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Abstract

Large Vision-Language Models (LVLMs) play a cru-
cial role in autonomous driving, offering advanced visual
reasoning capabilities that enhance system interpretabil-
ity. However, these models often struggle with corner
cases in open-world environments, leading to degraded
performance. This paper addresses two key challenges:
the limitations of pre-trained vision encoders in recogniz-
ing unfamiliar objects and the insufficient reasoning abil-
ities of existing models. We propose a solution that lever-
ages synthetic datasets and iterative finetuning to enhance
model performance. Our approach improves the model’s
visual knowledge and reasoning capabilities, resulting in
substantial performance gains on the CODA-LLM bench-
mark, including a 1.82x increase in generation perception,
a 97.34% improvement in region perception, and a 2.09x
enhancement in driving suggestion accuracy. These results
demonstrate the effectiveness of our method in improving
LVLMs for open-world autonomous driving scenarios. The
model can be experienced on https://pku-open-
driver.github.io/.

1. Introduction
Large Vision-Language Models (LVLMs) have garnered
significant attention in the autonomous driving domain and
embodied agents due to their remarkable ability to perform
visual reasoning, enabling them to comprehend complex
images and videos [3, 9, 11, 15, 16]. These models have
substantially contributed to developing interpretable end-
to-end autonomous driving systems or embodied agents [1,
17]. However, while current general-purpose models per-
form well in common driving scenarios, they often struggle
in the real-world open environment, which contains numer-
ous corner cases where the performance of these models
tends to degrade.

Two primary challenges arise when applying existing
open-source Vision-Language Models (VLMs) to corner
cases in driving scenarios. The first challenge is related to

the vision encoder typically used in these models, often pre-
trained on CLIP and further aligned with language through
open-source datasets. When the vision encoder lacks rel-
evant visual knowledge—particularly regarding unfamiliar
objects in corner cases—the VLMs struggle to accurately
interpret the elements within the driving scene, leading to
suboptimal decision-making [12].

The second challenge involves the models’ limited lan-
guage concept and reasoning capabilities. VLMs often
exhibit insufficient understanding of specific concepts and
rules pertinent to driving scenarios, making it difficult for
them to accurately assess whether the scenes depicted in
images comply with these rules. Furthermore, effective
decision-making in various corner cases requires strong rea-
soning abilities, often necessitating a step-by-step reasoning
process that many existing VLMs lack [18].

To address these challenges, we propose enhancing
open-source foundation Vision-Language Models for open-
world driving scenarios through the use of synthetic datasets
and interactive self-finetuning. For the knowledge enhance-
ment component, we introduce a synthetic data generation
method utilizing retrieval-augmented generation [6] and
self-instruct [14] techniques. For the reasoning component,
we employ iterative finetuning to improve the model’s ad-
vanced reasoning and decision-making capabilities.

The models trained using our proposed methods demon-
strate significant performance improvements compared to
the baseline on the CODA-LLM benchmark Track-1 [8],
with a 1.82x times increase in generation perception, a
97.34% improvement in region perception, and a 2.09x
times enhancement in driving suggestion scores.

2. Method
In this section, we will explain how we constructed our
dataset and the training techniques we used.

2.1. Retrieval-augmented Synthetic Datasets for
Open-ended Corner Cases

Given the presence of numerous corner cases in open-
domain autonomous driving scenarios, a substantial amount
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of training data is required. Existing approaches typically
rely on manual annotation, which is not only prohibitively
expensive but also challenging to scale. To enhance the
understanding of driving datasets by open-source Vision-
Language Models (VLMs), we collected a large volume of
unlabeled driving scene images from open-world scenarios
and generated the Open-World Driving Synthetic Datasets
(Dsynth) through data synthesis.

The synthetic dataset primarily consists of two compo-
nents: Visual Captioning and Visual Question Answering
(VQA) tasks. The visual captioning component is responsi-
ble for describing the visual targets and relevant knowledge
within open-world scenarios, while the VQA component
addresses understanding and reasoning about the scenes.

To efficiently generate this synthetic dataset, we lever-
aged existing foundation models to automate and accelerate
the dataset construction process. These models include the
Segment Anything Model (SAM) for visual segmentation,
the Open-CLIP model for open-domain classification, the
ShareCaptioner model for caption generation, and the large
language model ChatGPT. The specific process is outlined
as follows:
1. Preprocessing with Small Models: We began by em-

ploying small models trained on limited autonomous
driving datasets (such as object detection and image
recognition models) to preprocess the images I , identify-
ing potential object names (from the recognition model)
Tobj = Mcls(I) and object bounding boxes (from the
detection model) Tobj, pos = Mdet(I).

2. Segmentation and Embedding Retrieval: The dataset
was further processed using the Foundation Segmen-
tation Model (Segment Anything, SAM [5]) to obtain
segmented, unlabeled pixel regions Isam = Msam(I).
We then utilized the embeddings of these pixel regions
to perform retrieval in a visual-text database, identify-
ing the pixel locations of each object within the image
Tobj = Mretrieval(embIsam , embIdatabase)).

3. Textual Retrieval: Based on the object names Tobj iden-
tified in the images, we performed searches using open
search engines (e.g., Google and Baidu) to retrieve rel-
evant textual descriptions Tdesc of these objects in Wiki
pages.

4. Caption Generation: We utilized the ShareCaptioner
model to generate detailed raw captions T raw

cap for the im-
ages I . Similar to the LLaVA [7] approach, we refined
these captions T raw

cap using the retrieved textual descrip-
tions Tdesc to produce fine-grained captions T fine

cap .
5. Question-Answer Pair Generation: Finally, using the

generated captions and textual descriptions, we em-
ployed the self-instruct [14] method, wherein the lan-
guage model ChatGPT proposed questions TQ(I) and
answered questions TA(I) related to the image content.
Through this approach, we significantly augmented

the existing dataset, resulting in the creation of
CODA-VQA-200k, a synthetic dataset that is ten times the
size of the original CODA dataset.

2.2. Iterative Finetuning enables Self-improving
Vision-Language Models

To continuously enhance the model’s performance, we
employed an iterative finetuning approach for Vision-
Language Model (VLM) training and improvement.

Self-play Finetuning Instead of directly applying super-
vised finetuning (SFT) to optimize the model, we uti-
lized Direct Preference Optimization (DPO) [10] combined
with self-play finetuning (SPIN) [4] to iteratively refine the
model. Initially, we performed SFT on the CODA-LM-38k
dataset and the synthetic CODA-LM-200k dataset, yielding
the first version of the model.

Subsequently, in the self-play finetuning phase, the con-
tent generated by the model itself was treated as negative
samples, while the samples from the dataset were con-
sidered positive samples. The model was then optimized
through multiple rounds of self-play finetuning. Although
this approach aids in improving model performance, its ca-
pacity to enhance the model’s generalization in open-ended
environments is limited, as the training dataset remains
static. Consequently, the model’s ability to adapt to new,
unseen scenarios is constrained.

Iterative Synthetic Data generation To overcome the
limitations of static datasets, we further employed an iter-
ative synthetic data generation approach to continually aug-
ment the training dataset. In this process, the content origi-
nally generated by ShareCaptioner [2] was replaced by con-
tent generated by Modeli, the current iteration of the model.
Using the same methodology, additional synthetic data was
created, including enhanced answers, which were then used
as positive samples for the next round of model training.

Given that the challenges in the benchmark primarily
involve general perception, region perception, and driving
suggestion, our approach targeted these areas specifically.
General and region perception tasks were addressed by im-
proving the vision encoder using the same iterative fine-
tuning strategy. For driving suggestion, which heavily re-
lies on the model’s reasoning abilities, we further enhanced
reasoning capabilities by incorporating GPT-4 to augment
the synthetic dataset with more complex inferential tasks,
thereby helping to improve the reasoning skills of the VLM.

The final model underwent N = 5 rounds of training,
progressively refining its capabilities in each iteration.



Table 1. Comparative results of different models, training meth-
ods, and datasets.

Model Direct SFT Ours(w/ 30k) Ours(w/ 200k)

LLAVA [7] 30.33 40.24 49.79 54.13
CogVLM2 [13] 39.43 50.43 57.99 60.84
MiniCPM [19] 42.67 60.90 63.12 71.87

3. Experiments
3.1. Implementation Details

Model architectures and Datasets For the model train-
ing, we utilized LLaVA-Next-8B [7], MiniCPM-8B [19],
and CogVLM2-19B [13] as base Vision-Language-Models.
The training datasets included the original image data from
CODA-LM, comprising 29,681 QA pairs, along with an ad-
ditional 200k synthetic QA pairs.

Training Parameters For model training, we used the
following configuration: The training process was con-
ducted with the use of bfloat16 (bf16) precision, ensuring
full evaluation without these precision settings. The maxi-
mum input length for the model was set to 2048 tokens, and
the number of slices was capped at 9. The training process
was conducted over 5 epochs. The per-device batch size
was set to 4 for training and 1 for evaluation, with gradient
accumulation steps set to 1. The learning rate was set to 1e-
6, with a weight decay of 0.1, and the beta2 parameter of the
Adam optimizer was set to 0.95. We employed a warmup
ratio of 0.01, and the learning rate was scheduled using a
cosine decay strategy. And the training was conducted us-
ing a DeepSpeed S2 configuration.

3.2. Evaluation Methods

To evaluate the performance of our models, we sampled 500
data samples from the training datasets to create an evalu-
ation dataset. We employed the LLM-as-Judge approach
to assess the quality of the generation content produced by
different methods. Specifically, for each image, the corre-
sponding question, reference answer, and the answers gen-
erated by Model 1 and Model 2 were presented to ChatGPT.
ChatGPT then determined which model produced the better
answer. Using this method, we calculated the win rates and
Elo rating scores to compare the performance of different
models [20].

3.3. Results

The final experimental results, as summarized in Table 1,
demonstrate the performance of three different base mod-
els—LLAVA, CogVLM2, and MiniCPM—when trained
using different methodologies: Direct, Supervised Fine-
Tuning (SFT), and our proposed method.

Impact of Synthetic Datasets on Model Performance
The LLAVA model shows a significant improvement when
moving from SFT (40.24) to our method with the origi-
nal 30k dataset (49.79). This improvement is further en-
hanced when using our synthetic 200k dataset, achieving
a score of 54.13. This illustrates that the synthetic data
greatly enhances the model’s ability to generalize and un-
derstand complex scenarios, resulting in a 34% improve-
ment over the SFT method. Similar trends are observed
with CogVLM2. The performance increases from 50.43
with SFT to 57.99 with the 30k dataset. When the model
is trained with the 200k synthetic dataset, the performance
further rises to 60.84, showing a 20% increase compared
to SFT. This demonstrates the robustness of synthetic data
in improving the model’s adaptability to diverse scenarios.
The MiniCPM model benefits the most from the synthetic
datasets. Starting from an SFT score of 60.90, the model’s
performance reaches 63.12 with the 30k dataset, and further
to an impressive 71.87 with the 200k synthetic dataset. This
substantial increase (18% over SFT) highlights the model’s
ability to leverage larger, more diverse datasets for better
decision-making in complex environments.

Effectiveness of Training Methods As expected, SFT
provides a considerable improvement over the Direct
method across all models, confirming the value of super-
vised fine-tuning in refining model performance. Train-
ing with our method using the original 30k dataset al-
ready outperforms SFT, indicating the effectiveness of our
iterative fine-tuning strategy even with a relatively smaller
dataset. The jump in performance from 30k to 200k syn-
thetic datasets in our method across all models demonstrates
the significant role that synthetic data plays in enhancing
model capabilities. The larger dataset allows for more com-
prehensive learning and better generalization, particularly
in open-ended scenarios.

We present the final iterations of our finetuned
model from MiniCPM-8B base VLM and our synthetic
CODA-LLM-200k datasets. The overall scores for general
perception, regional perception, and driving suggestions are
54.41, 83.01, and 71.76, respectively.

4. Conclusions
In this paper, we present a novel approach to improv-
ing Vision-Language Models for autonomous driving by
combining iterative fine-tuning with large-scale synthetic
datasets. Our method significantly enhances model perfor-
mance in handling complex, open-world driving scenarios.
The results highlight the effectiveness of synthetic data in
boosting model generalization, offering a robust solution for
safer and more reliable autonomous driving systems.
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