Under review as a conference paper at ICLR 2026

HS-SFT: HYBRID SPARSE SUPERVISED FINE-TUNING
FOR OFFLINE LLLM KV CACHE EVICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-context LLMs are constrained by the linear growth of key—value (KV) caches
during autoregressive decoding, which incurs pronounced latency and memory
overhead. KV eviction mitigates this issue, with existing efforts fall into offline poli-
cies with fixed eviction patterns and online policies that adaptively discard cache
based on attention scores. While online eviction typically preserves accuracy under
standard benchmarks, its performance can collapse in practical multi-turn dialogue
scenarios where the query positions vary, and integration with pre-fill acceleration
remains challenging. In contrast, offline eviction is infrastructure-friendly and
generalizable but commonly sacrifices more accuracy. In this paper, we explore
Supervised Fine-Tuning (SFT) for offline KV eviction and demonstrate its efficacy
as a simple and powerful alternative to the design of complex online eviction
metrics. We further propose Hybrid Sparse Supervised Fine-Tuning (HS-SFT) to
explore the optimal offline design of KV eviction within SFT. In particular, HS-SFT
employs a straight-through estimator to learn discrete local-window allocations of
streaming heads across layers with budget-aware balancing loss, such that under
high compression ratios—where dense-head capacity is constrained—the budget
can be more effectively skewed to capture critical information. Across extensive
evaluations on a wide array of LLMs and long-context tasks, HS-SFT delivers
substantial performance gains over state-of-the-art eviction baselines, only con-
suming fewer than 4 hours of SFT on a single 8-GPU node. These results position
training-aware offline eviction—achieved with simple SFT—as an effective and
practical path to scalable long-context inference. Code will be available.

1 INTRODUCTION

Long-context large language models (Liu et al.l 2024bj Google et al. 2024) have demonstrated
strong capabilities across real-world applications, including multi-turn dialogue (Li et al.| [2025}; Taori
et al.,|2023), long-document summarization (Goyal & Durrett, 2020; Zhang et al., 2024]), in-depth
reasoning (Guo et al.,|2025; |Zelikman et al.| [2022)), and repository-level code generation (Zhang et al.,
2023a;|Zhang et al.). Nevertheless, the attention mechanism (Vaswani et al.|[2017)) underpinning state-
of-the-art LLLMs incurs substantial computational and memory overheads in long-context scenarios.
Specifically, autoregressive decoding requires caching the keys and values of all preceding tokens to
preclude repetitive computation, yielding a key—value (KV) cache whose size scales linearly with
input length. This linear scaling substantially inflates peak memory footprint, exacerbates end-to-end
latency, and impedes large-scale deployment. For instance, the Llama-3-70B-Instruct model (Dubey
et al., 2024), when run with a batch size of 32 and a 128k-context window, consumes more than 1 TB
of KV-cache footprint at FP16 precision—rendering LLM serving prohibitively expensive.

A multitude of efforts have been undertaken to surmount this inference challenge, with major methods
falling broadly into two paradigms: KV selection and KV eviction. The former group dynamically
loads KV cache of the most relevant blocks/tokens to the current query to reduce computation cost
with all caches stored in memory. Notable methods such as Quest (Tang et al.,[2024b)) and NSA (Yuan
et al.| 2025) have shown remarkable capacity to enhance LLM throughput on long sequences, while
closely matching the performance of full attention. Nonetheless, KV selection does not evict any
cache from memory and therefore results in no KV footprint reduction. This paper hereby centers on
KV eviction (Xiao et al., 2023} |Zhang et al.l 2023b; Xiao et al.,[2025), which directly removes less
important entries from the KV cache, thereby improving both decoding and footprint efficiency.

Under review as a conference paper at ICLR 2026

Full Attention Offline Eviction Online Eviction Performance Comparison
B B B =
[]| I |, =
[||]| | 5> oflm
| | | | b
[n | d i |
[| ¥ J |
[_/_,_,_,_,_,_,_J [_/\4_,_/;\4_, J [_/ _,_,g__,_,_} Longbench Ruler SCbench

[Pre-filling [Decoding [E] Active () Evicted —— Attention score

Figure 1: (left) Toy illustration of offline and online K'V-cache eviction methods. Offline eviction
predefines a fixed eviction pattern prior to inference and is therefore compatible with prefill accel-
eration. In contrast, online eviction dynamically evicts tokens during prefill based on historical
attention scores. (right) SFT effectively elevates the performance of offline eviction method Stream-
SLLM) (Xiao et al.,2023)) to that of the online eviction method SnapKV (Li et al.|[2024).

We heuristically categorize KV eviction methods into offline and online paradigms, based on whether
the eviction policy is predetermined before inference. A canonical example of offline eviction is
StreamingLLM (Xiao et al., |2023), which predefines sink and local attention window as a fixed
sparsity pattern. Offline eviction offers a simple yet efficient solution that can seamlessly be integrated
with off-the-shelf Al infrastructures (Ye et al., 2025 |Dao et al.,[2022). Conversely, online eviction
employs heuristic metrics to dynamically devise eviction policies, mostly drawing upon attention
scores during pre-filling. For instance, SnapKV (Li et al., 2024)) evicts KV cache based on aggregated
attention scores between the input context and the observation window at the prompt end. While
online eviction generally achieves superior performance compared to offline eviction on common
tasks, notable weaknesses also exist. First, in practical settings such as multi-turn dialogue or other
cases where queries do not occur at the prompt end, online eviction can suffer from severe performance
degradation (Xiao et al.| |2025). Second, efficiency concerns arise from the incompatibility with
pre-filling acceleration (Bhaskar et al.,[2025)). Therefore, a pivotal problem emerges: how to unify
the strengths of task generalization, decoding efficiency from offline eviction and long-context
performance retention from online eviction?

In this paper, we demonstrate that supervised fine-tuning (SFT) could be a simple yet powerful
avenue to address this challenge. Figure2]reveals that: (1) SFT substantially narrows the performance
disparity of StreamingLLLM in comparison to the online eviction method SnapKYV; (2) the performance
gap among different online eviction methods is significantly minimized following SFT. This uncovers
a motivating conclusion that LLMs can inherently learn to alleviate the performance degradation
induced by cache eviction during SFT. This insight also resonates with NSA (Yuan et al.,|2025)) and
GPT-OSS (OpenAl [2025)), which incorporate K'V/attention sparsity during the pre-training phase
and show promising native sparse performance. Differently, our findings suggest a more efficient
way that directly applying lightweight SFT to off-the-shelf LLMs can also effectively rehabilitate the
performance of online eviction paradigm.

We go further to investigate the optimal fine-tuning paradigm for offline KV eviction. Current eviction
methods predominantly concentrate on the allocation ratio between dense and streaming heads. Here,
the streaming heads are set with a fixed 128/256 local window size, which, however, imposes a
significant constraint on performance preservation under high sparsity regimes. For example, under
a 2048-token budget, Duo-attn can designate only 1% of heads as dense, confining the rest to
local windows of 256 tokens. To address this shortcoming, we propose Hybrid Sparse Supervised
Fine-Tuning (HS-SFT) for offline KV eviction. In particular, HS-SFT jointly learns optimal local
window size allocations across layers, thereby enabling more strategic cache budget distribution
under high sparsity to optimize performance retention. To realize this, we utilize a Straight-Through
Estimator (STE) (Bengio et al.}[2013) to learn layer-wise budget allocation policies, supplemented by
a budget-aware balance loss that explicitly promotes KV sparsity.

Experiments on a wide variety of models and downstream tasks demonstrate that HS-SFT achieves
superior trade-offs among accuracy, latency, and memory footprint reduction for KV cache eviction.
For instance, by applying HS-SFT to fine-tune the LLaMA-3-8B-1048K model (Dubey et al., 2024)

Under review as a conference paper at ICLR 2026

J
1
J
1
J
L]

(TTTTTT]
J

J

-
aasann

(LT TTTT

L)

]

J

]

J
[QQQQQﬂX*<

(TTTTTT
(TTTTTT

U SR W W O O D UG D S
Dense head Flow Sparse head Flow
@1 I o)
T
Q X K

Figure 2: Framework of HS-SFT. We use two types of attention masks in each layer during training.
The dense head flow performs full attention computations, while the sparse head flow learns optimal
local window budgets through layer-specific STE-based router.

in less than 4 hours on a single 8-A800 node, we achieve a 2.8 end-to-end speedup and a 1.8
reduction in memory usage at 100K decoding length with 10% KV budget, while surpassing Duo-attn
by 23.7% to 29.5% average score on the LongBench (Bai et al.| 2023)) benchmark. We hope this
work lays a foundation for future innovations focused on training-aware KV eviction strategies.

2 HS-SFT

2.1 EXPLORING SFT FOR OFFLINE KV EVICTION

We explore offline KV cache eviction for efficient long-context LLM inference. In the offline setting,
the eviction plan is fixed prior to inference and typically entails replacing the vanilla dense attention
heads (Vaswani et al.,2017) with streaming heads (Xiao et al.| | 2023)). Concretely, a streaming head
retains a small set of sink tokens at the sequence prefix together with a fixed-size local window
that slides throughout decoding. Such offline definition for KV sparse pattern confers practical
deployment advantages (e.g., compatibility with prefilling acceleration (Xiao et al.,[2025)). However,
relative to online methods that dynamically determine eviction policies using attention scores (Zhang
et al.| 2023b; |Li et al.,|2024), offline schemes often suffer pronounced performance degradation.

In this work, we investigate supervised fine-tuning (SFT) (Raffel et al., 2020; |Ouyang et al., [2022)) to
recover the performance of offline KV eviction without compromising its offline nature. Specifically,
we conduct a lightweight SFT on 1B tokens from UltraChat (Ding et al.,2023) under the predefined
sparse pattern of a representative eviction method StreamingLLM (Xiao et al.,2023)). Remarkably,
SFT enables the pre-trained LLM to mitigate the degradation induced by offline KV eviction, yielding
substantial improvements across diverse long-context scenarios, as shown in Figure 2] SFT also
markedly narrows the performance disparity among different offline eviction schemes, suggesting
that—rather than devising intricate metrics—model fine-tuning offers an effective and compelling
alternative for improving KV-eviction performance. Our findings also align with GPT-OSS (OpenAll
2025)), which replaces a subset of layers with streaming layers during pre-training and demonstrates
robust performance of such offline eviction paradigm. Nevertheless, we posit that even modest
SFT suffices to endow the model with global information aggregation capabilities under KV cache
eviction, offering a practical and efficient solution.

2.2 HYBRID SPARSE SFT

We further explore the optimal SFT paradigm for offline KV-cache eviction. Existing approaches
predominantly optimize hybrid allocations between dense and streaming heads (Bhaskar et al., [2025
Xiao et al., 20255 |OpenAlL 2025), where streaming heads operate with small, fixed local windows

Under review as a conference paper at ICLR 2026

(e.g., 128/512 tokens). The motivation stems from that attention heads of transformer-based LLM
exhibit distinct and stable specialization patterns (Wu et al., 2024} [Xiao et al.,2025): retrieval heads
capture global information, whereas streaming heads prioritize recent tokens and attention sinks.

However, such hard dense—streaming hybrid management faces two limitations under high KV
sparsity. First, while strongly distinct head behaviors are visible in standard multi-head attention
(MHA) (Vaswani et al.,|2017), they are less pronounced in grouped-query attention (GQA) (Ainslie
et al., [2023)) with compact head dimension design (Xiao et al.2025). Since most modern models
adopt GQA, a fixed dense—streaming split becomes inflexible at high sparsity. Second, under
extremely high eviction rates like 90%, only a small subset of heads remain dense, whereas other
globally oriented heads are forced into overly tight streaming windows and thus suffer pronounced
performance degradation.

To address these issues, we propose Hybrid Sparse Supervised Fine-Tuning (HS-SFT) for offline KV
eviction. The key principle of HS-SFT falls in that it learns soft local window budget candidates
during SFT, in conjecture with dense head, enabling more strategic cache-budget allocation under
high sparsity to maximize performance retention. Concretely, during training, we keep a fixed fraction
« of heads per layer dense, and learn the optimal local window budget allocations for the remaining
heads. Here each layer is equipped with a discrete budget set B = [b1, bo, . . ., by,] At forward passes,
each sparse head selects at most & tokens from the current KV cache to attend to, where k € 5. This
reduces both attention FLOPs and memory footprint and, crucially, allows layer-wise specialization
of KV eviction based on different patterns of streaming heads.

STE-based Learnable Budget Selection. For the sparse head flow, we learn the optimal budget
k € B. We associate each candidate budget b; with a learnable logit z;, and let z = [z1, ..., 2]
denote the logits for streaming head in one specific laye] We perform hard selection in the forward
pass as

k = B[argmiaxzi]. (1)

Since arg max is non-differentiable, we adopt the Straight-Through Estimator (STE) (Bengio et al.,
2013)) to optimize z. Particularly, we pass the gradient only to the selected logit and zero out the rest:

@

8LLM F o . X
OLim _) Doutput if ¢ = arg max; z;,
aZi

0 otherwise.

This preserves hard budget selection during forward propagation while enabling end-to-end optimiza-
tion for the budget logits of each layer.

Budget-aware Balance Loss. To avoid trivial solutions where all sparse heads choose large budgets,
we regularize the discrete choice via a KL divergence to a prior that favors smaller budgets. Let
m = |B|, we derive the selection distribution as

pi = softmax(z),, i€ {l,...,m}. 3)
Then, we define a prior over indices that increases mass on smaller budgets via a power law:
(m+1—14)
Z;n:l(m +1-4)’

The budget-aware balance loss is then derived by the KL divergence KL(p||q):

q = v > 0. 4)

ﬁbalance = A Zpi(k)g(pi + 5) - log(Qi + 5))5)

i=1

where A > 0 controls the sparsity penalty and € > 0 is a small constant for numerical stability. The
overall objective is
L = ﬁLM + Ebalance- (6)

This objective explicitly encourages compact budgets whenever possible, while permitting larger
budgets where necessary to preserve performance.

“We refrain from assigning learnable budget logits to every attention head within a layer, as it induces
numerous heterogeneous KV sparse inference flows that markedly degrades inference efficiency.

Under review as a conference paper at ICLR 2026

dureader

qasper

multinews

—— SLM
-~ Duo
SnapkV
—— HS-SFT
Baseline

10% 20%

30%
% KV Budget

samsum

7

/

A

o

—

10% 20%

30%
% KV Budget

mutilga_en

—— SLM
-~ Duo
SnapKV
—— HS-SFT
Baseline

40%

50%

=
/
/ }
o ‘ —— SLM
— Duo
Snapkv
—— HS-SFT
Baseline
50%

20% 40%

30%
% KV Budget

govreport

oz

o o ~ o
S S a0 S
339 3 / 826
SLLM SLLM SLLM
35
* —— Duo —— Duo 24 —— Duo
SnapKkV SnapKV SnapKkV
37 —— HS-SFT 30 == —— HS-SFT 22 _— —— HS-SFT
--- Baseline I3 --- Baseline T --- Baseline
36
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
% KV Budget % KV Budget % KV Budget
Isht trec triviaga
35 o a8
86
30 65
84
60
@25 [ve2
] O 55]
3 s o o
@ — @ % 8o
20 T SLLM 50 SLLM 78 SLLM
~ -~ Duo . ~— Duo s ~— Duo
15 -~ SnapkV SnapkV 76 // SnapkV
T —— HS-SFT —— HS-SFT

--- Baseline

--- Baseline

7 —— HSSFT
. - Baseline

20% 40%

30%
% KV Budget

50%

20%

30%
% KV Budget

40%

50%

20% 40% 50%

30%
% KV Budget

Figure 3: Per-task LongBench results on Llama-3-8B-Instruct-1048K. HS-SFT consistently narrows
the gap to dense attention across KV budget percentage and remains stable across task types.

2.3 HS-SFT WORKFLOW

The training and inference pipeline of HS-SFT is illustrated in Figure[2] Prior to training, we initialize
a fraction « of dense heads using the logit map optimized by Duo-Attn (Xiao et al.,|2025)). During
training, we jointly optimize the layer-wise local-window budget logits and the model weights. Given
a target sparsity p at the inference stage, we retain the dense heads (fraction o) and allocate the
remaining cache to streaming heads by monotonically scaling the learned budgets of each layer to
meet the overall sparsity constraint. A detailed algorithm workflow is presented in Appendix[A.3]

HS-SFT unifies the strengths of offline eviction with the performance retention typically attributed to
online heuristics. By hard-selecting discrete budgets via STE and regularizing the selection distri-
bution with a budget-aware loss, HS-SFT learns optimal layer-wise sparsity patterns for streaming
heads while jointly adapting the pre-trained LLM to mitigate performance degradation under KV
eviction. At inference time, the execution remains strictly offline: a subset of heads stays dense, and
all remaining heads run streaming attention with their layer-wise calibrated budgets derived from
the learned preferences. As a result, HS-SFT maintains the efficiency of offline eviction paradigms,
while effectively mitigating the performance gap versus dense attention.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Tasks, Models, and Baselines. We assess long-context capabilities across three representative
benchmarks: LongBench (Bai et al.} 2023)), Ruler-16K (Hsieh et al.,[2024])), and Needle-in-a-Haystack
(NIAH) (Kamradt, 2024). We evaluate two base long-context LLMs instantiated in three context-
window configurations: Llama-2-7B with 32K extension Touvron et al.| (2023)) and Llama-3-8B-
Instruct with Gradient-262K/1048K extensions (Pekelis et al., 2024)). We compare offline and

Under review as a conference paper at ICLR 2026

Llama-2-7B-32K — LongBench Llama-2-7B-32K — Ruler Llama-2-7B-32K — NIAH
35 — 25 T 9%
- 80
30 2
70
25
o o o
320 @ @
50
15 SLLM 10 SLLM 20 SLLM
~— Duo — Duo — Duo
10 —— HS-SFT 5 —— HS-SFT 30 —— HS-SFT
Baseline Baseline Baseline
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
% KV Budget % KV Budget % KV Budget
Llama-3-8B-262K — LongBench Llama-3-8B-262K — Ruler Llama-3-8B-262K — NIAH
42 - 90
40
80
s 80
38 o
- 7
35 / 60 0

SLLM SLLM SLLM

28 ~— Duo -~ Duo 40 -~ Duo
—— HS-SFT 20 —— HS-SFT —— HS-SFT
25 --- Baseline --- Baseline 30 --- Baseline
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
% KV Budget % KV Budget % KV Budget
Llama-3-8B-1048K — LongBench Llama-3-8B-1048K — Ruler Llama-3-8B-1048K — NIAH
42
9 — 90
40 -
_— 80 80
38 o
3 7 70
o Q60 <
S S S 60
2
&> &so &
30 _— %0 50
P — SLLM SLLM SLLM
28 S —— Duo 30 / —— Duo 20 P —— Duo
2 // e HS.SFT / —— HS-SFT A~ —— HS-SFT
- ---- Baseline 20 ---- Baseline 30, ---- Baseline
10% 20% 40% 50% 10% 20% 40% 50% 10% 20% 40% 50%

30% 30% 30%
% KV Budget % KV Budget % KV Budget

Figure 4: Average accuracy across Llama-2-7B-32K and Llama-3-8B-262K/1048K. The superiority
of HS-SFT remains stable across different tasks and KV budgets.

online key—value (KV) cache eviction policies, including StreamingLLM (Xiao et al., [2023)), Duo-
Attention (Xiao et al., [2025)), and SnapKV (Li et al.;|2024)). Consistent with prior work (Tang et al.,
2024bj [Xiao et al.,|2025)), we simulate generation of the final 50 tokens for elongated inputs during
evaluation to ensure a fair comparison between offline and online regimes.

Implementation Details. Following |Gao et al.| (2024), we conduct supervised fine-tuning (SFT)
on 1B tokens sampled from UltraChat-200K (Ding et al.| [2023). Detailed SFT hyperparameters
are provided in Appendix [A”4] During training, we employ the block-sparse kernel for streaming
attention as implemented by |Guo et al.|(2024)), aligning configurations with |Xiao et al.|(2025). For
budget learning within HS-SFT, we use a learning rate of 3 x 10~* with no weight decay. The
candidate budget set is {1, 2, 3,4,5, 6, 7,8} blocks, where each block contains 128 tokens. To assess
performance across KV budgets, we set the dense-head ratio a to be 5% lower than the targeted
KV budget. Although a uniform dense-head ratio of &« = 5% can be monotonically rescaled during
inference to satisfy a target sparsity budget, we observe that budget-specific o values yield more
consistent performance gains.

3.2 QUANTITATIVE RESULTS

LongBench. LongBench comprises a diverse suite of long-context tasks, including retrieval-style
QA, long-document summarization, and multi-passage classification that stress faithful cross-span
integration and robust global-to-local information routing. Figure [3|presents a comparison of HS-SFT
against competing methods across six representative LongBench tasks. More comprehensive results
for all tasks are provided in Appendix[A.9] Relative to existing offline eviction baselines, HS-SFT
markedly reduces the performance gap to dense attention across KV eviction levels ranging from
50% down to 10%. Notably, the gains delivered by HS-SFT intensify as the KV budget shrinks, since
learnable, head-wise budgets adaptively allocate capacity to layers where long-range aggregation is
most advantageous.

Under review as a conference paper at ICLR 2026

so0x Decoding Latency Reduction Decoding Memory Reduction
10% KV budget 10% KV budget
c 45X —e— 20% KV budget c 3.0X{ —e— 20% KV budget
S 4.0x 30% KV budget k] 30% KV budget
s —e— 40% KV budget ko] —e— 40% KV budget
2 3.5X 50% KV budget 3 2:5X 50% KV budget
9 3.0x v
T 2.5x 2 2.0x
c (=}
% 2.0X g
1.5X
= 15x =
1.0X

20K 40K 60K 80K 100K 120K 140K 160K 180K 200K 20K 40K 60K 80K 100K 120K 140K 160K 180K 200K

Context length Context length
S 6x Pre-filling Latency Reduction Pre-filling Memory Reduction
10% KV budget 10% KV budget
c 2.4X1 —e— 20% KV budget - 2.0X - 20% KV budget
S 2% 30% KV budget o 30% KV budget
s : —— 40% KV budget 1 1.8X{ —e— 40% KV budget
_g 2.0X 50% KV budget g 50% KV budget
9] 9]
< 18X E-l 6X
>
%)
2 1.6X S 14
I £
© 1.4X o}
- =12
1.2X :

20K 40K 60K 80K 100K 120K 140K 160K 180K 200K 20K 40K 60K 80K 100K 120K 140K 160K 180K 200K
Context length Context length

Figure 5: End-to-end efficiency results on one GPU (batch size=1).

Table 1: Performance comparison under identical SFT settings at 10% KV budget for Llama-3-8B-
1048K. HS-SFT achieves the strongest average performance.

KV budget Duo-Attn SLLM LS HS-SFT
Base SFT Base SFT Base SFT (Ours)

50% 394 40.1 32.2 36.8 30.8 37.1 42.2

10% 24.1 26.3 23.8 27.1 23.1 26.4 29.6

Cross-Model and Cross-Task Generalization. We further evaluate Llama-2-7B-Instruct-32K,
Llama-3-8B-Instruct-262K and Llama-3-8B-Instruct-1048K-Instruct on LongBench, Ruler, and
NIAH. Ruler emphasizes long-range cross-document retrieval and compositional reasoning, whereas
NIAH tests the efficacy of models to accurately retrieve relevant information from long context. As
shown in Figure 4] across all evaluated LLMs and task suites, HS-SFT consistently outperforms
existing baselines and matches or surpasses online methods at every KV budget. These consistent
gains indicate strong transferability across pretraining distributions and task typologies.

Comparison under Identical SFT Settings. We conduct an ablation of offline eviction schemes
under identical SFT configurations (data, steps, and hyperparameters) to isolate the effect of SFT.
Specifically, Duo-Attention, Streamingl.LLM, and HS-SFT are fine-tuned on the same 1B-token
UltraChat corpus and evaluated on all benchmarks at matched KV budgets. We additionally evaluate
the hybrid strategy of GPT-OSS (OpenAlL [2025)), which employs interleaved streaming layers (Layer
Streaming, LS). As shown in Table[I} HS-SFT attains the highest average performance across datasets
and sparsity levels. This suggests that learning discrete, layer-specific budget preferences via STE-
based selection coupled with budget-aware regularization outperforms fixed-window approaches
and rigid dense/streaming partitions. Moreover, HS-SFT delivers significant improvements over the
GPT-OSS-style hybrid paradigm, underscoring its potential to scale to larger architectures and more
demanding training regimes as a promising future work.

Efficiency Analysis. We measure end-to-end memory footprint and latency for the prefill and decode
phases on a single NVIDIA GPU with a 4K chunk size. As shown in Figure[5] consistent with offline
sparse methods (Xiao et al., 2025} [2023)), HS-SFT substantially reduces both prefill latency and
memory consumption. Decoding efficiency scales approximately linearly with KV-budget reduction,
achieving a 2.8 x speedup at a 100K-token context length under 10% KV budget. Coupled with
its accuracy gains, HS-SFT lies on a favorable Pareto frontier within the offline eviction paradigm,
improving quality while preserving deployment simplicity. We further analyze the inference efficiency
of HS-SFT compared with traditional KV eviction (Li et al} [2024} Xiao et al.| [2023), layer-wise
hybrid (OpenAl, 2025)) and head-wise hybrid (Fu et al., |2024b} |Ge et al. 2023) paradigms in

Appendix

Under review as a conference paper at ICLR 2026

Table 2: Ablations on SFT configurations. Up- Table 3: Regularizer ablation at 10% KV budget.
dating dense heads yields significant gains, and ~ Budget-aware KL regularization (A\ = 1072)

SFT outperforms continued pretraining. achieves optimal performance.
Configuration LongBench Ruler Regularizer A LongBench Ruler
Frozen 27.03 49.14 L2 penalty 1072 25.51 39.51
Updated 29.57 54.68 KL divergence 107° 27.10 41.87
CP 24.55 27.07 KL divergence 1072 29.57 54.68
Per-layer argmax block size Per-layer argmax block size

Block size
E N W s Lo N
Block size
PN W s Lo e

15 20 25 30 15 20 25 30
Layer index Layer index

o

«

5
o
«
5

Figure 6: Learned budget allocation (blocks) across transformer layers of Llama-2-7B-32K and
Llama-3-8B-1048K. Layer indices increase from left to right.

Table 4: Ablations on SFT scale and domain. The average score is computed on LongBench under
10% KV budget and with @ marking per-dataset mixing ratios when forming the SFT corpus.

Dataset | Training Tokens | Avg. Score
SFT size

UltraChat@1.0 1B 29.57
UltraChat@1.0 0.5B 28.76
UltraChat@1.0 2B 29.42

SFT Domain
UltraChat@0.8 + Tulu-V3-Code @0.2 1B 28.34
UltraChat@0.8 + Tulu-V3-Math@0.2 1B 28.48
Tulu-V3@1.0 1B 29.99
UltraChat@0.8 + ArXiv-Sum@(.2 1B 29.08
ArXiv-Sum@1.0 1B 26.12

3.3 ABLATION STUDIES

We analyze HS-SFT along two axes—budget learning and SFT configuration. All ablations use
Llama-3-8B-Instruct-1048K with 10% KV budget.

Budget Learning Mechanism. We compare our budget-aware KL regularizer (Section 2.2) against
a conventional L2 penalty, sweeping A € {107%,1072,5 x 1072,107'}. As shown in Table [3|
A = 1072 yields the best macro-average performance across benchmarks. Lower) values in-
sufficiently penalize excessive budget allocation, whereas higher values over-suppress necessary
long-range aggregation. Expanding the candidate budget set to 1, 32] or [8, 16] blocks did not im-
prove performance, likely because more blocks yield local window sizes larger than the 1.5K average
sequence length in the Ultrachat corpus, limiting the training efficacy for KV eviction paradigm.
Figure [6] visualizes the learned layer-wise budgets, revealing unique distributions across different
layers.

SFT Configuration Analysis. Table2]examines SFT design choices. Freezing dense heads during
fine-tuning consistently underperforms full-parameter updates, suggesting that adapting dense heads
strengthens global retrieval. We also compare against continued pretraining (CP) on RedPajama (We+
ber et al.| [2024) using an equivalent training tokens. As shown in Table [2] SFT outperforms CP,
as token-level continued pretraining does not adequately instill global-information recovery under
constrained KV budgets.

Under review as a conference paper at ICLR 2026

We further study how the SFT data domain and scale influence the performance of HS-SFT. Table 2]
list the results. In particular, we first vary the number of training tokens on UltraChat to measure
the size effect and observe a clear scaling trend on downstream tasks, yet continuing to increase the
training tokens does not linearly lead to performance improvement. Next, we replace UltraChat with
Tulu-V3 (Lambert et al.l|2024)) and also mix UltraChat with the Code and Math subsets of Tulu-V3
to examine domain sensitivity. Finally, we include data settings biased for summarization tasks using
ArXiv-Summarization (Cohan et al., [2018) that highly correlate with long-context ability. While
domain-specialized data can improve in-domain metrics, aggressively skewing toward summarization
tends to reduce overall performance on general tasks.

Dense Head Initialization. We investigate the im-
pact of dense-head initialization on HS-SFT. We con-
sider two variants: (i) random initialization and (ii) se-
lecting dense heads following RazorAttention (Tang
et al., 2024a). As shown in Table|§[, random selection

Table 5: Ablations on dense head initializa-
tion. The average score is computed on Long-
Bench under a fixed 10% KV budget.

of dense head incurs a notable performance drop com- Method | Avg. Score
pared with a strategic choice. Moreover, RazorAt- Random 26.41
tention achieves performance close to Duo-Attention, RazorAttention 29.02
suggesting that HS-SFT is relatively robust to the Duo-Attention 29.57

choice of initialization.

4 RELATED WORK

A diverse array of methodologies has been introduced to optimize the efficiency of KV cache in LLMs
for long-context inference. These methods can be broadly grouped into the following categories.

4.1 CACHE EVICTION

Cache eviction refers to the removal of redundant KV entries to yield a more lightweight KV cache,
thereby enhancing decoding efficiency and reducing memory footprint relative to conventional full-
cache management paradigm. In this paper, we heuristically divide KV cache eviction methods into
offline and online paradigms, depending on whether the eviction policy is fixed prior to inference.

Offline KV Eviction. Offline KV eviction enforces a static, sparse KV pattern irrespective of the input
sequence, thereby ensuring consistent decoding latency and memory efficiency throughout inference.
Representative examples include Streamingl.LM [Xiao et al|(2023)), which persistently retains both
the initial and most recent tokens within the sequence, and Duo-attn Xiao et al.|(2025), which further
optimizes dense and streaming head assignments to balance fidelity and efficiency under a pre-defined
KV budget. The recently introduced GPT-OSS |OpenAll (2025)) also exemplifies an offline KV
eviction paradigm, incorporating interleaved streaming layers during pretraining to natively support
KV eviction. Offline eviction methods are distinguished by their seamless integration with existing
inference frameworks, thereby delivering stable end-to-end throughput and memory consumption
benefits; however, they often incur performance degradation under high sparsity regimes. Our
proposed DS-SFT addresses these limitations from two perspectives while preserving the deployment
advantages of offline eviction. First, we pioneer the exploration of SFT strategies tailored for KV
eviction and demonstrate their efficacy in enhancing offline eviction performance. Second, DS-SFT
enables more strategic local window size allocation to optimize better performance than existing
methods that keep unified local window size across all layers.

Online KV Eviction. Online KV eviction dynamically modulates the retention and removal of KV
entries during inference, guided by preceding attention scores|Zhang et al.| (2023b)); [Li et al.| (2024);
Fu et al.| (20244); |Cai et al.|(2024). For instance, H20 |Zhang et al.|(2023b) leverages accumulated
attention scores as a criterion to selectively preserve salient KV entries. SnapKV |Li et al.| (2024)
further exploits local window attention scores over the prefilling context to evict token caches with
minimal contribution. Building upon SnapKYV, PyramidKV |Cai et al.| (2024) heuristically allocates
more cache to lower layers while reducing allocation in higher layers. MorphKV |Ghadia et al.| (2025)
further refines the compressed KV cache via lightweight updates guided by attention patterns of
recent tokens. Online eviction generally achieves superior performance than offline eviction on
standard long-context tasks. Nevertheless, the heuristic measurement based on attention scores may

Under review as a conference paper at ICLR 2026

precipitate significant performance degradation in practical multi-turn dialogue scenarios, particularly
when queries are not situated at the end of the prompt|Xiao et al.|(2025). Moreover, online eviction
strategies are inherently at odds with prefill-acceleration techniques [Bhaskar et al.|(2025), further
constraining their efficiency in handling tasks characterized by extensive pre-filling, such as document
summarization. In this work, we focus on the context of KV eviction to strike better generalization
and deployment efficiency.

A line of recent works has also investigated head-wise KV compression (Fu et al.,[2024b; |Ge et al.}
2023)). Fastgen |Ge et al.|(2023) pioneered head-wise KV eviction by eliminating long-range contexts
in heads that emphasize local patterns, discarding non-special tokens in heads focused on special
tokens, and retaining the standard KV cache only for heads with broad attention coverage. HeadKV [Fu
et al.| (2024b) further proposed an importance-score estimation method that jointly evaluates each
head’s retrieval and reasoning capabilities. While HS-SFT also involves partitioning along the head
dimension, we diverge by classifying heads into dense and sparse flows on a per-layer basis, as shown
in Figure 2} This design guarantees exceptionally high inference efficiency, whereas fine-grained
head-wise implementations typically require specialized kernels and are difficult to apply effectively
in training scenarios. Therefore, we refrain from assigning learnable budget logits to every attention
head within a layer, as it induces numerous heterogeneous KV sparse inference flows that markedly
degrades training/inference efficiency. We provide a detailed efficiency analysis in Appendix [A.6]

4.2 CACHE SELECTION

Cache selection methods preserve the entirety of KV entries in memory, yet dynamically retrieve
only the most pertinent blocks or tokens during decoding Ribar et al.| (2023)); Tang et al.| (2024b));
Chen et al.| (2025); Yuan et al.|(2025). This paradigm can effectively enhance throughput on extended
sequences while closely approximating the accuracy of full-attention mechanisms. For instance,
SparQ Ribar et al.|(2023)) estimates token significance via cache channel pruning, thereby facilitating
the selection of salient tokens. Quest|Tang et al.|(2024b) query the min and max row of key cache to
assess the criticality of token blocks. HShare (Wu et al.| [2025)) further facilitates critical KV cache
token sharing when selecting cache. NSA (Yuan et al., [2025) extends the principle of KV selection
to the pretraining phase, demonstrating the effectiveness of native attention sparsity. Nonetheless,
cache selection techniques are primarily oriented towards accelerating the decoding process without
alleviating the KV memory footprint, i.e., they do not evict any KV cache but only retrieve cache for
efficient computation, and thus fall beyond the scope of this paper.

4.3 EFFICIENT ARCHITECTURE

This line of work modifies the vanilla dense-attention architecture to natively improve KV-cache
efficiency. For example, GQA (Ainslie et al.,2023) shares a common KV cache across queries from
different heads, substantially reducing storage and access overhead; MLA (Liu et al.,2024a) intro-
duces low-rank joint key—value compression that maps the KV cache to compact latent vectors. These
architectural techniques are orthogonal to eviction/selection strategies and can often be composed to
yield end-to-end gains in memory usage, latency, and throughput.

5 CONCLUSION

KV eviction is pivotal for efficient long-context LLMs. However, prevailing offline and online policies
struggle to reconcile task generalization, deployment efficiency, and accuracy retention. We demon-
strate that straightforward supervised fine-tuning (SFT) substantially closes the offline-to-online
accuracy gap while preserving offline efficiency and robustness to multi-turn dialogue. We further
introduce HS-SFT, which learns discrete, layer-wise local-window assignments for streaming heads
via straight-through estimator and incorporates a budget-aware balancing loss to optimize the sparsity
allocations at high compression rates. Across validation across an array of models and tasks, HS-SFT
consistently surpasses state-of-the-art eviction baselines while retaining offline advantages, opening a
training-centric alternative to hand-crafted pruning metrics for the community. Future work includes
scaling SFT and exploring finer-grained, head-wise hybrid paradigms with hardware co-design.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head checkpoints.
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Adithya Bhaskar, Alexander Wettig, Tianyu Gao, Yihe Dong, and Dangi Chen. Cache me if you can:
How many kvs do you need for effective long-context lms? arXiv preprint arXiv:2506.17121,
2025.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling. arXiv preprint arXiv:2405.12345, 2024.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, and Beidi Chen. MagicPIG: LSH Sampling for
Efficient LLM Generation. International Conference on Learning Representations (ICLR), 2025.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
documents. arXiv preprint arXiv:1804.05685, 2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344-16359, 2022.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233,2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic large
language model compression. arXiv preprint arXiv:2406.14909, 2024a.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter:
A head-level kv cache compression method with integrated retrieval and reasoning. arXiv preprint
arXiv:2410.19258, 2024b.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context language
models (effectively). arXiv preprint arXiv:2410.02660, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. International Conference on Learning
Representations (ICLR), 2024.

11

Under review as a conference paper at ICLR 2026

Ravi Ghadia, Avinash Kumar, Gaurav Jain, Prashant Nair, and Poulami Das. Dialogue without limits:
Constant-sized kv caches for extended responses in llms. arXiv preprint arXiv:2503.00979, 2025.

Gemini Team Google, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Tanya Goyal and Greg Durrett. Evaluating factuality in generation with dependency-level entailment.
arXiv preprint arXiv:2010.05478, 2020.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Junxian Guo, Haotian Tang, Shang Yang, Zhekai Zhang, Zhijian Liu, and Song Han. Block sparse
attention. https://github.com/mit-han-lab/Block-Sparse- Attention, 2024. GitHub repository.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Greg Kamradt. Llmtest needleinahaystack: Doing simple retrieval from 1lm models at various
context lengths to measure accuracy. https://github.com/gkamradt/LLMTest_NeedleInAHaystack,
2024. Accessed: 2024-05-23.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al. Scbench: A kv cache-centric analysis of
long-context methods. International Conference on Learning Representations (ICLR), 2025.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. Conference on Neural Information Processing Systems (Neurips), 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024b.

OpenAl. Gpt-o0ss-120b & gpt-0ss-20b model card. Technical report, OpenAl, 2025. URL https:
//cdn.openai.com/pdf/419b6906-9da6-406¢-al19d- 1bb078ac7637/0ai_gpt-oss_model_card.pdf.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

Leonid Pekelis, Michael Feil, Forrest Moret, Mark Huang, and Tiffany Peng. Llama 3 gradient: A
series of long context models, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.

12

https://github.com/mit-han-lab/Block-Sparse-Attention
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://cdn.openai.com/pdf/419b6906-9da6-406c-a19d-1bb078ac7637/oai_gpt-oss_model_card.pdf
https://cdn.openai.com/pdf/419b6906-9da6-406c-a19d-1bb078ac7637/oai_gpt-oss_model_card.pdf

Under review as a conference paper at ICLR 2026

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang. Razorat-
tention: Efficient kv cache compression through retrieval heads. arXiv preprint arXiv:2407.15891,
2024a.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-Aware Sparsity for Efficient Long-Context LLM Inference. In International Conference on
Machine Learning (ICML), 2024b.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Qwen Team et al. Qwen?2 technical report. arXiv preprint arXiv:2407.10671, 2(3), 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. Conference on Neural Information
Processing Systems (Neurips), 2017.

Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chalamala,
Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and Ce Zhang.
Redpajama: an open dataset for training large language models. NeurIPS Datasets and Benchmarks
Track, 2024.

Huaijin Wu, Liangiang Li, Hantao Huang, Tu Yi, Jihang Zhang, Minghui Yu, and Junchi Yan. Hshare:
Fast llm decoding by hierarchical key-value sharing. In The Thirteenth International Conference
on Learning Representations, 2025.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
explains long-context factuality. arXiv preprint arXiv:2404.15574, 2024.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. DuoAttention: Efficient Long-Context LLM Inference with Retrieval and Streaming
Heads. International Conference on Learning Representations (ICLR), 2025.

Guangxuan Xiao et al. StreaminglL.LM: Efficient Processing of Streaming Data with Large Language
Models. International Conference on Learning Representations, 2023.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, and Luis Ceze. FlashInfer: Efficient and
Customizable Attention Engine for LLM Inference Serving. Conference on Machine Learning and
Systems (MLSys), 2025. URL https://arxiv.org/abs/2501.01005.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 2471-2484. Association for Computational Linguistics, 2023a.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pp. 13643-13658.

13

https://arxiv.org/abs/2501.01005

Under review as a conference paper at ICLR 2026

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39-57, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2O: Heavy-hitter oracle for efficient
generative inference of large language models. Conference on Neural Information Processing
Systems (Neurips), 36:34661-34710, 2023b.

14

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

During the writing of this paper, we utilized LLM solely for language editing to improve clarity and
readability. We critically reviewed and revised all Al-generated suggestions to ensure the final text
accurately reflects our original intent. All intellectual contributions, including the research design,
methodology, analysis, and conclusions, are our exclusive work, and we take full responsibility for
the academic integrity of this publication.

A.2 DISCUSSION AND LIMITATION

In this section, we discuss the limitations and potential future work of HS-SFT. First, while our
layer-specific router offers superior training and inference efficiency, head-specific KV sparsity (Ge
et al.,|2024)) has more intuitive potential for higher task performance. A promising direction is to pair
infrastructure innovations with head-specific hybrid configuration for SFT and inference. Second,
our comparison against OSS-like coarse-grained hybrids is currently limited to the SFT setting,
demonstrating HS-SFT as a scalable approach for rapidly transferring dense models to the sparse KV
paradigm. An important next step is to evaluate the method during pretraining to assess upstream
performance. Finally, our choice of dense heads follows conclusions from Duo-att (Xiao et al., [2025),
and the sparsity ratio is largely fixed. Future work could explore a once-for-all hybrid configuration
learned during training, together with flexible sparsity control at inference time.

A.3 HS-SFT ALGORITHM WORKFLOW

We provide pseudocode for the training workflow of HS-SFT in Algorithm[I] For the inference
workflow, we initialize per-layer KV budgets to their learned values. Then, We monotonically rescale
only the sparse-head budgets so that their sum with the dense-head contribution exactly matches the
global KV budget. Accordingly, dense heads attend to the full cache, whereas sparse heads attend to
their rescaled per-layer budgets during inference.

Algorithm 1 HS-SFT Training

Inputs: Pretrained LLM 6y, SFT dataset D, dense-head fraction «, budget set B = [b1, . . ., bw], temperature 7,
prior-shape ~, balance weight A, stability €, optimizer Opt, total steps T’

Outputs: Fine-tuned weights 6*, budget logits {z}

1: Initialize dense heads per layer using Duo-Attn; initialize logits z € R™ for each sparse head
2: fort =1toT do

3 Sample minibatch (z,y) ~ D

4 for each layer and sparse head do

5: i* < argmax; z;; k <+ B[i*] // Equation. [1]

6: Sparse attention computation with the 128 sink tokens and the latest k tokens

7: end for

8 Compute Lrm(0;z,y)

9: p; + softmax(z/7); // Equation.
—i)Y

10: g < % 1 Equation.

11: Lialance = A, pi(log(p: + &) — log(qi +¢€)) /I Equation.

12: L < LM + Lvalance // Equation. [0]

13: Backpropagate V£ and STE gradients for z as in Equation[2]
14: Update (6, {z}) < Opt step

15: end for

16: return (6%, {z})

15

Under review as a conference paper at ICLR 2026

A.4 DETAILED EXPERIMENT SETTINGS

We detail the hyperparameters used for HS-SFT in Table[6] The SFT settings are generally kept the
same as|Gao et al|(2024)); Bhaskar et al.|(2025).

Table 6: Detailed Hyperparameters used for HS-SFT.

Hyperparameter Value
SFT base settings
Batch size (tokens) 4,194,304
Learning rate 2.107°
Training steps 2500
LR schedule Linear warmup for first 5% of steps
then linear decay to 10% peak LR
Adam (81, 52) (0.9,0.95)
HS-SFT hyperparameters
Logit LR 3-1074
Lambda 1-1072
Gamma 2.0
€ 1-1078
Candidate budget set {1,2,3,4,5,6,7,8} x 128
Sink size 128

A.5 BUDGET ALLOCATION ANALYSIS

Figures[7]and 8] show the learned budget allocation across different SFT corpora and candidate budget
sets, respectively. First, the budget allocation remains consistent across various SFT data settings,
aligning with the results reported in Table[d] In contrast, varying the candidate budget set can lead to
notable performance degradation, particularly when the budget search space is excessively large. This
stems from the fact that modern SFT data typically has an average sequence length of approximately
1K tokens (Lambert et all, 2024} [Ding et al., [2023). Consequently, if the learnable budget is set
too high, e.g., 32 blocks corresponding to a maximum budget of 32 x 128 = 4096, which means
the model undergoes dense fine-tuning. This diverges from our primary objective of employing
fine-tuning to mitigate performance losses caused by KV eviction. However, we observe that despite
changes in budget candidates, the overall relative trend of the learned block sizes remains stable,
underscoring the robustness of our proposed budget learning strategy.

Per-layer argmax block size

81 —e— UltraChat@1.0
—o— TULUV3@1.0

71 —e— UltraChat@0.8 + Tulu-V3-Code@0.2
© 6] —*— UltraChat@0.8 + Tulu-V3-Math@0.2
N —e— UltraChat@0.8 + ArXiv-Sum@0.2
w5
g
3 4
m 3

2

1

0 5 10 15 20 25 30
Layer index

Figure 7: Learned budget allocation (blocks) across transformer layers of Llama-3-8B-1048K given
different SFT corpus. Layer indices increase from left to right.

A.6 EFFICIENCY ANALYSIS

We analyze the computational efficiency of HS-SFT in comparison to traditional KV eviction and
various hybrid paradigms. As detailed in Section 2] HS-SFT partitions each layer into dense-head

16

Under review as a conference paper at ICLR 2026

Per-layer argmax block size

—e— Budget set: [1, 8], Avg. Score: 29.57
—e— Budget set: [1, 32], Avg. Score: 28.14

32

—e— Budget set: [2, 16], Avg. Score: 29.27
—e— Budget set: [8, 32], Avg. Score: 24.61

N
IS

Block size
=
[=)]

0 5 10 15 20 25 30
Layer index

Figure 8: Learned budget allocation (blocks) across transformer layers of Llama-3-8B-1048K given
different budget sets. Layer indices increase from left to right.

Table 7: Runtime efficiency under a fixed KV budget of Llama-3-8B-1048K. Per-layer hybrid refers
to Duo-attention and our HS-SFT that divides heads of each layer into dense and streaming heads
with uniform budgets.

Method Average Peak Speedup (1) Memory
Latency (ms) | | Memory (MB) | Reduction (%) T
Dense 113.26 47827.22 1.00x 0.00
Uniform 34.82 18741.30 3.25x% 60.82
Layer-wise hyrbid 33.79 19980.01 3.35x% 58.24
Per-layer hybrid 37.59 18790.64 3.01x% 60.73
Head-wise hybrid 73.96 18923.39 1.53x% 60.43

and sparse-head flows, enforcing a shared budget across all sparse heads within a layer. Crucially,
this design circumvents dependencies on specialized kernel design, thereby preserving high inference
efficiency and deployment practicability. To substantiate this, we benchmark practical speedups using
the native Transformers library under a fixed KV budget. We compare four distinct categories: (a)
uniform KV eviction (e.g., H20 and SnapKV); (b) layer-wise hybrid eviction (e.g., GPT-OSS); (¢)
intra-layer sparse—dense hybrid strategies (e.g., Duo-attn and HS-SFT); and (d) per-head sparsity
with distinct rates (e.g., HeadKV (2024Db)). The results are summarized in Table[7} It is
worth noting that variable-length FlashAttention techniques Dao et al.|{(2022); |Feng et al.[(2024) can
support head-wise computation to achieve better acceleration effects. Specifically, one could leverage
a custom CUDA kernel utilizing similar variable-length principles to attain speeds approaching
conventional FlashAttention. This implies that with such kernel support, the acceleration effects of
all methods in Table[7] would be consistent. However, operations requiring such specialized operator
support are not applicable to the training scenarios investigated in this work and would necessitate
more complex infrastructure in large-scale and practical settings. In contrast, HS-SFT achieves
favorable deployment acceleration without reliance on any custom kernels.

Operationally, given a per-layer sparse budget, HS-SFT necessitates only two forward passes per
layer—one for dense heads and one for sparse heads—thereby eliminating the need for granular
per-head KV management. In contrast, purely head-wise approaches must manage KV selection and
inference at the individual head level, which introduces significant overhead and often yields only
marginal practical speedups. While specialized kernels can accelerate head-wise inference [Fu et al.
(2024b), such designs are difficult to generalize to the training phase. Ultimately, HS-SFT achieves a
favorable balance between training efficiency and downstream performance, while remaining simple
to implement and deploy.

A.7 COMPARISON WITH ONLINE EVICTION METHODS

Table 8] presents a detailed comparison among HS-SFT, H20 [Zhang et al| (2023b), MorphKV [Ghadia
(2025). SnapKV [Li et al 2024), AdaKV (2024). and HeadKV 2024)
under a unified 50% KV cache budget on LongBench using the Llama-3-8B-Instruct-Gradient-1048k
model. HS-SFT still holds robust performance strengths compared with online eviction methods,
along with its unique benefits in pre-filling acceleration.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Full LongBench results compared with online eviction methods at 50% KV budget for
Llama-3-8B-Instruct-Gradient-1048k.

Dataset Full H20 MorphKV SnapKV AdaKV HeadKV HS-SFT
Average 40.08 26.84 38.19 38.47 38.67 39.12 42.17
2WikiMQA 28.78 28.87 24.01 29.00 28.97 29.01 30.60
DuReader (zh) 3041 15.56 26.12 24.04 22.65 22.87 31.74
GovReport 3423 20.66 27.19 26.84 24.22 24.01 32.60
HotpotQA 40.37 39.60 39.66 40.86 40.23 39.98 38.62
LCC 38.19 45.78 43.87 38.83 39.67 41.02 43.25
LSHT (zh) 38.00 16.50 35.00 38.00 36.50 37.14 34.50
MultiNews 27.73 19.21 28.40 22.84 21.81 22.04 27.69
MultiFieldQA-en 52.62 21.01 50.57 51.96 52.99 53.01 53.34
MultiFieldQA-zh 50.58 19.81 51.12 50.74 50.59 50.88 51.28
Musique 2422 20.63 18.82 24.86 24.68 2491 15.95
NarrativeQA 26.56 19.14 22.69 26.63 27.36 27.92 27.75
Passage Count 1.00 0.53 1.00 1.00 1.00 1.00 1.50
PassageRetrieval-en 81.00 19.50 81.00 80.50 80.50 83.00 92.50
PassageRetrieval-zh 62.15 11.75 60.10 58.53 61.92 62.45 88.56
Qasper 2921 16.84 23.16 26.00 27.02 28.34 37.23
QMSum 2452 18.89 23.82 24.90 24.65 24.55 24.86
RepoBench-P 38.94 45.16 42.33 38.20 38.50 39.12 40.80
SAMSum 42.51 39.73 39.93 40.90 41.38 41.88 4231
TREC 71.50 48.50 64.00 66.00 71.00 71.00 71.00
TriviaQA 87.70 85.16 88.21 87.30 86.80 87.43 88.39
VCSUM (zh) 11.37 10.71 11.02 9.91 9.62 9.99 11.17

PO I S

(a) SnapKV with Simulation Length =0 (b) SnapKV with Simulation Length = 50

A g

aient 1048k HS ST

{ H
§ o
P R

(c) HS-SFT with Simulation Length = 50 or 0

Figure 9: NIAH results for Llama-3-8B-1048K with a 50% KV cache budget.

Moreover, we posit that offline KV eviction is significantly more robust in real-world scenarios, such
as multi-round dialogue, where the query is not necessarily located at the end of the context. To
validate this, we follow prior works (Xiao et al.| 2025}, [Tang et al}[2024b)) in evaluating KV cache
eviction methods on a variant of the NIAH benchmark. In this setting, the final 50 tokens of the
prompt act as simulated generated output, mimicking a second-round dialogue scenario. As illustrated
in Figure[9] while SnapKV correctly retrieves the answer when the query is adjacent to the end, its

18

Under review as a conference paper at ICLR 2026

performance collapses when the query position shifts. In contrast, HS-SFT remains stable across test
scenarios, as the offline eviction strategy stays invariant to the simulated generation process. These
findings underscore the applicability of offline eviction methods to real-world retrieval and multi-turn
interactions.

A.8 RESULTS ON QWEN-2.5-32B MODEL

We further validate HS-SFT on models beyond the LLaMA family by evaluating Qwen-2.5-32B
(2024), a strong open-source LLM with 128k context window. Table [9]shows that HS-SFT
maintains a consistent advantage on Qwen-2.5-32B under 50% KV budget.

Table 9: Full LongBench results at 50% KV budget for Qwen-2.5-32B.

Dataset Baseline SLLM Duo HS-SFT
Average 44.53 3642 4342 4431
2WikiMQA 39.96 3796 39.89 38.01
DuReader (zh) 30.29 2434 28.84 29.96
GovReport 35.57 33.75 34.65 35.14
HotpotQA 46.89 41.56 48.51 46.03
LCC 48.47 4520 44.62 47.18
LSHT (zh) 48.50 38.25 4350 48.00
MultiNews 24.37 23.77 24.55 24.22
MultiFieldQA-en 42.94 2930 40.34 4251
MultiFieldQA-zh 61.99 37.69 62.03 61.43
Musique 28.59 2531 2847 2645
NarrativeQA 21.02 16.77 20.21 21.53
Passage Count 14.12 9.22 13.02 14.51

PassageRetrieval-en ~ 95.25 56.17 9351 95.59
PassageRetrieval-zh ~ 92.77 52.71 92.08 93.12

Qasper 20.85 18.96 19.01 21.23
QMSum 23.41 20.72 2388 24.12
RepoBench-P 32.57 3449 3341 35.88
SAMSum 47.12 45.61 4642 46.99
TREC 72.50 69.50 7250 71.50
TriviaQA 88.54 8599 86.72 88.72
VCSUM (zh) 18.36 17.55 15.75 18.44

19

Under review as a conference paper at ICLR 2026

A.9 DETAILED QUANTITATIVE RESULTS

We provide the detailed quantitative results of each task on LongBench and Ruler in the following
tables.

Table 10: Full LongBench results at 50% KV budget for Llama-3-8.1B-Instruct.

Dataset Full H20 SLLM Duo HS-SFT
Average 39.01 35.61 3132 3891 41.85
2WikiMQA 16.37 1391 1325 16.20 17.74
DuReader (zh) 2930 21.53 1295 31.31 30.76
GovReport 34.53 30.56 3047 32.87 33.89
HotpotQA 17.23 17.31 1578 19.53 20.49
LCC 52.39 53.08 5290 53.31 48.97
LSHT (zh) 46.00 39.00 36.00 45.00 41.50
MultiNews 2691 25.52 2497 26.29 27.63

MultiFieldQA-en 2844 21.89 16.05 27.77 33.66
MultiFieldQA-zh 20.19 14.87 1592 2198 60.83

Musique 11.82 10.15 10.19 1297 14.25
NarrativeQA 31.99 31.09 2415 29.12 28.77
Passage Count 6.26 540 4.75 6.31 2.00

PassageRetrieval-en 97.95 89.86 52.11 98.59 96.50
PassageRetrieval-zh ~ 77.54 69.73 35.14 7537 94.00

Qasper 25.14 1696 2356 21.12 2847
QMSum 23.63 2254 2148 23.89 2637
RepoBench-P 49.46 49.51 4995 53774 5245
SAMSum 43.69 4256 4332 4340 42.06
TREC 72.50 6650 69.50 73.00 74.50
TriviaQA 91.65 90.07 90.06 89.60 87.99
VCSUM (zh) 16.26 1580 15.17 15.83 16.01

Table 11: Full LongBench results at 50% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT
Average 41.11 3348 41.83 42.33
2WikiMQA 24.43 24.15 29.27 26.71
DuReader (zh) 31.94 28.55 32.39 31.98
GovReport 34.69 3048 32.89 33.90
HotpotQA 38.22 30.53 38.84 31.80
LCC 43.81 45.05 49.85 48.87
LSHT (zh) 43.00 31.50 41.00 35.25
MultiNews 27.15 2542 27.88 27.23
MultiFieldQA-en 46.19 33.08 46.23 52.99
MultiFieldQA-zh 52.03 31.86 54.06 50.74
Musique 19.94 17.24 19.19 15.25
NarrativeQA 23.94 2142 23.55 27.93
Passage Count 0.00 0.5 0.0 1.50

PassageRetrieval-en 87.00 47.5 85.0 85.00
PassageRetrieval-zh ~ 76.76 39.33 79.95 93.00

Qasper 33.24 2435 30.64 36.64
QMSum 25.45 23.03 2620 25.54
RepoBench-P 40.54 41.84 48.02 46.98
SAMSum 41.75 40.20 40.19 43.15
TREC 69.50 68.50 7250 73.50
TriviaQA 88.19 85.16 8591 85.77
VCSUM (zh) 15.49 13.37 1480 15.10

20

Under review as a conference paper at ICLR 2026

Table 12: Full LongBench results at 30% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT
Average 41.11 2994 3881 41.30
2WikiMQA 24.43 24.40 26.14 25.04
DuReader (zh) 31.94 28.09 32.08 33.11
GovReport 34.69 28.12 27.08 31.10
HotpotQA 38.22 28.05 3442 34.88
LCC 43.81 4343 46.92 49.78
LSHT (zh) 43.00 27.00 32.00 32.50
MultiNews 27.15 24.07 26.75 27.85
MultiFieldQA-en 46.19 32.16 42.18 52.90
MultiFieldQA-zh 52.03 26.81 53.96 49.44
Musique 19.94 15.51 16.80 15.58
NarrativeQA 23.94 20.90 21.69 24.41
Passage Count 0.00 1.50 1.00 3.50

PassageRetrieval-en 87.00 37.00 85 .00 85.00
PassageRetrieval-zh ~ 76.76 22777 66.54 85.56

Qasper 33.24 17.04 31.39 3641
QMSum 2545 21.28 24.04 2435
RepoBench-P 40.54 42.10 45770 49.00
SAMSum 41.75 37.61 3857 41.05
TREC 69.50 57.50 67.50 72.00
TriviaQA 88.19 80.27 79.87 78.12
VCSUM (zh) 15.49 13.18 1543 15.62

Table 13: Full LongBench results at 10% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT
Average 41.11 2420 2453 2938
2WikiMQA 24.43 22.34 22.13 23.94
DuReader (zh) 31.94 28.10 2940 33.89
GovReport 34.69 2279 2092 2644
HotpotQA 38.22 2292 25778 23.32
LCC 43.81 4255 4382 4798
LSHT (zh) 43.00 17.75 11.00 22.25
MultiNews 27.15 22.73 2358 26.30
MultiFieldQA-en 46.19 28.80 30.38 3991
MultiFieldQA-zh 52.03 22.08 2534 3431
Musique 19.94 12.46 11.83 10.14
NarrativeQA 23.94 18.23 17.64 19.54
Passage Count 0.00 1.00 2.00 3.00

PassageRetrieval-en 87.00 1250 9.50 14.50
PassageRetrieval-zh ~ 76.76 6.72 8.64 15.88

Qasper 33.24 13.34 14.18 21.95
QMSum 25.45 19.29 20.86 22.40
RepoBench-P 40.54 40.16 39.02 42.11
SAMSum 41.75 36.58 3595 39.76
TREC 69.50 35.00 42.00 57.50
TriviaQA 88.19 72.04 69.16 77.32
VCSUM (zh) 15.49 10.81 12.01 14.58

21

Under review as a conference paper at ICLR 2026

Table 14: Full LongBench results at 50% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT
Average 40.09 3226 3945 42.17
2WikiMQA 28.78 22.64 29.61 30.60
DuReader (zh) 30.41 25.85 28.99 31.74
GovReport 34.23 30.08 32.28 32.60
HotpotQA 40.37 34.84 43.37 38.62
LCC 38.19 40.08 37.71 43.25
LSHT (zh) 38.00 25.50 30.50 34.50
MultiNews 27.73 2549 2793 27.69
MultiFieldQA-en 52.62 3246 50.12 53.34
MultiFieldQA-zh 50.98 32.24 5254 51.28
Musique 24.22 19.65 24.39 15.95
NarrativeQA 26.56 20.71 25.35 27.75
Passage Count 1.00 1.00 1.00 1.50

PassageRetrieval-en 81.00 46.50 83..50 92.50
PassageRetrieval-zh 62.15 3421 6041 88.56

Qasper 29.21 18.81 27.51 37.23
QMSum 24.52 22.56 2472 24.86
RepoBench-P 38.94 39.83 39.73 40.80
SAMSum 42.51 4042 4189 4231
TREC 71.50 68.00 73.00 71.00
TriviaQA 87.70 84.72 86.69 88.39
VCSUM (zh) 11.37 1193 7.15 11.17

Table 15: Full LongBench results at 30% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT
Average 40.09 29.54 30.28 39.22
2WikiMQA 28.78 24.10 23.15 26.48
DuReader (zh) 30.41 25.85 26.85 32.79
GovReport 34.23 28.07 22.19 29.03
HotpotQA 40.37 29.15 31.15 35.11
LCC 38.19 42.67 35.18 47.24
LSHT (zh) 38.00 24.00 22.50 28.00
MultiNews 27.73 23.63 24.27 26.72
MultiFieldQA-en 52.62 31.92 41.06 52.13
MultiFieldQA-zh 50.98 25.62 39.70 45.77
Musique 24.22 18.34 10.52 13.68
NarrativeQA 26.56 20.54 18.64 25.22
Passage Count 1.00 1.50 1.50 1.50

PassageRetrieval-en 81.00 3550 49.50 78.50
PassageRetrieval-zh 62.15 20.59 27.75 67.50

Qasper 2921 1461 1848 3697
QMSum 2452 21.00 2229 2336
RepoBench-P 3894 4167 3754 42.89
SAMSum 4251 3890 4098 4222
TREC 7150 59.00 57.50 68.50
TriviaQA 8770 8255 78.06 87.97
VCSUM (zh) 1137 1122 7.02 11.96

22

Under review as a conference paper at ICLR 2026

Table 16: Full LongBench results at 10% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT
Average 40.09 2458 23.72 29.57
2WikiMQA 28.78 20.08 1945 26.64
DuReader (zh) 30.41 2747 2842 28.40
GovReport 34.23 22.49 20.85 27.06
HotpotQA 40.37 2447 2621 30.12
LCC 38.19 42.10 43.12 4750
LSHT (zh) 38.00 16.25 14.50 18.25
MultiNews 27.73 2236 23.10 25.23
MultiFieldQA-en 52.62 29.66 2797 34.66
MultiFieldQA-zh 50.98 2427 2422 29.79
Musique 2422 1293 9.63 11.17
NarrativeQA 26.56 1992 1620 2048
Passage Count 1.00 1.00 0.50 1.50

PassageRetrieval-en 81.00 14.00 7.55 18.50
PassageRetrieval-zh 62.15 6.30 5.50 18.50

Qasper 29.21 11.17 11.12 25.22
QMSum 24.52 19.39 19.19 22.28
RepoBench-P 38.94 4125 4230 43.24
SAMSum 42.51 37.04 3626 41.10
TREC 71.50 37.50 38.00 58.00
TriviaQA 87.70 76.66 73.47 81.67
VCSUM (zh) 11.37 9.79 10.50 11.73

Table 17: Full LongBench results at 50% KV budget for Llama-2-32K.

Dataset Baseline SLLM Duo HS-SFT
Average 37.53 3275 3680 36.81
2WikiMQA 35.59 31.51 3730 26.34
DuReader (zh) 25.10 18.65 24.00 27.84
GovReport 31.19 2642 30.37 31.79
HotpotQA 47.98 4498 48.84 4195
LCC 51.21 4836 49.28 4934
LSHT (zh) 34.50 27.50 32.00 32.00
MultiNews 27.14 2494 2607 27.66
MultiFieldQA-en 33.95 21.35 3429 31.86
MultiFieldQA-zh 45.79 30.17 46.76 50.10
Musique 22.97 22.01 20.81 18.54
NarrativeQA 24.11 22.83 2358 2217
Passage Count 0.00 0.85 0.00 0.12

PassageRetrieval-en 50.92 3633 4592 47.25
PassageRetrieval-zh 37.68 28.84 4281 48.00

Qasper 33.23 28.19 30.32 3252
QMSum 20.81 19.68 20.59 23.22
RepoBench-P 51.58 4996 4891 48.34
SAMSum 42.10 40.15 42.07 4192
TREC 71.50 66.00 70.50 71.50
TriviaQA 86.21 86.71 8591 87.27
VCSUM (zh) 14.51 1225 1242 13.34

23

Under review as a conference paper at ICLR 2026

Table 18: Full LongBench results at 30% KV budget for Llama-2-32K.

Dataset Baseline SLLM Duo HS-SFT
Average 37.53 2993 36.16 36.10
2WikiMQA 35.59 2949 3280 28.68
DuReader (zh) 25.10 18.52 2378 27.76
GovReport 31.19 2453 2999 31.55
HotpotQA 47.98 40.29 4836 4272
LCC 51.21 48.20 49.01 50.02
LSHT (zh) 34.50 24.00 31.50 26.50
MultiNews 27.14 2396 2646 27.00
MultiFieldQA-en 33.95 19.28 30.38 29.87
MultiFieldQA-zh 45.79 25.28 40.79 47.95
Musique 2297 19.57 19.94 19.77
NarrativeQA 24.11 20.50 21.98 19.65
Passage Count 0.00 0.50 0.42 0.12

PassageRetrieval-en 50.92 2642 52.63 45.42
PassageRetrieval-zh 37.68 20.18 48.27 44.25

Qasper 33.23 21.86 26.70 30.71
QMSum 20.81 19.55 21.19 22.26
RepoBench-P 51.58 4899 48.95 50.35
SAMSum 42.10 38.50 37.01 41.29
TREC 71.50 62.00 71.00 71.00
TriviaQA 86.21 8528 86.23 87.94
VCSUM (zh) 14.51 11.61 12.00 13.20

Table 19: Full LongBench results at 10% KV budget for Llama-2-32K.

Dataset Baseline SLLM Duo HS-SFT
Average 37.53 25.51 7.33 25.98
2WikiMQA 35.59 25.02 10.75 18.62
DuReader (zh) 25.10 19.00 1.15 21.80
GovReport 31.19 22.14 573 23.27
HotpotQA 47.98 3295 237 37.44
LCC 51.21 4572 2040 49.60
LSHT (zh) 34.50 14.75 0.00 16.50
MultiNews 27.14 2097 1329 23.79
MultiFieldQA-en 33.95 17.13 11.57 16.99
MultiFieldQA-zh 45.79 1824 281 25.58
Musique 22.97 17.62 0.05 12.73
NarrativeQA 24.11 18.74 0.71 11.74
Passage Count 0.00 0.85 0.12 0.27

PassageRetrieval-en 50.92 8.75 3.93 5.25
PassageRetrieval-zh 37.68 10.79 033 9.92

Qasper 33.23 16.69 11.11 19.58
QMSum 20.81 20.02 8.28 20.35
RepoBench-P 51.58 45776 15.36 46.57
SAMSum 42.10 35.13 7.30 39.88
TREC 71.50 51.00 22.00 54.50
TriviaQA 86.21 83.52 13.83 81.07
VCSUM (zh) 14.51 1094 2.84 10.20

24

Under review as a conference paper at ICLR 2026

Table 20: Full Ruler results at 50% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT
Average 92.68 49.17 9047 92.96

niah_single_1 100.00 47.20 100.00 100.00
niah_single_2 100.00 44.40 100.00 100.00
niah_single_3 100.00 47.80 100.00 100.00

niah_multikey_1 99.60 51.60 99.60 99.40
niah_multikey_2 99.60 4720 100.00 99.60
niah_multikey_3 96.40 46.40 97.00 92.60
niah_multiquer 99.95 48.25 99.65 99.80
niah_multivalue 92.40 47.50 97.05 98.80

cwe 43.46 11.06 18.72 44.40
fwe 90.87 92.33 88.67 91.00
vt 97.24 57.08 94.44 96.96

Table 21: Full Ruler results at 30% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT
Average 92.68 3235 84.96 85.91
niah_single_1 100.00 28.80 100.00 100.00
niah_single_2 100.00 24.60 100.00 99.80
niah_single_3 100.00 28.00 99.80 98.40

niah_multikey_1 99.60 31.20 98.40 98.00
niah_multikey_2 99.60 29.80 98.80 99.60
niah_multikey_3 96.40 26.00 62.00 67.60
niah_multiquer 99.95 28.55 96.90 93.20
niah_multivalue 92.40 27.50 91.85 94.50

cwe 43.46 2.64 3.20 8.18
fwe 90.87 94.80 89.07 95.27
vt 97.24 33.96 94.52 90.48

Table 22: Full Ruler results at 10% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT
Average 92.68 16.18 9.14 18.44
niah_single_1 100.00 8.40 9.40 13.40
niah_single_2 100.00 7.60 15.80 13.00
niah_single_3 100.00 9.20 8.80 14.20

niah_multikey_1 99.60 9.40 25.00 16.40
niah_multikey_2 99.60 8.60 11.80 11.00
niah_multikey_3 96.40 8.00 1.60 11.00
niah_multiquer 99.95 10.00 4.70 10.30
niah_multivalue 92.40 9.20 4.85 9.20

cwe 43.46 0.28 0.76 3.78
fwe 90.87 97.60 16.13 92.20
vt 97.24 9.72 1.68 8.40

25

Under review as a conference paper at ICLR 2026

Table 23: Full Ruler results at 50% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT
Average 92.68 49.17 90.47 93.87

niah_single_1 100.00 47.20 100.00 100.00
niah_single_2 100.00 44.40 100.00 100.00
niah_single_3 100.00 47.80 100.00 100.00

niah_multikey_1 99.60 51.60 99.60 99.20
niah_multikey_2 99.60 4720 100.00 99.20
niah_multikey_3 96.40 46.40 97.00 98.00
niah_multiquer 99.95 48.25 99.65 99.65
niah_multivalue 92.40 47.50 97.05 98.75

cwe 43.46 11.06 18.72 50.14
fwe 90.87 92.33 88.67 91.67
vt 97.24 57.08 94.44 95.96

Table 24: Full Ruler results at 30% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT
Average 92.68 3235 84.96 85.94
niah_single_1 100.00 28.80 100.00 100.00
niah_single_2 100.00 24.60 100.00 100.00
niah_single_3 100.00 28.00 99.80 98.40

niah_multikey_1 99.60 31.20 98.40 98.20
niah_multikey_2 99.60 29.80 98.80 97.80
niah_multikey_3 96.40 26.00 62.00 84.40
niah_multiquer 99.95 28.55 96.90 92.10
niah_multivalue 92.40 27.50 91.85 84.45

cwe 43.46 2.64 3.20 9.32
fwe 90.87 94.80 89.07 93.47
vt 97.24 33.96 94.52 87.16

Table 25: Full Ruler results at 10% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT
Average 92.68 16.18 1641 54.69
niah_single_1 100.00 8.40 9.40 99.40
niah_single_2 100.00 7.60 1580 96.80
niah_single_3 100.00 9.20 8.80 91.60

niah_multikey_1 99.60 940 25.00 68.80
niah_multikey_2 99.60 8.60 11.80 4740
niah_multikey_3 96.40 8.00 1.60 3.00
niah_multiquer 99.95 10.00 4.70 42.45
niah_multivalue 92.40 9.20 4.85 34.65

cwe 43.46 0.28 0.76 1.38
fwe 90.87 97.60 96.13 97.07
vt 97.24 9.72 1.68 19.00

26

Under review as a conference paper at ICLR 2026

Table 26: Full Ruler results at 50% KV budget for Llama-2-7B-32K.

Dataset Baseline SLLM Duo HS-SFT
Average 26.42 18.02 2644 26.34
niah_single_1 22.60 14.80 22.20 22.40
niah_single_2 22.40 10.20 22.40 22.40
niah_single_3 21.60 11.80 22.00 22.20

niah_multikey_1 22.20 13.40 22.20 21.20
niah_multikey_2 16.00 9.20 16.00 15.80
niah_multikey_3 12.60 7.60 12.40 9.80
niah_multiquer 21.15 1275 21.15 21.40
niah_multivalue 21.20 12.75 21.20 21.20

cwe 18.50 23.66 18.14 16.64
fwe 84.13 70.33 84.93 88.07
vt 28.24 11.76 2820 28.64

Table 27: Full Ruler results at 30% KV budget for Llama-2-7B-32K.

Dataset Baseline SLLM Duo HS-SFT
Average 26.42 1470 23.89 25.11
niah_single_1 22.60 840 19.80 22.20
niah_single_2 22.40 7.60 21.60 22.20
niah_single_3 21.60 8.80 18.60 22.20

niah_multikey_1 22.20 940 1940 22.00
niah_multikey_2 16.00 6.60 12.00 15.80
niah_multikey_3 12.60 5.40 7.60 8.00
niah_multiquer 21.15 10.00 18.80 21.25
niah_multivalue 21.20 9.35 19.15 20.95

cwe 18.50 14.82 14.76 10.00
fwe 84.13 74.93 87.07 88.87
vt 28.24 6.44 24.00 2272

Table 28: Full Ruler results at 10% KV budget for Llama-2-7B-32K.

Dataset Baseline SLLM Duo HS-SFT
Average 26.42 10.69 3.14 19.15
niah_single_1 22.60 3.00 0.80 18.40
niah_single_2 22.40 2.80 7.80 18.80
niah_single_3 21.60 340 0.20 22.00

niah_multikey_1 22.20 520 7.80 19.40
niah_multikey_ 2 16.00 320 0.00 6.80
niah_multikey_3 12.60 2.60 0.00 1.80
niah_multiquer 21.15 4.60 495 17.50
niah_multivalue 21.20 4.80 6.55 16.95

cwe 18.50 6.82 0.00 5.30
fwe 84.13 7887 620 77.67
vt 28.24 232 020 6.00

27

	Introduction
	HS-SFT
	Exploring SFT for Offline KV Eviction
	Hybrid Sparse SFT
	HS-SFT Workflow

	Experiments
	Experimental Settings
	Quantitative Results
	Ablation Studies

	Related Work
	Cache Eviction
	Cache Selection
	Efficient Architecture

	Conclusion
	Appendix
	Use of Large Language Models (LLMs)
	Discussion and Limitation
	HS-SFT Algorithm workflow
	Detailed Experiment Settings
	Budget allocation Analysis
	Efficiency Analysis
	Comparison with Online Eviction Methods
	Results on Qwen-2.5-32B Model
	Detailed Quantitative Results

