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ABSTRACT

Recently, vision-language models like CLIP have advanced the state of the art in a
variety of multi-modal tasks including image captioning and caption evaluation.
Many approaches adapt CLIP-style models to a downstream task by training a
mapping network between CLIP and a language model. This is costly as it usually
involves calculating gradients for large models. We propose a more efficient train-
ing protocol that fits a linear mapping between image and text embeddings of CLIP
via a closed-form solution. This bypasses the need for gradient computation and
results in a lightweight captioning method called ReCap, which can be trained up
to 1000 times faster than existing lightweight methods. Moreover, we propose two
new learning-based image-captioning metrics that build on CLIP score along with
our linear mapping. We evaluate ReCap on MS-COCO, Flickr30k, VizWiz, and
MSRVTT. ReCap achieves performance comparable to state-of-the-art lightweight
methods on established metrics while outperforming them on our new metrics,
which are better aligned with human judgement than established ones.

1 INTRODUCTION

Vision-language models (VLMs) are usually trained to align images and texts in a joint bi-modal
embedding space. This enables their application to a variety of downstream tasks such as image-text
retrieval (Ramos et al., 2023b), image captioning (Mokady et al., 2021), few-shot classification (Ouali
et al., 2023), and caption evaluation (Hessel et al., 2021). As one of the most prominent VLMs, CLIP
(Radford et al., 2021) has been pre-trained on a large-scale web dataset consisting of image-text pairs
and advanced the state of the art across a variety of vision-language tasks. One of the most important
downstream tasks is image captioning.

Adapting CLIP to a downstream task is generally costly in terms of both computational resources and
data collection. In the context of image captioning, related works train mapping networks between
CLIP and a generative language model (LM) (Ramos et al., 2023b; Mokady et al., 2021; Zhu et al.,
2023; Liu et al., 2023b; Merullo et al., 2023). Inspired by these recent successes, we aim at linearly
aligning image and text embeddings of CLIP-style models to leverage them for retrieval augmentation
in image captioning. This use case of CLIP is based on cross-modal retrieval via cosine similarity.
Artetxe et al. (2016) showed that a linear solution to a constrained least-squares problem is equivalent
to maximizing the cosine similarity (under the same constraint). Leveraging this insight, we maximize
the cosine similarity of image-text correspondences from the downstream dataset with respect to a
constrained linear mapping. As this problem has a closed-form solution, we are able to align CLIP to
the downstream data without the need for gradient computation. This makes our proposed method
extremely versatile as training can be conducted within seconds on CPU.

We propose a fast and easily deployable method for adapting CLIP to a target domain. Given a set of
image-text pairs representing a downstream task, we embed them in the joint embedding space of
CLIP. Then we re-align them by computing a linear mapping via a constrained least-squares solution
(cf. Figure 1, a). The linear mapping introduces only 0.0016% of trainable parameters compared
to the original CLIP model. We demonstrate that this technique can be readily incorporated into
an image captioning pipeline via retrieval augmentation (cf. Figure 1, b). Given a new image, we
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Figure 1: (a) We train a linear mapping W to align the image and text embeddings of CLIP toward a
dataset. (b) On inference, we employ the mapping to retrieve captions from a datastore and provide
these along with a prompt to a FLAN-T5 model to generate a new caption.

embed it in the CLIP embedding space and apply our mapping to retrieve similar captions to it from
a datastore filled with captions. These captions are then formatted to a prompt which is provided to
a LM to generate a new caption for the image. We call the resulting method Retrieval-augmented
Captioner (ReCap). Further, since established image captioning evaluation metrics mostly rely on
rule-based matching to reference captions, we propose two new learning-based image-captioning
metrics that use our linear alignment to adapt CLIP-based metrics (Hessel et al., 2021) toward a
downstream dataset. This consistently improves correlation with human judgement.

We evaluate ReCap on the MS-COCO (Lin et al., 2014), Flickr30k (Young et al., 2014), VizWiz
(Gurari et al., 2020), and MSRVTT (Xu et al., 2016) datasets. By means of established metrics,
ReCap achieves performance competitive to lightweight baselines that require over 1000 times more
training effort on MS-COCO and Flickr30k. On VizWiz and MSRVTT, ReCap outperforms the only
other lightweight retrieval-augmented baseline. Further, we evaluate the correlation of our proposed
metrics with human judgement on two datasets, Flickr8k-Expert and Flickr8k-Crowdflower (Hodosh
et al., 2013). Our metrics consistently improve over the CLIP-based metrics that rely on cosine
similarity (Hessel et al., 2021) and set a new state of the art in three out of four categories. By means
of our newly proposed metrics, ReCap outperforms competitors on all four datasets.

2 METHODS

We propose a linear alignment method for CLIP that optimizes cosine similarity between image-text
pairs coming from a downstream dataset. The linear alignment computes a mapping in closed form
under an orthogonality constraint. Therefore, it is very efficient to compute and easy to implement
while only adding a relatively small set of trainable parameters. We elaborate on our linear alignment
technique in more detail in Section 2.1. In Section 2.2 we introduce a lightweight image captioning
pipeline based on our linear alignment without any further training. Section 2.3 introduces two new
metrics, aCLIP-S, a reference-free metric, and RefaCLIP-S, a reference-based metric, both of which
are based on the CLIP score (Hessel et al., 2021) in combination with our linear alignment.

2.1 LINEAR ALIGNMENT OF CLIP

Since our downstream use of CLIP involves retrieval via cosine similarity, we want to maximize
the cosine similarity between image and text embeddings of a downstream dataset. To this end, we
assume access to a dataset D = {(xi, ci)} that provides image-text pairs, e.g., MS-COCO (Lin
et al., 2014). First, we embed the images of the training split DTrain ⊂ D using a CLIP vision
encoder ϕ : X → Rd, where X is the pixel space and d denotes the dimension of the joint CLIP
embedding space. This results in an image embedding matrix FDTrain = (f1, . . . ,fn)

⊤ ∈ Rn×d,
where fi = ϕ(xi) for i ∈ {1, . . . , n} and n = |DTrain|. Similarly, we embed the corresponding
captions via the CLIP text encoder ψ : T → Rd, where T is the space of tokenized strings, yielding
a caption embedding matrix EDTrain = (e1, . . . , en)

⊤ ∈ Rn×d.

We employ a linear mapping W ∈ Rd×d to re-align CLIP according to DTrain. We aim to find a
mapping W that projects an image embedding to the text embedding space such that its closest
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neighbor in terms of cosine similarity is its ground-truth caption. Yet, a closed-form solution for
W to maximize the cosine similarity is unknown. By constraining W to be an orthogonal matrix,
however, we obtain equivalence to the least-squares objective, that is

W ∗ = argmax
W s.t. W⊤W=I

∑
i

cossim(ei,Wfi) = argmin
W s.t. W⊤W=I

∑
i

∥ei −Wfi∥22 = V U⊤, (1)

where V and U are the orthogonal matrices of the singular value decomposition of E⊤
DTrain

FDTrain =

UΣV ⊤ and cossim(·, ·) is the usual cosine similarity for vectors. This fact has been shown by
Artetxe et al. (2016) and we also provide a proof in Appendix F for convenience. The solution to
the constrained optimization problem in Equation (1) is well known as orthogonal procrustes in the
literature (Schönemann, 1966). Notably, the size of W varies with the dimensionality d. Therefore,
different CLIP encoders result in different amounts of parameters introduced by W .

2.2 RETRIEVAL-AUGMENTED IMAGE CAPTIONING (RECAP)

We utilize W for retrieval augmentation, where the retrieval datastore C contains captions of the
training set DTrain. Then we project a given image to the caption embedding space and retrieve its
nearest neighbors. Given an image x ∈ X , we compute an embedding ϕ(x) and select the set K of
top-k captions by

K =
k

argmax
c∈C

cossim(ψ(c),Wϕ(x)), (2)

where argmaxk denotes an extension of the argmax operator returning the arguments of the k
largest elements of a set. This way, we obtain a set of captions that provide a textual description of
the image x. We feed the retrieved captions K to a generative LM as context along with a prompt to
generate a new caption for the image x (cf. Figure 1, b). We use nucleus sampling (Holtzman et al.,
2020) to obtain a set S of l candidate captions for the image x and select the candidate which yields
the highest cosine similarity by

argmax
s∈S

cossim(ψ(s),Wf). (3)

The only trainable parameters of ReCap are W which only requires computing a closed-form solution
on CPU. Specifically, computing W requires O(d3) steps.

2.3 IMAGE CAPTION EVALUATION METRIC

Given an image x and a candidate caption c we define the aligned CLIP score as
aCLIP-S(c,x) = max{cossim(ψ(c),Wϕ(x)), 0}. (4)

Notably, aCLIP-S is reference-free, meaning it can be applied to any candidate without access to
ground-truth human annotations, i.e., reference captions. In case a set R = {r1, r2, . . . } of reference
captions is available, we can incorporate those into our score, which results in a reference-based
metric

RefaCLIP-S(c,R,x) = H{aCLIP-S(c,x),max{max
r∈R

cossim(ψ(c), ψ(r)), 0}}, (5)

where H{·} denotes the harmonic mean of a set. Since our new metrics use data to align CLIP to the
downstream task, we categorize them as learning-based (Cui et al., 2018).

3 EXPERIMENTS

3.1 IMAGE CAPTIONING

Datasets We split the MS-COCO and Flickr30k benchmarks according to Karpathy & Fei-Fei
(2017) into train, validation, and test splits. For MSRVTT and VizWiz we split according to the official
splits (Gurari et al., 2020; Xu et al., 2016). Since VizWiz contains a substantial amount of noise, we
filter out all captions for images that suffer from severe quality issues or were rejected by annotators
and evaluate the generated test captions on the official evaluation server.1 For MSRVTT, we employ
the same pre-processing pipeline as Ramos et al. (2023b) and extract four frames from each video
and pair them with the ground truth captions. This results in many-to-many correspondences.

1https://eval.ai/web/challenges/challenge-page/739/overview
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Table 1: Comparison of different lightweight methods on the MS-COCO and Flickr30k test sets. We
report mean and standard error for results we computed ourselves. Results for other methods are
taken from their respective publications. N/A indicates that a certain metric is not available for a
given method.

MS-COCO FLICKR30K
METHOD CIDER-D SPICE ACLIP-S REFACLIP-S CIDER-D SPICE ACLIP-S REFACLIP-S

CLIPCAP (MOKADY ET AL., 2021) 103.8 ± 1.0 19.9 ± 0.1 46.3 ± 0.2 56.6 ± 0.2 57.0 ± 1.8 15.8 ± 0.3 34.3 ± 0.4 44.0 ± 0.4
I-TUNINGBASE (LUO ET AL., 2023) 116.7 21.8 N/A N/A 61.5 16.9 N/A N/A
PREFIX-DIFFUSION (LIU ET AL., 2023A) 106.3 19.4 N/A N/A 53.8 14.2 N/A N/A
SMALLCAPD=4,BASE (RAMOS ET AL., 2023B) 117.6 ± 1.0 20.0 ± 0.1 46.0 ± 0.2 57.5 ± 0.2 69.6 ± 2.1 17.1 ± 0.3 36.8 ± 0.4 46.7 ± 0.4
RECAP (OURS) 108.3 ± 1.0 21.2 ± 0.1 50.4 ± 0.2 60.6 ± 0.2 68.8 ± 2.0 17.5 ± 0.3 43.5 ± 0.3 53.4 ± 0.3

Table 2: Comparison of ReCap and SmallCap
on the VizWiz and MSRVTT test sets. We re-
port mean and standard error of metrics we com-
puted ourselves. CIDEr-D and SPICE on VizWiz
are obtained from the official evaluation server.
RefaCLIP-S is not available since the VizWiz test
set is not public.

VIZWIZ
METHOD CIDER-D SPICE ACLIP-S REFACLIP-S

CLIPCAP 48.3 13.4 35.4 ± 0.1 N/A
SMALLCAP 51.88 13.4 38.4 ± 0.1 N/A
RECAP 62.3 16.7 42.7 ± 0.1 N/A

MSRVTT

CLIPCAP 2.0 ± 0.0 10.4 ± 0.0 21.2 ± 0.0 27.5 ± 0.0
SMALLCAP 31.6 ± 0.2 11.1 ± 0.0 9.2 ± 0.0 7.6 ± 0.3
RECAP 38.8 ± 0.2 14.4 ± 0.0 34.5 ± 0.0 40.6 ± 0.0

Figure 2: t-SNE visualization of CLIP-
embeddings before (left) and after (right) lin-
ear alignment on the Flickr30k dataset.

Baselines We consider existing methods as lightweight if their trainable parameter count is below
50 M. For MS-COCO and Flickr30k, we compare ReCap to ClipCap (Mokady et al., 2021), I-Tuning
(Luo et al., 2023), SmallCap (Ramos et al., 2023b), and Prefix-Diffusion (Liu et al., 2023a). For
MSRVTT and VizWiz, we compare ReCap to SmallCap, since it is the only existing lightweight
method that report results on these datasets.

Evaluation Metrics We report metrics commonly used for image captioning, such as CIDEr-D
(Vedantam et al., 2015) and SPICE (Anderson et al., 2016).2 We report standard error for all methods
we trained ourselves. We do not report error bars for VizWiz since the evaluation server does not
provide them. We highlight the best performing methods in boldface throughout the paper and
consider two methods to be on-par when their standard errors overlap (68.2% confidence intervals).

Results In Table 1 we show results for MS-COCO and Flickr30k. ReCap outperforms all competi-
tors on our proposed metrics aCLIP-S and RefaCLIP-S on both datasets. On Flickr30k, ReCap attains
performance on-par with SmallCap in terms of CIDEr-D and SPICE even though ReCap trains about
1000 times faster with less trainable parameters (see Table 6 in Appendix C). On MS-COCO, I-Tuning
reaches the highest CIDEr-D and SPICE scores. This gap is due to the fact that I-Tuning trains over
10 times more parameters than ReCap. On both, VizWiz and MSRVTT datasets, ReCap outperforms
SmallCap (see Table 2). Further, we visualize the joint embedding space of the RN50×64 CLIP
encoder without applying our linear alignment for the Flickr30k training set via t-SNE (van der
Maaten & Hinton, 2008) in Figure 2, left. We find that images and captions are mostly disjoint.
However, after applying our linear mapping the two modalities align very well (Figure 2, right).

3.2 IMAGE CAPTIONING METRICS

Following standard practice of Hessel et al. (2021) and Zhou et al. (2023), we evaluate our proposed
metrics for image captioning by measuring their correlation with human rankings of candidate
captions.

2We use the code from https://github.com/tylin/coco-caption.
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Datasets We use the Flickr8k-Expert (Flickr8k-E), and the Flickr8k-Crowdflower (Hodosh et al.,
2013, Flickr8k-CF) datasets. These datasets provide candidate captions along with human rankings
for images of the test set of Flickr8k. We provide additional results for the THumB (Kasai et al.,
2022) dataset in Appendix C.

Baselines We compare our metrics to the current state-of-the-art reference-based and reference-free
metrics. In the case of reference-free metrics, we compare to CLIP-score (Hessel et al., 2021), and
CLIP+DN (Zhou et al., 2023). We compare our reference-based metric to RefCLIPScore (Hessel
et al., 2021), CLIP+DN-Ref (Zhou et al., 2023), MID (Kim et al., 2022), and SoftSPICE (Li et al.,
2023b). For all CLIP+DN variants (reference-based and reference-free) we estimate the mean of both
modalities on the respective training dataset, since we usually do not have access to test samples.

Evaluation Metrics To quantify correlation with human judgement, we report Kendall’s τc for
Flickr8k-E and Kendall’s τb for Flickr8k-CF as done in prior work (Hessel et al., 2021; Zhou et al.,
2023). The Kendall rank correlation coefficient measures the ordinal association between rankings by
humans and the metric. The variance for the τ estimator only depends on sample size and is 3e-5 for
Flickr8k-E and 1e-5 for Flickr8k-CF.

Table 3: Correlation with human judgement mea-
sured via Kendall’s τc for Flickr8k-E and τb for
Flickr8k-CF both scaled by 100. The variance for
the τ estimator only depends on sample size and
is 3e-5 for Flickr8k-E and 1e-5 for Flickr8k-CF. †
indicates that results were taken from prior work.

METHOD FLICKR8K-E FLICKR8K-CF

REFERENCE-FREE

CLIP-S 51.4 34.3
CLIP+DN 54.0 35.2
ACLIP-S (OURS) 55.1 36.2

REFERENCE-BASED

CIDER-D 43.9 24.6
SPICE 45.0 N/A
REFCLIP-S 53.0 36.4
SOFTSPICE† 54.2 N/A

MID† 54.9 37.3
CLIP+DN-REF 55.0 37.0
REFACLIP-S (OURS) 55.5 36.7

Results We report our results in Table 3.
First, we note that aCLIP-S/RefaCLIP-S con-
sistently outperform CLIP-S/RefCLIP-S (Hes-
sel et al., 2021) from which they were de-
rived. Our aCLIP-S metric achieves the highest
correlation with human judgement among all
reference-free metrics for both datasets. In the
case of reference-based metrics, RefaCLIP-S
reaches the highest correlation for Flickr8k-E,
while MID reaches the highest correlation for
Flickr8k-CF.

4 CONCLUSION

We advocate for using a linear mapping that can
be computed in closed form for two use cases,
image captioning and caption evaluation. We in-
troduce ReCap, an efficient retrieval-augmented
image-captioning method, which is based on our
mapping and requires substantially less training
time than other lightweight image-captioning
methods. ReCap attains competitive perfor-
mance to prior lightweight methods on estab-
lished metrics, effectively reducing training time. We also introduce aCLIP-S and RefaCLIP-S, two
new caption evaluation metrics that use our mapping to adapt CLIP-S and RefCLIP-S, respectively, to
a downstream dataset. Our metrics correlate stronger with human judgement than prior CLIP-based
metrics and achieve a new state of the art in three out of four categories. In terms of our newly
proposed metrics, ReCap outperforms competitors on all tasks. Since the evolution of the field is
guided by the metrics that it uses, we hope our work facilitates further research in the direction of
image captioning and caption evaluation.
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SUPPLEMENTARY MATERIAL

First, we provide the source code to reproduce all our experiments in Appendix A. To provide further
insights into our method ReCap, we provide additional results on cross-modal retrieval, ablation
studies, effect of different data sources, our DAL, and our evaluation as image captioning metric
in Appendix C. Further, we provide more qualitative analysis on retrieved captions after the linear
alignment and the effect of synthetic captions in Appendix D. Appendix F gives a rigorous theoretical
intuition on the motivation of our linear alignment. Finally, Appendix E elaborates on the different
hyperparameters we searched, including the retrieval parameter k, the decoding strategy, different
vision encoders, generative language models, etc.

A SOURCE CODE

To facilitate reproducibility of our findings, we provide the source code along with the submission in
the supplementary material. We included a README file that thoroughly explains how to execute our
pipeline. We will make the code publicly available upon acceptance.

B IMPLEMENTATION DETAILS

B.1 RECAP

During downstream evaluation of our linear alignment we rely on cosine similarity for retrieval of
texts related to an image. Therefore, we evaluate all CLIP vision encoders on cross-modal retrieval
tasks in Appendix C to find a suitable encoder for ReCap. Based on our findings, we choose RN50×64
(He et al., 2016) as our retrieval model.3 After embedding images and captions we normalize and
center them as suggested by Artetxe et al. (2016). To compute our mapping, we use orthogonal
procrustes by default as described by Equation (1). In certain settings, we use an unconstrained
version, i.e., ordinary least squares. We elaborate in Appendix C which version we use for the
different experiments.

To find the best setting for image captioning, we search over different LMs, decoding strategies, and
prompt orderings. We only considered generative LMs that are publicly available on the huggingface
hub (Wolf et al., 2020). Moreover, we search over multiple values of retrieved captions (k). We
always search hyperparameters on the validation split of the respective dataset. For more details about
hyperparameters, see Appendix E. We use faiss (Johnson et al., 2019) to manage our datastore
since it enables efficient storage and retrieval of vectors. Our final setting uses a FLAN-T5-Large
(Chung et al., 2022) with nucleus sampling. To generate captions with FLAN-T5, we explore
different prompting strategies and found the strategy proposed in Ramos et al. (2023b) to work best.
Specifically, the used prompt template is “Similar images show: < caption1 >, . . . , < captionk >
This image shows:”.

C ADDITIONAL RESULTS

Cross-modal retrieval We evaluate all publicly available CLIP vision encoders on cross-modal
retrieval on the MS-COCO and Flickr30k datasets. We report average recalls and standard error in
Table 4. We find that larger models improve retrieval performance and, perhaps surprisingly, the
RN50×64 encoder outperforms the largest ViT variant in four out of 6 categories when considering
image to text retrieval on MS-COCO and Flickr30k. Since ReCap is based on image to text retrieval
we select RN50×64 as our retrieval model.

Impact of Linear Alignment We conduct an ablation study where we assess the effect of the
linear alignment. To this end, we evaluate a setting where we do not use our linear alignment, which
we call ReCapZS, where ZS stands for zero-shot, since it does not require any training. Further, we
distinguish between two types of linear alignment, (i) constrained using orthogonal procrustes (PR),
and (ii), unconstrained using ordinary least squares (OLS). Results on the MS-COCO test set are

3We take the RN50×64 model from the official repository at https://github.com/openai/CLIP.
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Table 4: Comparison of different CLIP vision encoders on the cross-modal retrieval task on MS-
COCO and Flickr30k. We report average recalls and standard error for all publicly available CLIP
vision encoders. Boldface indicates highest average scores.

MS-COCO
IMAGE → TEXT TEXT → IMAGE

METHOD R@1 R@5 R@10 R@1 R@5 R@10

CLIPRN50 50.2 ± 0.7 74.9 ± 0.6 83.3 ± 0.5 28.4 ± 0.5 52.6 ± 0.5 64.2 ± 0.5
CLIPRN50X4 52.2 ± 0.7 75.9 ± 0.6 67.5 ± 0.5 31.3 ± 0.5 55.7 ± 0.5 66.5 ± 0.5
CLIPRN50X16 53.6 ± 0.7 77.9 ± 0.6 85.8 ± 0.5 33.2 ± 0.5 57.0 ± 0.5 67.5 ± 0.5
CLIPRN50X64 60.7 ± 0.7 82.2 ± 0.5 88.5 ± 0.5 34.3 ± 0.5 59.5 ± 0.5 69.9 ± 0.5
CLIPVIT-B/32 52.3 ± 0.7 76.0 ± 0.6 84.4 ± 0.5 30.2 ± 0.5 55.1 ± 0.5 66.4 ± 0.5
CLIPVIT-B/16 52.6 ± 0.7 76.9 ± 0.6 85.0 ± 0.5 32.9 ± 0.5 57.7 ± 0.5 68.1 ± 0.5
CLIPVIT-L/14 57.0 ± 0.7 80.5 ± 0.6 86.9 ± 0.5 36.1 ± 0.5 60.3 ± 0.5 70.3 ± 0.5
CLIPVIT-L/14@336PX 58.5 ± 0.7 81.3 ± 0.6 88.1 ± 0.5 35.9 ± 0.5 60.4 ± 0.5 70.5 ± 0.5

ACLIPPR,RN50X64 45.3 ± 0.7 69.7 ± 0.7 79.3 ± 0.6 35.4 ± 0.5 59.4 ± 0.5 70.0 ± 0.5
ACLIPβ-PR,RN50X64 ± ± ± ± ± ±
ACLIPOLS,RN50X64 33.3 ± 0.7 59.2 ± 0.7 70.2 ± 0.6 41.5 ± 0.5 66.9 ± 0.5 77.0 ± 0.4
ACLIPIT,RN50X64 33.1 ± 0.7 60.3 ± 0.7 71.3 ± 0.6 31.6 ± 0.5 57.1 ± 0.5 68.4 ± 0.5

FLICKR30K

CLIPRN50 80.8 ± 1.3 95.4 ± 0.7 97.8 ± 0.5 57.9 ± 1.1 83.1 ± 0.8 89.8 ± 0.6
CLIPRN101 79.2 ± 1.3 94.8 ± 0.7 97.8 ± 0.5 57.5 ± 1.1 81.9 ± 0.8 88.6 ± 0.7
CLIPRN50X4 83.0 ± 1.2 95.9 ± 0.6 98.2 ± 0.4 61.6 ± 1.1 84.7 ± 0.8 90.1 ± 0.6
CLIPRN50X16 84.2 ± 1.2 97.0 ± 0.5 99.2 ± 0.3 64.5 ± 1.1 85.9 ± 0.7 91.5 ± 0.6
CLIPRN50X64 88.5 ± 1.0 98.3 ± 0.4 99.4 ± 0.2 69.1 ± 1.0 90.7 ± 0.6 95.0 ± 0.4
CLIPVIT-B/32 79.8 ± 1.2 96.3 ± 0.6 98.6 ± 0.4 59.3 ± 1.1 83.7 ± 0.8 90.3 ± 0.6
CLIPVIT-B/16 83.0 ± 1.2 96.3 ± 0.6 99.3 ± 0.3 63.0 ± 1.1 85.9 ± 0.7 91.8 ± 0.6
CLIPVIT-L/14 85.7 ± 1.1 98.3 ± 0.4 99.3 ± 0.3 64.8 ± 1.1 87.3 ± 0.7 92.4 ± 0.5
CLIPVIT-L/14@336PX 88.5 ± 1.0 99.3 ± 0.3 99.6 ± 0.2 67.0 ± 1.0 88.7 ± 0.7 93.4 ± 0.5

ACLIPPR,RN50X64 78.5 ± 1.3 95.1 ± 0.7 98.1 ± 0.4 67.0 ± 1.0 89.2 ± 0.6 93.7 ± 0.5
ACLIPβ-PR,RN50X64 85.7 ± 1.1 97.5 ± 0.5 98.7 ± 0.4 72.6 ± 1.0 92.5 ± 0.5 96.0 ± 0.4
ACLIPOLS,RN50X64 73.6 ± 1.4 95.0 ± 0.7 97.4 ± 0.5 70.6 ± 1.0 90.6 ± 0.6 94.0 ± 0.5
ACLIPIT,RN50X64 67.0 ± 1.5 90.5 ± 0.9 96.4 ± 0.6 62.7 ± 1.0 86.1 ± 0.7 91.8 ± 0.5
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shown in Table 5. We observe a substantial performance drop on all metrics for ReCapZS, showcasing
the effectiveness of our linear alignment. The best performing method in terms of CIDEr-D and
SPICE is ReCapOLS, since the unconstrained mapping leads to a stronger alignment with reference
captions. The best performance on our learning-based metrics is achieved by ReCap. On one hand
we observe the trend that on OLS alignment achieves a better trade-off between rule-based and our
learning-based metrics. The PR alignment on the other hand diverges more from reference captions
and attains the best performance on our learning-based metrics. Further, as we show in Table 3, the
PR alignment leads to higher correlation with human judgement.

Thus, we recommend the following criterion for when to deploy which optimization scheme:

• For retrieval-augmented caption generation, use OLS

• For caption evaluation use PR

Training Efficiency We report the training and inference times of different established lightweight
image captioning approaches in Table 6.

D ADDITIONAL QUALITATIVE ANALYSIS

We show some examples for retrieval with and without our linear alignment in Figure 3. The top
row shows the top-k samples for using off-the-shelf CLIP for retrieval, while the bottom row shows
retrieval for our aligned CLIP. After the linear alignment, the retrievals fit better to the image. For
example, CLIP assigns a high similarity to “open suitcase” for the figure in the middle, although
the suitcase in the image is closed. Our aligned CLIP does not assign a high similarity to the same
caption anymore, and retrieves more appropriate captions.

The overhead view of a city 
street with bikes travelling

An overhead shot of a group of 
people eating outside

An arrangement of biking 
accessories is viewed from above

A lot of bikes parked next to each 
other on a sidewalk

Bicycles are parked at a bike 
stand on the street

A group of bikes parked on the 
street

an open suitcase with three 
purple items of clothing

A suitcase containing basic 
clothing for travel

A person's hand on a suitcase 
that is open

A suitcase on the floor with its 
tags still attached

A suitcase that is sitting on the 
floor

A suitcase that is on the floor 
with its handle up

A woman talks to a man on top 
of a blue bus

A large grey tour bus is parked 
on a tarmac

One woman about to hug another 
on a car transport ferry

two people standing in front of a 
bus in the street

Two people about to get on-board 
a bus

A couple of people standing in 
front of a bus in the street

Figure 3: Sample images and retrieved captions with (bottom) and without (top) our linear alignment
to MS-COCO training data. We show three of the closest captions to an image. Images are taken
from the MS-COCO validation set.

E HYPERPARAMETER SEARCH

Effect of different vision encoders We investigate the effect of different vision encoders on the
captioning performance of ReCap on the MS-COCO validation set. In this regard, we compare all
publicly available encoder variants of CLIP, which comprise ViT-based (Dosovitskiy et al., 2021), as
well as resnet-based (He et al., 2016) architectures. The best performing model for our retrieval-based
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image captioning is RN50×64 (see Table 7). This corroborates our results for cross-modal retrieval,
where RN50×64 outperformed all other encoders Appendix C.

Top-k retrieval We search over different values for our hyperparameters k on the MS-COCO,
Flickr30k, VizWiz, and MSRVTT validation sets. We report results in Table 8 and Table 9 for
MS-COCO, and Flickr30k, respectively. The results for VizWiz and MSRVTT are shown in Table 10,
and Table 11, respectively. For searching over values for k we use greedy decoding, to isolate the
effect of the hyperparameter.

Language-model scales We evaluate FLAN-T5 model sizes of 80 M, 250 M, 720 M, 3 B, and
11 B scales. Further, we include decoder-only LMs, such as GPT-2 (Radford et al., 2018), GPT-J
(Wang & Komatsuzaki, 2021), and Llama 7B (Touvron et al., 2023). The results can be observed in
Table 12. Our results show that there is not much performance gain going from FLAN-T5-LARGE
to FLAN-T5-XXL. We suspect this is due to the design of the prompt which apparently suits FLAN-
T5-LARGE particularly well. Surprisingly, even the small variant of FLAN-T5 reaches a CIDEr-D
score above 90, which amounts to decent captioning quality.

Our results for decoder-only LMs show that they generally perform worse than encoder-decoder
ones. We found that decoder-only models are generally more sensitive to prompt ordering, which was
also found in prior works (Zhao et al., 2021). Perhaps surprisingly, GPT-J outperforms the recently
proposed Llama, which reaches performance on-par with GPT-2. Generally, we belive that we could
improve performance of larger models by more extensive prompt tuning. However, remarkably,
FLAN-T5 performs really well in our setup without the need for extensive prompt tuning.

Different decoding strategies As illustrated by (Holtzman et al., 2020), the decoding strategy
substantially affects human approval of generated captions. Therefore, we evaluate different decoding
strategies, including greedy decoding, sampling, top-k sampling, and nucleus sampling. First, we
search over different temperatures τ and number of generated captions l for nucleus sampling
(Holtzman et al., 2020). After sampling l captions from the LM, we select the highest scoring one
according to our aligned CLIP. To find the best parameters τ and l we set k to the best value we found
in the preceeding gridsearch with greedy decoding. Results are reported in Table 14, and Table 13 for
MS-COCO, and Flickr30k, respectively. The results for VizWiz and MSRVTT are shown in Table 15,
and Table 16, respectively.

The results for other decoding schemes are shown in Table 17. For greedy decoding we only generate
one caption, hence no selection step is required after generation. We use the same temperature as
the best nucleus sampling setting for topk and regular sampling. We find that nucleus sampling with
l = 1 performs close to greedy decoding, however when setting l = 10 and using caption selection
via our aligned CLIP, we observe a substantial improvement.

Prompt ordering Usually we would provide the captions in the prompt from most-similar to least
similar, i.e. the least similar prompt is the most recent in the context. However, one may think the
exact opposite ordering might lead to better captioning performance, since the LM might exhibit a
form of recency bias. This concerns our setting as well, since the values we found for k are larger
than one might expect, e.g., on MS-COCO we found k = 13 to perform best. Hence, we provide
results for the worst-to-best ordering in Table 18. Indeed, we found that different ordering of captions
in the prompt leads to different results. Ordering from worst-to-best, i.e. most similar captions appear
more recently, leads to an improvement on CIDEr-D score. Therefore, by default, we provide the
prompts in the order from worst-to-best in the prompt.

F MOTIVATION OF LINEAR ALIGNMENT

CLIP has been trained to align text with images in a joint embedding space. We want to use the CLIP
encoders for retrieval by cosine similarity on an image-captioning task. However, there might be a
disparity between the pretraining domain of CLIP and the downstream task. We aim to rectify this
by a linear mapping. Our downstream task is retrieval of text embeddings ei by their corresponding
image embeddings fi using the cosine similarity. Therefore, our objective is

max
W

∑
i

cossim(ei,Wfi). (6)
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Table 5: Ablation study for different methods to compute our linear alignment on the MS-COCO test
set. We compare unimodal retrieval (UM), the constrained mapping (PR), unconstrained mapping
(OLS), and using no mapping at all (ZS). We report mean and standard error for all settings.

METHOD CIDER-D SPICE ACLIP REFACLIP-S

RECAPUM 81.9 ± 0.9 16.6 ± 0.1 41.8 ± 0.2 51.5 ± 0.2
RECAPZS 91.1 ± 0.9 19.1 ± 0.1 47.1 ± 0.2 56.7 ± 0.2
RECAPIT 91.0 ± 0.9 18.7 ± 0.1 46.0 ± 0.2 56.1 ± 0.2
RECAPPR 101.9 ± 1.0 20.4 ± 0.1 52.5 ± 0.2 61.6 ± 0.1
RECAPβ-PR ± ± ± ±
RECAPLFA ± ± ± ±
RECAPOLS 108.3 ± 1.0 21.2 ± 0.1 50.4 ± 0.2 60.6 ± 0.2

Table 6: Number of parameters, training time, and inference time of ReCap compared to existing
lightweight image captioning methods. Inference time is measured in seconds on a subset of 1000
images from the MS-COCO test set on an A100 GPU.

METHOD |θ| TRAINING INFERENCE

CLIPCAP 43M 6H (GTX1080) N/A
PREFIX-DIFFUSION 38.25M N/A N/A
I-TUNING 14M N/A N/A
SMALLCAPD=4,BASE 1.8M 8H(A100) 0.19 ± 0.03
RECAP 1.0M 20.3S ± 1.91 (CPU) 0.47 ± 0.08

Table 7: Search over all publicly available CLIP vision encoder backbones evaluated on the MS-
COCO validation set. We report mean and standard error for all settings. |θ| denotes the number of
trainable parameters.

VISION ENCODER BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE |θ|
RN50 75.5 ± 0.2 28.0 ± 0.3 56.1 ± 0.2 97.0 ± 0.9 19.7 ± 0.1 1 M
RN101 74.6 ± 0.2 27.7 ± 0.3 56.1 ± 0.2 96.3 ± 0.9 19.4 ± 0.1 262 K
RN50X4 75.4 ± 0.2 28.5 ± 0.3 56.6 ± 0.2 99.2 ± 0.9 19.9 ± 0.1 410 K
RN50X16 76.4 ± 0.2 29.3 ± 0.4 57.0 ± 0.2 102.5 ± 0.9 20.4 ± 0.1 590 K
RN50X64 77.7 ± 0.2 30.5 ± 0.4 58.0 ± 0.2 107.3 ± 1.0 21.2 ± 0.1 1 M
VIT-B/32 75.2 ± 0.2 27.9 ± 0.3 56.0 ± 0.2 96.4 ± 0.9 19.4 ± 0.1 262 K
VIT-B/16 76.2 ± 0.2 29.0 ± 0.3 56.7 ± 0.2 101.2 ± 0.9 20.0 ± 0.1 262 K
VIT-L/14 77.0 ± 0.2 29.9 ± 0.4 57.4 ± 0.2 104.7 ± 1.0 20.6 ± 0.1 590 K
VIT-L/14@336PX 77.4 ± 0.2 30.3 ± 0.4 57.7 ± 0.2 105.8 ± 0.9 20.8 ± 0.1 590 K
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For objective equation 6 a closed-form solution is unknown. By constraining W to be an orthogonal
matrix, however, we obtain equivalence to the least-squares objective because

argmax
W⊤W=I

∑
i

cossim(ei,Wfi) (7)

= argmax
W⊤W=I

∑
i

e⊤i Wfi

∥ei∥2∥Wfi∥2
(8)

= argmax
W⊤W=I

∑
i

e⊤i Wfi (9)

= argmin
W⊤W=I

−
∑
i

e⊤i Wfi (10)

= argmin
W⊤W=I

∑
i

(∥Wfi∥22 + ∥ei∥22 − 2e⊤i Wfi) (11)

= argmin
W⊤W=I

∑
i

(f⊤
i W⊤Wfi + e⊤i ei − 2e⊤i Wfi) (12)

= argmin
W⊤W=I

∑
i

(Wfi − ei)
⊤(Wfi − ei) (13)

= argmin
W⊤W=I

∑
i

∥Wfi − ei∥22. (14)

Artetxe et al. (2016) have pointed out this fact previously. Note that from equation 8 to equation 9
and from equation 10 to equation 11 the term ∥Wfi∥2 can be dropped/added as it appears constant
to the optimization objective because W is orthogonal and, therefore, preserves the norm of fi. The
solution to this optimization problem is known as orthogonal procrustes (Schönemann, 1966) and
can be written as

W = V U⊤, (15)

where V and U are the orthogonal matrices of the singular value decomposition of F⊤E = UΣV ⊤

and F = (f1, . . . ,fn)
⊤,E = (e1, . . . , en)

⊤.

G RELATED WORK

Linear Alignment The idea of linearly aligning embedding spaces is a well studied problem in the
field of bilinguality (Minixhofer et al., 2022; Artetxe et al., 2016), geometrical alignment (Leordeanu
& Hebert, 2005; Fischler & Bolles, 1981; Liu et al., 2008), and vision for zero-shot learning (Akata
et al., 2013; 2015; Frome et al., 2013; Romera-Paredes & Torr, 2015). Similar to our approach, Ouali
et al. (2023) use orthogonal procrustes to align features of CLIP-style models with class labels for
few-shot classification. However, their approach is tailored toward the task of classification and does
not directly transfer to image captioning. Other works consider image captioning using only text data
by training a text decoder for CLIP-style models (Li et al., 2023a; Nukrai et al., 2022; Yu et al., 2022;
Wang et al., 2023a; Gu et al., 2022).However, at test-time these approaches still receive images as
input, and thus, still suffer from the prevalent mis-alignment. Other approaches adapt the pretraining
objective in order to achieve a better alignment in the joint embedding space (Fürst et al., 2022; Goel
et al., 2022; Humer et al., 2023). However, none of these models are available at the same scale as
CLIP.

Retrieval Augmentation The idea of retrieval augmentation has been explored in the realm of
language modeling (Khandelwal et al., 2020; Guu et al., 2020; Borgeaud et al., 2022), language
generation conditioned on images (Hu et al., 2023; Yang et al., 2023; Yasunaga et al., 2023),
and reinforcement learning (Humphreys et al., 2022; Goyal et al., 2022). In the realm of image
captioning, Ramos et al. (2023b) leverages retrieval augmentation to reduce the required number of
trainable parameters. Ramos et al. (2023a) extends this idea to multilingual datastores, which enables
generation in a certain target language. ReCap also relies on retrieval augmentation, but is much
more efficient in terms of training while yielding competitive or even better results.
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Lightweight Image Captioning Lightweight captioning aims at reducing the computational com-
plexity for training image captioning models. One line of work is based on knowledge distillation
(Hinton et al., 2015) and assumes access to teacher captioning models that are distilled into much
smaller scale models (Wang et al., 2023b; Fang et al., 2021; Wang et al., 2020). Another line of works
leverage parameter-efficient fine-tuning methods to merge visual knowledge into generative LMs via
adapter layers (Eichenberg et al., 2022; Zhang et al., 2023; Gao et al., 2023), cross-attention modules
(Luo et al., 2023; Ramos et al., 2023b), or a mapping network between embedding spaces (Mokady
et al., 2021; Merullo et al., 2023). Finally, while being lightweight, Kuo & Kira (2023) relies on a
two-stage training procedure that includes fine-tuning via reinforcement learning (Li et al., 2020;
Vinyals et al., 2015; Cornia et al., 2020). In contrast to ReCap, these methods require end-to-end
training.
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Table 8: Hyperparameter Search for k on the MS-COCO validation set for different levels of language
abstraction using our semantic mapping computed via OLS. We report mean and standard error for
all settings. We select the best k according to CIDEr-D score.

k BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

SINGLE CAPTIONS

10 77.4 ± 0.2 30.4 ± 0.4 57.6 ± 0.2 105.2 ± 1.0 20.9 ± 0.1
11 77.4 ± 0.2 30.4 ± 0.4 57.7 ± 0.2 105.4 ± 1.0 20.9 ± 0.1
12 77.4 ± 0.2 30.3 ± 0.4 57.7 ± 0.2 105.2 ± 1.0 20.9 ± 0.1
13 77.4 ± 0.2 30.5 ± 0.4 57.7 ± 0.2 105.5 ± 1.0 20.8 ± 0.1
14 77.4 ± 0.2 30.5 ± 0.4 57.8 ± 0.2 105.4 ± 1.0 20.8 ± 0.1
15 77.3 ± 0.2 30.5 ± 0.4 57.7 ± 0.2 105.4 ± 1.0 20.9 ± 0.1
16 77.2 ± 0.2 30.4 ± 0.4 57.7 ± 0.2 105.4 ± 1.0 20.8 ± 0.1
17 77.2 ± 0.2 30.2 ± 0.4 57.6 ± 0.2 104.9 ± 1.0 20.9 ± 0.1

ALL CAPTIONS

1 72.7 ± 0.2 24.8 ± 0.3 53.9 ± 0.2 87.0 ± 0.9 18.0 ± 0.1
2 73.7 ± 0.2 26.4 ± 0.3 54.7 ± 0.2 90.8 ± 0.9 18.2 ± 0.1
3 74.0 ± 0.2 26.4 ± 0.3 54.8 ± 0.2 91.0 ± 0.9 18.2 ± 0.1
4 74.0 ± 0.2 26.6 ± 0.3 55.0 ± 0.2 91.3 ± 0.9 18.5 ± 0.1
5 74.0 ± 0.2 26.9 ± 0.3 55.1 ± 0.2 91.6 ± 0.9 18.4 ± 0.1

LOCALIZED NARRATIVES

1 55.3 ± 0.3 11.7 ± 0.2 43.1 ± 0.2 45.4 ± 0.6 11.9 ± 0.1
2 54.3 ± 0.3 11.8 ± 0.2 43.0 ± 0.2 48.0 ± 0.7 13.2 ± 0.1
3 53.8 ± 0.3 12.3 ± 0.2 43.0 ± 0.2 50.9 ± 0.7 14.0 ± 0.1
4 53.0 ± 0.3 12.1 ± 0.2 42.7 ± 0.2 51.7 ± 0.7 14.3 ± 0.1
5 52.5 ± 0.3 12.0 ± 0.2 42.6 ± 0.2 52.6 ± 0.7 14.4 ± 0.1
6 52.0 ± 0.3 12.3 ± 0.2 42.6 ± 0.2 53.1 ± 0.7 14.6 ± 0.1
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Table 9: Hyperparameter Search for k on the Flickr30k validation set for different levels of language
abstraction using our semantic mapping computed via OLS. We report mean and standard error for
all settings.

k BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

SINGLE CAPTIONS

10 74.8 ± 0.5 26.4 ± 0.7 54.5 ± 0.4 63.6 ± 1.9 15.5 ± 0.3
11 74.7 ± 0.5 26.3 ± 0.7 54.5 ± 0.4 64.4 ± 2.0 15.6 ± 0.3
12 74.4 ± 0.5 26.2 ± 0.7 54.6 ± 0.4 64.6 ± 1.9 15.5 ± 0.3
13 74.2 ± 0.5 26.1 ± 0.7 54.6 ± 0.4 64.4 ± 1.9 15.5 ± 0.3
14 74.6 ± 0.5 26.2 ± 0.7 54.3 ± 0.4 64.4 ± 1.9 15.6 ± 0.3
15 74.3 ± 0.5 26.3 ± 0.7 54.5 ± 0.4 64.8 ± 1.9 15.6 ± 0.3
16 75.0 ± 0.5 26.7 ± 0.7 54.7 ± 0.4 64.6 ± 1.9 15.8 ± 0.3
17 74.5 ± 0.5 26.9 ± 0.7 54.8 ± 0.4 65.5 ± 1.9 15.6 ± 0.3
18 74.9 ± 0.5 26.8 ± 0.7 54.8 ± 0.4 66.2 ± 2.0 15.7 ± 0.3
19 74.4 ± 0.5 26.9 ± 0.7 54.8 ± 0.4 65.6 ± 1.9 15.8 ± 0.3

ALL CAPTIONS

1 65.8 ± 0.5 20.3 ± 0.7 49.8 ± 0.4 48.7 ± 1.8 13.4 ± 0.3
2 67.9 ± 0.5 21.5 ± 0.7 50.5 ± 0.5 52.2 ± 1.8 13.9 ± 0.3
3 68.1 ± 0.5 22.0 ± 0.7 51.0 ± 0.4 53.2 ± 1.9 13.7 ± 0.3
4 69.6 ± 0.5 23.0 ± 0.7 51.4 ± 0.4 54.4 ± 1.9 14.1 ± 0.3
5 69.0 ± 0.5 23.0 ± 0.7 51.3 ± 0.4 54.5 ± 1.9 14.2 ± 0.3

LOCALIZED NARRATIVES

1 54.2 ± 0.6 9.0 ± 0.4 40.4 ± 0.4 24.4 ± 1.3 8.1 ± 0.2
2 52.6 ± 0.6 8.6 ± 0.4 39.3 ± 0.4 23.3 ± 1.1 8.4 ± 0.2
3 52.5 ± 0.6 9.5 ± 0.4 39.6 ± 0.4 25.4 ± 1.2 8.9 ± 0.2
4 51.7 ± 0.6 9.6 ± 0.4 39.3 ± 0.4 26.0 ± 1.2 9.1 ± 0.2
5 51.9 ± 0.6 9.6 ± 0.4 39.1 ± 0.4 25.6 ± 1.2 9.0 ± 0.2

Table 10: Hyperparameter Search for k on the VizWiz validation set for ReCap with our linear
alignment. We report mean and standard error for all settings. We select the best k according to
CIDEr-D score.

k BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

1 61.8 ± 0.2 15.5 ± 0.2 43.1 ± 0.2 48.5 ± 0.6 12.1 ± 0.1
2 61.8 ± 0.2 16.5 ± 0.2 44.8 ± 0.2 50.9 ± 0.7 13.1 ± 0.1
3 62.5 ± 0.2 16.9 ± 0.2 45.3 ± 0.2 51.1 ± 0.7 13.0 ± 0.1
4 63.2 ± 0.2 17.5 ± 0.2 45.8 ± 0.2 52.7 ± 0.7 13.0 ± 0.1
5 63.3 ± 0.2 17.5 ± 0.2 45.8 ± 0.2 52.6 ± 0.7 13.1 ± 0.1
6 63.3 ± 0.2 17.6 ± 0.2 45.9 ± 0.2 52.4 ± 0.7 13.0 ± 0.1
7 63.0 ± 0.2 17.5 ± 0.2 45.8 ± 0.2 51.7 ± 0.7 12.9 ± 0.1
8 62.8 ± 0.2 17.5 ± 0.2 45.8 ± 0.2 51.6 ± 0.7 12.8 ± 0.1
9 62.9 ± 0.2 17.5 ± 0.2 45.9 ± 0.2 51.3 ± 0.7 12.9 ± 0.1

10 62.1 ± 0.2 17.0 ± 0.2 45.5 ± 0.2 50.3 ± 0.6 12.8 ± 0.1
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Table 11: Hyperparameter Search for k on the MSRVTT validation set for ReCap with our linear
alignment. We report mean and standard error for all settings. We select the best k according to
CIDEr-D score.

k BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

3 26.9 ± 0.1 4.8 ± 0.0 25.7 ± 0.1 36.6 ± 0.4 14.2 ± 0.1
4 26.9 ± 0.1 4.8 ± 0.0 25.7 ± 0.1 36.6 ± 0.4 14.2 ± 0.1
5 27.1 ± 0.1 4.9 ± 0.0 25.8 ± 0.1 36.7 ± 0.4 14.1 ± 0.1
6 27.1 ± 0.1 4.9 ± 0.0 25.8 ± 0.1 36.4 ± 0.4 14.0 ± 0.1
7 27.0 ± 0.1 4.9 ± 0.0 25.9 ± 0.1 36.4 ± 0.3 13.9 ± 0.1
8 27.0 ± 0.1 4.9 ± 0.0 25.9 ± 0.1 36.7 ± 0.4 13.8 ± 0.1

Table 12: Comparison of different language models on the MS-COCO validation set. We report mean
and standard error for all settings.

MODEL BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

ENCODER-DECODER

FLAN-T5-SMALL 63.9 ± 0.3 23.3 ± 0.3 55.0 ± 0.2 93.9 ± 1.0 20.5 ± 0.1
FLAN-T5-BASE 72.5 ± 0.2 27.1 ± 0.3 56.7 ± 0.2 100.0 ± 0.9 20.7 ± 0.1
FLAN-T5-LARGE 77.7 ± 0.2 30.5 ± 0.4 58.0 ± 0.2 107.3 ± 1.0 21.2 ± 0.1
FLAN-T5-XL 76.1 ± 0.2 29.4 ± 0.4 56.7 ± 0.2 104.7 ± 0.9 20.8 ± 0.1
FLAN-T5-XXL 77.1 ± 0.2 30.2 ± 0.4 57.4 ± 0.2 107.0 ± 1.0 21.0 ± 0.1

DECODER-ONLY

GPT-2 64.9 ± 0.3 24.1 ± 0.3 49.5 ± 0.2 86.8 ± 0.9 19.1 ± 0.1
GPT-J 6B 71.1 ± 0.3 29.1 ± 0.4 51.4 ± 0.2 97.5 ± 1.0 19.6 ± 0.1
LLAMA 7B 61.5 ± 0.3 23.1 ± 0.3 49.3 ± 0.2 86.4 ± 0.9 19.5 ± 0.1

Table 13: Comparison of different values for temperature of nucleus sampling on the Flickr30k
validation set for k = 18

TEMPERATURE SAMPLES BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

1.0 1 74.8 ± 0.5 26.8 ± 0.7 54.6 ± 0.4 65.0 ± 1.9 15.8 ± 0.3

0.1 10 75.2 ± 0.5 27.5 ± 0.7 55.2 ± 0.4 68.7 ± 2.0 16.5 ± 0.3
0.3 10 74.5 ± 0.5 26.6 ± 0.7 55.2 ± 0.4 68.4 ± 1.9 16.8 ± 0.3
0.5 10 73.8 ± 0.5 25.6 ± 0.7 54.6 ± 0.4 68.4 ± 2.1 17.0 ± 0.3

0.1 20 75.3 ± 0.5 27.1 ± 0.7 55.2 ± 0.4 68.7 ± 1.9 16.5 ± 0.3
0.3 20 74.4 ± 0.5 26.6 ± 0.7 55.2 ± 0.4 69.3 ± 2.0 16.9 ± 0.3
0.5 20 73.4 ± 0.5 25.2 ± 0.7 54.6 ± 0.4 68.3 ± 2.0 17.3 ± 0.3

0.1 30 75.5 ± 0.5 27.5 ± 0.7 55.3 ± 0.4 68.7 ± 2.0 16.6 ± 0.3
0.3 30 74.2 ± 0.5 26.4 ± 0.7 55.4 ± 0.4 68.9 ± 2.0 17.2 ± 0.3
0.5 30 72.9 ± 0.5 24.4 ± 0.7 54.4 ± 0.4 67.7 ± 2.0 17.3 ± 0.3
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Table 14: Comparison of different values for temperature of nucleus sampling on the MS-COCO
validation set for k = 13.

TEMPERATURE SAMPLES BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

0.0 N/A 77.4 ± 0.2 30.5 ± 0.4 57.7 ± 0.2 105.5 ± 1.0 20.8 ± 0.1

0.1 10 77.7 ± 0.2 30.5 ± 0.4 58.0 ± 0.2 107.3 ± 1.0 21.2 ± 0.1
0.3 10 77.3 ± 0.2 29.9 ± 0.4 57.9 ± 0.2 106.8 ± 0.9 21.4 ± 0.1
0.5 10 76.5 ± 0.2 29.0 ± 0.3 57.3 ± 0.2 104.5 ± 0.9 21.3 ± 0.1

0.1 20 77.6 ± 0.2 30.4 ± 0.4 57.9 ± 0.2 107.2 ± 1.0 21.2 ± 0.1
0.3 20 77.2 ± 0.2 29.7 ± 0.3 57.8 ± 0.2 106.2 ± 0.9 21.4 ± 0.1
0.5 20 76.4 ± 0.2 28.6 ± 0.3 57.1 ± 0.2 103.9 ± 0.9 21.4 ± 0.1

0.1 30 77.6 ± 0.2 30.4 ± 0.4 57.9 ± 0.2 107.1 ± 0.9 21.2 ± 0.1
0.3 30 77.1 ± 0.2 29.5 ± 0.3 57.7 ± 0.2 106.1 ± 0.9 21.4 ± 0.1
0.5 30 76.4 ± 0.2 28.3 ± 0.3 57.1 ± 0.2 103.3 ± 0.9 21.6 ± 0.1

Table 15: Comparison of different values for temperature of nucleus sampling on the VizWiz
validation set for k = 4.

TEMPERATURE SAMPLES BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

0.0 N/A 63.2 ± 0.2 17.5 ± 0.2 45.8 ± 0.2 52.7 ± 0.7 13.0 ± 0.1

0.1 10 64.5 ± 0.2 17.9 ± 0.2 46.3 ± 0.2 54.7 ± 0.7 13.6 ± 0.1
0.3 10 64.9 ± 0.2 18.2 ± 0.2 46.5 ± 0.2 56.3 ± 0.7 14.1 ± 0.1
0.5 10 64.9 ± 0.2 18.1 ± 0.2 46.5 ± 0.2 56.7 ± 0.7 14.3 ± 0.1

0.1 20 64.5 ± 0.2 18.0 ± 0.2 46.3 ± 0.2 54.8 ± 0.7 13.6 ± 0.1
0.3 20 65.1 ± 0.2 18.3 ± 0.2 46.7 ± 0.2 56.6 ± 0.7 14.3 ± 0.1
0.5 20 65.1 ± 0.2 18.2 ± 0.2 46.5 ± 0.2 57.1 ± 0.7 14.6 ± 0.1

0.1 30 64.6 ± 0.2 18.0 ± 0.2 46.3 ± 0.2 55.0 ± 0.7 13.7 ± 0.1
0.3 30 65.2 ± 0.2 18.3 ± 0.2 46.7 ± 0.2 56.9 ± 0.7 14.3 ± 0.1
0.5 30 64.9 ± 0.2 18.1 ± 0.2 46.7 ± 0.2 58.0 ± 0.7 14.7 ± 0.1

Table 16: Comparison of different values for temperature of nucleus sampling on the MSRVTT
validation set for k = 5.

TEMPERATURE SAMPLES BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

0.0 N/A 27.1 ± 0.1 4.9 ± 0.0 25.8 ± 0.1 36.7 ± 0.4 14.1 ± 0.1

0.1 10 24.8 ± 0.1 4.4 ± 0.0 25.8 ± 0.1 37.4 ± 0.4 14.7 ± 0.1
0.3 10 24.9 ± 0.1 4.2 ± 0.0 25.6 ± 0.1 38.2 ± 0.4 14.8 ± 0.1
0.5 10 24.7 ± 0.1 4.1 ± 0.0 25.3 ± 0.1 37.9 ± 0.4 14.6 ± 0.1

0.1 20 24.7 ± 0.1 4.3 ± 0.0 25.7 ± 0.1 37.3 ± 0.4 14.7 ± 0.1
0.3 20 24.8 ± 0.1 4.2 ± 0.0 25.6 ± 0.1 38.0 ± 0.4 14.7 ± 0.1
0.5 20 24.6 ± 0.1 4.0 ± 0.0 25.3 ± 0.1 38.3 ± 0.4 14.6 ± 0.1

0.1 30 24.7 ± 0.1 4.3 ± 0.0 25.8 ± 0.1 37.3 ± 0.4 14.7 ± 0.1
0.3 30 24.7 ± 0.1 4.2 ± 0.0 25.6 ± 0.1 38.1 ± 0.4 14.7 ± 0.1
0.5 30 24.5 ± 0.1 4.0 ± 0.0 25.3 ± 0.1 38.1 ± 0.4 14.6 ± 0.1

22



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Table 17: Search over different decoding paradigms for captioning on the MS-COCO validation
set. We report mean and standard error for all settings. Sampling-based decoding strategies use a
temperature of τ = 0.1.

DECODING BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

SAMPLING 67.9 ± 0.2 21.0 ± 0.3 51.6 ± 0.2 80.7 ± 0.8 19.3 ± 0.1
TOPK 67.9 ± 0.2 20.8 ± 0.3 51.5 ± 0.2 80.9 ± 0.8 19.4 ± 0.1
GREEDY 77.4 ± 0.2 30.5 ± 0.4 57.7 ± 0.2 105.5 ± 1.0 20.8 ± 0.1
NUCLEUS, l = 1 77.4 ± 0.2 30.4 ± 0.4 57.8 ± 0.2 105.5 ± 1.0 20.8 ± 0.1
NUCLEUS 77.7 ± 0.2 30.5 ± 0.4 58.0 ± 0.2 107.3 ± 1.0 21.2 ± 0.1

Table 18: Comparison of different orderings for exemplars in the prompt on the MS-COCO validation
set. We report mean and standard error for all settings.

ORDERING BLEU@1 BLEU@4 ROUGE-L CIDER-D SPICE

WORST-TO-BEST 77.7 ± 0.2 30.5 ± 0.4 58.0 ± 0.2 107.3 ± 1.0 21.2 ± 0.1
BEST-TO-WORST 77.4 ± 0.2 30.4 ± 0.4 57.7 ± 0.2 105.9 ± 1.0 21.0 ± 0.1
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