Under review as a conference paper at ICLR 2026

DYSL-VLA: EFFICIENT VISION-LANGUAGE-ACTION
MODEL INFERENCE VIA DYNAMIC-STATIC LAYER-
SKIPPING FOR ROBOT MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language-Action (VLA) models have shown remarkable success in
robotic tasks like manipulation by fusing a language model’s reasoning with a vi-
sion model’s 3D understanding. However, their high computational cost remains a
major obstacle for real-world applications that require real-time performance. We
observe that the actions within a task have varying levels of importance: critical
steps demand high precision, while less important ones can tolerate more vari-
ance. Leveraging this insight, we propose DySL-VLA, a novel framework that
addresses computational cost by dynamically skipping VLA layers based on each
action’s importance. DySL-VLA categorizes its layers into two types: informa-
tive layers, which are consistently executed, and incremental layers, which can
be selectively skipped. To intelligently skip layers without sacrificing accuracy,
we invent a prior-post skipping guidance mechanism to determine when to initiate
layer-skipping. We also propose a skip-aware two-stage knowledge distillation
algorithm to efficiently train a standard VLA into a DySL-VLA. Our comprehen-
sive experiments indicate that DySL-VLA surpasses the state of the art, achiev-
ing a 2.1% improvement in success length over Deer-VLA (NeurIPS’24) on the
Calvin dataset, while simultaneously reducing trainable parameters by a factor
of 85.7 and providing a 3.75x speedup relative to the RoboFlamingo baseline at
iso-accuracy. Our code is available on Anonymous Github,

1 INTRODUCTION

Inspired by the success of Vision-Language Models (VLMs) |Alayrac et al.[(2022);|An et al.| (2024));
Li et al.| (2022); [Luo et al.| (2024)); [L1 et al.| (2023a)), Vision-Language-Action (VLA) models have
emerged |Brohan et al.| (2023} 2022); |Wen et al.| (2025); [Kim et al.| (2025); |[Wang et al. (2025c),
enabling a promising paradigm for end-to-end robotic control. By tokenizing robot control signals,
these models take images as environmental observations and language instructions as the task goal,
then generate the next control command for the robot to fulfill the task Li et al.| (2023b)); [Kim
et al. (2024). Leveraging the vast, internet-scale knowledge embedded within VLMs Brohan et al.
(2023); Kim et al.|(2024), VLA models have already shown remarkable generalization capabilities
in complex robotic tasks like manipulation [Fan et al.| (2025); Liu et al.[(2024a).

However, deploying VLA models on real-world robots poses a significant challenge. Their immense
computational demands lead to high latency and power consumption Yue et al.|(2024); Zhang et al.
(2025)); |L1 et al.| (2025); Xu et al.| (2025b); [Wang et al.| (2025b), which conflict with the limited
resources and battery capacity of most robotic platforms [Karumbunathan| (2022)); |Valladares et al.
(2021). Consequently, existing VLA systems, like RT-2 (1-3 Hz) Brohan et al.|(2023) and OpenVLA
(3-5 Hz) Kim et al.|(2024])), have slow action generation speeds compared to the high-frequency low-
level control required for real-time physical interaction (20-50+ Hz) Kim et al.| (2025).

While existing VLA acceleration methods, such as quantization|Park et al.|(2024));|(Chen & Li|(2025)),
pruning |Zhang et al.| (2024b); |Chen et al| (2024), and knowledge distillation [Zhang et al.| (2025));
Chen & Li|(2025), have not fully solved this problem, they often overlook a crucial insight: in robot
manipulation, the importance of different actions is not equal. For instance, the act of grasping or
releasing an object is far more critical to a task’s success than the preparatory pre-grasp movements,

https://anonymous.4open.science/r/DySL-VLA-D04B

Under review as a conference paper at ICLR 2026

~— Step 20~60
20 | —@— Step 60~100

ut

Task Completion Rate (%)

o =h— Step 100~140
1 2 3 4 5
Normalized Noise Magnitude Step: 25 Step: 75 Step: 125

(a) (b) (c) (d)

Figure 1: Different actions in robot manipulation have different importance. We show an example
when the robot is performing task “Grasp the black cup and drop it into basket”. (a) shows the task
completion rates when adding noise with different magnitudes to VLA model weights at different
action steps. When adding noise at important action steps, the task completion rate drops faster as
noise magnitude increases. We sample 50 times on each noise magnitude for each step range. We
show the robot status at (b) step 25, (c) step 75, and (d) step 125 when using the origin VLA model.

which is also shown in Figure [I] By applying a uniform approach to all action predictions, these
methods miss key opportunities for acceleration on less important actions and, therefore, offer lim-
ited speedup. Similarly, early exit methods |Yue et al.[(2024); [Song et al.| (2025a) attempt to take
advantage of this feature by dynamically adjusting the computational load, but they risk discard-
ing crucial information by exiting before the final layers are fully processed. This trade-off can
compromise the model’s overall accuracy and effectiveness|Zhang et al.|(2025).

To address the high latency and computational demands of VLA models, we propose DySL-VLA, a
method that dynamically skips unnecessary layers during inference. Our approach is based on a key
finding: not all VLA layers contribute equally to action prediction. Specifically, we observed that
activation distributions change significantly after certain “informative” layers. Our dynamic-static
layer skipping method leverages this insight by statically keeping the most critical layers while dy-
namically skipping others. We also found that the success of a manipulation task is highly sensitive
to the accuracy of a few key actions. To account for this and ensure training convergence, we intro-
duce a prior-post skipping guidance and a skip-aware two-stage knowledge distillation method. We
summarize our contributions as follows:

* We conduct comprehensive analysis of layer-wise performance and action importance vari-
ations in VLA action prediction.

* We propose DySL-VLA to accelerate VLA inference via dynamic-static layer skipping. We
also propose prior-post skipping guidance and skip-aware two-stage knowledge distillation
to ensure the correctness of important actions and improve training convergence.

* Extensive experiments show that DySL-VLA shows 3.75x latency reduction compared
with RoboFlamingo, and 2.1% average successful length improvement compared with
DeeR-VLA, with 85.7x trainable parameters and 13.7x training steps reduction.

2 BACKGROUND

Vision-language-action Model. Numerous
studies have investigated instructing robots

by natural language [Driess et al| (2023);
(2024). Among them, VLA models are

fine-tuned from pretrained VLMs to increase
generalization and conduct robot control in

an end-to-end way [Black et al.| (2024)); [Zhang

Ax
10

AGrip J

Large Language Model
L S S S O K S

3 “Grasp the
(2024a), which shows good performance | e piock. ” [Vision Encoder][Text Encoder]
and becomes the mainstream. As shown in I i
Figure 2] in each frame, VLA model predicts
action given the current image observation and Figure 2: VLA model architecture.

language instruction [Li et al| (2023b); [Kiml
(2024). Though achieving high performance, VLA model shows long real-time latency

and low control frequency Wen et al.| (2025)); Song et al.| (2025b), which comes from the high

Under review as a conference paper at ICLR 2026

Table 1: Comparison between different methods.

Action Importance ~ Specialized Training
Method Approach Aware Kernel Free Modules
Sparse VLM [Zhang et al.|(2024b) Pruning X X -
FastV |Chen et al.|(2024) Pruning X X -
QAIL |Park et al.|(2024) Quantization X X LLM Backbone
MoLe-VLA |[Zhang et al.|(2025) Mixture-of-Layers X v LLM Backbone
DeeR-VLA |Yue et al.|(2024) Early-exit v v LLM Backbone & Action Heads
DySL-VLA Dynamic-static v v Light-weight Adapters

Layer Skipping & Skipping Controllers

computation cost of the LLM backbone. In this paper, we mainly focus on inference acceleration of
the LLM backbone of the VLA models, which accounts for most of the parameters and inference
latency (84.3% for OpenVLA Kim et al.|(2024) and 75.4% for OpenVLA-oft Kim et al.|(2025)).

Efficient Model Inference. Existing VLA acceleration works use pruning [Yang et al.| (2025);
‘Wang et al.| (2025a); |[Zhang et al.| (2024b), quantization |Park et al.| (2024); Lin et al.| (2024), and
mixture-of-layers |[Zhang et al.| (2025) to accelerate VLA models, while these methods ignore the
importance difference of each action and allocate an equal amount of computation to each prediction.
This wastes the acceleration opportunities on unimportant actions, thus causing a lower acceleration
rate. In addition, methods such as quantization and pruning require specialized kernels, which
increase the difficulty of deployment. Early-exit methods [Teerapittayanon et al. (2016); Xu et al.
(2025a);Rahmath P et al.|(2024) halting forward propagation at a certain layer based on intermediate
predictions, which can dynamically apply computation on different actions. But skipping all final
layers results in a significant loss of information. To solve this, DeeR-VLA |Yue et al.|(2024])) largely
trains the LLM backbone and multiple action heads to recover model performance. However, this
will introduce high computation and memory costs in the training stage. The large-scale fine-tuning
on specific scenarios may also break the generalization ability of VLA models. In addition, its exit
decision mechanism also introduces non-negligible extra inference costs.

Compared with existing works, our method adaptively applies more computation to important ac-
tions using layer skipping methods. We systematically examine the role of each layer and use
dynamic-static layer skipping to reduce information loss after skipping. We use pre-skip prediction
and post-skip verification to ensure correct skipping decisions. For training efficiency, we only train
light-weight skipping controllers and adapters instead of the LLM backbone. The comparison of
different methods for VLA acceleration is shown in Table [T}

3 EFFICIENT VLA INFERENCE VIA DYNAMIC-STATIC LAYER-SKIPPING

3.1 OBSERVATION AND OVERVIEW

To achieve high acceleration rate and model performance after layer skipping, there are two ques-
tions to answer. 1) When should we conduct layer skipping? 2) Which layer should we skip to if we
conduct layer skipping? To answer the questions, we conduct the following observations.

Observation 1: the importance across different VLA layers varies a lot, while skipping infor-
mative layers may cause low model performance. When deciding which layers we should skip
to, existing layer skipping works|Yue et al.| (2024);|Luo et al.|(2025)); Raposo et al.|(2024)); Fan et al.
(2024) either empirically skip with the same interval or directly skip all the final layers. However,
these strategies do not consider the different importance of VLA layers. We evaluate the amount
of information contained in each layer of VLA models by calculating the average cosine similarity
of each layer’s output activation. As shown in Figure 3] (a) and (b), we find that some VLA layers
significantly change the activation distribution compared to other layers. As shown in Figure [3|(c)
and (d), skipping these informative layers will introduce significant performance drops.

Observation 2: VLA systems show high sensitivity on important actions, and more restric-
tions are needed to decide skipping positions. To decide when to skip layers, existing works
Jiang et al.|(2024); Luo et al.|(2025); |[Raposo et al.| (2024)) use skipping controllers (usually feedfor-
ward networks) before LLM layers to predict skipping probability, and conduct layer skipping if the
probability exceeds a threshold. However, directly transferring this method to VLA models shows

Under review as a conference paper at ICLR 2026

Layer ID Layer ID
2 4 6 8 101214 16 18 20 22 24 10 24 6 8101214161820222426283032 1.0 Similarity Similarity

) 100% 100%
2
4 ., 90%

4 : 95%

6 8 a0 80%
ol)) : 70% ’
[=R0] 14 £ es% E 609
‘“" 12 3 16 3 E °
e L 78 . E 80% E 50%

1 22 40%

18 2 %

» % 30%

2 z o 20%

2 2 % 10%

-03 -03 0 4 8 12 16 20 24 0 4 8 12 16 20 24 28 32
Layer ID Layer ID

(a) (b) (©) (d)

=
=

fuepuig
Layer ID
© o
g &
2 2
3
Similarity
38
=
%
Avg Length

Kuepuig
Similarity
~
Avg Length

\.
a
=

-
3
=

=)

S

@
a
=

Figure 3: The average cosine similarity between the output activations of different VLA layers
for (a) RoboFlamingo-3B and (b) RoboFlamingo-9B. The similarity between the input and output
activations of each layer and the model performance when skipping each VLA layer in a zero-shot
manner for (¢) RoboFlamingo-3B and (d) RoboFlamingo-9B.

3
IS

60 RoboFlamingo 3b 0 Skipping Controller w -_- _sk;pm_gc_on;mgr ------------- -
50 —&— RoboFlamingo 9b 4
= 905015 °T I VLA Layers 5 3| Ml VLA Layers
[3}~ = No Skipping 2 | == No skipping
> >2
o 2 o
c c
2 21
© 1 ©
— -~
0
2 5 8 11 14 17 20 23 26 29 32 2 4 6 8 10 12 14 2 4 6 8 10 12 14
Kept Layers # Kept Layers # Kept Layers
() (b) ©)

Figure 4: (a) The ratio of different numbers of kept layers in VLA model inference when only
using skipping controllers. The inference latency for different numbers of kept layers using (b)
RoboFlamingo-3B in FP32 and (c) RoboFlamingo-9B in FP16.

low accuracy. This is because even small errors caused by layer skipping on important actions may
cause task failure, which is shown in Figure m Only based on the current activation, it is hard for
the skipping controller to fully understand the action’s importance. As shown in Figured](a), when
only using skipping controllers, the number of kept layers is concentrated between 5 to 12 and does
not exceed 14, which is not enough for important action predictions. So, when considering when to
skip layers, more restrictions are needed to keep more layers for important actions.

In addition, the skipping controllers will introduce non-negligible extra inference latency, which
comes from the serial nature of the inference of skipping controllers and the VLA layers |Xu et al.
(20254). As shown in Figure[d](b) and (c), when the skipping mechanism is introduced before each
layer and half of the layers are activated, the mechanism will gain little latency reduction compared
with the baseline model. New strategies are needed to improve the efficiency of controller inference.

DySL-VLA overview. Based on these observations, we propose DySL-VLA, accelerating VLA
models by dynamically skipping unnecessary layers according to action importance. To achieve low
information loss and high speedup, we propose dynamic-static layer skipping to statically keep the
informative layers and dynamically skip unnecessary layers (Section [3.2). To keep enough layers
for important action, we propose pre-skip prediction and post-skip verification to guide the skipping
decision (Section [3.3). Finally, we propose skip-aware two-stage knowledge distillation to conduct
low-cost training and improve training convergence (Section [3.4).

3.2 DYNAMIC-STATIC LAYER SKIPPING

Problems of existing layer skipping works. Existing layer skipping works do not consider the
different importance of VLA layers, thus showing sub-optimal results. As shown in Figure[5|(b) and
(c), early exit methods either need to train multiple action heads Yue et al.|(2024); Liu et al.|(2024b)
or introduce adapters |Ji et al.| (2023)) to fit the final action head. However, these methods skip all
final layers, some of which are informative, thus showing lower performance. [Luo et al. (2025);
Jiang et al| (2024) only skip one layer each time, as shown in Figure [5] (d). Although showing
reasonable performance, this fine-grained skipping mechanism shows low acceleration rate because
the skipping controller and adapter introduce extra inference cost.

To solve these problems, we propose a dynamic-static layer skipping mechanism, as shown in Figure
B](e). As discussed in Section 3.1} some informative layers in VLA models significantly change the
activation distribution. We define them as static layers and statically keep these layers in model
inference. At the same time, although other layers contain less information, we find that directly

Under review as a conference paper at ICLR 2026

(a).
o

Training Cost Accuracy Latency . Training Cost . Accuracy . Latency

piwtialfs

Training Cost Accuracy . Latency Training Cost Accuracy Latency .

[Image Encoder [Action Head [VLA layer [Static Layer [Adapter

[Accuracy
Latency
Figure 5: The inference mode of (a) original VLA model, (b) using early exit with multiple action
heads, (c) using early exit with adapters, (d) using traditional layer skipping methods, and (e) using

dynamic-static layer skipping. The modules with light colour are not activated in current inference.
We set the same legend for VLA layers in (a), (b), (c), (d), and dynamic layers in (e).

(c)
o

skipping all of these layers will cause extremely low accuracy. We define these layers as dynamic
layers and dynamically skip them. Before each dynamic layer, we determine whether to perform
layer skipping (the decision mechanism will be discussed in Section [3.3). If we decide to conduct
layer skipping, we directly skip to the next static layer, which shows a higher speedup compared
with skipping only one layer each time. And we train adapters (light-weight feedforward layers) to
summarize the skipped layers and fit the activation for the next static layer. This is reasonable as the
skipped layers will not change the activation distribution much and contain less information, which
is within the adapter’s fitting ability.

By using dynamic-static layer skipping, we can achieve a higher speedup with low information loss.
At the same time, our method does not need to train multiple action heads or the LLM backbone,
which reduces the training cost.

3.3 PRIOR-POST SKIPPING GUIDANCE

In this section, we discuss our strategy to determine whether to conduct layer skipping before each
dynamic layer. As discussed in Section [3.1] just using skipping controllers Jiang et al.| (2024); Luo
et al.|(2025) is neither accurate nor efficient, and we should keep enough layers for important actions.
Based on this, we find that the trajectory continuity can reflect the importance of the current action.
Here we define the continuity at step ¢ as:
1 o 1<
Com—p 3 1Al == D 1145 - Al 1)

j=t—k+1 j=t—k+1

where JA; represents the difference between action j and j — 1, and we consider the trajec-
tory of last k actions. As shown in Figure [f] (a) (b), we find that the trajectory has good
continuity at most of the time, which means adjacent actions have similar magnitude and di-
rection. This phenomenon comes from the training data collection process for VLA models,
as robot operators tend to keep uniform speeds

when executing non-critical motions. However, J
the continuity will be broken when the robots e B
are conducting fine operations, e.g., grasping %,
or releasing objects. Unlike free-space move- .
ments that follow smooth trajectories, these T e e e S
fine operations include frequent stops, micro- R e
corrections, and hesitation, which breaks the

natural flow of motion into disjointed segments Figure 6: The proportion of action prediction
Wang et al|(2024). We find that these actions steps in different continuity ranges and the ac-
show higher importance in task completion, curacy loss when conducting layer skipping at
and conducting layer skipping on these steps the steps in different continuity ranges for (a)
will introduce huge accuracy loss, as shown in RoboFlamingo-3B and (b) RoboFlamingo-9B.

Figure[6 (a) (b).

°

@
&
3

|
o
©
|
o
©

030%

|
o
=

Accuracy Loss
Ratio
N
5
b3
!
o
=
Accuracy Loss

»—\
1
3

>

Under review as a conference paper at ICLR 2026

[Image Encoder [Dynamic layer [Static Layer [T Adapter <> Controller ® Skipping-allow Point

Pre-sklp Predlctlon 1
1 - [& &1 & lHafaja -[aja.,
b Close Cloqe Acln ate False
@Dﬂ D N F-D-D--EH
Close |Truc

Post-skm Verification

Figure 7: Pre-skip prediction and post-skip verification method. The modules with light colour are
not activated in current inference.

Based on these observations, we can approximate action importance based on action continuity to
guide layer skipping determination. As shown in Figure[7} besides skipping controllers, we propose
pre-skip prediction to approximate the proper skipping positions between static layers. Between
each two adjacent static layers, we define a skipping-allow point, which is initialized after the front
static layer. Before the point, the skipping controllers are disabled, and the VLA layers are forcibly
kept. The skipping controller after the point is activated and determines layer skipping. We dynam-
ically move the skipping-allow point according to the continuity change of the previous k steps:

li=1;+ (51, when C; — Ci_1 < m and [; < s;, 2)
l; =1; —1, when Cy—Ci_1 > P and [; > s;_1, 3)

where [; is the id of the layer after the skipping-allow point, 1; and 72 are thresholds (1; < 0), s;
is the iy, static layer, d/ is an adaptive moving stride defined as §] = (%1 Note that when
detecting decreased continuity, the skipping allowance point rapidly shifts forward according to
continuity change to prioritize action accuracy during critical phases. Conversely, when continuity
improves, it gradually moves backward. This hysteresis-like system design maximizes the correct-
ness of essential actions. And we decide the position of the skipping-allow points according to the
trajectory of the previous k steps instead of a single recent step (k = 1), as the change of action
difference (0 A; — § A;_1) will become low when important actions occur in a continuous mode. We
will discuss the influence of & value in Appendix [C] In the first & steps of a task, we do not move the
skipping-allow points. An example of skipping-allow points moving is shown in Figure[8] Note that
the pre-skip prediction only closes or activates the skip controllers, and whether to conduct layer
skipping is still determined by the activated skip controller itself.

By using pre-skip prediction, we can keep
enough layers for the important actions, thus 1E-3 NI —— Skipping point

improving model performance. At the same > o 56
time, the extra latency cost caused by skipping ERA . 4
. £ Skipping point Skipping point 3 8

controllers can also be reduced, as the pre-skip € -6} movesforward as moves backward as > &
.. . . . o -8} continuity decreases continuity increases £
prediction will close most of the skipping con- o I '3

trollers that will probably decide not to skip. In
practice, we find that in each inference, usually —[Istatic Layer CIoynamic Layer
only around 20% of the skipping controllers are

truly used on average. Figure 8: Skipping-allow point changes in the ma-
nipulation task. Here we use 4 dynamic layers be-
tween 2 static layers as an example, which has 5
possible positions for the skipping-allow point.

Timestep
1 2 3 4

3

However, only using pre-skip prediction is not
enough. This is because we can not get the cur-
rent action prediction before current model in-
ference, so the continuity decrease can only be
detected after the first important action has been predicted, whose correctness can not be guaranteed.
The issue becomes more pronounced when the action chunk technique is used |Kim et al.| (2025));
Black et al.|(2024);[Wen et al.| (2025)), where multiple actions will be predicted in a single inference.
To solve this problem, we also propose post-skip verification to add a feedback mechanism, which
is shown in Figure [7]] When we first detect the continuity decrease (0C; = Cy — C;—1 < 11 and
0Cy_1 = Cy—1 — Cy—_o > m1), we re-predict the current action without any layer skipping. Then
we recompute the continuity change using the re-predicted action. This process not only ensures
the correctness of the initial critical action prediction but also enhances the detection accuracy of
continuity degradation. And it will not introduce much extra cost, as important actions only occupy
a small proportion and usually appear continuously.

6

Under review as a conference paper at ICLR 2026

1
: qg‘mage Encoder qﬁé\ction Head qunamic layer q%Static Layer IQAdapter <>6Controller

L L I e e e i e

e

(@ (b)

Figure 9: The (a) first stage and (b) second stage of skip-aware two-stage knowledge distillation
method. The layers in red boxes are the selected layers in current training step.

3.4 SKIP-AWARE TWO-STAGE KNOWLEDGE DISTILLATION

As discussed in Section 2] previous VLA layer skipping works|Yue et al.| (2024); [Zhang et al.|(2025)
require training the LLM backbone, which will introduce high training cost and generalization loss
for VLA models. Our method freezes the LLM backbone and just trains the lightweight skipping
controllers and adapters. This reduces training cost and ensures that our model can maintain the
same accuracy as the original VLA when not using layer skipping. However, the training strategy is
nontrivial, as simply training controllers and adapters together may cause a convergence problem.
This is because the controllers and adapters are both randomly initialized, and the training of them
will impact each other. At the beginning of training, as the adapters are not trained, the controllers
will refuse layer skipping to avoid huge task loss. And this will further affect the adapter training.

To solve this problem, we propose skip-ware two-stage knowledge distillation. In the first stage, as
shown in Figure[9](a), we only train all the adapters to summarize the information of the following
dynamic layers. The loss function of the first stage is:

lossy = Z ladapteri(z;) — L, —1(Ls;~2(- - - (Li(2:)))) | p,)

7

where z; is the input to dynamic layer ¢, L; is the ¢, layer and s, is the layer id of next static layer.

After the basic capability of adapters are developed, in the second stage, we can then train the
controllers and adapters together, as shown in Figure [9](b). However, in the forward path, if we use
the controller itself to decide the skipping place, we find that the model will continuously skip at
the same dynamic layer. So, to fully train each controller, between two static layers, we just select
one dynamic layer ¢ (s;—1 < % < s;) and predict the probability of skipping using the controller
before this layer. In layer selection, it is important to select early dynamic layers more times, as the
corresponding adapters are required to summarize more dynamic layers and need more training. In
practice, we use Harmonic decay probability|Bochner|(2005)) to select the dynamic layer, and we find
that other strategies, such as linear decay probability, also work well. Different from the inference
time, to make the skipping decision module differentiable, we conduct the forward propagation from
layer 7 to layer s; following:

x5, = controller;(x;) - adapter;(x;) + (1 — controller;(x;)) - Lg,—1(Ls,—2(- .. (Li(x;)))), (5)

where x5, is the activation input to the next static layer. We also introduce a normalization loss to
encourage the controller to skip layers. The loss function of the second stage is:

lossy = task_loss + \ - Z(l — controller;(x;)) - (s; — 1), (6)

where ¢ belongs to the layer ids of the selected layers.

Although our training has two stages, its cost is far lower than previous layer skipping works, as we
do not train the LLM backbone and need fewer training steps, which we show in Section [}
4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We evaluate DySL-VLA on CALVIN benchmark [Mees et al.|(2022b) using RoboFlamingo |Li et al.
(2023b) models and LIBERO benchmark |Liu et al.| (2023)) using OpenVLA-oft models |Kim et al.

Under review as a conference paper at ICLR 2026

Table 2: Accuracy comparison on Calvin D — D dataset.

#Fine-tuned # Fine-tuned Training Cost Avg RTX 4090

Method Task 1 Task2 Task3 Task4 Task5

Parameters Steps (GPU Hour) Length Latency
HULC [Mees et al.[(2022a) - - - 0.827 0.649 0.504 0.385 0.283 2.64 -
SPIL Zhou et al.|(2024) - - - 0.846 0.651 0.508 0.380 0.286 2.67 -
RoboFlamingo 3B|Li et al.|(2023b) - - - 0.871 0.696 0.496 0.371 0.272 2.71 51.0ms
RoboFlamingo 3B (Re-trained) - - - 0.903 0.694 0486 0403 0.333 2.82 51.0ms
DeeR-VLA 3B|Yue et al.|(2024} 1.2B 9.2-10% 112 0.853 0.696 0549 0420 0.312 2.83 19.3ms
Random Skip - - - 0322 0.045 0.011 0.000 0.000 0.38 22.6ms
FlexiDepth|Luo et al. (2025} 19M 6.7-10° 7 0.844 0489 0.244 0200 0.089 1.87 27.6ms
DySL-VLA 3B 14M 6.7-10° 7 0.894 0.719 0.539 0420 0320 2.89 13.6ms

Table 3: Accuracy comparison on LIBERO dataset.

#Fine-tuned Spatial ~ Object Goal Long Average A6000 Jetson Orin

Method Parameters SR (%) SR (%) SR (%) SR(%) SR (%) Latency Latency
MDT (scratch)|Reuss et al.|(2024) - 78.5 87.5 73.5 64.8 76.1 - -

7o + FAST (fine-tuned) Pertsch et al.|(2025) — 96.4 96.8 88.6 60.2 85.5 — -

OpenVLA-OFT 7B Kim et al.|(2025) - 97.6 98.4 97.9 94.5 97.1 53.0ms 676ms
DeeR-VLA 7B|Yue et al.[(2024) 7.1B 97.0 98.2 97.4 88.6 95.3 40.2ms 495ms
Random Skip - 11.3 0.6 0.0 0.6 3.1 34.9ms 383ms
FlexiDepth|Luo et al.|(2025) 390M 84.0 85.2 41.4 10.3 55.2 42.2ms 502ms
DySL-VLA7B 226M 98.0 98.2 97.0 92.6 96.5 27.4ms 345ms

Table 4: Individual influence of our methods (evaluated on Calvin D — D dataset).

Method Task 1 Task2 Task3 Task4 Task5 AvglLength Avg Latency
RoboFlamingo 3B [Li et al.|(2023b) 0903 0.694 0486 0.403 0.333 2.82 51.0ms
Random Skip 0322 0.045 0.011 0.000 0.000 0.38 22.6ms
DySL-VLA 0.894 0.719 0.539 0420 0.320 2.89 13.6ms
w/o Post-skip Verification 0.897 0.704 0515 0.398 0.280 2.79 13.4ms
w/o Pre-skip Prediction 0.870 0.635 0426 0296 0.192 242 20.1ms
w/o Skip-aware Two-stage Knowledge Distillation 0.903 0.694 0.486 0403 0.333 2.82 74.0ms
w/o Dynamic-static Layer Skipping 0.844 0489 0244 0.200 0.089 1.87 27.6ms

(2025)). In the simulation platform, the robot can access RGBD observations. For Calvin datatset,
the robot is instructed to complete a task sequence with five subtasks. Following Yue et al.| (2024),
model performance is evaluated based on the average successful length (0 to 5). For OpenVLA-oft,
following |[Kim et al.| (2025), we evaluate on 4 sub-datasets. More implementation details and the
model architecture are shown in Appendix [Al The rollout visualization of our method is shown in
Appendix [B] Our simulation-based evaluation is widely used in many prior works Kim et al.|(2025));
Yue et al.| (2024); L1 et al.[(2023b), and our experimental setup follows the same standard, ensuring
fair comparison. As our method mainly solves the problem of high computation cost, we also deploy
our model on the computation platform (Jetson Orin) that is frequently used by real-world robots.

4.2 MAIN RESULTS

Accuracy comparison. The accuracy comparison is shown in Table 2]and [3] On Calvin D — D
dataset, compared with traditional methods HULC and SPIL, which rely on hierarchical planning
and skill priors, DySL-VLA shows accuracy improvement. This is because VLA models are trained
on pre-trained VLMs embedded with internet-scale knowledge, thus showing higher generalization
ability. Compared with FlexiDepth |Luo et al.| (2025)), which only uses skipping controllers and
adapters before each layer to conduct layer skipping, DySL-VLA shows 54.5% average successful
length improvement, respectively, by using static-dynamic layer skipping to reduce information loss.
DySL-VLA also shows 2.1% average successful length improvement over DeeR-VLA, with 85.7 x
trainable parameters reduction and 13.7x training steps reduction (further comparison is shown
in Appendix [E). Because DySL-VLA keeps the informative layers to avoid information loss, and
uses pre-skip prediction and post-skip verification to ensure correction for important actions. Our
method even shows successful length improvement over full RoboFlamingo model. We suggest that
the original model trained on D — D dataset has redundant parameters and suffers from overfitting.
Our method effectively eliminates these redundancies by layer skipping, resulting in a more robust
architecture. For other Calvin datasets, we show the accuracy result in Appendix [D} On LIBERO
dataset, our method also shows 41.3% average SR improvement over FlexiDepth. Compared with
DeeR-VLA, our method shows 1.2% average SR improvement, with 31.4x trainable parameters
reduction.

Under review as a conference paper at ICLR 2026

Latency Comparison. The average LLM la- [v\~ ayers [Skipping Controllers (S Adapters

tency comparison is shown in Table [2] and RoboFlamingo

B On Calvin dataset, our method achieves FlexiDepth N

3.75x latency reduction compared to the full DySL-VLA

RoboFlamingo model, by dynamically skip- 0 10 20 30 0 50 60
ping unnecessary VLA layers. Our method Latency (ms)

achieves 2.03x latency reduction compared

with FlexiDepth [Cuo et al (2025), which sets a Figure 10: Latency breakdown of LLM backbone.
skipping controller before each layer and only

skips one layer each time, while our method can skip more layers each time by using static-dynamic
layer skipping. And our method avoids redundant skipping controller inference by pre-skip predic-
tion, which is further shown in Figure[T0] Our method also shows 1.42x latency reduction compared
with early exit method DeeR-VLA |Yue et al.|(2024), with far less training cost. Because our method
can keep the most informative layers of the original model, thus avoiding huge training costs to
recover model performance and achieve high speedup. On LIBERO dataset, our method shows
1.54 xand 1.47 x latency reduction on A6000 and 1.46x and 1.43x on Jetson Orin, compared with
FlexiDepth and DeeR-VLA, respectively. Our method shows 1.93x and 1.96 x latency reduction on
A6000 and Jetson Orin compared with full RoboFlamingo model. This acceleration ratio is lower
than RoboFlamingo, as OpenVLA-oft has lower parameter redundancy. Note that although deploy-
ment on Jetson Orin shows higher latency because of limited computation resources compared with
A6000, the control frequency of DySL-VLA can still reach 23.2Hz, as OpenVLA-oft uses action
chunk and predicts 8 actions in a single inference.

4.3 ABLATION STUDY

Individual influence of our methods. The individual influence of our methods is shown in Table
Al Not using pre-skip prediction and post-skip verification will both cause accuracy drop, as the
correctness of important actions can not be fully guaranteed. Without dynamic-static layer skipping,
the informative layers can not always be saved, resulting in accuracy drop. Without skip-aware two-
stage knowledge distillation, the training of adapters and controllers will affect each other, and the
controllers will always be closed, thus leading to higher latency, as discussed in Section[3.4]

Impact of static layer ratio. The impact of

static layer ratio is shown in Table [§] evalu- Table 5: Ablation study on static layer ratio.
ated on Calvin D — D dataset. Across vari-

ous ratios, our method maintains both accuracy Static Layer Ratio 10% 15% 20% 25% 30%
and latency within an acceptable range, demon- Average Length 281 284 289 288 289

strating its robustness. Relatively, a lower static =~ _Average Latency (ms) 126 13.1 136 147 158
layer ratio reduces latency, but causes slight ac-

curacy drop. For a higher ratio, the latency increases with little accuracy gain, as some less infor-
mative layers are kept as static layers. So a moderate ratio such as 20% is appropriate.

Impact of skipping-allow point moving

stride. In pre-skip prediction, we use an adap- Table 6: Ablation study on &l (evaluated on
tive moving stride based on continuity change | JBERO Spatial dataset).

when moving the skipping-allow point forward.

Here we compare our strategy with constant ol 1 2 3 4 5 Adaptive
strides, shown in Table [6] Our method over- gr 962 964 964 974 970 98.0

comes all constant baselines, as the continuity
can better reflect the action importance. We also find that a larger forward-moving stride shows
relatively better results, as the hysteresis-like system design can better protect essential actions.

5 CONCLUSION

In this paper, we propose DySL-VLA, accelerating VLA models by dynamically skipping unneces-
sary layers according to action importance. We propose dynamic-static layer skipping to statically
keep the most informative layers and reduce information loss. We propose prior-post skipping guid-
ance to guarantee we keep enough layers for important actions. We propose skip-aware two-stage
knowledge distillation to improve training convergence. In experiments, DySL-VLA shows 2.1%
average successful length improvement over DeeR-VLA on Calvin D — D dataset, with 85.7x
trainable parameters and 13.7 X training steps reduction.

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

The potential negative societal impacts of our method align with those typically associated with
general robotic technologies. Fair and safe deployment principles in robotic systems are important.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, our experimental setup is thoroughly detailed: we describe
our dataset usage in Section[d.1] specify the model architectures used in Appendix [A.T] and list the
hyper-parameters (such as learning rates and batch sizes) for each experiment in Appendix [A.2]
The source code, which implements our core method and the main experiments, is available on
Anonymous Github.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716—
23736, 2022.

Ruichuan An, Sihan Yang, Ming Lu, Renrui Zhang, Kai Zeng, Yulin Luo, Jiajun Cao, Hao Liang,
Ying Chen, Qi She, et al. Mc-llava: Multi-concept personalized vision-language model. arXiv
preprint arXiv:2411.11706, 2024.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. my: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Salomon Bochner. Harmonic analysis and the theory of probability. Courier Corporation, 2005.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In European Conference on Computer Vision, pp. 19-35. Springer, 2024.

Yuxuan Chen and Xiao Li. Rlrc: Reinforcement learning-based recovery for compressed vision-
language-action models. arXiv preprint arXiv:2506.17639, 2025.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied mul-
timodal language model. 2023.

Cunxin Fan, Xiaosong Jia, Yihang Sun, Yixiao Wang, Jianglan Wei, Ziyang Gong, Xiangyu Zhao,
Masayoshi Tomizuka, Xue Yang, Junchi Yan, et al. Interleave-vla: Enhancing robot manipulation
with interleaved image-text instructions. arXiv preprint arXiv:2505.02152, 2025.

Siqgi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,
and Zhongyuan Wang. Not all layers of llms are necessary during inference. arXiv preprint
arXiv:2403.02181, 2024.

Yixin Ji, Jikai Wang, Juntao Li, Qiang Chen, Wenliang Chen, and Min Zhang. Early exit with

disentangled representation and equiangular tight frame. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pp. 14128-14142, 2023.

10

https://anonymous.4open.science/r/DySL-VLA-D04B

Under review as a conference paper at ICLR 2026

Yikun Jiang, Huanyu Wang, Lei Xie, Hanbin Zhao, Hui Qian, John Lui, et al. D-llm: A token
adaptive computing resource allocation strategy for large language models. Advances in Neural
Information Processing Systems, 37:1725-1749, 2024.

Leela S Karumbunathan. Nvidia jetson agx orin series. Online at https://www. nvidia.
com/content/dam/en-zz/Solutions/gtcf2 1/jetson-orin/nvidia-jetson-agx-orin-technical-brief. pdf,
2022.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
mann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision as-
sistant for biomedicine in one day. Advances in Neural Information Processing Systems, 36:
28541-28564, 2023a.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888—-12900. PMLR, 2022.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
imitators. arXiv preprint arXiv:2311.01378, 2023b.

Ye Li, Yuan Meng, Zewen Sun, Kangye Ji, Chen Tang, Jiajun Fan, Xinzhu Ma, Shutao Xia, Zhi
Wang, and Wenwu Zhu. Sp-vla: A joint model scheduling and token pruning approach for vla
model acceleration. arXiv preprint arXiv:2506.12723, 2025.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device 1lm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776-44791, 2023.

Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Pengju An, Xiaoqi Li, Kaichen Zhou, Sengiao Yang,
Renrui Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Efficient vision-language-
action model for robotic reasoning and manipulation. Advances in Neural Information Processing
Systems, 37:40085-40110, 2024a.

Zheng Liu, Jinchao Zhu, Nannan Li, and Gao Huang. Multiple-exit tuning: Towards inference-
efficient adaptation for vision transformer. arXiv preprint arXiv:2409.13999, 2024b.

Xuan Luo, Weizhi Wang, and Xifeng Yan. Adaptive layer-skipping in pre-trained llms. arXiv
preprint arXiv:2503.23798, 2025.

Yulin Luo, Ruichuan An, Bocheng Zou, Yiming Tang, Jiaming Liu, and Shanghang Zhang. Llm
as dataset analyst: Subpopulation structure discovery with large language model. In European
Conference on Computer Vision, pp. 235-252. Springer, 2024.

Oier Mees, Lukas Hermann, and Wolfram Burgard. What matters in language conditioned robotic
imitation learning over unstructured data. IEEE Robotics and Automation Letters, 7(4):11205-
11212, 2022a.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. /EEE Robotics
and Automation Letters, 7(3):7327-7334, 2022b.

11

Under review as a conference paper at ICLR 2026

Seongmin Park, Hyungmin Kim, Wonseok Jeon, Juyoung Yang, Byeongwook Jeon, Yoonseon Oh,
and Jungwook Choi. Quantization-aware imitation-learning for resource-efficient robotic control.
arXiv preprint arXiv:2412.01034, 2024.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

Haseena Rahmath P, Vishal Srivastava, Kuldeep Chaurasia, Roberto G Pacheco, and Rodrigo S
Couto. Early-exit deep neural network-a comprehensive survey. ACM Computing Surveys, 57(3):
1-37, 2024.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

Moritz Reuss, Omer Erdin¢ Yagmurlu, Fabian Wenzel, and Rudolf Lioutikov. ~Multimodal
diffusion transformer: Learning versatile behavior from multimodal goals. arXiv preprint
arXiv:2407.05996, 2024.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in neural in-
formation processing systems, 35:25278-25294, 2022.

Wenxuan Song, Jiayi Chen, Pengxiang Ding, Yuxin Huang, Han Zhao, Donglin Wang, and Haoang
Li. Ceed-vla: Consistency vision-language-action model with early-exit decoding. arXiv preprint
arXiv:2506.13725, 2025a.

Wenxuan Song, Jiayi Chen, Pengxiang Ding, Han Zhao, Wei Zhao, Zhide Zhong, Zongyuan Ge, Jun
Ma, and Haoang Li. Accelerating vision-language-action model integrated with action chunking
via parallel decoding. arXiv preprint arXiv:2503.02310, 2025b.

Qi Sun, Pengfei Hong, Tej Deep Pala, Vernon Toh, U Tan, Deepanway Ghosal, Soujanya Poria, et al.
Emma-x: An embodied multimodal action model with grounded chain of thought and look-ahead
spatial reasoning. arXiv preprint arXiv:2412.11974, 2024.

MN Team et al. Introducing mpt-7b: A new standard for open-source, commercially usable 1lms
(2023). URL www. mosaicml. com/blog/mpt-7b. Accessed, pp. 05-05, 2023.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd international conference on pattern
recognition (ICPR), pp. 2464-2469. IEEE, 2016.

Sebastidn Valladares, Mayerly Toscano, Rodrigo Tufifio, Paulina Morillo, and Diego Vallejo-
Huanga. Performance evaluation of the nvidia jetson nano through a real-time machine learning
application. In Intelligent Human Systems Integration 2021: Proceedings of the 4th Interna-
tional Conference on Intelligent Human Systems Integration (IHSI 2021): Integrating People and
Intelligent Systems, February 22-24, 2021, Palermo, Italy, pp. 343-349. Springer, 2021.

Hanzhen Wang, Jiaming Xu, Jiayi Pan, Yongkang Zhou, and Guohao Dai. Specprune-vla: Accel-
erating vision-language-action models via action-aware self-speculative pruning. arXiv preprint
arXiv:2509.05614, 2025a.

Songsheng Wang, Rucheng Yu, Zhihang Yuan, Chao Yu, Feng Gao, Yu Wang, and Derek F Wong.
Spec-vla: Speculative decoding for vision-language-action models with relaxed acceptance. arXiv
preprint arXiv:2507.22424, 2025b.

Yeping Wang, Carter Sifferman, and Michael Gleicher. Iklink: End-effector trajectory tracking with

minimal reconfigurations. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 12165-12171. IEEE, 2024.

12

Under review as a conference paper at ICLR 2026

Yihao Wang, Pengxiang Ding, Lingxiao Li, Can Cui, Zirui Ge, Xinyang Tong, Wenxuan Song, Han
Zhao, Wei Zhao, Pengxu Hou, et al. Vla-adapter: An effective paradigm for tiny-scale vision-
language-action model. arXiv preprint arXiv:2509.09372, 2025c.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu,
Ran Cheng, Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action
models for robotic manipulation. IEEE Robotics and Automation Letters, 2025.

Jiaming Xu, Jiayi Pan, Yongkang Zhou, Siming Chen, Jinhao Li, Yaoxiu Lian, Junyi Wu, and Guo-
hao Dai. Specee: Accelerating large language model inference with speculative early exiting.
arXiv preprint arXiv:2504.08850, 2025a.

Siyu Xu, Yunke Wang, Chenghao Xia, Dihao Zhu, Tao Huang, and Chang Xu. Vla-cache: Towards
efficient vision-language-action model via adaptive token caching in robotic manipulation. arXiv
preprint arXiv:2502.02175, 2025b.

Yantai Yang, Yuhao Wang, Zichen Wen, Luo Zhongwei, Chang Zou, Zhipeng Zhang, Chuan Wen,
and Linfeng Zhang. Efficientvla: Training-free acceleration and compression for vision-language-
action models. arXiv preprint arXiv:2506.10100, 2025.

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks:
Lstm cells and network architectures. Neural computation, 31(7):1235-1270, 2019.

Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi Wang, Shiji Song, Jiashi Feng, and Gao
Huang. Deer-vla: Dynamic inference of multimodal large language models for efficient robot
execution. Advances in Neural Information Processing Systems, 37:56619-56643, 2024.

Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu,
Zhizheng Zhang, and He Wang. Navid: Video-based vlm plans the next step for vision-and-
language navigation. arXiv preprint arXiv:2402.15852, 2024a.

Rongyu Zhang, Menghang Dong, Yuan Zhang, Liang Heng, Xiaowei Chi, Gaole Dai, Li Du,
Dan Wang, Yuan Du, and Shanghang Zhang. Mole-vla: Dynamic layer-skipping vision lan-
guage action model via mixture-of-layers for efficient robot manipulation. arXiv preprint
arXiv:2503.20384, 2025.

Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gu-
dovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevim: Visual token sparsifi-
cation for efficient vision-language model inference. arXiv preprint arXiv:2410.04417, 2024b.

Hongkuan Zhou, Zhenshan Bing, Xiangtong Yao, Xiaojie Su, Chenguang Yang, Kai Huang, and
Alois Knoll. Language-conditioned imitation learning with base skill priors under unstructured
data. IEEE Robotics and Automation Letters, 2024.

Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Young-
jae Yu, Ludwig Schmidt, William Yang Wang, and Yejin Choi. Multimodal c4: An open, billion-
scale corpus of images interleaved with text. Advances in Neural Information Processing Systems,
36:8958-8974, 2023.

13

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 NETWORK ARCHITECTURE

In this section, we introduce the model architecture of RoboFlamingo and OpenVLA-oft. The ar-
chitectural details are shown in Table[/| RoboFlamingo is trained based on OpenFlamingo |Alayrac
et al.| (2022), which is a VLM pre-trained using the web-scraped image-text datasets LAION-2B
Schuhmann et al.| (2022)) and Multimodal C4 Zhu et al.| (2023)). OpenFlamingo uses MPT-1B [Team
et al.| (2023) as its LLM backbone and introduces cross-attention layers before the original MPT
layers to fuse the information from image and text. RoboFlamingo uses an LSTM model |Yu et al.
(2019) followed with Multi-layer Perceptron (MLP) head as the action head. Given the output ac-
tivation from the LLM backbone, the action head predicts a continuous action with 7 dimensions.
OpenVLA-oft is trained based on LLaMA 7B, with SigLIP and DINO V2 as the vision encoder.
Different from RoboFlamingo, OpenVLA-oft uses action chunk technique. OpenVLA-oft predicts
8 actions in each inference, and each action has 7 dimensions. The input of OpenVLA-oft LLM
backbone includes vision tokens, robot state tokens, and several empty action tokens. After LLM
inference, the MLP action head takes the output feature of the action tokens and predicts continuous
actions. In this paper, we focus on accelerating the LLM backbone of the VLA model.

A.2 TRAINING DETAILS

In our method, we only train the light-weight adapters and the skipping controllers, instead of the
LLM backbone, which largely reduces the training cost. And we propose skip-aware two-stage
knowledge distillation to improve model convergence. We report our training hyper-parameters in
Table[8] P]and Table[10]

Table 7: Model architectural details.

Model LLM Backbone Vision Encoder #LLM Cross-attention Hidden Action

Layers Interval Dimension Head
OpenFlamingo 3B MPT-1B (Instruct) Team et al.|(2023) CLIP ViT-L/14 24 1 2048 LSTM+MLP
OpenVLA-oft 7B LLaMA 7B SigLIP + DINO v2 32 - 4096 MLP

Table 8: Training hyper-parameters for RoboFlamingo (D — D dataset).

Hyper-parameters Values
Batch size 24
Optimizer AdamW
learning rate 1x1074
Learning rate schedule constant
steps of the first training stage 1030
steps of the second training stage 5690
A Se-4
LSTM window size 12

Table 9: Training hyper-parameters for RoboFlamingo (ABC — D dataset).

Hyper-parameters Values
Batch size 24
Optimizer AdamW
learning rate 1x10™*
Learning rate schedule constant
steps of the first training stage 3570
steps of the second training stage 12780
A Se-4
LSTM window size 12

14

Under review as a conference paper at ICLR 2026

Table 10: Training hyper-parameters for OpenVLA-oft.

Hyper-parameters Values
Batch size 32
Optimizer AdamW
learning rate 1x1074
Learning rate schedule constant
steps of the first training stage 7693

steps of the second training stage 29307
A le-2

B ROLLOUT VISUALIZATION

We show the visualization of our method in Figure[TT]

Task 1: Press the button to turn off the led light.

b h
Task 4: Grasp, lift the pink block and store it in the sliding.

[

[

Figure 11: Visualization of DySL in 5 manipulation tasks.

C INFLUENCE OF THE TRAJECTORY LENGTH IN PRE-SKIP PREDICTION

In pre-skip prediction, we consider the trajectory continuity of previous k actions. The influence
of k value is shown in Figure @ In our experiment, we set k = 5, which shows good model
performance. And there will be model performance drops when k is too large or too small. When &
is too small, the short trajectory can not reflect the action importance well. And a large k will reduce

the sensitivity to continuity changes.

15

Under review as a conference paper at ICLR 2026

Table 11: Accuracy comparison on Calvin ABC — D dataset.

#Fine-tuned # Fine-tuned Training Cost

Method Parameters Steps (GPU Hour) Task I Task2 Task3 Task4 TaskS5 AvgLength
HULC Mees et al. [(2022a) - - - 0418 0.165 0.057 0.019 0.011 0.67
SPIL|Zhou et al.|(2024) - - - 0.742 0463 0276 0.147 0.080 1.71
RoboFlamingo 3B|Li et al.|(2023b) - - - 0.859 0.674 0487 0317 0.025 2.59
RoboFlamingo 3B (Re-trained) - - - 0.861 0.697 0.528 0428 0.329 2.85
DeeR-VLA 3B|Yue et al.|(2024) 1.2B 1.8-10° 192 0862 0.701 0.518 0415 0.304 2.82
Random Skip - - - 0385 0.060 0.009 0.000 0.000 0.45
FlexiDepth|Luo et al.|(2025) 19M 1.6-10* 15 0720 0452 0.238 0.154 0.090 1.65
DySL-VLA 3B 14M 1.6-10* 15 0.868 0.711 0525 0419 0.303 2.83

< 29}F

e}

g

o 28F

-

>

S 2.7

=

g 2.6

S| . N

1 3 5 7 9
K

Figure 12: Influence of the value of & in pre-skip prediction, evaluated on Calvin D — D dataset.

D ACCURACY ON CALVIN ABC — D DATASET.

The accuracy comparison on Calvin ABC — D dataset is shown in Table [IT] Compared with tradi-
tional methods HULC |Mees et al.| (2022a) and SPIL |Zhou et al.| (2024), which rely on hierarchical
planning and skill priors, DySL-VLA shows higher generalization ability and large accuracy im-
provement. This is because VLA models are trained on pre-trained VLMs, which is embedded
with internet-scale knowledge. Compared with FlexiDepth |[Luo et al.| (2025), which uses skip-
ping controllers and adapters before each layer to conduct layer skipping, DySL-VLA shows 71.5%
average successful length improvement, respectively, by using static-dynamic layer skipping to re-
duce information loss. DySL-VLA shows similar successful length compared with DeeR-VLA |Yue
et al.| (2024), with 85.7x trainable parameters reduction and 11.3x training steps reduction. This
is because DySL-VLA keeps the informative layers to avoid large-scale training, and uses pre-skip
prediction and post-skip verification to ensure correction for important actions.

E FURTHER COMPARISON WITH DEER-VLA.

Here we further compare our method with the
most relevant baseline DeeR-VLA [Yue et al.
(2024), as shown in Table@ DeeR-VLA skips
all the final layers when conducting early exit,
which may cause huge information loss. So it
re-trains the LLM backbone to recover model
performance, while large-scale fine-tuning on
specific scenarios may break the generaliza-
tion ability of VLA models and introduce huge
training costs. We further evaluate DeeR-VLA
with the LLM backbone frozen (only training

Table 12: Further comparison with Deer-VLA

(evaluated on Calvin D — D dataset).

Fine-tuned # Fine-tuned

Method Parameters Steps Avg Length
RoboFlamingo 3B|Li et al.|(2023b) - - 2.82
DeeR-VLA 3B|Yue et al.|(2024) 1.2B 9.2-10* 2.83
DeeR-VLA 3B|Yue et al.|(2024) . 3

(LLM backbone frozen) 14M 6.7-10 1.95
DySL-VLA 3B 14M 6.7-10% 2.89

multiple action heads), which leads to performance drop. In contrast, our method use dynamic-static
layer skipping to keep the most informative layers, which prevents training the LLM backbone and
only fine-tunes the light-weight adapters and skipping controllers.

16

	Introduction
	Background
	Efficient VLA Inference via Dynamic-Static Layer-Skipping
	Observation and Overview
	Dynamic-static Layer Skipping
	Prior-post Skipping Guidance
	Skip-aware Two-stage Knowledge Distillation

	Experiments
	Experiment Setup
	Main Results
	Ablation Study

	Conclusion
	Ethics statement
	Reproducibility Statement
	Implementation Details
	Network Architecture
	Training Details

	Rollout Visualization
	Influence of the Trajectory Length in Pre-skip Prediction
	Accuracy on Calvin ABC D Dataset.
	Further comparison with DeeR-VLA.

