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ABSTRACT

Long-context LLMs are constrained by the linear growth of key–value (KV) caches
during autoregressive decoding, which incurs pronounced latency and memory
overhead. KV eviction mitigates this issue, with existing efforts fall into offline poli-
cies with fixed eviction patterns and online policies that adaptively discard cache
based on attention scores. While online eviction typically preserves accuracy under
standard benchmarks, its performance can collapse in practical multi-turn dialogue
scenarios where the query positions vary, and integration with pre-fill acceleration
remains challenging. In contrast, offline eviction is infrastructure-friendly and
generalizable but commonly sacrifices more accuracy. In this paper, we explore
Supervised Fine-Tuning (SFT) for offline KV eviction and demonstrate its efficacy
as a simple and powerful alternative to the design of complex online eviction
metrics. We further propose Hybrid Sparse Supervised Fine-Tuning (HS-SFT) to
explore the optimal offline design of KV eviction within SFT. In particular, HS-SFT
employs a straight-through estimator to learn discrete local-window allocations of
streaming heads across layers with budget-aware balancing loss, such that under
high compression ratios—where dense-head capacity is constrained—the budget
can be more effectively skewed to capture critical information. Across extensive
evaluations on a wide array of LLMs and long-context tasks, HS-SFT delivers
substantial performance gains over state-of-the-art eviction baselines, only con-
suming fewer than 4 hours of SFT on a single 8-GPU node. These results position
training-aware offline eviction—achieved with simple SFT—as an effective and
practical path to scalable long-context inference. Code will be available.

1 INTRODUCTION

Long-context large language models (Liu et al., 2024b; Google et al., 2024) have demonstrated
strong capabilities across real-world applications, including multi-turn dialogue (Li et al., 2025; Taori
et al., 2023), long-document summarization (Goyal & Durrett, 2020; Zhang et al., 2024), in-depth
reasoning (Guo et al., 2025; Zelikman et al., 2022), and repository-level code generation (Zhang et al.,
2023a; Zhang et al.). Nevertheless, the attention mechanism (Vaswani et al., 2017) underpinning state-
of-the-art LLMs incurs substantial computational and memory overheads in long-context scenarios.
Specifically, autoregressive decoding requires caching the keys and values of all preceding tokens to
preclude repetitive computation, yielding a key–value (KV) cache whose size scales linearly with
input length. This linear scaling substantially inflates peak memory footprint, exacerbates end-to-end
latency, and impedes large-scale deployment. For instance, the Llama-3-70B-Instruct model (Dubey
et al., 2024), when run with a batch size of 32 and a 128k-context window, consumes more than 1 TB
of KV-cache footprint at FP16 precision—rendering LLM serving prohibitively expensive.

A multitude of efforts have been undertaken to surmount this inference challenge, with major methods
falling broadly into two paradigms: KV selection and KV eviction. The former group dynamically
loads KV cache of the most relevant blocks/tokens to the current query to reduce computation cost
with all caches stored in memory. Notable methods such as Quest (Tang et al., 2024b) and NSA (Yuan
et al., 2025) have shown remarkable capacity to enhance LLM throughput on long sequences, while
closely matching the performance of full attention. Nonetheless, KV selection does not evict any
cache from memory and therefore results in no KV footprint reduction. This paper hereby centers on
KV eviction (Xiao et al., 2023; Zhang et al., 2023b; Xiao et al., 2025), which directly removes less
important entries from the KV cache, thereby improving both decoding and footprint efficiency.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Full Attention Offline Eviction Online Eviction

Pre-filling Decoding EvictedActive Attention score

Performance Comparison

Figure 1: (left) Toy illustration of offline and online KV-cache eviction methods. Offline eviction
predefines a fixed eviction pattern prior to inference and is therefore compatible with prefill accel-
eration. In contrast, online eviction dynamically evicts tokens during prefill based on historical
attention scores. (right) SFT effectively elevates the performance of offline eviction method Stream-
SLLM) (Xiao et al., 2023) to that of the online eviction method SnapKV (Li et al., 2024).

We heuristically categorize KV eviction methods into offline and online paradigms, based on whether
the eviction policy is predetermined before inference. A canonical example of offline eviction is
StreamingLLM (Xiao et al., 2023), which predefines sink and local attention window as a fixed
sparsity pattern. Offline eviction offers a simple yet efficient solution that can seamlessly be integrated
with off-the-shelf AI infrastructures (Ye et al., 2025; Dao et al., 2022). Conversely, online eviction
employs heuristic metrics to dynamically devise eviction policies, mostly drawing upon attention
scores during pre-filling. For instance, SnapKV (Li et al., 2024) evicts KV cache based on aggregated
attention scores between the input context and the observation window at the prompt end. While
online eviction generally achieves superior performance compared to offline eviction on common
tasks, notable weaknesses also exist. First, in practical settings such as multi-turn dialogue or other
cases where queries do not occur at the prompt end, online eviction can suffer from severe performance
degradation (Xiao et al., 2025). Second, efficiency concerns arise from the incompatibility with
pre-filling acceleration (Bhaskar et al., 2025). Therefore, a pivotal problem emerges: how to unify
the strengths of task generalization, decoding efficiency from offline eviction and long-context
performance retention from online eviction?

In this paper, we demonstrate that supervised fine-tuning (SFT) could be a simple yet powerful
avenue to address this challenge. Figure 2 reveals that: (1) SFT substantially narrows the performance
disparity of StreamingLLM in comparison to the online eviction method SnapKV; (2) the performance
gap among different online eviction methods is significantly minimized following SFT. This uncovers
a motivating conclusion that LLMs can inherently learn to alleviate the performance degradation
induced by cache eviction during SFT. This insight also resonates with NSA (Yuan et al., 2025) and
GPT-OSS (OpenAI, 2025), which incorporate KV/attention sparsity during the pre-training phase
and show promising native sparse performance. Differently, our findings suggest a more efficient
way that directly applying lightweight SFT to off-the-shelf LLMs can also effectively rehabilitate the
performance of online eviction paradigm.

We go further to investigate the optimal fine-tuning paradigm for offline KV eviction. Current eviction
methods predominantly concentrate on the allocation ratio between dense and streaming heads. Here,
the streaming heads are set with a fixed 128/256 local window size, which, however, imposes a
significant constraint on performance preservation under high sparsity regimes. For example, under
a 2048-token budget, Duo-attn can designate only 1% of heads as dense, confining the rest to
local windows of 256 tokens. To address this shortcoming, we propose Hybrid Sparse Supervised
Fine-Tuning (HS-SFT) for offline KV eviction. In particular, HS-SFT jointly learns optimal local
window size allocations across layers, thereby enabling more strategic cache budget distribution
under high sparsity to optimize performance retention. To realize this, we utilize a Straight-Through
Estimator (STE) (Bengio et al., 2013) to learn layer-wise budget allocation policies, supplemented by
a budget-aware balance loss that explicitly promotes KV sparsity.

Experiments on a wide variety of models and downstream tasks demonstrate that HS-SFT achieves
superior trade-offs among accuracy, latency, and memory footprint reduction for KV cache eviction.
For instance, by applying HS-SFT to fine-tune the LLaMA-3-8B-1048K model (Dubey et al., 2024)
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Figure 2: Framework of HS-SFT. We use two types of attention masks in each layer during training.
The dense head flow performs full attention computations, while the sparse head flow learns optimal
local window budgets through layer-specific STE-based router.

in less than 4 hours on a single 8-A800 node, we achieve a 2.8× end-to-end speedup and a 1.8×
reduction in memory usage at 100K decoding length with 10% KV budget, while surpassing Duo-attn
by 23.7% to 29.5% average score on the LongBench (Bai et al., 2023) benchmark. We hope this
work lays a foundation for future innovations focused on training-aware KV eviction strategies.

2 HS-SFT

2.1 EXPLORING SFT FOR OFFLINE KV EVICTION

We explore offline KV cache eviction for efficient long-context LLM inference. In the offline setting,
the eviction plan is fixed prior to inference and typically entails replacing the vanilla dense attention
heads (Vaswani et al., 2017) with streaming heads (Xiao et al., 2023). Concretely, a streaming head
retains a small set of sink tokens at the sequence prefix together with a fixed-size local window
that slides throughout decoding. Such offline definition for KV sparse pattern confers practical
deployment advantages (e.g., compatibility with prefilling acceleration (Xiao et al., 2025)). However,
relative to online methods that dynamically determine eviction policies using attention scores (Zhang
et al., 2023b; Li et al., 2024), offline schemes often suffer pronounced performance degradation.

In this work, we investigate supervised fine-tuning (SFT) (Raffel et al., 2020; Ouyang et al., 2022) to
recover the performance of offline KV eviction without compromising its offline nature. Specifically,
we conduct a lightweight SFT on 1B tokens from UltraChat (Ding et al., 2023) under the predefined
sparse pattern of a representative eviction method StreamingLLM (Xiao et al., 2023). Remarkably,
SFT enables the pre-trained LLM to mitigate the degradation induced by offline KV eviction, yielding
substantial improvements across diverse long-context scenarios, as shown in Figure 2. SFT also
markedly narrows the performance disparity among different offline eviction schemes, suggesting
that—rather than devising intricate metrics—model fine-tuning offers an effective and compelling
alternative for improving KV-eviction performance. Our findings also align with GPT-OSS (OpenAI,
2025), which replaces a subset of layers with streaming layers during pre-training and demonstrates
robust performance of such offline eviction paradigm. Nevertheless, we posit that even modest
SFT suffices to endow the model with global information aggregation capabilities under KV cache
eviction, offering a practical and efficient solution.

2.2 HYBRID SPARSE SFT

We further explore the optimal SFT paradigm for offline KV-cache eviction. Existing approaches
predominantly optimize hybrid allocations between dense and streaming heads (Bhaskar et al., 2025;
Xiao et al., 2025; OpenAI, 2025), where streaming heads operate with small, fixed local windows

3
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(e.g., 128/512 tokens). The motivation stems from that attention heads of transformer-based LLM
exhibit distinct and stable specialization patterns (Wu et al., 2024; Xiao et al., 2025): retrieval heads
capture global information, whereas streaming heads prioritize recent tokens and attention sinks.

However, such hard dense–streaming hybrid management faces two limitations under high KV
sparsity. First, while strongly distinct head behaviors are visible in standard multi-head attention
(MHA) (Vaswani et al., 2017), they are less pronounced in grouped-query attention (GQA) (Ainslie
et al., 2023) with compact head dimension design (Xiao et al., 2025). Since most modern models
adopt GQA, a fixed dense–streaming split becomes inflexible at high sparsity. Second, under
extremely high eviction rates like 90%, only a small subset of heads remain dense, whereas other
globally oriented heads are forced into overly tight streaming windows and thus suffer pronounced
performance degradation.

To address these issues, we propose Hybrid Sparse Supervised Fine-Tuning (HS-SFT) for offline KV
eviction. The key principle of HS-SFT falls in that it learns soft local window budget candidates
during SFT, in conjecture with dense head, enabling more strategic cache-budget allocation under
high sparsity to maximize performance retention. Concretely, during training, we keep a fixed fraction
α of heads per layer dense, and learn the optimal local window budget allocations for the remaining
heads. Here each layer is equipped with a discrete budget set B = [b1, b2, . . . , bm] At forward passes,
each sparse head selects at most k tokens from the current KV cache to attend to, where k ∈ B. This
reduces both attention FLOPs and memory footprint and, crucially, allows layer-wise specialization
of KV eviction based on different patterns of streaming heads.

STE-based Learnable Budget Selection. For the sparse head flow, we learn the optimal budget
k ∈ B. We associate each candidate budget bi with a learnable logit zi, and let z = [z1, . . . , zm]
denote the logits for streaming head in one specific layer*. We perform hard selection in the forward
pass as

k = B
[
argmax

i
zi

]
. (1)

Since argmax is non-differentiable, we adopt the Straight-Through Estimator (STE) (Bengio et al.,
2013) to optimize z. Particularly, we pass the gradient only to the selected logit and zero out the rest:

∂LLM

∂zi
=

{
∂LLM
∂output if i = argmaxj zj ,

0 otherwise.
(2)

This preserves hard budget selection during forward propagation while enabling end-to-end optimiza-
tion for the budget logits of each layer.

Budget-aware Balance Loss. To avoid trivial solutions where all sparse heads choose large budgets,
we regularize the discrete choice via a KL divergence to a prior that favors smaller budgets. Let
m = |B|, we derive the selection distribution as

pi = softmax(z)i , i ∈ {1, . . . ,m}. (3)

Then, we define a prior over indices that increases mass on smaller budgets via a power law:

qi =
(m+ 1− i)γ∑m
j=1(m+ 1− j)γ

, γ > 0. (4)

The budget-aware balance loss is then derived by the KL divergence KL(p∥q):

Lbalance = λ

m∑
i=1

pi
(
log(pi + ε)− log(qi + ε)

)
, (5)

where λ > 0 controls the sparsity penalty and ε > 0 is a small constant for numerical stability. The
overall objective is

L = LLM + Lbalance. (6)

This objective explicitly encourages compact budgets whenever possible, while permitting larger
budgets where necessary to preserve performance.

*We refrain from assigning learnable budget logits to every attention head within a layer, as it induces
numerous heterogeneous KV sparse inference flows that markedly degrades inference efficiency.
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Figure 3: Per-task LongBench results on Llama-3-8B-Instruct-1048K. HS-SFT consistently narrows
the gap to dense attention across KV budget percentage and remains stable across task types.

2.3 HS-SFT WORKFLOW

The training and inference pipeline of HS-SFT is illustrated in Figure 2. Prior to training, we initialize
a fraction α of dense heads using the logit map optimized by Duo-Attn (Xiao et al., 2025). During
training, we jointly optimize the layer-wise local-window budget logits and the model weights. Given
a target sparsity ρ at the inference stage, we retain the dense heads (fraction α) and allocate the
remaining cache to streaming heads by monotonically scaling the learned budgets of each layer to
meet the overall sparsity constraint. A detailed algorithm workflow is presented in Appendix A.3.

HS-SFT unifies the strengths of offline eviction with the performance retention typically attributed to
online heuristics. By hard-selecting discrete budgets via STE and regularizing the selection distri-
bution with a budget-aware loss, HS-SFT learns optimal layer-wise sparsity patterns for streaming
heads while jointly adapting the pre-trained LLM to mitigate performance degradation under KV
eviction. At inference time, the execution remains strictly offline: a subset of heads stays dense, and
all remaining heads run streaming attention with their layer-wise calibrated budgets derived from
the learned preferences. As a result, HS-SFT maintains the efficiency of offline eviction paradigms,
while effectively mitigating the performance gap versus dense attention.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Tasks, Models, and Baselines. We assess long-context capabilities across three representative
benchmarks: LongBench (Bai et al., 2023), Ruler-16K (Hsieh et al., 2024), and Needle-in-a-Haystack
(NIAH) (Kamradt, 2024). We evaluate two base long-context LLMs instantiated in three context-
window configurations: Llama-2-7B with 32K extension Touvron et al. (2023) and Llama-3-8B-
Instruct with Gradient-262K/1048K extensions (Pekelis et al., 2024). We compare offline and

5
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Figure 4: Average accuracy across Llama-2-7B-32K and Llama-3-8B-262K/1048K. The superiority
of HS-SFT remains stable across different tasks and KV budgets.

online key–value (KV) cache eviction policies, including StreamingLLM (Xiao et al., 2023), Duo-
Attention (Xiao et al., 2025), and SnapKV (Li et al., 2024). Consistent with prior work (Tang et al.,
2024b; Xiao et al., 2025), we simulate generation of the final 50 tokens for elongated inputs during
evaluation to ensure a fair comparison between offline and online regimes.

Implementation Details. Following Gao et al. (2024), we conduct supervised fine-tuning (SFT)
on 1B tokens sampled from UltraChat-200K (Ding et al., 2023). Detailed SFT hyperparameters
are provided in Appendix A.4. During training, we employ the block-sparse kernel for streaming
attention as implemented by Guo et al. (2024), aligning configurations with Xiao et al. (2025). For
budget learning within HS-SFT, we use a learning rate of 3 × 10−4 with no weight decay. The
candidate budget set is {1, 2, 3, 4, 5, 6, 7, 8} blocks, where each block contains 128 tokens. To assess
performance across KV budgets, we set the dense-head ratio α to be 5% lower than the targeted
KV budget. Although a uniform dense-head ratio of α = 5% can be monotonically rescaled during
inference to satisfy a target sparsity budget, we observe that budget-specific α values yield more
consistent performance gains.

3.2 QUANTITATIVE RESULTS

LongBench. LongBench comprises a diverse suite of long-context tasks, including retrieval-style
QA, long-document summarization, and multi-passage classification that stress faithful cross-span
integration and robust global-to-local information routing. Figure 3 presents a comparison of HS-SFT
against competing methods across six representative LongBench tasks. More comprehensive results
for all tasks are provided in Appendix A.9. Relative to existing offline eviction baselines, HS-SFT
markedly reduces the performance gap to dense attention across KV eviction levels ranging from
50% down to 10%. Notably, the gains delivered by HS-SFT intensify as the KV budget shrinks, since
learnable, head-wise budgets adaptively allocate capacity to layers where long-range aggregation is
most advantageous.
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Figure 5: End-to-end efficiency results on one GPU (batch size=1).

Table 1: Performance comparison under identical SFT settings at 10% KV budget for Llama-3-8B-
1048K. HS-SFT achieves the strongest average performance.

KV budget Duo-Attn SLLM LS HS-SFT
Base SFT Base SFT Base SFT (Ours)

50% 39.4 40.1 32.2 36.8 30.8 37.1 42.2
10% 24.1 26.3 23.8 27.1 23.1 26.4 29.6

Cross-Model and Cross-Task Generalization. We further evaluate Llama-2-7B-Instruct-32K,
Llama-3-8B-Instruct-262K and Llama-3-8B-Instruct-1048K-Instruct on LongBench, Ruler, and
NIAH. Ruler emphasizes long-range cross-document retrieval and compositional reasoning, whereas
NIAH tests the efficacy of models to accurately retrieve relevant information from long context. As
shown in Figure 4, across all evaluated LLMs and task suites, HS-SFT consistently outperforms
existing baselines and matches or surpasses online methods at every KV budget. These consistent
gains indicate strong transferability across pretraining distributions and task typologies.

Comparison under Identical SFT Settings. We conduct an ablation of offline eviction schemes
under identical SFT configurations (data, steps, and hyperparameters) to isolate the effect of SFT.
Specifically, Duo-Attention, StreamingLLM, and HS-SFT are fine-tuned on the same 1B-token
UltraChat corpus and evaluated on all benchmarks at matched KV budgets. We additionally evaluate
the hybrid strategy of GPT-OSS (OpenAI, 2025), which employs interleaved streaming layers (Layer
Streaming, LS). As shown in Table 1, HS-SFT attains the highest average performance across datasets
and sparsity levels. This suggests that learning discrete, layer-specific budget preferences via STE-
based selection coupled with budget-aware regularization outperforms fixed-window approaches
and rigid dense/streaming partitions. Moreover, HS-SFT delivers significant improvements over the
GPT-OSS-style hybrid paradigm, underscoring its potential to scale to larger architectures and more
demanding training regimes as a promising future work.

Efficiency Analysis. We measure end-to-end memory footprint and latency for the prefill and decode
phases on a single NVIDIA GPU with a 4K chunk size. As shown in Figure 5, consistent with offline
sparse methods (Xiao et al., 2025; 2023), HS-SFT substantially reduces both prefill latency and
memory consumption. Decoding efficiency scales approximately linearly with KV-budget reduction,
achieving a 2.8× speedup at a 100K-token context length under 10% KV budget. Coupled with
its accuracy gains, HS-SFT lies on a favorable Pareto frontier within the offline eviction paradigm,
improving quality while preserving deployment simplicity. We further analyze the inference efficiency
of HS-SFT compared with traditional KV eviction (Li et al., 2024; Xiao et al., 2023), layer-wise
hybrid (OpenAI, 2025) and head-wise hybrid (Fu et al., 2024b; Ge et al., 2023) paradigms in
Appendix A.6.
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Table 2: Ablations on SFT configurations. Up-
dating dense heads yields significant gains, and
SFT outperforms continued pretraining.

Configuration LongBench Ruler

Frozen 27.03 49.14
Updated 29.57 54.68

CP 24.55 27.07
SFT 29.57 54.68

Table 3: Regularizer ablation at 10% KV budget.
Budget-aware KL regularization (λ = 10−2)
achieves optimal performance.

Regularizer λ LongBench Ruler

L2 penalty 10−2 25.51 39.51
KL divergence 10−3 27.10 41.87
KL divergence 10−2 29.57 54.68
KL divergence 10−1 28.44 50.12

Figure 6: Learned budget allocation (blocks) across transformer layers of Llama-2-7B-32K and
Llama-3-8B-1048K. Layer indices increase from left to right.

Table 4: Ablations on SFT scale and domain. The average score is computed on LongBench under
10% KV budget and with @ marking per-dataset mixing ratios when forming the SFT corpus.

Dataset Training Tokens Avg. Score

SFT size
UltraChat@1.0 1B 29.57
UltraChat@1.0 0.5B 28.76
UltraChat@1.0 2B 29.42

SFT Domain
UltraChat@0.8 + Tulu-V3-Code@0.2 1B 28.34
UltraChat@0.8 + Tulu-V3-Math@0.2 1B 28.48

Tulu-V3@1.0 1B 29.99
UltraChat@0.8 + ArXiv-Sum@0.2 1B 29.08

ArXiv-Sum@1.0 1B 26.12

3.3 ABLATION STUDIES

We analyze HS-SFT along two axes—budget learning and SFT configuration. All ablations use
Llama-3-8B-Instruct-1048K with 10% KV budget.

Budget Learning Mechanism. We compare our budget-aware KL regularizer (Section 2.2) against
a conventional L2 penalty, sweeping λ ∈ {10−3, 10−2, 5 × 10−2, 10−1}. As shown in Table 3,
λ = 10−2 yields the best macro-average performance across benchmarks. Lower λ values in-
sufficiently penalize excessive budget allocation, whereas higher values over-suppress necessary
long-range aggregation. Expanding the candidate budget set to [1, 32] or [8, 16] blocks did not im-
prove performance, likely because more blocks yield local window sizes larger than the 1.5K average
sequence length in the Ultrachat corpus, limiting the training efficacy for KV eviction paradigm.
Figure 6 visualizes the learned layer-wise budgets, revealing unique distributions across different
layers.

SFT Configuration Analysis. Table 2 examines SFT design choices. Freezing dense heads during
fine-tuning consistently underperforms full-parameter updates, suggesting that adapting dense heads
strengthens global retrieval. We also compare against continued pretraining (CP) on RedPajama (We-
ber et al., 2024) using an equivalent training tokens. As shown in Table 2, SFT outperforms CP,
as token-level continued pretraining does not adequately instill global-information recovery under
constrained KV budgets.
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We further study how the SFT data domain and scale influence the performance of HS-SFT. Table 2
list the results. In particular, we first vary the number of training tokens on UltraChat to measure
the size effect and observe a clear scaling trend on downstream tasks, yet continuing to increase the
training tokens does not linearly lead to performance improvement. Next, we replace UltraChat with
Tulu-V3 (Lambert et al., 2024) and also mix UltraChat with the Code and Math subsets of Tulu-V3
to examine domain sensitivity. Finally, we include data settings biased for summarization tasks using
ArXiv-Summarization (Cohan et al., 2018) that highly correlate with long-context ability. While
domain-specialized data can improve in-domain metrics, aggressively skewing toward summarization
tends to reduce overall performance on general tasks.

Table 5: Ablations on dense head initializa-
tion. The average score is computed on Long-
Bench under a fixed 10% KV budget.

Method Avg. Score

Random 26.41
RazorAttention 29.02
Duo-Attention 29.57

Dense Head Initialization. We investigate the im-
pact of dense-head initialization on HS-SFT. We con-
sider two variants: (i) random initialization and (ii) se-
lecting dense heads following RazorAttention (Tang
et al., 2024a). As shown in Table 5, random selection
of dense head incurs a notable performance drop com-
pared with a strategic choice. Moreover, RazorAt-
tention achieves performance close to Duo-Attention,
suggesting that HS-SFT is relatively robust to the
choice of initialization.

4 RELATED WORK

A diverse array of methodologies has been introduced to optimize the efficiency of KV cache in LLMs
for long-context inference. These methods can be broadly grouped into the following categories.

4.1 CACHE EVICTION

Cache eviction refers to the removal of redundant KV entries to yield a more lightweight KV cache,
thereby enhancing decoding efficiency and reducing memory footprint relative to conventional full-
cache management paradigm. In this paper, we heuristically divide KV cache eviction methods into
offline and online paradigms, depending on whether the eviction policy is fixed prior to inference.

Offline KV Eviction. Offline KV eviction enforces a static, sparse KV pattern irrespective of the input
sequence, thereby ensuring consistent decoding latency and memory efficiency throughout inference.
Representative examples include StreamingLLM Xiao et al. (2023), which persistently retains both
the initial and most recent tokens within the sequence, and Duo-attn Xiao et al. (2025), which further
optimizes dense and streaming head assignments to balance fidelity and efficiency under a pre-defined
KV budget. The recently introduced GPT-OSS OpenAI (2025) also exemplifies an offline KV
eviction paradigm, incorporating interleaved streaming layers during pretraining to natively support
KV eviction. Offline eviction methods are distinguished by their seamless integration with existing
inference frameworks, thereby delivering stable end-to-end throughput and memory consumption
benefits; however, they often incur performance degradation under high sparsity regimes. Our
proposed DS-SFT addresses these limitations from two perspectives while preserving the deployment
advantages of offline eviction. First, we pioneer the exploration of SFT strategies tailored for KV
eviction and demonstrate their efficacy in enhancing offline eviction performance. Second, DS-SFT
enables more strategic local window size allocation to optimize better performance than existing
methods that keep unified local window size across all layers.

Online KV Eviction. Online KV eviction dynamically modulates the retention and removal of KV
entries during inference, guided by preceding attention scores Zhang et al. (2023b); Li et al. (2024);
Fu et al. (2024a); Cai et al. (2024). For instance, H2O Zhang et al. (2023b) leverages accumulated
attention scores as a criterion to selectively preserve salient KV entries. SnapKV Li et al. (2024)
further exploits local window attention scores over the prefilling context to evict token caches with
minimal contribution. Building upon SnapKV, PyramidKV Cai et al. (2024) heuristically allocates
more cache to lower layers while reducing allocation in higher layers. MorphKV Ghadia et al. (2025)
further refines the compressed KV cache via lightweight updates guided by attention patterns of
recent tokens. Online eviction generally achieves superior performance than offline eviction on
standard long-context tasks. Nevertheless, the heuristic measurement based on attention scores may
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precipitate significant performance degradation in practical multi-turn dialogue scenarios, particularly
when queries are not situated at the end of the prompt Xiao et al. (2025). Moreover, online eviction
strategies are inherently at odds with prefill-acceleration techniques Bhaskar et al. (2025), further
constraining their efficiency in handling tasks characterized by extensive pre-filling, such as document
summarization. In this work, we focus on the context of KV eviction to strike better generalization
and deployment efficiency.

A line of recent works has also investigated head-wise KV compression (Fu et al., 2024b; Ge et al.,
2023). Fastgen Ge et al. (2023) pioneered head-wise KV eviction by eliminating long-range contexts
in heads that emphasize local patterns, discarding non-special tokens in heads focused on special
tokens, and retaining the standard KV cache only for heads with broad attention coverage. HeadKV Fu
et al. (2024b) further proposed an importance-score estimation method that jointly evaluates each
head’s retrieval and reasoning capabilities. While HS-SFT also involves partitioning along the head
dimension, we diverge by classifying heads into dense and sparse flows on a per-layer basis, as shown
in Figure 2. This design guarantees exceptionally high inference efficiency, whereas fine-grained
head-wise implementations typically require specialized kernels and are difficult to apply effectively
in training scenarios. Therefore, we refrain from assigning learnable budget logits to every attention
head within a layer, as it induces numerous heterogeneous KV sparse inference flows that markedly
degrades training/inference efficiency. We provide a detailed efficiency analysis in Appendix A.6.

4.2 CACHE SELECTION

Cache selection methods preserve the entirety of KV entries in memory, yet dynamically retrieve
only the most pertinent blocks or tokens during decoding Ribar et al. (2023); Tang et al. (2024b);
Chen et al. (2025); Yuan et al. (2025). This paradigm can effectively enhance throughput on extended
sequences while closely approximating the accuracy of full-attention mechanisms. For instance,
SparQ Ribar et al. (2023) estimates token significance via cache channel pruning, thereby facilitating
the selection of salient tokens. Quest Tang et al. (2024b) query the min and max row of key cache to
assess the criticality of token blocks. HShare (Wu et al., 2025) further facilitates critical KV cache
token sharing when selecting cache. NSA (Yuan et al., 2025) extends the principle of KV selection
to the pretraining phase, demonstrating the effectiveness of native attention sparsity. Nonetheless,
cache selection techniques are primarily oriented towards accelerating the decoding process without
alleviating the KV memory footprint, i.e., they do not evict any KV cache but only retrieve cache for
efficient computation, and thus fall beyond the scope of this paper.

4.3 EFFICIENT ARCHITECTURE

This line of work modifies the vanilla dense-attention architecture to natively improve KV-cache
efficiency. For example, GQA (Ainslie et al., 2023) shares a common KV cache across queries from
different heads, substantially reducing storage and access overhead; MLA (Liu et al., 2024a) intro-
duces low-rank joint key–value compression that maps the KV cache to compact latent vectors. These
architectural techniques are orthogonal to eviction/selection strategies and can often be composed to
yield end-to-end gains in memory usage, latency, and throughput.

5 CONCLUSION

KV eviction is pivotal for efficient long-context LLMs. However, prevailing offline and online policies
struggle to reconcile task generalization, deployment efficiency, and accuracy retention. We demon-
strate that straightforward supervised fine-tuning (SFT) substantially closes the offline-to-online
accuracy gap while preserving offline efficiency and robustness to multi-turn dialogue. We further
introduce HS-SFT, which learns discrete, layer-wise local-window assignments for streaming heads
via straight-through estimator and incorporates a budget-aware balancing loss to optimize the sparsity
allocations at high compression rates. Across validation across an array of models and tasks, HS-SFT
consistently surpasses state-of-the-art eviction baselines while retaining offline advantages, opening a
training-centric alternative to hand-crafted pruning metrics for the community. Future work includes
scaling SFT and exploring finer-grained, head-wise hybrid paradigms with hardware co-design.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

During the writing of this paper, we utilized LLM solely for language editing to improve clarity and
readability. We critically reviewed and revised all AI-generated suggestions to ensure the final text
accurately reflects our original intent. All intellectual contributions, including the research design,
methodology, analysis, and conclusions, are our exclusive work, and we take full responsibility for
the academic integrity of this publication.

A.2 DISCUSSION AND LIMITATION

In this section, we discuss the limitations and potential future work of HS-SFT. First, while our
layer-specific router offers superior training and inference efficiency, head-specific KV sparsity (Ge
et al., 2024) has more intuitive potential for higher task performance. A promising direction is to pair
infrastructure innovations with head-specific hybrid configuration for SFT and inference. Second,
our comparison against OSS-like coarse-grained hybrids is currently limited to the SFT setting,
demonstrating HS-SFT as a scalable approach for rapidly transferring dense models to the sparse KV
paradigm. An important next step is to evaluate the method during pretraining to assess upstream
performance. Finally, our choice of dense heads follows conclusions from Duo-att (Xiao et al., 2025),
and the sparsity ratio is largely fixed. Future work could explore a once-for-all hybrid configuration
learned during training, together with flexible sparsity control at inference time.

A.3 HS-SFT ALGORITHM WORKFLOW

We provide pseudocode for the training workflow of HS-SFT in Algorithm 1. For the inference
workflow, we initialize per-layer KV budgets to their learned values. Then, We monotonically rescale
only the sparse-head budgets so that their sum with the dense-head contribution exactly matches the
global KV budget. Accordingly, dense heads attend to the full cache, whereas sparse heads attend to
their rescaled per-layer budgets during inference.

Algorithm 1 HS-SFT Training
Inputs: Pretrained LLM θ0, SFT dataset D, dense-head fraction α, budget set B = [b1, . . . , bm], temperature τ ,
prior-shape γ, balance weight λ, stability ε, optimizer Opt, total steps T
Outputs: Fine-tuned weights θ⋆, budget logits {z}
1: Initialize dense heads per layer using Duo-Attn; initialize logits z ∈ Rm for each sparse head
2: for t = 1 to T do
3: Sample minibatch (x, y) ∼ D
4: for each layer and sparse head do
5: i⋆ ← argmaxi zi; k ← B[i⋆] // Equation. 1
6: Sparse attention computation with the 128 sink tokens and the latest k tokens
7: end for
8: Compute LLM(θ;x, y)
9: pi ← softmax(z/τ)i // Equation. 3

10: qi ← (m+1−i)γ∑m
j=1(m+1−j)γ

// Equation. 4

11: Lbalance ← λ
∑

i pi(log(pi + ε)− log(qi + ε)) // Equation. 5
12: L ← LLM + Lbalance // Equation. 6
13: Backpropagate∇θL and STE gradients for z as in Equation 2
14: Update (θ, {z})← Opt step
15: end for
16: return (θ⋆, {z})
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A.4 DETAILED EXPERIMENT SETTINGS

We detail the hyperparameters used for HS-SFT in Table 6. The SFT settings are generally kept the
same as Gao et al. (2024); Bhaskar et al. (2025).

Table 6: Detailed Hyperparameters used for HS-SFT.

Hyperparameter Value
SFT base settings

Batch size (tokens) 4,194,304
Learning rate 2 · 10−5

Training steps 2500
LR schedule Linear warmup for first 5% of steps

then linear decay to 10% peak LR
Adam (β1, β2) (0.9, 0.95)

HS-SFT hyperparameters
Logit LR 3 · 10−4

Lambda 1 · 10−2

Gamma 2.0
ε 1 · 10−8

Candidate budget set {1, 2, 3, 4, 5, 6, 7, 8} × 128
Sink size 128

A.5 BUDGET ALLOCATION ANALYSIS

Figures 7 and 8 show the learned budget allocation across different SFT corpora and candidate budget
sets, respectively. First, the budget allocation remains consistent across various SFT data settings,
aligning with the results reported in Table 4. In contrast, varying the candidate budget set can lead to
notable performance degradation, particularly when the budget search space is excessively large. This
stems from the fact that modern SFT data typically has an average sequence length of approximately
1K tokens (Lambert et al., 2024; Ding et al., 2023). Consequently, if the learnable budget is set
too high, e.g., 32 blocks corresponding to a maximum budget of 32× 128 = 4096, which means
the model undergoes dense fine-tuning. This diverges from our primary objective of employing
fine-tuning to mitigate performance losses caused by KV eviction. However, we observe that despite
changes in budget candidates, the overall relative trend of the learned block sizes remains stable,
underscoring the robustness of our proposed budget learning strategy.

Figure 7: Learned budget allocation (blocks) across transformer layers of Llama-3-8B-1048K given
different SFT corpus. Layer indices increase from left to right.

A.6 EFFICIENCY ANALYSIS

We analyze the computational efficiency of HS-SFT in comparison to traditional KV eviction and
various hybrid paradigms. As detailed in Section 2, HS-SFT partitions each layer into dense-head
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Figure 8: Learned budget allocation (blocks) across transformer layers of Llama-3-8B-1048K given
different budget sets. Layer indices increase from left to right.

Table 7: Runtime efficiency under a fixed KV budget of Llama-3-8B-1048K. Per-layer hybrid refers
to Duo-attention and our HS-SFT that divides heads of each layer into dense and streaming heads
with uniform budgets.

Method Average Peak Speedup (↑) Memory
Latency (ms) ↓ Memory (MB) ↓ Reduction (%) ↑

Dense 113.26 47827.22 1.00× 0.00
Uniform 34.82 18741.30 3.25× 60.82
Layer-wise hyrbid 33.79 19980.01 3.35× 58.24
Per-layer hybrid 37.59 18790.64 3.01× 60.73
Head-wise hybrid 73.96 18923.39 1.53× 60.43

and sparse-head flows, enforcing a shared budget across all sparse heads within a layer. Crucially,
this design circumvents dependencies on specialized kernel design, thereby preserving high inference
efficiency and deployment practicability. To substantiate this, we benchmark practical speedups using
the native Transformers library under a fixed KV budget. We compare four distinct categories: (a)
uniform KV eviction (e.g., H2O and SnapKV); (b) layer-wise hybrid eviction (e.g., GPT-OSS); (c)
intra-layer sparse–dense hybrid strategies (e.g., Duo-attn and HS-SFT); and (d) per-head sparsity
with distinct rates (e.g., HeadKV Fu et al. (2024b)). The results are summarized in Table 7. It is
worth noting that variable-length FlashAttention techniques Dao et al. (2022); Feng et al. (2024) can
support head-wise computation to achieve better acceleration effects. Specifically, one could leverage
a custom CUDA kernel utilizing similar variable-length principles to attain speeds approaching
conventional FlashAttention. This implies that with such kernel support, the acceleration effects of
all methods in Table 7 would be consistent. However, operations requiring such specialized operator
support are not applicable to the training scenarios investigated in this work and would necessitate
more complex infrastructure in large-scale and practical settings. In contrast, HS-SFT achieves
favorable deployment acceleration without reliance on any custom kernels.

Operationally, given a per-layer sparse budget, HS-SFT necessitates only two forward passes per
layer—one for dense heads and one for sparse heads—thereby eliminating the need for granular
per-head KV management. In contrast, purely head-wise approaches must manage KV selection and
inference at the individual head level, which introduces significant overhead and often yields only
marginal practical speedups. While specialized kernels can accelerate head-wise inference Fu et al.
(2024b), such designs are difficult to generalize to the training phase. Ultimately, HS-SFT achieves a
favorable balance between training efficiency and downstream performance, while remaining simple
to implement and deploy.

A.7 COMPARISON WITH ONLINE EVICTION METHODS

Table 8 presents a detailed comparison among HS-SFT, H2O Zhang et al. (2023b), MorphKV Ghadia
et al. (2025), SnapKV Li et al. (2024), AdaKV Feng et al. (2024), and HeadKV Fu et al. (2024b)
under a unified 50% KV cache budget on LongBench using the Llama-3-8B-Instruct-Gradient-1048k
model. HS-SFT still holds robust performance strengths compared with online eviction methods,
along with its unique benefits in pre-filling acceleration.
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Table 8: Full LongBench results compared with online eviction methods at 50% KV budget for
Llama-3-8B-Instruct-Gradient-1048k.

Dataset Full H2O MorphKV SnapKV AdaKV HeadKV HS-SFT

Average 40.08 26.84 38.19 38.47 38.67 39.12 42.17

2WikiMQA 28.78 28.87 24.01 29.00 28.97 29.01 30.60
DuReader (zh) 30.41 15.56 26.12 24.04 22.65 22.87 31.74
GovReport 34.23 20.66 27.19 26.84 24.22 24.01 32.60
HotpotQA 40.37 39.60 39.66 40.86 40.23 39.98 38.62
LCC 38.19 45.78 43.87 38.83 39.67 41.02 43.25
LSHT (zh) 38.00 16.50 35.00 38.00 36.50 37.14 34.50
MultiNews 27.73 19.21 28.40 22.84 21.81 22.04 27.69
MultiFieldQA-en 52.62 21.01 50.57 51.96 52.99 53.01 53.34
MultiFieldQA-zh 50.58 19.81 51.12 50.74 50.59 50.88 51.28
Musique 24.22 20.63 18.82 24.86 24.68 24.91 15.95
NarrativeQA 26.56 19.14 22.69 26.63 27.36 27.92 27.75
Passage Count 1.00 0.53 1.00 1.00 1.00 1.00 1.50
PassageRetrieval-en 81.00 19.50 81.00 80.50 80.50 83.00 92.50
PassageRetrieval-zh 62.15 11.75 60.10 58.53 61.92 62.45 88.56
Qasper 29.21 16.84 23.16 26.00 27.02 28.34 37.23
QMSum 24.52 18.89 23.82 24.90 24.65 24.55 24.86
RepoBench-P 38.94 45.16 42.33 38.20 38.50 39.12 40.80
SAMSum 42.51 39.73 39.93 40.90 41.38 41.88 42.31
TREC 71.50 48.50 64.00 66.00 71.00 71.00 71.00
TriviaQA 87.70 85.16 88.21 87.30 86.80 87.43 88.39
VCSUM (zh) 11.37 10.71 11.02 9.91 9.62 9.99 11.17

(a) SnapKV with Simulation Length = 0 (b) SnapKV with Simulation Length = 50

(c) HS-SFT with Simulation Length = 50 or 0

Figure 9: NIAH results for Llama-3-8B-1048K with a 50% KV cache budget.

Moreover, we posit that offline KV eviction is significantly more robust in real-world scenarios, such
as multi-round dialogue, where the query is not necessarily located at the end of the context. To
validate this, we follow prior works (Xiao et al., 2025; Tang et al., 2024b) in evaluating KV cache
eviction methods on a variant of the NIAH benchmark. In this setting, the final 50 tokens of the
prompt act as simulated generated output, mimicking a second-round dialogue scenario. As illustrated
in Figure 9, while SnapKV correctly retrieves the answer when the query is adjacent to the end, its
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performance collapses when the query position shifts. In contrast, HS-SFT remains stable across test
scenarios, as the offline eviction strategy stays invariant to the simulated generation process. These
findings underscore the applicability of offline eviction methods to real-world retrieval and multi-turn
interactions.

A.8 RESULTS ON QWEN-2.5-32B MODEL

We further validate HS-SFT on models beyond the LLaMA family by evaluating Qwen-2.5-32B Team
et al. (2024), a strong open-source LLM with 128k context window. Table 9 shows that HS-SFT
maintains a consistent advantage on Qwen-2.5-32B under 50% KV budget.

Table 9: Full LongBench results at 50% KV budget for Qwen-2.5-32B.

Dataset Baseline SLLM Duo HS-SFT

Average 44.53 36.42 43.42 44.31

2WikiMQA 39.96 37.96 39.89 38.01
DuReader (zh) 30.29 24.34 28.84 29.96
GovReport 35.57 33.75 34.65 35.14
HotpotQA 46.89 41.56 48.51 46.03
LCC 48.47 45.20 44.62 47.18
LSHT (zh) 48.50 38.25 43.50 48.00
MultiNews 24.37 23.77 24.55 24.22
MultiFieldQA-en 42.94 29.30 40.34 42.51
MultiFieldQA-zh 61.99 37.69 62.03 61.43
Musique 28.59 25.31 28.47 26.45
NarrativeQA 21.02 16.77 20.21 21.53
Passage Count 14.12 9.22 13.02 14.51
PassageRetrieval-en 95.25 56.17 93.51 95.59
PassageRetrieval-zh 92.77 52.71 92.08 93.12
Qasper 20.85 18.96 19.01 21.23
QMSum 23.41 20.72 23.88 24.12
RepoBench-P 32.57 34.49 33.41 35.88
SAMSum 47.12 45.61 46.42 46.99
TREC 72.50 69.50 72.50 71.50
TriviaQA 88.54 85.99 86.72 88.72
VCSUM (zh) 18.36 17.55 15.75 18.44
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A.9 DETAILED QUANTITATIVE RESULTS

We provide the detailed quantitative results of each task on LongBench and Ruler in the following
tables.

Table 10: Full LongBench results at 50% KV budget for Llama-3-8.1B-Instruct.

Dataset Full H2O SLLM Duo HS-SFT

Average 39.01 35.61 31.32 38.91 41.85

2WikiMQA 16.37 13.91 13.25 16.20 17.74
DuReader (zh) 29.30 21.53 12.95 31.31 30.76
GovReport 34.53 30.56 30.47 32.87 33.89
HotpotQA 17.23 17.31 15.78 19.53 20.49
LCC 52.39 53.08 52.90 53.31 48.97
LSHT (zh) 46.00 39.00 36.00 45.00 41.50
MultiNews 26.91 25.52 24.97 26.29 27.63
MultiFieldQA-en 28.44 21.89 16.05 27.77 33.66
MultiFieldQA-zh 20.19 14.87 15.92 21.98 60.83
Musique 11.82 10.15 10.19 12.97 14.25
NarrativeQA 31.99 31.09 24.15 29.12 28.77
Passage Count 6.26 5.40 4.75 6.31 2.00
PassageRetrieval-en 97.95 89.86 52.11 98.59 96.50
PassageRetrieval-zh 77.54 69.73 35.14 75.37 94.00
Qasper 25.14 16.96 23.56 21.12 28.47
QMSum 23.63 22.54 21.48 23.89 26.37
RepoBench-P 49.46 49.51 49.95 53.74 52.45
SAMSum 43.69 42.56 43.32 43.40 42.06
TREC 72.50 66.50 69.50 73.00 74.50
TriviaQA 91.65 90.07 90.06 89.60 87.99
VCSUM (zh) 16.26 15.80 15.17 15.83 16.01

Table 11: Full LongBench results at 50% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT

Average 41.11 33.48 41.83 42.33

2WikiMQA 24.43 24.15 29.27 26.71
DuReader (zh) 31.94 28.55 32.39 31.98
GovReport 34.69 30.48 32.89 33.90
HotpotQA 38.22 30.53 38.84 31.80
LCC 43.81 45.05 49.85 48.87
LSHT (zh) 43.00 31.50 41.00 35.25
MultiNews 27.15 25.42 27.88 27.23
MultiFieldQA-en 46.19 33.08 46.23 52.99
MultiFieldQA-zh 52.03 31.86 54.06 50.74
Musique 19.94 17.24 19.19 15.25
NarrativeQA 23.94 21.42 23.55 27.93
Passage Count 0.00 0.5 0.0 1.50
PassageRetrieval-en 87.00 47.5 85.0 85.00
PassageRetrieval-zh 76.76 39.33 79.95 93.00
Qasper 33.24 24.35 30.64 36.64
QMSum 25.45 23.03 26.20 25.54
RepoBench-P 40.54 41.84 48.02 46.98
SAMSum 41.75 40.20 40.19 43.15
TREC 69.50 68.50 72.50 73.50
TriviaQA 88.19 85.16 85.91 85.77
VCSUM (zh) 15.49 13.37 14.80 15.10
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Table 12: Full LongBench results at 30% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT

Average 41.11 29.94 38.81 41.30

2WikiMQA 24.43 24.40 26.14 25.04
DuReader (zh) 31.94 28.09 32.08 33.11
GovReport 34.69 28.12 27.08 31.10
HotpotQA 38.22 28.05 34.42 34.88
LCC 43.81 43.43 46.92 49.78
LSHT (zh) 43.00 27.00 32.00 32.50
MultiNews 27.15 24.07 26.75 27.85
MultiFieldQA-en 46.19 32.16 42.18 52.90
MultiFieldQA-zh 52.03 26.81 53.96 49.44
Musique 19.94 15.51 16.80 15.58
NarrativeQA 23.94 20.90 21.69 24.41
Passage Count 0.00 1.50 1.00 3.50
PassageRetrieval-en 87.00 37.00 85.00 85.00
PassageRetrieval-zh 76.76 22.77 66.54 85.56
Qasper 33.24 17.04 31.39 36.41
QMSum 25.45 21.28 24.04 24.35
RepoBench-P 40.54 42.10 45.70 49.00
SAMSum 41.75 37.61 38.57 41.05
TREC 69.50 57.50 67.50 72.00
TriviaQA 88.19 80.27 79.87 78.12
VCSUM (zh) 15.49 13.18 15.43 15.62

Table 13: Full LongBench results at 10% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT

Average 41.11 24.20 24.53 29.38

2WikiMQA 24.43 22.34 22.13 23.94
DuReader (zh) 31.94 28.10 29.40 33.89
GovReport 34.69 22.79 20.92 26.44
HotpotQA 38.22 22.92 25.78 23.32
LCC 43.81 42.55 43.82 47.98
LSHT (zh) 43.00 17.75 11.00 22.25
MultiNews 27.15 22.73 23.58 26.30
MultiFieldQA-en 46.19 28.80 30.38 39.91
MultiFieldQA-zh 52.03 22.08 25.34 34.31
Musique 19.94 12.46 11.83 10.14
NarrativeQA 23.94 18.23 17.64 19.54
Passage Count 0.00 1.00 2.00 3.00
PassageRetrieval-en 87.00 12.50 9.50 14.50
PassageRetrieval-zh 76.76 6.72 8.64 15.88
Qasper 33.24 13.34 14.18 21.95
QMSum 25.45 19.29 20.86 22.40
RepoBench-P 40.54 40.16 39.02 42.11
SAMSum 41.75 36.58 35.95 39.76
TREC 69.50 35.00 42.00 57.50
TriviaQA 88.19 72.04 69.16 77.32
VCSUM (zh) 15.49 10.81 12.01 14.58
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Table 14: Full LongBench results at 50% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT

Average 40.09 32.26 39.45 42.17

2WikiMQA 28.78 22.64 29.61 30.60
DuReader (zh) 30.41 25.85 28.99 31.74
GovReport 34.23 30.08 32.28 32.60
HotpotQA 40.37 34.84 43.37 38.62
LCC 38.19 40.08 37.71 43.25
LSHT (zh) 38.00 25.50 30.50 34.50
MultiNews 27.73 25.49 27.93 27.69
MultiFieldQA-en 52.62 32.46 50.12 53.34
MultiFieldQA-zh 50.98 32.24 52.54 51.28
Musique 24.22 19.65 24.39 15.95
NarrativeQA 26.56 20.71 25.35 27.75
Passage Count 1.00 1.00 1.00 1.50
PassageRetrieval-en 81.00 46.50 83.50 92.50
PassageRetrieval-zh 62.15 34.21 60.41 88.56
Qasper 29.21 18.81 27.51 37.23
QMSum 24.52 22.56 24.72 24.86
RepoBench-P 38.94 39.83 39.73 40.80
SAMSum 42.51 40.42 41.89 42.31
TREC 71.50 68.00 73.00 71.00
TriviaQA 87.70 84.72 86.69 88.39
VCSUM (zh) 11.37 11.93 7.15 11.17

Table 15: Full LongBench results at 30% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT

Average 40.09 29.54 30.28 39.22

2WikiMQA 28.78 24.10 23.15 26.48
DuReader (zh) 30.41 25.85 26.85 32.79
GovReport 34.23 28.07 22.19 29.03
HotpotQA 40.37 29.15 31.15 35.11
LCC 38.19 42.67 35.18 47.24
LSHT (zh) 38.00 24.00 22.50 28.00
MultiNews 27.73 23.63 24.27 26.72
MultiFieldQA-en 52.62 31.92 41.06 52.13
MultiFieldQA-zh 50.98 25.62 39.70 45.77
Musique 24.22 18.34 10.52 13.68
NarrativeQA 26.56 20.54 18.64 25.22
Passage Count 1.00 1.50 1.50 1.50
PassageRetrieval-en 81.00 35.50 49.50 78.50
PassageRetrieval-zh 62.15 20.59 27.75 67.50
Qasper 29.21 14.61 18.48 36.97
QMSum 24.52 21.00 22.29 23.36
RepoBench-P 38.94 41.67 37.54 42.89
SAMSum 42.51 38.90 40.98 42.22
TREC 71.50 59.00 57.50 68.50
TriviaQA 87.70 82.55 78.06 87.97
VCSUM (zh) 11.37 11.22 7.02 11.96
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Table 16: Full LongBench results at 10% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT

Average 40.09 24.58 23.72 29.57

2WikiMQA 28.78 20.08 19.45 26.64
DuReader (zh) 30.41 27.47 28.42 28.40
GovReport 34.23 22.49 20.85 27.06
HotpotQA 40.37 24.47 26.21 30.12
LCC 38.19 42.10 43.12 47.50
LSHT (zh) 38.00 16.25 14.50 18.25
MultiNews 27.73 22.36 23.10 25.23
MultiFieldQA-en 52.62 29.66 27.97 34.66
MultiFieldQA-zh 50.98 24.27 24.22 29.79
Musique 24.22 12.93 9.63 11.17
NarrativeQA 26.56 19.92 16.20 20.48
Passage Count 1.00 1.00 0.50 1.50
PassageRetrieval-en 81.00 14.00 7.55 18.50
PassageRetrieval-zh 62.15 6.30 5.50 18.50
Qasper 29.21 11.17 11.12 25.22
QMSum 24.52 19.39 19.19 22.28
RepoBench-P 38.94 41.25 42.30 43.24
SAMSum 42.51 37.04 36.26 41.10
TREC 71.50 37.50 38.00 58.00
TriviaQA 87.70 76.66 73.47 81.67
VCSUM (zh) 11.37 9.79 10.50 11.73

Table 17: Full LongBench results at 50% KV budget for Llama-2-32K.

Dataset Baseline SLLM Duo HS-SFT

Average 37.53 32.75 36.80 36.81

2WikiMQA 35.59 31.51 37.30 26.34
DuReader (zh) 25.10 18.65 24.00 27.84
GovReport 31.19 26.42 30.37 31.79
HotpotQA 47.98 44.98 48.84 41.95
LCC 51.21 48.36 49.28 49.34
LSHT (zh) 34.50 27.50 32.00 32.00
MultiNews 27.14 24.94 26.07 27.66
MultiFieldQA-en 33.95 21.35 34.29 31.86
MultiFieldQA-zh 45.79 30.17 46.76 50.10
Musique 22.97 22.01 20.81 18.54
NarrativeQA 24.11 22.83 23.58 22.17
Passage Count 0.00 0.85 0.00 0.12
PassageRetrieval-en 50.92 36.33 45.92 47.25
PassageRetrieval-zh 37.68 28.84 42.81 48.00
Qasper 33.23 28.19 30.32 32.52
QMSum 20.81 19.68 20.59 23.22
RepoBench-P 51.58 49.96 48.91 48.34
SAMSum 42.10 40.15 42.07 41.92
TREC 71.50 66.00 70.50 71.50
TriviaQA 86.21 86.71 85.91 87.27
VCSUM (zh) 14.51 12.25 12.42 13.34
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Table 18: Full LongBench results at 30% KV budget for Llama-2-32K.

Dataset Baseline SLLM Duo HS-SFT

Average 37.53 29.93 36.16 36.10

2WikiMQA 35.59 29.49 32.80 28.68
DuReader (zh) 25.10 18.52 23.78 27.76
GovReport 31.19 24.53 29.99 31.55
HotpotQA 47.98 40.29 48.36 42.72
LCC 51.21 48.20 49.01 50.02
LSHT (zh) 34.50 24.00 31.50 26.50
MultiNews 27.14 23.96 26.46 27.00
MultiFieldQA-en 33.95 19.28 30.38 29.87
MultiFieldQA-zh 45.79 25.28 40.79 47.95
Musique 22.97 19.57 19.94 19.77
NarrativeQA 24.11 20.50 21.98 19.65
Passage Count 0.00 0.50 0.42 0.12
PassageRetrieval-en 50.92 26.42 52.63 45.42
PassageRetrieval-zh 37.68 20.18 48.27 44.25
Qasper 33.23 21.86 26.70 30.71
QMSum 20.81 19.55 21.19 22.26
RepoBench-P 51.58 48.99 48.95 50.35
SAMSum 42.10 38.50 37.01 41.29
TREC 71.50 62.00 71.00 71.00
TriviaQA 86.21 85.28 86.23 87.94
VCSUM (zh) 14.51 11.61 12.00 13.20

Table 19: Full LongBench results at 10% KV budget for Llama-2-32K.

Dataset Baseline SLLM Duo HS-SFT

Average 37.53 25.51 7.33 25.98

2WikiMQA 35.59 25.02 10.75 18.62
DuReader (zh) 25.10 19.00 1.15 21.80
GovReport 31.19 22.14 5.73 23.27
HotpotQA 47.98 32.95 2.37 37.44
LCC 51.21 45.72 20.40 49.60
LSHT (zh) 34.50 14.75 0.00 16.50
MultiNews 27.14 20.97 13.29 23.79
MultiFieldQA-en 33.95 17.13 11.57 16.99
MultiFieldQA-zh 45.79 18.24 2.81 25.58
Musique 22.97 17.62 0.05 12.73
NarrativeQA 24.11 18.74 0.71 11.74
Passage Count 0.00 0.85 0.12 0.27
PassageRetrieval-en 50.92 8.75 3.93 5.25
PassageRetrieval-zh 37.68 10.79 0.33 9.92
Qasper 33.23 16.69 11.11 19.58
QMSum 20.81 20.02 8.28 20.35
RepoBench-P 51.58 45.76 15.36 46.57
SAMSum 42.10 35.13 7.30 39.88
TREC 71.50 51.00 22.00 54.50
TriviaQA 86.21 83.52 13.83 81.07
VCSUM (zh) 14.51 10.94 2.84 10.20
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Table 20: Full Ruler results at 50% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT

Average 92.68 49.17 90.47 92.96

niah_single_1 100.00 47.20 100.00 100.00
niah_single_2 100.00 44.40 100.00 100.00
niah_single_3 100.00 47.80 100.00 100.00
niah_multikey_1 99.60 51.60 99.60 99.40
niah_multikey_2 99.60 47.20 100.00 99.60
niah_multikey_3 96.40 46.40 97.00 92.60
niah_multiquer 99.95 48.25 99.65 99.80
niah_multivalue 92.40 47.50 97.05 98.80
cwe 43.46 11.06 18.72 44.40
fwe 90.87 92.33 88.67 91.00
vt 97.24 57.08 94.44 96.96

Table 21: Full Ruler results at 30% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT

Average 92.68 32.35 84.96 85.91

niah_single_1 100.00 28.80 100.00 100.00
niah_single_2 100.00 24.60 100.00 99.80
niah_single_3 100.00 28.00 99.80 98.40
niah_multikey_1 99.60 31.20 98.40 98.00
niah_multikey_2 99.60 29.80 98.80 99.60
niah_multikey_3 96.40 26.00 62.00 67.60
niah_multiquer 99.95 28.55 96.90 93.20
niah_multivalue 92.40 27.50 91.85 94.50
cwe 43.46 2.64 3.20 8.18
fwe 90.87 94.80 89.07 95.27
vt 97.24 33.96 94.52 90.48

Table 22: Full Ruler results at 10% KV budget for Llama-3-8B-Instruct-262K.

Dataset Baseline SLLM Duo HS-SFT

Average 92.68 16.18 9.14 18.44

niah_single_1 100.00 8.40 9.40 13.40
niah_single_2 100.00 7.60 15.80 13.00
niah_single_3 100.00 9.20 8.80 14.20
niah_multikey_1 99.60 9.40 25.00 16.40
niah_multikey_2 99.60 8.60 11.80 11.00
niah_multikey_3 96.40 8.00 1.60 11.00
niah_multiquer 99.95 10.00 4.70 10.30
niah_multivalue 92.40 9.20 4.85 9.20
cwe 43.46 0.28 0.76 3.78
fwe 90.87 97.60 16.13 92.20
vt 97.24 9.72 1.68 8.40
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Table 23: Full Ruler results at 50% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT

Average 92.68 49.17 90.47 93.87

niah_single_1 100.00 47.20 100.00 100.00
niah_single_2 100.00 44.40 100.00 100.00
niah_single_3 100.00 47.80 100.00 100.00
niah_multikey_1 99.60 51.60 99.60 99.20
niah_multikey_2 99.60 47.20 100.00 99.20
niah_multikey_3 96.40 46.40 97.00 98.00
niah_multiquer 99.95 48.25 99.65 99.65
niah_multivalue 92.40 47.50 97.05 98.75
cwe 43.46 11.06 18.72 50.14
fwe 90.87 92.33 88.67 91.67
vt 97.24 57.08 94.44 95.96

Table 24: Full Ruler results at 30% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT

Average 92.68 32.35 84.96 85.94

niah_single_1 100.00 28.80 100.00 100.00
niah_single_2 100.00 24.60 100.00 100.00
niah_single_3 100.00 28.00 99.80 98.40
niah_multikey_1 99.60 31.20 98.40 98.20
niah_multikey_2 99.60 29.80 98.80 97.80
niah_multikey_3 96.40 26.00 62.00 84.40
niah_multiquer 99.95 28.55 96.90 92.10
niah_multivalue 92.40 27.50 91.85 84.45
cwe 43.46 2.64 3.20 9.32
fwe 90.87 94.80 89.07 93.47
vt 97.24 33.96 94.52 87.16

Table 25: Full Ruler results at 10% KV budget for Llama-3-8B-1048K.

Dataset Baseline SLLM Duo HS-SFT

Average 92.68 16.18 16.41 54.69

niah_single_1 100.00 8.40 9.40 99.40
niah_single_2 100.00 7.60 15.80 96.80
niah_single_3 100.00 9.20 8.80 91.60
niah_multikey_1 99.60 9.40 25.00 68.80
niah_multikey_2 99.60 8.60 11.80 47.40
niah_multikey_3 96.40 8.00 1.60 3.00
niah_multiquer 99.95 10.00 4.70 42.45
niah_multivalue 92.40 9.20 4.85 34.65
cwe 43.46 0.28 0.76 1.38
fwe 90.87 97.60 96.13 97.07
vt 97.24 9.72 1.68 19.00
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Table 26: Full Ruler results at 50% KV budget for Llama-2-7B-32K.

Dataset Baseline SLLM Duo HS-SFT

Average 26.42 18.02 26.44 26.34

niah_single_1 22.60 14.80 22.20 22.40
niah_single_2 22.40 10.20 22.40 22.40
niah_single_3 21.60 11.80 22.00 22.20
niah_multikey_1 22.20 13.40 22.20 21.20
niah_multikey_2 16.00 9.20 16.00 15.80
niah_multikey_3 12.60 7.60 12.40 9.80
niah_multiquer 21.15 12.75 21.15 21.40
niah_multivalue 21.20 12.75 21.20 21.20
cwe 18.50 23.66 18.14 16.64
fwe 84.13 70.33 84.93 88.07
vt 28.24 11.76 28.20 28.64

Table 27: Full Ruler results at 30% KV budget for Llama-2-7B-32K.

Dataset Baseline SLLM Duo HS-SFT

Average 26.42 14.70 23.89 25.11

niah_single_1 22.60 8.40 19.80 22.20
niah_single_2 22.40 7.60 21.60 22.20
niah_single_3 21.60 8.80 18.60 22.20
niah_multikey_1 22.20 9.40 19.40 22.00
niah_multikey_2 16.00 6.60 12.00 15.80
niah_multikey_3 12.60 5.40 7.60 8.00
niah_multiquer 21.15 10.00 18.80 21.25
niah_multivalue 21.20 9.35 19.15 20.95
cwe 18.50 14.82 14.76 10.00
fwe 84.13 74.93 87.07 88.87
vt 28.24 6.44 24.00 22.72

Table 28: Full Ruler results at 10% KV budget for Llama-2-7B-32K.

Dataset Baseline SLLM Duo HS-SFT

Average 26.42 10.69 3.14 19.15

niah_single_1 22.60 3.00 0.80 18.40
niah_single_2 22.40 2.80 7.80 18.80
niah_single_3 21.60 3.40 0.20 22.00
niah_multikey_1 22.20 5.20 7.80 19.40
niah_multikey_2 16.00 3.20 0.00 6.80
niah_multikey_3 12.60 2.60 0.00 1.80
niah_multiquer 21.15 4.60 4.95 17.50
niah_multivalue 21.20 4.80 6.55 16.95
cwe 18.50 6.82 0.00 5.30
fwe 84.13 78.87 6.20 77.67
vt 28.24 2.32 0.20 6.00
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