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Abstract001

Building on advances in language models,002
Large Multimodal Models (LMMs) have sig-003
nificantly improved video understanding. How-004
ever, current video LMMs rely on either image005
or video encoders, each with limitations; im-006
age encoders capture rich spatial details but007
lack temporal context, while video encoders008
provide temporal understanding but process009
sparse frames at lower resolutions. To this010
end, we introduce VideoGPT+, which inte-011
grates image and video encoders for detailed012
spatial understanding and global temporal mod-013
eling. The model processes videos in segments014
and applies adaptive pooling on extracted015
features, achieving state-of-the-art results on016
VCGBench, MVBench, Zero-shot QA, and017
Video-MME. Additionally, we develop a 112K018
video-instruction dataset using a novel semi-019
automatic annotation pipeline, further enhanc-020
ing performance. To comprehensively evaluate021
video LMMs, we present VCGBench-Diverse,022
a benchmark covering 18 diverse video cate-023
gories, including lifestyle, sports, and surveil-024
lance. With 4,354 QA pairs, it assesses dense025
video captioning, spatio-temporal understand-026
ing, and complex reasoning, ensuring a ro-027
bust evaluation across video types. Our code,028
dataset, and models will be released publicly.029

1 Introduction030

Existing methods for video understanding often031

rely solely on either image encoders or video en-032

coders (Maaz et al., 2024; Jin et al., 2024; Liu033

et al., 2024c). Most works focus on image en-034

coders, which encode multiple frames and either035

fuse the information or concatenate the embeddings036

before passing them to the LLM. When fusing the037

information, spatial or temporal pooling is typi-038

cally used (Maaz et al., 2024). Spatial pooling has039

shown minimal effectiveness in capturing video in-040

formation, whereas temporal pooling retains some041

Figure 1: VideoGPT+ versus various SoTA models.
VideoGPT+ performs better compared to various models (Li
et al., 2023c; Jin et al., 2024; Lin et al., 2023; Maaz et al.,
2024) on video conversation benchmarks: VCGBench (Maaz
et al., 2024), Video-MME (Fu et al., 2024), MVBench (Li
et al., 2023c), Zero-shot video QA: MSVD-QA, MSRVTT-
QA, ActivityNet-QA and VCGBench-Diverse (across dense
captioning, spatial understanding, and reasoning).

spatial information but lacks explicit temporal con- 042

text. On the other hand, concatenating embeddings 043

without pooling (Jin et al., 2024; Liu et al., 2024c; 044

Zhang et al., 2024b) can rapidly increase compu- 045

tational complexity due to the extended context 046

length required by the LLM, limiting the number 047

of frames that can be processed. While this ap- 048

proach provides better spatial representation, the 049

overall context is still limited to few frames. The 050

limited context results in a poor understanding of 051

the video, especially if a uniform sampling strategy 052

is employed, as it only captures small segments of 053

the video, missing important temporal dynamics. 054

In order to address these challenges, we propose 055

VideoGPT+ which effectively combines the mer- 056

its of both image and video encoders (see Fig. 2). 057

By leveraging an image encoder for rich spatial 058

details and a video encoder for global temporal 059

context, our model achieves improved video under- 060

standing. To model finegrained temporal dynamics 061

in VideoGPT+ , we use a segment-wise sampling 062

strategy. Unlike uniform sampling used in existing 063
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video LMMs (Maaz et al., 2024; Li et al., 2023c),064

which may miss important temporal dynamics, our065

approach divides the video into smaller segments066

and applies segment-wise sampling. This ensures067

that the model captures representative information068

from different segments of the video, enabling a069

more comprehensive understanding.070

To facilitate the integration of image and video071

features, VideoGPT+ introduces a visual adapter072

module that combines their complimentary benefits.073

It performs projection and pooling operations, map-074

ping both image and video features to a common075

space while reducing computational complexity.076

By aligning the features in this manner, the model077

can utilize the combined spatial and temporal infor-078

mation for improved video understanding.079

We demonstrate the effectiveness of080

VideoGPT+ across five standard video-conversation081

benchmarks, including VCGBench (Maaz et al.,082

2024), MVBench (Li et al., 2024), Zero-shot083

question-answering (Maaz et al., 2024) and084

Video-MME (Fu et al., 2024), where it performs085

better than previous SoTA (see Fig. 1). Further, we086

develop VCG+ 112K using a novel semi-automatic087

annotation pipeline (see Fig. 3), which provides088

dense video captions along with spatial understand-089

ing and reasoning-based question-answer (QA)090

pairs, further enhancing the model’s performance.091

We also propose VCGBench-Diverse, extending092

VCGBench (Maaz et al., 2024) by including093

videos from 18 different domains to extensively094

evaluate the video-based conversation models in095

diverse domains (see Fig. 4).096

Our work has three main contributions:097

• We present VideoGPT+, the first video-098

conversation model that benefits from a dual-099

encoding scheme based on both image and video100

features. These complimentary sets of features101

offer rich spatiotemporal details for improved102

video understanding (Sec. 2).103

• Addressing the limitations of existing VideoIn-104

struct100K dataset (Maaz et al., 2024), we de-105

velop VCG+ 112K with a novel semi-automatic106

annotation pipeline, offering dense video cap-107

tions along with spatial understanding and108

reasoning-based QA pairs, improving model per-109

formance (Sec. 3).110

• Recognizing the lack of diverse benchmarks111

for video-conversation task, we propose112

VCGBench-Diverse, which provides 4,354 hu-113

man annotated QA pairs across 18 video cate-114

gories to extensively evaluate the performance 115

of a video-conversation model (Sec. 4). 116

2 Method 117

For effective video understanding, combining de- 118

tailed spatial information with explicit temporal 119

context is crucial. To achieve this, we propose 120

VideoGPT+, which features a dual encoder design 121

that leverages the complementary strengths of an 122

image encoder and a video encoder. 123

Overall Architecture: The overall architecture 124

consists of (i) segment-wise sampling, (ii) dual vi- 125

sual encoder, (iii) vision-language adapters that 126

project vision features to the language domain 127

and (iv) a large language model. Frames selected 128

through a segment-wise sampling strategy are en- 129

coded through a dual encoder consisting of an im- 130

age and a video encoder. Both sets of features are 131

projected to language space using vision-language 132

(V-L) adapters, and the resulting tokens are pooled 133

through adaptive token pooling and concatenated 134

before being fed to the LLM (see Fig. 2). 135

Segment-wise Sampling: To extract fine-grained 136

temporal cues, we use a segment-wise frame 137

sampling strategy. Given an input video V ∈ 138

RT×H×W×C , we divide it into K segments, where 139

each segment consists of n = T
K frames. Thus, the 140

video can be represented as V = [Vk]
K
k=1. Each 141

segment Vk ∈ Rn×H×W×C can be described as 142

a sequence of frames, Xi, where Vk = [Xi,j ]
n
j=1. 143

The video segments are downsampled to a lower 144

resolution of n× h× w × c for video encoding. 145

Compared to a uniform sampling, segment-wise 146

sampling better aligns with our dual encoder de- 147

sign. Video encoders often face computational con- 148

straints, limiting them to processing only sparse 149

frames. Uniform sampling increases the self- 150

attention computation complexity as it requires 151

attending to features of all frames. Additionally, 152

video encoders are typically trained with sparse 153

frames, and providing more frames can hinder their 154

ability to accurately capture temporal information. 155

In contrast, the segment-wise sampling strategy di- 156

vides the video into smaller, manageable segments, 157

enabling the video encoder to efficiently capture 158

rich temporal cues within each segment. 159

Dual Vision Encoder: Our design leverages the 160

complementary strengths of an image encoder that 161

captures detailed spatial features and a video en- 162

coder that provides explicit temporal context. The 163

image encoder g, processes T frames, g(X) ∈ 164
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Figure 2: Overview of VideoGPT+. VideoGPT+ is a large multimodal model for video understanding. It uses a dual-encoder
design that combines the complementary strengths of an image encoder and a video encoder. The image encoder captures detailed
spatial features, while the video encoder captures temporal dynamics across multiple frames. To retain fine-grained temporal
details while ensuring efficiency, we use segment-wise frame sampling instead of random sparse sampling. Both sets of features
are then projected into a unified space through Vision-Language (V-L) projection layers and the resulting tokens are pooled and
concatenated before being processed by a Large Language Model to generate comprehensive responses to video-based questions.
Symbols indicates frozen components, indicates trainable components, and the indicates LoRA-training.

RT×Hg×Wg×Dg , producing local features that pro-165

vide frame-level context. Meanwhile, the video166

encoder h, operates on low-resolution video seg-167

ments Vk, yielding global features that provide168

segment-wise context, h(Vk) ∈ Rn×hh×wh×Dh .169

The primary goal of VideoGPT+ is to leverage170

the capabilities of a pre-trained LLM alongside171

visual modalities from both a pre-trained image en-172

coder and a pre-trained video encoder. Specifically,173

we utilize the pre-trained CLIP model, ViT-L/14174

(336 × 336) (Radford et al., 2021) as the image175

encoder, and InternVideo-v2 (224 × 224) (Wang176

et al., 2024) as the video encoder. These models177

are selected for their robust performance and their178

ability to complement each other in capturing both179

spatial and temporal information. Both encoders180

are pre-trained on large-scale datasets in a multi-181

modal setting using contrastive loss, facilitating182

their integration within our architecture.183

Visual Adapter: The output embeddings from the184

second last layer of both image and video encoders185

are passed through separate V-L projection layers,186

Wg and Wh, respectively. These Multi-Layer per-187

ceptrons (MLPs) project the visual features into the188

language space. The projection layers are trainable,189

while the visual encoders remain frozen, preserving190

the rich, pre-trained representations. The projected191

embeddings are reshaped back into their grid forms192

and subjected to a 2 × 2 adaptive token pooling,193

which operates on the spatial dimensions of the194

local and global features. This pooling reduces the195

token length by a factor of 4, thereby allowing to 196

fit in larger visual context within the same LLM 197

context window. The pooled embeddings from the 198

local features form Eimg ∈ RT×hg×wg×Dt , while 199

the pooled embeddings from the global features of 200

each segment form Evid ∈ Rn×hh×wh×Dt . 201

Large Language Model: We obtain the final rep- 202

resentation by concatenating the embeddings Eimg 203

with K segment-wise embeddings Evid, such that 204

we have detailed spatial representation across all 205

segments followed by their global temporal con- 206

text. We then concatenate the text embeddings 207

Etext ∈ RL×Dt of the user text query with the 208

visual embeddings, 209

E = [Eimg,Evid
1 , . . . ,Evid

K ,Etext]. (1) 210

This integration ensures that the LLM receives a 211

sequence of embeddings that include detailed spa- 212

tial features from the image encoder and compre- 213

hensive temporal context from the video encoder, 214

allowing for robust video understanding. The LLM 215

is fine-tuned using LoRA (Hu et al., 2021) in an 216

auto-regressive manner with a next-token predic- 217

tion loss. Refer to Fig. 2 for detailed illustration. 218

3 Dataset 219

Video-ChatGPT (Maaz et al., 2024) introduces 220

the VideoInstruct100K, which employs a semi- 221

automatic annotation pipeline to generate 100K 222

instruction-tuning QA pairs. To address the lim- 223

itations of this annotation process, we present 224
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Figure 3: Illustration of the semi-automatic annotation process in VCG+ 112K. The figure shows how we use ground-truth
video captions and frame-level descriptions to generate a detailed video description. GPT-4 is used to remove irrelevant and
conflicting noisy information in the frame-level descriptions to produce a high-quality video description. The semi-automatic
annotation process integrates spatial, temporal and event, and reasoning details into the brief information we start with. This
dense video description is then used to generate instruction-tuning QA pairs using GPT-3.5. We provide detailed prompts used in
both stages in Appendix F (see Figs. 8 and 9). We also compare the video description in the VideoInstruct100K (Maaz et al.,
2024) dataset to show the improvement in quality achieved by our new annotation pipeline.

VCG+ 112K dataset developed through an improved225

annotation pipeline. Our approach improves the226

accuracy and quality of instruction tuning pairs by227

improving keyframe extraction, leveraging SoTA228

LMMs for detailed descriptions, and refining the229

instruction generation strategy.230

Keyframe Extraction: VideoInstruct100K uses231

a fixed number of video keyframes, regardless of232

video length or dynamics, to generate frame-level233

dense captions. This often results in both insuf-234

ficient and redundant information. We address235

this by first extracting scenes from videos (Castel-236

lano, 2022), and then selecting one keyframe/scene.237

Consequently, we obtain detailed information for238

videos with rich content and reduce redundancy for239

videos with less content. It provides better visual240

context by extracting more stable keyframes, thus241

offering a more accurate video representation.242

Frame-Level Descriptions: After extracting243

keyframes, we use an image LMM, LLaVA-244

v1.6 (Liu et al., 2024a), to generate dense descrip-245

tions for each keyframe. These descriptions en-246

compass visual details, including spatial attributes,247

scene context, and object characteristics, which248

are often absent in concise ground truth captions.249

While ground truth captions are precise, they lack250

the granularity to capture intricate visual and spa-251

tial information. To address this, we augment them252

with detailed but noisy information from the frame-253

level descriptions, thus enhancing the quality and254

accuracy of the subsequent video descriptions.255

Detailed Video Descriptions: VideoInstruct100K 256

prompts GPT-3.5 directly with frame-level descrip- 257

tions and concise ground truth captions to generate 258

QA pairs, imposing a significant cognitive load on 259

the model to verify frame-level descriptions with 260

the ground truth. We improve this process by first 261

creating a coherent and detailed video description. 262

We prompt GPT-4 to integrate the detailed frame- 263

level descriptions with the ground truth captions by 264

comparing information and removing any inconsis- 265

tencies. The resulting detailed descriptions include 266

a timeline of events, actions, object attributes, and 267

scene settings, providing a thorough representation 268

of the video content. This structured input sim- 269

plifies the task for LLM, thereby enhancing the 270

generated QA pairs quality. 271

Improved Instruction Tuning Data: Using the 272

ground truth captions and detailed video descrip- 273

tions, we generate two types of QA pairs using 274

GPT-3.5: descriptive and concise. For descriptive 275

instruction pairs, we focus on three categories: (i) 276

dense captioning, which provides descriptions of 277

the video covering the entire sequence of events 278

and visual details; (ii) detailed temporal informa- 279

tion, which addresses the sequence of events and 280

their dependency to learn temporal relationships; 281

and (iii) generic question answering, which in- 282

volves in-depth questions about different actions, 283

their consequences, and other detailed aspects of 284

the video. For concise instruction pairs, we target 285

(i) spatial reasoning, focusing on understanding 286
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Figure 4: Illustration of VCGBench-Diverse video conversational benchmark. VCGBench-Diverse comprehensive
benchmark is designed to evaluate video LMMs across 18 broad video categories. With 4,354 QA pairs, VCGBench-Diverse tests
generalization on dense video captioning, spatial and temporal understanding, and complex reasoning. It covers five video-
capturing methods, ensuring diversity and robust generalization and six reasoning complexities assessing various analytical and
comprehension skills.

and describing spatial details such as scene set-287

tings, number of objects, attire, and locations; (ii)288

reasoning of events, covering the causal relation-289

ships between events; and (iii) short temporal ques-290

tions, addressing specific moments or sequences,291

such as what happened at the beginning or end.292

4 Proposed Benchmark293

Recognizing the limited diversity in existing294

video conversation benchmarks, we introduce295

VCGBench-Diverse to comprehensively evaluate296

generalization ability of video LMMs. While VCG-297

Bench (Maaz et al., 2024) provides an extensive298

evaluation protocol, it is limited to videos from the299

ActivityNet200 (Fabian Caba Heilbron and Niebles,300

2015) dataset. Our benchmark comprises a total of301

877 videos, 18 broad video categories and 4,354302

QA pairs, ensuring a robust evaluation framework.303

The detailed breakdown of VCGBench-Diverse is304

illustrated in Fig. 4, showcasing the distribution305

of videos across content domains, video capturing306

methods, and reasoning complexities.307

We collect videos from 18 distinct domains, in-308

cluding lifestyle, how-to, science and technology,309

news, travel, entertainment, film, sports, comedy,310

activism, gaming, education, surveillance, pets,311

cooking, music, automobile, and traffic These cate-312

gories encompass a broad spectrum of real-world313

scenarios, ensuring that models are evaluated on314

a diverse set of challenges. In addition to content315

diversity, VCGBench-Diverse includes a variety316

of video capture methods, which ensures a com-317

prehensive assessment of robustness to different318

filming techniques, camera movements, quality lev-319

els and lighting. The benchmark covers five video320

capture methods including static and controlled set- 321

tings, dynamic and unpredictable settings, fixed 322

camera perspectives, professional and high-quality 323

videos, and uncontrolled and variable quality. Fur- 324

ther, the benchmark evaluates models across six 325

reasoning complexities, including sequential under- 326

standing, complex action and predictive reasoning, 327

contextual and world knowledge reasoning, causal 328

reasoning, narrative and emotional reasoning, and 329

analytical and critical reasoning, which is crucial 330

for understanding diverse video content. 331

The videos in VCGBench-Diverse are sourced 332

from HDVILA (Xue et al., 2022), MPII (Andriluka 333

et al., 2014), YouCook2 (Zhou et al., 2018), UCF 334

Crime (Sultani et al., 2018), and STUD Traffic (Xu 335

et al., 2021). The video durations range from 29 336

sec to 471 sec, with an average of 217 sec. Human 337

annotators are tasked with writing detailed descrip- 338

tions based on their understanding of audio and 339

visual elements of the videos. This comprehensive 340

annotation process involves a set of annotators who 341

are provided with an initial set of ten videos each. 342

These annotations undergo a meta-review stage 343

where feedback is provided, and necessary correc- 344

tions are made to meet the required standards. Fol- 345

lowing this, annotators receive additional batches, 346

with random samples being selected for quality 347

checks by the meta-reviewer. The final human an- 348

notations are utilized to generate QA pairs using 349

GPT-3.5, based on prompts detailed in Fig. 10. 350

Following VCG-Bench (Maaz et al., 2024), the 351

evaluation is performed over five different aspects: 352

(i) correctness of information (ii) detail orienta- 353

tion (iii) contextual understanding (iv) temporal 354

understanding and (v) consistency. Additionally, 355

5



Method CI DO CU TU CO Avg.

Video-ChatGPT 2.40 2.52 2.62 1.98 2.37 2.38
BT-Adapter 2.68 2.69 3.27 2.34 2.46 2.69
VTimeLLM 2.78 3.10 3.40 2.49 2.47 2.85
Chat-UniVi 2.89 2.91 3.46 2.89 2.81 2.99
LLAMA-VID 2.96 3.00 3.53 2.46 2.51 2.89
Video-LLaVA 2.84 2.86 3.44 2.46 2.57 2.81
VideoChat2 3.02 2.88 3.51 2.66 2.81 2.98
IG-VLM 3.11 2.78 3.51 2.44 3.29 3.03
VideoGPT+ 3.27 3.18 3.74 2.83 3.39 3.28

Table 1: VideoGPT+ on VCGBench (Maaz et al., 2024).
All models use 16 frames except Video-ChatGPT and Chat-
UniVi which use 100 and 64 frames respectively.

VCGBench-Diverse provides a performance break-356

down across three key aspects: (i) dense video357

captioning, which assesses the ability to generate358

detailed and accurate video descriptions, (ii) spa-359

tial understanding, which evaluates the capability360

to understand and describe the spatial relationships,361

and (iii) reasoning, which tests the adeptness in362

inferring and explaining causal relationships and363

actions within the video.364

5 Experiments365

We perform quantitative evaluation of366

VideoGPT+ on five standard benchmarks: i) VCG-367

Bench (Maaz et al., 2024), ii) VCGBench-Diverse,368

iii) MVBench (Li et al., 2024), iv) Video-MME (Fu369

et al., 2024) and v) Zero-shot QA.370

Implementation Details: We use CLIP-L/14 (Rad-371

ford et al., 2021) as our image encoder,372

InternVideo-v2 (Wang et al., 2024) stage-2 1B373

model as our video encoder in conjunction with374

Phi-3-Mini-3.8B (Abdin et al., 2024) LLM with375

4K context in our experiments. The image encoder376

operates at 336× 336, while the video encoder op-377

erates at 224×224 resolution. Our training consists378

of two pretraining stages and one instruction-tuning379

stage. In the pretraining stage, we train with only380

the image encoder and only the video encoder on381

the CC-595K dataset (Liu et al., 2023a), with only382

the visual adapters being learned while the rest of383

the model is kept frozen. During the instruction-384

tuning stage, we use LoRA (Hu et al., 2022) with385

r = 64 for LLM, while visual adapters are fully386

trained and vision encoders are kept frozen. The387

LR is set to 1e−3 during pretraining and 2e−4 dur-388

ing instruction tuning. Please refer to Appendix. B389

for additional implementation details.390

VCGBench: The benchmark consists of around391

3000 QA pairs generated from 500 human-392

annotated videos. It evaluates responses based on393

five aspects: i) CI (Correctness of Information) -394

accuracy of the response with video content, ii) 395

DO (Detail Orientation) - depth of the response, iii) 396

CU (Contextual Understanding) - alignment with 397

video context, iv) TU (Temporal Understanding) 398

- accuracy in identifying temporal sequences, and 399

v) CO (Consistency) - response consistency to sim- 400

ilar questions. Table 1 compares our model with 401

previous SoTA approaches. VideoGPT+ achieves 402

an average score of 3.28 surpassing previous best 403

method by a margin of 0.25 (5%). 404

VCGBench-Diverse: We provide a quantitative 405

comparison of VideoGPT+ against previous SoTA 406

approaches on VCGBench-Diverse, which con- 407

tains 4,354 QA pairs from 877 videos. Following 408

(Maaz et al., 2024), we evaluate the Correctness 409

of Information (CI), Detail Orientation (DO), Con- 410

textual Understanding (CU), Temporal Understand- 411

ing (TU), and Consistency (CO). Additionally, we 412

provide results for dense captioning, spatial under- 413

standing, and visual reasoning abilities. The results 414

are presented in Table 2. VideoGPT+ achieves an 415

average score of 2.47 surpassing all previous meth- 416

ods. Further, we achieves a score of 1.38, 2.80, 417

and 3.63 on dense captioning, spatial understand- 418

ing, and visual reasoning, respectively. Notably, 419

VideoGPT+ achieves improvements in spatial and 420

temporal understanding, surpassing previous best 421

models by 0.37 (7.4%) and 0.23 (4.6%), respec- 422

tively. This is attributed to the dual encoder archi- 423

tecture, where the high-resolution image encoder 424

enhances spatial understanding and the video en- 425

coder improves temporal accuracy. 426

To further validate the alignment of GPT scores 427

with human preferences, we conduct a study in- 428

volving human annotators. Four annotators given 429

the same GPT scoring guidelines, each reviewed 430

50 questions from a pool of 200 randomly se- 431

lected questions. They scored responses from three 432

models: VideoGPT+, VideoChat2, and Chat-UniV. 433

Their respective scores, 2.0, 1.9, and 2.3, closely 434

matched the GPT averages of 2.3, 2.2, and 2.5 for 435

each model. This comparison confirms that GPT 436

scores align well with human preferences, support- 437

ing the reliability of our evaluation method. 438

Table 2 also shows the results of closed-source 439

models in gray for reference. Note that the compar- 440

ison between open-source and significantly larger, 441

closed-source models is not fair due to the vast dif- 442

ferences in scale, parameters, and training data. We 443

compare VideoGPT+ (3.8B-scale) with similarly 444

scaled open-source models (7B-scale), where our 445

model demonstrates superior performance. 446
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Method CI DO CU TU CO Avg. Caption Spatial Reasoning

GPT4o-mini-2024-07-18 3.06 3.05 3.43 2.67 3.47 3.14 1.82 3.16 4.19
Gemini-Pro-1.5-Flash-001 3.15 3.24 3.40 2.68 3.32 3.16 2.30 3.48 3.82

Video-ChatGPT (ACL 2024) (Maaz et al., 2024) 2.07 2.42 2.46 1.39 2.06 2.08 0.89 2.25 3.60
BT-Adapter (CVPR 2024) (Liu et al., 2024b) 2.20 2.62 2.59 1.29 2.27 2.19 1.03 2.35 3.62
VTimeLLM (CVPR 2024) (Huang et al., 2024a) 2.16 2.41 2.48 1.46 2.35 2.17 1.13 2.29 3.45
Chat-UniVi (CVPR 2024) (Jin et al., 2024) 2.29 2.56 2.66 1.56 2.36 2.29 1.33 2.36 3.59
VideoChat2 (CVPR 2024) (Li et al., 2024) 2.13 2.42 2.51 1.66 2.27 2.20 1.26 2.43 3.13
VideoGPT+ (ours) 2.46 2.73 2.81 1.78 2.59 2.47 1.38 2.80 3.63

Table 2: Performance of VideoGPT+ on VCGBench-Diverse. All open-source models use 16 frames except Video-
ChatGPT and Chat-UniVi, which use 100 and 64 frames, respectively. The good performance of our VideoGPT+ model on
VCGBench-Diverse shows its generalization to diverse scenarios.

Model Avg.

Random 27.3
GPT-4V (OpenAI, 2023) 43.5

Otter-V (Li et al., 2023a) 26.8
mPLUG-Owl-V (Ye et al., 2023) 29.7
Video-ChatGPT (Maaz et al., 2024) 32.7
VideoLLaMA (Zhang et al., 2023) 34.1
VideoChat (Li et al., 2023c) 35.5
VideoChat2 (Li et al., 2024) 51.1
VideoGPT+ (ours) 58.7

Table 3:
MVBench.
Comparison
of VideoGPT+
with previous
methods. See
Tab. 6 in App. C
for complete
results on 20
sub-categories.

MVBench: We evaluate VideoGPT+ on447

MVBench (Li et al., 2024), which provides 4,000448

QA pairs from 11 video datasets covering a broad449

spectrum of scenes, ranging from first-person to450

third-person and from indoor to outdoor environ-451

ments. The tasks are categorized into 20 fine-452

grained temporal understanding tasks. The results453

presented in Table 3 compare VideoGPT+ with pre-454

vious methods, indicating an overall improvement455

of 7.6% compared to the previous best, VideoChat2.456

Please refer to Table 6 in Appendix C for complete457

results on 20 categories.458

Video-MME: We evaluate the performance of459

our model on Video-MME, a more comprehen-460

sive benchmark that assesses video understanding461

across six domains and 30 subfields through 2700462

multiple-choice-qa pairs from 900 videos. It cov-463

ers a diverse range of video durations, from short,464

medium, and long videos (11 sec to 1 hour). Table 4465

shows that our model achieves better performance466

compared to prior SoTA approaches. Specifically,467

our model performs well across the short, medium,468

and long video categories, demonstrating strong469

temporal understanding and effectively capturing470

long-range dependencies.471

Zero-shot Question-Answering: We provide a472

quantitative comparison of our method on the zero-473

shot QA task across four open-ended QA datasets,474

including MSVD-QA (Xu et al., 2017), MSRVTT-475

QA (Xu et al., 2017), TGIF-QA (Jang et al., 2019),476

and ActivityNet-QA (Fabian Caba Heilbron and477

Model Short Med Long Avg

Video-LLaVA 45.3 38.0 36.2 39.9
Qwen-VL-Chat 46.9 38.7 37.8 41.1
ChatUniVi 45.7 40.3 35.8 40.6
VideoChat2 48.3 37.0 33.2 39.5
VideoGPT+ 56.4 47.2 42.5 48.7

Table 4: Performance comparison of different models on
short, medium, and long video segments in Video-MME.

Niebles, 2015). Results presented in Table 5 show 478

VideoGPT+ achieves superior performance com- 479

pared to previous methods, indicating its ability 480

to adapt effectively to unseen videos and generate 481

accurate contextually relevant responses in chal- 482

lenging settings. 483

Vision Encoder Type: We ablate our dual visual 484

encoder design in VideoGPT+ . We ablate three 485

settings: using only the image encoder, only the 486

video encoder, and both encoders. The results 487

shows that our dual encoder design effectively com- 488

bines both spatial and temporal information and 489

achieves the highest score on both VCGBench and 490

VCGBench-Diverse. 491

Note that the image encoder operates at a higher 492

resolution of 336×336, while the video encoder 493

operates at 224×224. The image encoder captures 494

better spatial information and fine-grained details, 495

while the video encoder contributes to understand- 496

ing motion and action sequences. We further verify 497

this on MVBench action categories including ac- 498

tion sequence (+3.6%), action antonym (+1.5%), 499

fine-grained action (+1.5%) and unexpected action 500

(+4.0%), where video-only model performs better 501

than the image-only model. 502

For completeness, we use a best response se- 503

lection method with GPT4-as-a-judge to evaluate 504

different model designs. Responses from three 505

model variants: image encoder, video encoder 506

and our dual encoder design are presented anony- 507

mously to GPT4 alongside the ground truth. The 508

model selects the best response among the three 509

and excludes cases with no clear winner. For 510
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Model MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA

Accuracy Score Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM (Yang et al., 2022) 32.2 – 16.8 – 41.0 – 24.7 –
VideoChat (Li et al., 2023c) 56.3 2.8 45.0 2.5 34.4 2.3 26.5 2.2
LLaMA Adapter (Zhang et al., 2024a) 54.9 3.1 43.8 2.7 - - 34.2 2.7
Video-LLaMA (Zhang et al., 2023) 51.6 2.5 29.6 1.8 - - 12.4 1.1
Video-ChatGPT (Maaz et al., 2024) 64.9 3.3 49.3 2.8 51.4 3.0 35.2 2.8
ChatUniVi (Jin et al., 2024) 65.0 3.6 54.6 3.1 60.3 3.4 45.8 3.2
LLaMA-VID (Li et al., 2023d) 70.0 3.7 58.9 3.3 – – 47.5 3.3
Video-LLaVA (Lin et al., 2023) 70.7 3.9 59.2 3.5 70.0 4.0 45.3 3.3
VideChat2 (Li et al., 2024) 70.0 3.9 54.1 3.3 – – 49.1 3.3
VideoGPT+ (ours) 72.4 3.9 60.6 3.6 74.6 4.1 50.6 3.6

Table 5: Performance of VideoGPT+ on Zero-shot QA. All the models are evaluated in zero-shot setting where none of the
videos were included in the training set. VideoGPT+ achieves good results on all datasets.

VCGBench (VCG), 732 out of 2000 samples were511

scored, where the dual encoder design was pre-512

ferred in 51% of cases, compared to 22% for the513

image encoder and 27% for the video encoder. For514

VCGBench-Diverse (VCG-Div), 792 out of 4354515

samples were scored, with the dual encoder pre-516

ferred in 42% of cases, compared to 28% for the517

image encoder and 30% for the video encoder, in-518

dicating that our dual encoding design as a clear519

winner among other uni-encoder alternatives.520

Vision Temporal Spatial GPT4 as Judge
Encoder VCG VCG-Div Score Score VCG VCG-Div

Image-only 3.17 2.36 1.61 2.70 22 28
Video-only 3.20 2.38 1.69 2.64 27 30
Dual (ours) 3.28 2.47 1.78 2.80 51 42

Frame-level and Video-level Feature Fusion:521

Though our design uses some known components,522

their meticulous combination to develop an effi-523

cient pipeline for video understanding in MLLMs524

has not been demonstrated. We ablate our approach525

with two alternatives: i) Without segment-wise526

sampling, resulting in less effective temporal in-527

formation captured by the video encoder impacting528

performance; ii) Without adaptive token pooling,529

which limits the model’s ability to utilize the LLM530

context length effectively, restricting the model to531

fewer frames. The performance on VCGBench532

and VCGBench-Diverse benchmarks indicates the533

effectiveness of our proposed fusion strategy.

Setting VCG VCG-Div

w/o Segment-wise Sampling 3.21 2.40
w/o Adaptive Pooling 3.08 2.31
Video-GPT+ (ours) 3.28 2.47

534
VCG+ 112K: To demonstrate the effectiveness of535

VCG+ 112K, we train VideoGPT+ with and with-536

out it and report its impact on the performance537

across multiple benchmarks, including VCGBench,538

MVBench, VCGBench-Diverse and VideoMME.539

On VCGBench, our data improves performance,540

particularly in detail orientation (DO) and tem-541

poral understanding (TU). The performance on 542

MVBench shows minimal gains when incorpo- 543

rating the VCG+112k data. This is attributed to 544

the distribution differences, as MVBench predom- 545

inantly includes short videos averaging 5-40 sec- 546

onds, whereas the VCG+112k dataset comprises 547

videos from ActivityNet with an average dura- 548

tion of 3 minutes. However VCGBench-Diverse 549

and VideoMME, do not include data from Ac- 550

tivityNet, ensuring a fair evaluation. The results 551

shows improvement on both VCGBench-Diverse 552

and VideoMME. This improvement can be at- 553

tributed to our novel semi-automatic annotation 554

pipeline and the enhanced instruction tuning data, 555

which focuses on generating both detailed and con- 556

cise instruction pairs. Refer to Fig. 3 for qualitative 557

visualization of the data.

VCG+ 112K VCG MVBench VCG-Div VideoMME

✓ 3.17 58.7 2.4 46.2
× 3.28 58.8 2.5 48.7

558

6 Conclusion 559

In this work, we introduce VideoGPT+, a novel 560

video conversation model that leverages the com- 561

plementary benefits of image and video en- 562

coders to achieve enhanced video understand- 563

ing. VideoGPT+ demonstrates better performance 564

across multiple video benchmarks, owing to its 565

dual-encoder design, lightweight visual adapters 566

that map image/video features to a common space 567

and a segment-wise sampling strategy that retains 568

fine-grained temporal information. We also de- 569

velop VCG+ 112K, a 112K video-instruction set us- 570

ing a resource-efficient semi-automated annotation 571

pipeline that delivers further gains. Lastly, we pro- 572

pose VCGBench-Diverse, a diverse benchmark 573

covering 18 video categories, to comprehensively 574

evaluate video LMMs. 575
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7 Limitations576

Despite reported improvements, video LMMs still577

find challenges in precise action localization, un-578

derstanding very long videos, and navigating long579

paths; areas where major improvements can un-580

lock new applications. Further, the use of closed-581

source LLMs (e.g., GPT-3.5 and GPT-4) for open-582

ended evaluation of video conversations limits re-583

producibility. Although we have designed our eval-584

uation prompts to be model-agnostic, switching to585

a different LLM for evaluation (e.g., in case a pro-586

prietary model is discontinued) may lead to minor587

variations in the results. Therefore, designing a588

comprehensive and reliable evaluation metric for589

open-ended video conversation evaluation is highly590

desirable to ensure consistency and reproducibility591

in future research.592

References593

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,594
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,595
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-596
rat Behl, and 1 others. 2024. Phi-3 technical report:597
A highly capable language model locally on your598
phone. arXiv preprint arXiv:2404.14219.599

Meta AI. 2024. Llama 3. https://llama.meta.com/600
llama3.601

Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler,602
and Bernt Schiele. 2014. 2d human pose estimation:603
New benchmark and state of the art analysis. In Pro-604
ceedings of the IEEE/CVF Conference on Computer605
Vision and Pattern Recognition.606

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zis-607
serman. 2021. Frozen in time: A joint video and608
image encoder for end-to-end retrieval. In Proceed-609
ings of the IEEE/CVF International Conference on610
Computer Vision.611

Brandon Castellano. 2022. Pyscenedetect: Auto-612
mated video scene detection. https://github.613
com/Breakthrough/PySceneDetect.614

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,615
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan616
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez,617
Ion Stoica, and Eric P. Xing. 2023. Vicuna:618
An open-source chatbot impressing gpt-4 with619
90%* chatgpt quality. https://lmsys.org/blog/620
2023-03-30-vicuna.621

Xiangxiang Chu, Limeng Qiao, Xinyang Lin, Shuang622
Xu, Yang Yang, Yiming Hu, Fei Wei, Xinyu Zhang,623
Bo Zhang, Xiaolin Wei, and 1 others. 2023. Mo-624
bilevlm: A fast, reproducible and strong vision lan-625
guage assistant for mobile devices. arXiv preprint626
arXiv:2312.16886.627

Xiangxiang Chu, Limeng Qiao, Xinyu Zhang, Shuang 628
Xu, Fei Wei, Yang Yang, Xiaofei Sun, Yiming Hu, 629
Xinyang Lin, Bo Zhang, and 1 others. 2024. Mo- 630
bilevlm v2: Faster and stronger baseline for vision 631
language model. arXiv preprint arXiv:2402.03766. 632

Bernard Ghanem Fabian Caba Heilbron, Victor Escor- 633
cia and Juan Carlos Niebles. 2015. Activitynet: A 634
large-scale video benchmark for human activity un- 635
derstanding. In Proceedings of the IEEE/CVF Con- 636
ference on Computer Vision and Pattern Recognition. 637

Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai 638
Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou, Yun- 639
hang Shen, Mengdan Zhang, and 1 others. 2024. 640
Video-mme: The first-ever comprehensive evaluation 641
benchmark of multi-modal llms in video analysis. 642
arXiv preprint arXiv:2405.21075. 643

Raghav Goyal, Samira Ebrahimi Kahou, Vincent 644
Michalski, Joanna Materzynska, Susanne Westphal, 645
Heuna Kim, Valentin Haenel, Ingo Fruend, Peter 646
Yianilos, Moritz Mueller-Freitag, and 1 others. 2017. 647
The" something something" video database for learn- 648
ing and evaluating visual common sense. In Proceed- 649
ings of the IEEE/CVF International Conference on 650
Computer Vision. 651

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 652
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 653
and Weizhu Chen. 2021. Lora: Low-rank adap- 654
tation of large language models. arXiv preprint 655
arXiv:2106.09685. 656

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 657
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 658
Weizhu Chen. 2022. LoRA: Low-rank adaptation of 659
large language models. In International Conference 660
on Machine Learning. 661

Bin Huang, Xin Wang, Hong Chen, Zihan Song, and 662
Wenwu Zhu. 2024a. Vtimellm: Empower llm 663
to grasp video moments. In Proceedings of the 664
IEEE/CVF Conference on Computer Vision and Pat- 665
tern Recognition. 666

De-An Huang, Shijia Liao, Subhashree Radhakrish- 667
nan, Hongxu Yin, Pavlo Molchanov, Zhiding Yu, 668
and Jan Kautz. 2024b. Lita: Language instructed 669
temporal-localization assistant. arXiv preprint 670
arXiv:2403.19046. 671

Yunseok Jang, Yale Song, Chris Dongjoo Kim, Young- 672
jae Yu, Youngjin Kim, and Gunhee Kim. 2019. Video 673
Question Answering with Spatio-Temporal Reason- 674
ing. International Journal of Computer Vision. 675

Peng Jin, Ryuichi Takanobu, Caiwan Zhang, Xiaochun 676
Cao, and Li Yuan. 2024. Chat-univi: Unified visual 677
representation empowers large language models with 678
image and video understanding. In Proceedings of 679
the IEEE/CVF Conference on Computer Vision and 680
Pattern Recognition. 681

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, 682
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio 683

9

https://llama.meta.com/llama3
https://llama.meta.com/llama3
https://llama.meta.com/llama3
https://github.com/Breakthrough/PySceneDetect
https://github.com/Breakthrough/PySceneDetect
https://github.com/Breakthrough/PySceneDetect
https://lmsys.org/blog/2023-03-30-vicuna
https://lmsys.org/blog/2023-03-30-vicuna
https://lmsys.org/blog/2023-03-30-vicuna


Viola, Tim Green, Trevor Back, Paul Natsev, and684
1 others. 2017. The kinetics human action video685
dataset. arXiv preprint arXiv:1705.06950.686

Wonkyun Kim, Changin Choi, Wonseok Lee, and Won-687
jong Rhee. 2024. An image grid can be worth a688
video: Zero-shot video question answering using a689
vlm. arXiv preprint arXiv:2403.18406.690

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,691
Jingkang Yang, and Ziwei Liu. 2023a. Otter: A692
multi-modal model with in-context instruction tuning.693
arXiv preprint arXiv:2305.03726.694

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.695
2023b. BLIP-2: bootstrapping language-image pre-696
training with frozen image encoders and large lan-697
guage models. In International Conference on Ma-698
chine Learning.699

Kunchang Li, Yinan He, Yi Wang, Yizhuo Li, Wen-700
hai Wang, Ping Luo, Yali Wang, Limin Wang, and701
Yu Qiao. 2023c. Videochat: Chat-centric video un-702
derstanding. arXiv preprint arXiv:2305.06355.703

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li,704
Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,705
Ping Luo, and 1 others. 2024. Mvbench: A compre-706
hensive multi-modal video understanding benchmark.707
In Proceedings of the IEEE/CVF Conference on Com-708
puter Vision and Pattern Recognition.709

Yanwei Li, Chengyao Wang, and Jiaya Jia. 2023d.710
Llama-vid: An image is worth 2 tokens in large lan-711
guage models. arXiv preprint arXiv:2311.17043.712

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and713
Li Yuan. 2023. Video-llava: Learning united visual714
representation by alignment before projection. arXiv715
preprint arXiv:2311.10122.716

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae717
Lee. 2023a. Improved baselines with visual instruc-718
tion tuning. arXiv preprint arXiv:2310.03744.719

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae720
Lee. 2023b. Improved baselines with visual instruc-721
tion tuning. arXiv:2310.03744.722

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan723
Zhang, Sheng Shen, and Yong Jae Lee. 2024a. Llava-724
next: Improved reasoning, ocr, and world knowledge.725

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae726
Lee. 2023c. Visual instruction tuning. In Advances727
in Neural Information Processing Systems.728

Ruyang Liu, Chen Li, Yixiao Ge, Ying Shan, Thomas H729
Li, and Ge Li. 2024b. One for all: Video conversa-730
tion is feasible without video instruction tuning. In731
Proceedings of the IEEE/CVF Conference on Com-732
puter Vision and Pattern Recognition.733

Ruyang Liu, Chen Li, Haoran Tang, Yixiao Ge, Ying734
Shan, and Ge Li. 2024c. St-llm: Large language mod-735
els are effective temporal learners. arXiv preprint736
arXiv:2404.00308.737

Muhammad Maaz, Hanoona Rasheed, Salman Khan, 738
and Fahad Shahbaz Khan. 2024. Video-chatgpt: To- 739
wards detailed video understanding via large vision 740
and language models. In Association for Computa- 741
tional Linguistics. 742

Shehan Munasinghe, Rusiru Thushara, Muhammad 743
Maaz, Hanoona Abdul Rasheed, Salman Khan, 744
Mubarak Shah, and Fahad Khan. 2023. Pg-video- 745
llava: Pixel grounding large video-language models. 746
ArXiv 2311.13435. 747

OpenAI. 2023. Gpt-4v(ision) system card. 748
https://api.semanticscholar.org/CorpusID: 749
263218031. 750

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, 751
Shaohan Huang, Shuming Ma, and Furu Wei. 2023. 752
Kosmos-2: Grounding multimodal large language 753
models to the world. ArXiv, abs/2306. 754

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 755
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas- 756
try, Amanda Askell, Pamela Mishkin, Jack Clark, and 757
1 others. 2021. Learning transferable visual models 758
from natural language supervision. In International 759
Conference on Machine Learning. 760

Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Ab- 761
delrahman Shaker, Salman Khan, Hisham Cholakkal, 762
Rao M. Anwer, Eric Xing, Ming-Hsuan Yang, and 763
Fahad S. Khan. 2024. Glamm: Pixel grounding large 764
multimodal model. The IEEE/CVF Conference on 765
Computer Vision and Pattern Recognition. 766

Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng 767
Zhang, Haoyang Zhou, Feiyang Wu, Xun Guo, Tian 768
Ye, Yan Lu, Jenq-Neng Hwang, and 1 others. 2024. 769
Moviechat: From dense token to sparse memory for 770
long video understanding. In Proceedings of the 771
IEEE/CVF Conference on Computer Vision and Pat- 772
tern Recognition. 773

Waqas Sultani, Chen Chen, and Mubarak Shah. 2018. 774
Real-world anomaly detection in surveillance videos. 775
In Proceedings of the IEEE conference on computer 776
vision and pattern recognition, pages 6479–6488. 777

Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan 778
He, Guo Chen, Baoqi Pei, Rongkun Zheng, Jilan Xu, 779
Zun Wang, and 1 others. 2024. Internvideo2: Scal- 780
ing video foundation models for multimodal video 781
understanding. arXiv preprint arXiv:2403.15377. 782

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng 783
Chua. 2021. Next-qa: Next phase of question- 784
answering to explaining temporal actions. In Pro- 785
ceedings of the IEEE/CVF conference on computer 786
vision and pattern recognition, pages 9777–9786. 787

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang 788
Zhang, Xiangnan He, and Yueting Zhuang. 2017. 789
Video question answering via gradually refined atten- 790
tion over appearance and motion. In ACM Interna- 791
tional Conference on Multimedia. 792

10

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://api.semanticscholar.org/CorpusID:263218031
https://api.semanticscholar.org/CorpusID:263218031
https://api.semanticscholar.org/CorpusID:263218031


Li Xu, He Huang, and Jun Liu. 2021. Sutd-trafficqa: A793
question answering benchmark and an efficient net-794
work for video reasoning over traffic events. In Pro-795
ceedings of the IEEE/CVF Conference on Computer796
Vision and Pattern Recognition, pages 9878–9888.797

Hongwei Xue, Tiankai Hang, Yanhong Zeng, Yuchong798
Sun, Bei Liu, Huan Yang, Jianlong Fu, and Bain-799
ing Guo. 2022. Advancing high-resolution video-800
language representation with large-scale video tran-801
scriptions. In Proceedings of the IEEE/CVF Confer-802
ence on Computer Vision and Pattern Recognition.803

Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev,804
and Cordelia Schmid. 2022. Zero-shot video ques-805
tion answering via frozen bidirectional language mod-806
els. In Advances in Neural Information Processing807
Systems.808

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye,809
Ming Yan, Yiyang Zhou, Junyang Wang, Anwen810
Hu, Pengcheng Shi, Yaya Shi, and 1 others. 2023.811
mplug-owl: Modularization empowers large lan-812
guage models with multimodality. arXiv preprint813
arXiv:2304.14178.814

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli,815
Jiajun Wu, Antonio Torralba, and Joshua B Tenen-816
baum. 2019. Clevrer: Collision events for video817
representation and reasoning. arXiv preprint818
arXiv:1910.01442.819

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du,820
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu821
Chang, and Yinfei Yang. 2023. Ferret: Refer and822
ground anything anywhere at any granularity. arXiv823
preprint arXiv:2310.07704.824

Hang Zhang, Xin Li, and Lidong Bing. 2023. Video-825
llama: An instruction-tuned audio-visual language826
model for video understanding. arXiv preprint827
arXiv:2306.02858.828

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Ao-829
jun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hong-830
sheng Li, and Yu Qiao. 2024a. Llama-adapter: Effi-831
cient fine-tuning of language models with zero-init832
attention. In International Conference on Learning833
Representations.834

Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee,835
Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and836
Chunyuan Li. 2024b. Llava-next: A strong zero-shot837
video understanding model.838

Luowei Zhou, Chenliang Xu, and Jason Corso. 2018.839
Towards automatic learning of procedures from web840
instructional videos. In AAAI.841

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and842
Mohamed Elhoseiny. 2024. Minigpt-4: Enhancing843
vision-language understanding with advanced large844
language models. In International Conference on845
Learning Representations.846

Supplemental Material 847

We provide supplementary material for a deeper un- 848

derstanding and more analysis related to the main 849

paper, arranged as follows: 850

1. Related Works (Appendix A) 851

2. Additional Implementation Details (Ap- 852

pendix B) 853

3. Complete MVBench Results (Appendix C) 854

4. Qualitative results (Appendix D) 855

5. Additional ablations (Appendix E) 856

6. GPT Prompts (Appendix F) 857

7. Ethics and societal impact (Appendix G) 858

A Related Works 859

Building on advances in language models, LLMs 860

offer a flexible interface for various multimodal 861

applications. Early efforts in image-based conver- 862

sation models such as BLIP-2 (Li et al., 2023b), 863

MiniGPT-4 (Zhu et al., 2024) and LLaVA (Liu 864

et al., 2023c,b) project image features into the lan- 865

guage space through a learnable module and per- 866

form instruction tuning for visual conversations 867

capabilities. Other efforts extend these models to 868

visual grounding tasks (Peng et al., 2023; Rasheed 869

et al., 2024; You et al., 2023), exploring the poten- 870

tial of LLMs in complex vision tasks. 871

Video Conversation Models: Initial works like 872

Video-ChatGPT (Maaz et al., 2024) and Video- 873

LLaMA (Zhang et al., 2023) extend image-based 874

models to the video domain by introducing com- 875

ponents to encode temporal features, where frame- 876

level visual features are fed to the LLM. However, 877

this is computationally expensive and quickly fills 878

its context window. To address this issue, Video- 879

ChatGPT (Maaz et al., 2024) employs spatial and 880

temporal pooling. LLaMA-Vid (Li et al., 2023d) 881

proposes representing a single image with two to- 882

kens, context and content. IG-VLM (Kim et al., 883

2024) treats a video as a grid of images, while 884

LITA (Huang et al., 2024b) employs slow-fast to- 885

ken pooling to reduce the number of visual fea- 886

tures. Chat-UniVi (Jin et al., 2024) uses cluster- 887

ing in both spatial and temporal dimensions to 888

merge tokens, and VideoChat (Li et al., 2023c) 889

uses Q-Former (Li et al., 2023b) to learn a fixed 890

number of queries by cross-attending to the visual 891

features. MobileVLM (Chu et al., 2023, 2024) uti- 892

lize a lightweight CNN to reduce the spatial dimen- 893

sions. Other notable methods include (Liu et al., 894

2024b; Lin et al., 2023; Munasinghe et al., 2023; 895

Song et al., 2024; Huang et al., 2024a). 896
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Alternatively, methods such as VideoChat2 (Li897

et al., 2024) use pretrained video encoders. Al-898

though video encoders provide temporal context,899

they are limited by computational constraints, op-900

erating with limited frames at lower resolutions,901

restricting temporal context and spatial understand-902

ing. Our VideoGPT+ model addresses these issues903

by using segment-wise sampling and effectively904

combining image and video encoders to capture905

rich spatial and temporal details (see Fig. 2).906

Video Instruction Tuning Datasets:907

VideoChat (Li et al., 2023c) builds a video-908

instruction tuning dataset consisting of 7K909

instructions using videos from WebVid-10M (Bain910

et al., 2021). Video-ChatGPT (Maaz et al., 2024)911

introduces a semi-automatic annotation pipeline912

to generate VideoInstruct100K using videos from913

ActivityNet (Fabian Caba Heilbron and Niebles,914

2015). VideoChat2 (Li et al., 2024) combines915

multiple existing image and video datasets to916

develop a 1.9M joint image-video instruction917

tuning dataset. In our experiments, we use918

VideoInstruct100K and a subset of the dataset919

from VideoChat2. Additionally, addressing the920

limitations of the VideoInstruct100K dataset (Maaz921

et al., 2024), we develop VCG+ 112K through a922

novel semi-automatic annotation pipeline, which923

provides dense video captions along with 112K924

QA pairs targeting reasoning, spatial and temporal925

understanding, which further improves model’s926

understanding of video content (see Fig. 3).927

Video Conversation Benchmarks: Video-928

ChatGPT (Maaz et al., 2024) introduces VCG-929

Bench and zero-shot QA benchmarks, where930

VCGBench includes 500 videos with 3000 QA931

pairs, evaluated using GPT-3.5 across various met-932

rics. Despite its comprehensive evaluation, it933

only contains videos from the ActivityNet dataset.934

The Zero-shot evaluation covers MSVD-QA (Xu935

et al., 2017), MSR-VTT-QA (Xu et al., 2017),936

TGIF-QA (Jang et al., 2019), and ActivityNet-937

QA (Fabian Caba Heilbron and Niebles, 2015).938

MVBench (Li et al., 2024) consists of 4K QA pairs939

evaluating 20 temporal tasks, though it mostly in-940

cludes short videos averaging 5-40 seconds. An-941

other recent benchmark, Video-MME (Fu et al.,942

2024), addresses the issue of diversity by incor-943

porating a wide range of videos. However, both944

MVBench and Video-MME are limited to MCQs,945

which, while straightforward for evaluation, re-946

strict the range of questions that can be asked947

and reduce the depth of understanding the model948

can demonstrate. By confining to predefined 949

choices, MCQs introduce bias and fail to cap- 950

ture the model’s true understanding. Considering 951

the limitation of existing benchmarks, which of- 952

ten lack focus on generalization and diversity, we 953

propose VCGBench-Diverse, featuring 4,354 QA 954

pairs from 877 videos across 18 domains, evaluated 955

using open-ended questions (see Fig. 4). 956

B Additional Implementation Details 957

In this section, we provide additional implementa- 958

tion details regarding our training setup and com- 959

pute requirements. For experiments on VCG- 960

Bench, VCGBench-Diverse and Zero-shot QA, 961

we sample 16 frames from videos, while for 962

MVBench which consists of relatively shorter 963

videos, we sample 8 frames. We keep the 964

same sampling strategy during inference. For 965

VCGBench and VCGBench-Diverse, the model 966

is trained on VideoInstruct100K (Maaz et al., 967

2024), VCG+ 112K , conversation and caption 968

data from VideoChat (Li et al., 2023c) and VQA 969

dataset from WebVid (Bain et al., 2021), that 970

combines to approximately 260K single turn con- 971

versations. For MVBench, the model is trained 972

on Kinetics-710 (Kay et al., 2017), Something- 973

Something-v2 (Goyal et al., 2017), conversations 974

from VideoChat (Li et al., 2023c), CLEVRER (Yi 975

et al., 2019), VQA dataset from WebVid (Bain 976

et al., 2021) and NExT-QA (Xiao et al., 2021) 977

datasets, which combines to approximately 330K 978

single turn conversations. We run all trainings for 979

one epoch. Following previous approaches (Maaz 980

et al., 2024; Jin et al., 2024; Liu et al., 2024c), 981

we employ GPT-3.5-Turbo-0613 for VCGBench 982

and Zero-shot QA evaluation. However, for our 983

proposed VCGBench-Diverse, we employ the lat- 984

est GPT-3.5-Turbo-0125 for evaluation for better 985

reproducibility purposes. 986

All of our experiments are conducted using 987

8xA100 40GB GPUs. The training for VCG- 988

Bench experiments takes around 12 hours to com- 989

plete, while the training for MVBench experi- 990

ments finishes in around 10 hours. We use the 991

model trained for the VCGBench task to evalu- 992

ate on VCGBench-Diverse and zero-shot question- 993

answering benchmarks. All of our training and 994

evaluation codes, pretrained models and dataset 995

will be publicly released. 996
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Model AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg.

Random 25.0 25.0 33.3 25.0 25.0 33.3 25.0 33.3 25.0 25.0 25.0 33.3 25.0 33.3 33.3 25.0 33.3 25.0 20.0 30.9 27.3
GPT-4V (OpenAI, 2023) 55.5 63.5 72.0 46.5 73.5 18.5 59.0 29.5 12.0 40.5 83.5 39.0 12.0 22.5 45.0 47.5 52.0 31.0 59.0 11.0 43.5

Otter-V (Li et al., 2023a) 23.0 23.0 27.5 27.0 29.5 53.0 28.0 33.0 24.5 23.5 27.5 26.0 28.5 18.0 38.5 22.0 22.0 23.5 19.0 19.5 26.8
mPLUG-Owl-V (Ye et al., 2023) 22.0 28.0 34.0 29.0 29.0 40.5 27.0 31.5 27.0 23.0 29.0 31.5 27.0 40.0 44.0 24.0 31.0 26.0 20.5 29.5 29.7
Video-ChatGPT (Maaz et al., 2024) 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5 32.7
VideoLLaMA (Zhang et al., 2023) 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0 34.1
VideoChat (Li et al., 2023c) 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0 35.5
VideoChat2 (Li et al., 2024) 66.0 47.5 83.5 49.5 60.0 58.0 71.5 42.5 23.0 23.0 88.5 39.0 42.0 58.5 44.0 49.0 36.5 35.0 40.5 65.5 51.1
VideoGPT+ (ours) 69.0 60.0 83.0 48.5 66.5 85.5 75.5 36.0 44.0 34.0 89.5 39.5 71.0 90.5 45.0 53.0 50.0 29.5 44.0 60.0 58.7

Table 6: Performance of VideoGPT+ on MVBench. Following (Li et al., 2024), we evaluate on 20 tasks including AS:
Action Sequence, AP: Action Prediction, AA: Action Antonym, FA: Fine-grained Action, UA: Unexpected Action, OE: Object
Existence, OI: Object Interaction, OS: Object Shuffle, MD: Moving Direction, AL: Action Localization, ST: Scene Transition,
AC: Action Count, MC: Moving Count, MA: Moving Attribute, SC: State Change, FP: Fine-grained Pose, CO: Character
Order, EN: Egocentric Navigation, ER: Episodic Reasoning and CI: Counterfactual Inference.

C Complete MVBench Results997

We provide complete results on 20 sub-categories998

in MVBench in Table. 6. Specifically, VideoGPT+999

achieves SoTA results in 14 out of 20 tasks and1000

comes second in 4 out of 20 tasks, obtaining an1001

average score of 58.7% across the 20 tasks. Ad-1002

ditionally, VideoGPT+ shows significant improve-1003

ments in the Action Prediction (+12.5%), Object1004

Existence (OE) (+27.5%), Moving Direction (MD)1005

(+17%), Moving Count (MC) (+29%) and Moving1006

Attributes (MA) (+32%) indicating the rich spatial1007

information and temporal context achieved by our1008

model.1009

D Qualitative Results1010

We provide a qualitative comparison of our1011

VideoGPT+ with the previous state-of-the-art ap-1012

proach, VideoChat2 (Li et al., 2024), in Fig. 5. The1013

example shows an advertisement video for sun-1014

screen, where multiple scene changes are present.1015

The video starts with a close-up view of the sun-1016

screen, followed by a woman applying sunscreen1017

on her hand, then applying sunscreen near a beach.1018

The woman is then seen applying sunscreen on her1019

arms, and finally, the video shows the key ingredi-1020

ents of the sunscreen and ends with the cover of1021

the sunscreen.1022

As shown in Fig. 5, our VideoGPT+ correctly1023

identifies the events present in the video and pro-1024

vides a detailed and accurate description. On the1025

other hand, VideoChat2 struggles to accurately1026

capture all the events. Further, our model gen-1027

erates an advertisement post highlighting one of1028

the unique features of the sunscreen shown in the1029

video, namely that it functions as both sunscreen1030

and moisturizer. Lastly, our VideoGPT+ correctly1031

identifies the SPF value and brand name of the1032

sunscreen, while VideoChat2 struggles to correctly1033

Image Pooling Video Pooling

CNN 4 × 4 2 × 2 Time Space

3.25 3.25 3.28 3.23 3.28

Table 7: Ablation on pooling strategy.

Training Data MVBench VCG VCG-Div

Task-specific 58.7 3.28 2.47
Combined 58.3 3.27 2.45

Table 8: Ablation on generalization across different tasks.
Our model trained on combined instruction tuning dataset
performs comparable to the task-specific variants.

identify the brand name. We present further com- 1034

parison in Fig. 6-7. 1035

E Additional Ablations 1036

Pooling Strategy: We ablate different pooling 1037

strategies for the image and video encoders. The 1038

image encoder outputs a 24× 24 feature map from 1039

a 336×336 input. We compare two downsampling 1040

methods: a learnable lightweight CNN (LDPv2 1041

from (Chu et al., 2024)) and a non-learnable adap- 1042

tive average pooling with a 2 × 2 kernel. Results 1043

indicate that adaptive pooling performs better than 1044

CNN. A 4× 4 adaptive pooling was also tested but 1045

showed inferior performance. 1046

Similarly, we ablate the pooling choice for the 1047

video encoder, which takes an input of size T × 1048

224×224×C and outputs a feature map of T×16× 1049

16× d. We compare two pooling strategies: time 1050

pooling across the temporal dimension to reduce 1051

the feature map to 1 × 16 × 16 × d, and space 1052

pooling across the spatial dimension with a 2× 2 1053

kernel. Results shows that space pooling effectively 1054

preserves temporal information and yields better 1055

results. 1056

Generalization across video conversation 1057

datasets: To ensure a fair comparison with 1058

existing methods (Li et al., 2024; Liu et al., 2024c), 1059
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Figure 5: Qualitative comparison of VideoGPT+ with VideoChat2. Our VideoGPT+ demonstrates superior temporal
understanding by correctly identifying multiple events in the video, effective reasoning in generating a creative advertisement,
and accurate spatial understanding by identifying the SPF value and brand name of the sunscreen.

we train our model on different combination1060

of datasets for evaluation on MVBench and1061

VCGBench. To further clarify the generalization1062

capability of our model, we provide results on1063

three benchmarks, VCGBench, MVBench and1064

VCGBench-Diverse, using a single model trained1065

on a combined dataset. The results demonstrate1066

that our model maintains performance across all1067

benchmarks, indicating its ability to generalize1068

effectively across diverse video conversation1069

datasets.1070

Feature concatenation strategy: We conduct an1071

ablation study to determine the optimal order in1072

which image and video features should be input 1073

to the LLM. Specifically, we perform two exper- 1074

iments. In the first experiment, image and video 1075

features are extracted for each video segment and 1076

concatenated in an interleaved manner before send- 1077

ing as input to the LLM. For example, the video 1078

is divided into segments of equal size, and then 1079

the image and video features from each segment 1080

are concatenated and input to the LLM. In the sec- 1081

ond experiment, we first place all the image fea- 1082

tures followed by all the video features. The re- 1083

sults shown in Table 9, indicate that the sequential 1084

design, where the image features are placed first 1085
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followed by the video features, yields better perfor-1086

mance. This can be justified by the fact that we use1087

different visual adapters for image and video fea-1088

tures, so interleaving the features from both modal-1089

ities can create a larger distribution shift, hindering1090

the learning process.1091

Feature VCGBench Avg.
Concatenation CI DO CU TU CO

Interleaved 3.25 3.17 3.72 2.78 3.39 3.26
Sequential 3.27 3.18 3.74 2.83 3.39 3.28

Table 9: Ablation on Feature Concatenation Strategy. Per-
formance comparison between interleaved and sequential fea-
ture concatenation strategies. The sequential feature concate-
nation performs better.

Generalization of VideoGPT+ to other LLMs:1092

We train VideoGPT+ with different LLMs includ-1093

ing Vicuna 7B and 13B (Chiang et al., 2023) and1094

LLaMA-3 8B (AI, 2024). We observe slight im-1095

provements in VCGBench scores when training1096

using better LLMs, including Vicuna 13B and1097

LLaMA-3 8B models.1098

F GPT Prompts1099

In this section, we provide the GPT prompts used1100

for the following tasks: (i) Dense video description1101

generation for VCG+ 112K, (ii) Question-answer1102

generation for VCG+ 112K and (iii) Question-1103

answer generation for VCGBench-Diverse.1104

Dense Video Description Generation for1105

VCG+ 112K: To generate dense video captions,1106

we provide GPT-4 with a concise ground truth1107

caption of the video and detailed frame-level1108

captions of the key-frames generated from LLaVA-1109

v1.6 (Liu et al., 2024a). GPT-4 is then prompted to1110

combine this information into a detailed caption1111

for the entire video. As illustrated in Fig. 8, the1112

prompt includes clear instructions to eliminate any1113

conflicting information, ensuring an accurate and1114

detailed caption.1115

Question-answer generation for VCG+ 112K:1116

After generating detailed video descriptions us-1117

ing GPT-4, we use GPT-3.5 to create question-1118

answer pairs for instruction tuning. Fig. 9 shows1119

the prompt to generate detailed summary question-1120

answer pair using the ground truth caption and the1121

dense description of the video.1122

Question-Answer Generation for VCGBench-1123

Diverse: We provide prompts used to gen-1124

erate comprehensive question-answer pairs for1125

VCGBench-Diverse. As illustrated in Fig. 10, the1126

questions are generated in three categories: tem-1127

LLM VCGBench Avg.
CI DO CU TU CO

Phi3-Mini-3.8B 3.27 3.18 3.74 2.83 3.39 3.28
Vicuna-7B 3.22 3.14 3.69 2.65 3.46 3.23
Vicuna-13B 3.30 3.20 3.75 2.77 3.48 3.30
LLaMA3-8B 3.29 3.21 3.73 2.86 3.38 3.29

Table 10: Ablation on LLM type. We train and evaluate
VideoGPT+ with different LLMs, including vicuna (Chiang
et al., 2023) and LLaMA3 (AI, 2024), which further improves
accuracy.

poral, spatial, and reasoning. Similar prompts are 1128

used to generate consistency and summary ques- 1129

tions, offering an extensive evaluation protocol for 1130

VCGBench-Diverse. 1131

G Ethics and societal impact 1132

We use multiple open-source video datasets in- 1133

cluding ActivityNet (Fabian Caba Heilbron and 1134

Niebles, 2015), WebWid (Bain et al., 2021), 1135

MSVD-QA (Xu et al., 2017), MSRVTT-QA (Xu 1136

et al., 2017), TGIF-QA (Jang et al., 2019), 1137

HDVILA (Xue et al., 2022), MPII (Andriluka 1138

et al., 2014), YouCook2 (Zhou et al., 2018), UCF 1139

Crime (Sultani et al., 2018), and STUD Traffic (Xu 1140

et al., 2021) in our work. To the best of our knowl- 1141

edge, the dataset does not portray any strong biases 1142

or discrimination. We urge for the responsible use 1143

of VideoGPT+ and VCG+ 112K, promoting research 1144

progress while safeguarding privacy. 1145
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Figure 6: Qualitative comparison from VCGBench-Diverse of VideoGPT+. We show qualitative comparison of VideoGPT+
with VideoChat2 and propriety models GPT-4V and Gemini-1.5-Pro-V from three different categories including traffic, education
and surveillance from VCGBench-Diverse.
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Figure 7: Qualitative comparison from VCGBench-Diverse of VideoGPT+. We show qualitative comparison of VideoGPT+
with VideoChat2 and propriety models GPT-4V and Gemini-1.5-Pro-V from three different categories including sports, news
and automobiles videos from VCGBench-Diverse.
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Figure 8: Prompt for Dense Video Captions Generation for VCG+ 112K. We use GPT-4 to generate detailed video captions
using concise ground truth and frame-level detailed captions.
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Figure 9: Prompt for Question-answer generation for VCG+ 112K. We use GPT-3.5 to generate question-answer pairs for
instruction tuning using the concise video ground truths and detailed video descriptions.
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Figure 10: Prompt for Question-Answer Generation for VCGBench-Diverse. We use GPT-3.5 to generate temporal, spatial,
and reasoning question-answer pairs.
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