pseudo-generative techniques offer lower performance than their discriminative counterparts. Ei-
ther way, we would expect the performance on across-task discrimination to be lower than the performance
on within-task discrimination.

Task Similarity. There are various ways to define similarity between classification tasks. These definitions
can be categorized as either model-dependent – based on a particularly model architecture or training
process – or model-agnostic – independent of the type of model or training procedure used. Model-dependent
similarity can be defined using knowledge transfer (see Eq. 5 and Eq. 6), learned parameter values (Lee et al.,
2021), or the distance between pretrained task embeddings (Achille et al., 2019). Model-agnostic similarity
can be defined using optimal transport (Alvarez-Melis & Fusi, 2020; Liu et al., 2022) and/or conditional
entropy (Tran et al., 2019; Tan et al., 2021).

CIL approaches such as replay exploit task similarity through parameter initialization: when learning task
k, the model is initialized with the knowledge from tasks 1, . . . , k − 1. This can help reduce the number
of training iterations when learning task k, thus improving computational efficiency. Approaches such as
replay, regularization, partial parameter isolation, and generative modelling exploit task similarity through
parameter sharing. Sharing a subset of parameters across tasks can reduce computational and memory costs.
In addition, both parameter initialization and parameter sharing have the potential to improve predictive
performance, as evidenced by the large body of work on transfer learning (Zhuang et al., 2020).

While task similarity can be exploited to improve learning, attempting to learn similar tasks presents ad-
ditional challenges. Ramasesh et al. (2020) and Nguyen et al. (2019) empirically show that increasing task
similarity often increases the severity of catastrophic forgetting. Through theoretical analyses of continual
linear regression, Evron et al. (2022) and Lin et al. (2023) find that forgetting is greatest when learning tasks
with intermediate similarity. Namely, regression tasks with common features but misaligned weights11 are
the most prone to forgetting. Designing CIL solutions which leverage task similarity without introducing
across-task interference remains an interesting problem.

Task Order. The performance of most CIL methods depends on the order in which tasks are presented.
For example, Masana et al. (2020) evaluate several popular CIL methods across various class (and therefore
task) orderings of the CIFAR-100 dataset and report wide variations in performance. Further, the method
which performs best also depends on the ordering! This indicates the importance of evaluating CIL methods
over multiple task orderings and class-to-task assignments.

Curriculum learning is a subfield of machine learning which attempts to build training schedules in order
to improve learning efficiency and performance (Bengio et al., 2009). While continual learning is concerned
with efficiently learning a set of sequential tasks, curriculum learning is instead concerned with designing
a task sequence which can be efficiently learned. For a given dataset, a curriculum is an ordering12 of the
dataset’s samples to be learned during training. Curricula include learning “easy” samples before “hard”
samples, learning “hard” samples before “easy” samples (anti-curriculum), and emphasizing sample diversity
early in training (Wang et al., 2022b). Note that curricula are typically designed at the sample-level, though
Pentina et al. (2015) extends these ideas to the task-level.

Most work on CIL assumes that task order is fixed (i.e., not chosen by the model) and that models have no
knowledge of future tasks prior to learning. Several papers (Ruvolo & Eaton, 2013; Yang & Li, 2021; Bell &

11Formally, let the optimal linear regression weights for task 1 and task 2 be w∗
1 and w∗

2 . The “misaligned weights” condition
corresponds to ⟨w∗

1 , w∗
2⟩ < 0, as described in Lin et al. (2023)

12Curricula can also be defined using instance selection or sample reweighting – see Wang et al. (2022b) for details
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(a) Task 1: red/blue (b) Task 2: green/yellow (c) Task 1: red/yellow (d) Task 2: green/blue

Figure 3: Example illustrating the importance of class-to-task assignment. For a given set of classes, (a) and
(b) illustrate one class-to-task assignment, while (c) and (d) illustrate another. Data samples are represented
as shaded circles, with color indicating class label. Learned decision boundaries are represented with black
dotted lines. Figure inspired by Lesort et al. (2020). Best viewed in color.

Lawrence, 2022; Mantione-Holmes et al., 2022) relax this assumption and attempt to find the task/class order
which maximizes overall classification performance. Bell & Lawrence (2022) propose ordering tasks such that
the distance between optimal task-specific parameters is small. However, their results are counterintuitive:
performance on computer vision benchmarks is strongest when learning tasks in an order which results in
large parameter changes. Mantione-Holmes et al. (2022) report similar results. Inspired by psychology,
they find that an interleaved task order (learning dissimilar tasks adjacently) improves performance on NLP
classification problems. Lin et al. (2023) provide evidence supporting this observation through a theoretical
analysis of linear models.

When tasks are interleaved, the model is exposed to a diverse set of classes all throughout training. This
may better approximate the non-continual setting in which data from all classes is available, thus explaining
the relatively strong performance on interleaved orderings. Interestingly, Yang & Li (2021) come to a
different conclusion: learning similar tasks adjacently results in the strongest overall performance on image
classification tasks. These findings may be application-specific, or the differences may be reconciled by
considering the various experimental setups and definitions of task similarity used across studies.

Class-to-Task Assignment. The way in which classes are assigned to tasks affects the performance of most
CIL methods. Klasson et al. (2023) provides empirical evidence of this phenomenon across various replay-
based methods on the split MNIST series and CIFAR-10 datasets with randomized class-to-task assignments.
As with task order, this dimension of the problem has been observed to affect CIL performance, though this
effect is not well understood.

Figure 3 illustrates the importance of class-to-task assignment on a simple CIL problem with linear classifiers
learned on each task. Here, we are given a set of four classes, and we consider two possible class-to-task
assignments. The first assignment – shown in subfigures 3a and 3b – results in roughly the same within-
task decision boundaries for both tasks, though across-task discrimination must be learned separately. The
second assignment – shown in subfigures 3c and 3d – results in nearly orthogonal within-task decision
boundaries, and across-task discrimination is implicitly learned. In other words, the CIL problem in the
second assignment can be solved by task-specific discriminative models alone.13

We hypothesize that the performance of CIL models will be stronger when classes are assigned to tasks
such that the similarity of classes within-task is greater than the similarity of classes across-task. Here,
class similarity can be quantified using the performance of a given classifier – for a set of classes, if classifier
performance is low, then the classes can be said to be similar, and if classifier performance is high, then the
classes can be said to be dissimilar. In other words, we hypothesize that CIL performance will be higher if
the across-task discrimination subproblem is easier relative to the within-task discrimination subproblem.
We expect this hypothesis to be true given that across-task discrimination is a larger part of the overall
CIL problem as compared to within-task discrimination, as described in Section 3. It may be reasonable to
expect this condition to hold in real-world applications. This is because new tasks are likely to result from
focused data collection and/or from temporally correlated changes in the world.

13For example, two separate logistic regression models – one for Task 1 and one for Task 2 – could be used, with predictions
made based on the maximum logit activation across both models
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7 Conclusion and Future Work

At this point, we take a step back and reflect on our progress. We began by reexamining the CIL problem
definition, arguing that common framings neglect important considerations such as computational cost. Next,
we explored the factors which make CIL unique and decomposed the problem into three key challenges. With
these challenges in mind, we analyzed non-continual approaches to the problem. The shortcomings of these
approaches served to motivate and contextualize existing work on CIL. After summarizing existing work, we
investigated various dimensions of the problem in order to better understand specific problem configurations
and their corresponding solutions. Now, we look ahead and suggest potential directions for future work.

7.1 Future Work

Developing computationally efficient solutions. In Section 2, we discuss why the CIL problem should
be defined based on resource constraints rather than data availability. Note that the arguments supporting
the resource-constrained problem statement extend beyond the CIL setting. We argue that other continual
learning settings such as task incremental learning (TIL), domain incremental learning (DIL), continual
regression, and continual reinforcement learning should also be defined with respect to resource constraints.

As analyzed in Verwimp et al. (2024), the majority of continual learning papers at recent conferences14 highly
constrain memory, but do not constrain computational cost. These constraints may be counterproductive, as
“memory is cheap, but compute is expensive” nowadays given contemporary hardware and cloud computing
platforms (Lomonaco & Carta, 2023). Instead, it may be more appropriate to constrain or optimize for low
computational costs under large (or even unlimited) memory budgets.

The discussion in Section 2.4 on a potential real-world CIL system provides preliminary ideas in this di-
rection: matching-based or other locally-weighted classifiers could be learned atop a continually evolving
representation, updated via replay and/or knowledge distillation. While continual representation learning
has been well-studied under the “unavailability of previous data” problem statement (Section 2.2.1), rel-
atively little work has addressed this problem in the context of computational efficiency beyond Li et al.
(2022); Harun et al. (2023b) and Prabhu et al. (2023a).

Making assumptions regarding the data-generating process. Most work on CIL assumes that models
have no knowledge of future tasks prior to learning, as mentioned in Section 6. We argue that this assumption
is unnecessarily restrictive and unlikely to hold in practice. To understand why, consider the manifold
hypothesis, which states that real-world, high-dimensional datasets tend to be concentrated along low-
dimensional manifolds (Narayanan & Mitter, 2010). For example, real-world images tend to be highly
structured, and are unlikely to resemble a random collection of pixels. In an application of CIL for image
classification, all classes are likely to share some common structure. If this structure is known apriori,
learning may be made easier.15

As another example, consider a continual learning application leveraging physics-informed neural networks
(Howard et al., 2024). The laws of physics remain constant as new tasks are presented (this fact is known
before any tasks are learned). In this example, one aspect of the data-generating process is fixed, while
other aspects may vary. For a given application, it may be possible to explicitly specify which aspects of
the data-generating process are changing. Such specifications could be used to build better inductive biases,
thus improving learning efficiency and performance. Doing so may also circumvent some of the negative
results regarding the difficulty of continual learning (Knoblauch et al., 2020).

Science versus engineering in continual learning. Looking back at the past eight years of work on
continual learning, we observe the following high-level trend. Early work (2016 - 2019) introduced new
categories of approaches to the problem: Elastic Weight Consolidation (Kirkpatrick et al., 2017) introduced
parameter regularization, Learning without Forgetting (Li & Hoiem, 2017) introduced knowledge distillation,
Progressive Neural Networks (Rusu et al., 2016) introduced parameter isolation, and so on. More recent

14ECCV ’22, CVPR ’23, NeurIPS ’22, and ICML ’23
15Interestingly, many CIL approaches for image classification do make use of this common structure – for example, by sharing

convolutional layers across tasks. However, the assumption that classes or tasks have a common structure is often not explicitly
stated or formalized.
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work has focused on refining the best-performing solutions and understanding why they work. This trend
is analogous to the exploration-exploitation trade-off in reinforcement learning – early work explored the
solution space, while recent work exploits the most successful solutions.

Work on continual learning can be very loosely divided into two categories: science and engineering. Scien-
tific work includes proposing novel algorithms (often inspired by neuroscience), understanding why various
techniques succeed or fail, and proving theoretical results regarding complexity, performance, convergence,
etc. Engineering work is concerned with developing efficient and effective solutions for specific applications.
While there is a great need for further engineering advances in continual learning, there is an equal, if not
greater, need for elucidating the theoretical underpinnings of continual learning. Future engineering work
will likely focus on specific, real-world applications, moving beyond the current general-purpose, somewhat
contrived benchmarks such as the split versions of the MNIST, CIFAR-100, and ImageNet-1K datasets. We
expect that improvements in practical continual learning applications will lead to an increased adoption of
continual learning in industry, further driving progress.

7.2 Actionable Insights

We conclude with several high-level actionable insights for future CIL research.

1. Address the resource-constrained setting. As discussed in Section 2, framing CIL (and con-
tinual learning more generally) based on the unavailability of previous data may lead to undesirable
outcomes. This framing is imprecise, may not adequately address security or privacy concerns, and
permits inefficient solutions. We argue that the resource-constrained setting does not suffer from
these drawbacks and is more appropriate for real-world applications, particularly with its inclusion
of compute constraints.

2. Ensure that plasticity is available for future tasks. Much of the work on continual learning
focuses on avoiding catastrophic forgetting (i.e., maintaining stability). However, the focus on
avoiding forgetting often neglects plasticity, limiting performance on future tasks.

3. Across-task discrimination dominates the CIL problem – build solutions accordingly.
The notion of separate tasks in CIL is somewhat artificial: the one “true” task is to accurately
make predictions across all previously learned classes. In this context, across-task discrimination is
typically a larger part of the overall problem as compared to within-task discrimination.

4. Dimensions of the CIL problem are poorly understood and ripe for future work. Open
questions remain concerning the impact of task similarity, task order, and class-to-task assignment
on CIL performance. Answering these questions could lead to better CIL algorithms as well as a
deeper understanding of the broader continual learning problem.

5. Use (reasonable) assumptions about your data to make learning easier. It may be possible
to make assumptions regarding the data generating process in specific continual learning applications
(i.e., physics-informed learning). Doing so could improve learning efficiency and performance.
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