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Abstract

Long-separated research has been conducted on two highly correlated tracks: traffic
and incidents. Traffic track witnesses complicating deep learning models, e.g.,
to push the prediction a few percent more accurate, and the incident track only
studies the incidents alone, e.g., to infer the incident risk. We, for the first time,
spatiotemporally aligned the two tracks in a large-scale region (16,972 traffic nodes)
from year 2022 to 2024: our TraffiDent dataset includes traffic, i.e., time-series
indexes on traffic flow, lane occupancy, and average vehicle speed, and incident,
whose records are spatiotemporally aligned with traffic data, with seven different
incident classes. Additionally, each node includes detailed physical and policy-
level meta-attributes of lanes. Previous datasets typically contain only traffic or
incident data in isolation, limiting research to general forecasting tasks. TraffiDent
integrates both, enabling detailed analysis of traffic-incident interactions and causal
relationships. To demonstrate its broad applicability, we design: (1) post-incident
traffic forecasting to quantify the impact of different incidents on traffic indexes;
(2) incident classification using traffic indexes to determine the incidents types
for precautions measures; (3) global causal analysis among the traffic indexes,
meta-attributes, and incidents to give high-level guidance of the interrelations
of various factors; (4) local causal analysis within road nodes to examine how
different incidents affect the road segments’ relations. The dataset is available at
https://xaitraffic.github.iol

1 Introduction

In today’s era of deep learning, a technological foundation has been laid for intelligent transportation
systems [55, 158} 130]]. Primarily, conducting myriad traffic analysis relies on two types of data: traffic
and incident data. Traffic data encompasses the traffic state-related time-series, e.g., volume, speed,
and occupancy rate on the road network over time. This continuous stream of data is essential for
forecasting the future volume, understanding peak usage times, and optimizing traffic signals and
routes [16, 25]]. Real-time traffic data allows for dynamic adjustments to be made, enhancing the
efficiency of traffic flow and reducing overall travel times. On the other hand, incident data includes
information about traffic accidents, road closures, and unexpected events that can significantly affect
traffic flow. This data helps in understanding the impact of such incidents on traffic congestion
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Figure 1: Our TraffiDent contains (a) traffic data with road-level meta features, (b) incident data, and
(c) their essential yet neglected relations

and travel time, facilitating more accurate predictions and enabling timely responses from traffic
management systems [26, 29]]. By analyzing patterns and frequencies of incidents, predictive models
can also be developed to foresee potential hotspots and prevent future occurrences.

However, current research has been conducting the two tracks of traffic and incident separately,
ignoring the inseparable relation of traffic and incident. For example, abundant works [44, 21, [12]60]
have been using various traffic-only datasets such as PEMS [46], META-LA [46]], LargeST [32]
for traffic forecasting. They achieved relatively high accuracy because, under normal circumstances,
traffic flow generally follows a strong regular temporal pattern. However, they ignore that unexpected
incidents will cause abnormal and irregular patterns in traffic flows. FT-AED [8] provides anomaly
annotations but is limited in scale, covering only 196 sensors. Moreover, it lacks detailed incident
labels and location features, making it suitable only for coarse-grained time series anomaly detection
tasks without support for detailed incident analysis. On the contrary, in the incident-only data [236],
studies have been done on offering descriptive analysis on the incident patterns [24} [1]], predicting
the accident risk [45], time-to-accident [3]], or next incident [19], yet the biggest research gap is:
there is very limited work supporting the research of interrelations between the traffic time-series and
incidents, especially to identify and explain the incidents and their causal relations with the traffic
systems and roads. Moreover, the data granularity of existing open-source datasets [[L0} 38} 39} [19]
is extremely coarse, and there is no specific location information, such as coordinates or absolute
postmile (Abs PM) markers. These factors make conducting related research particularly challenging.
Some traffic studies that incorporate incident data use datasets that have not been aggregated or made
open source, making it difficult to use them as a standard for evaluating new methods. Additionally,
due to the issue of large granularity, it’s impossible to analyze the specific impact of accidents on
precise road segments. Instead, incident data can only be used to predict general volume within a
certain area.

Contributions. To address the research gaps, we introduce the TraffiDent dataset. This dataset not
only includes three distinct types of traffic time series data for the entire 3 years from 2022 to 2024
(in Fig. [T[a)), but also encompasses comprehensive incident data (in Fig. [I(b)) and meta-features of
roads closely related to traffic flow. The contributions of this dataset can be summarized as follows:
(1) We provide a comprehensive collection of multi-type incident records with 1,441,904 samples.
It enables the training and evaluation of traffic forecasting models across various scenarios/incidents.
This also supports tasks such as incident discovery and traffic anomaly detection by providing ground
truth data. (2) We offer a rich collection of physical and policy-level road meta-features. These
features are instrumental for causal analysis of traffic and support the increasingly popular field
of interpretable deep learning models. (3) By incorporating rich, fine-grained attributes, our
dataset enables researchers to explore the underlying mechanisms driving traffic dynamics and
model behavior. Furthermore, we introduce four novel tasks and corresponding experiments that are
infeasible to implement or evaluate using existing datasets. As shown in Fig. [I[c), our TraffiDent
helps not only Incident — Traffic: e.g., to analyze how incidents affect the traffic states (with our
post-incident traffic forecasting in Sec. f.2) and traffic node relations (local causal analysis in Sec.
[.3), but also Traffic — Incident: e.g., to identify the incidents (incident classification in Sec.
and explain the incident with other factors from the system (global causal analysis in Sec. [4.4).

To our knowledge, TraffiDent is the most recent large-scale dataset that simultaneously includes
traffic, incident, and meta-feature information in terms of collection time, covering three distinct
types of traffic volume. This ensures the timeliness of traffic research, providing a robust foundation



for studies aiming to capture and explain traffic dynamics, causation, and interrelations. TraffiDent
serves as a rigid testing bed and empirical support to justify model effectiveness and interoperability
in deep learning and the traffic community.

2 Related Work
2.1 Related Work of Traffic and Incident Datasets

Traffic Dataset. Traffic dataset are commonly used in traffic analysis and forecasting as experimental
benchmarks. We introduce the existing four public datasets widely leveraged in traffic forecasting
experiments. The PeMSD7(M) and PeMSD7(L) are proposed by [55]. METR-LA and PEMS-
BAY[27] covered similar regions in California with multiple traffic. However, these datasets are
limited to one collection region, our TraffiDent instead covers the majority of Metropolitan regions of
California including greater San Francisco, San Jose, and Greater Los Angeles. The PEMS03,04,07
and 08 are proposed by [46]. This dataset encompasses four different regions, with data collected
using the same rules, supporting multi-region research for traffic analysis and forecasting. Compared
to previous datasets, LargeST [32]] extends both temporally and spatially and includes some basic
meta-features. However, these datasets still lack important features such as incidents that significantly
impact traffic, as well as road meta-features related to physics and policy. Our TraffiDent is the
first dataset as such that spatiotemporally align traffic dynamics and traffic incidents, enabling
uncomparable potentials for explainable and interpretable traffic management tasks.

Incident Dataset. Incident datasets support the traffic analysis, like the incident impact on traffic,
and incident detection. [19] proposes a dataset that includes accident data with accident relative
features, like accident reason. [54] also leverages a large accident dataset including various types for
accident hotspot prediction. However, limited to the absence of traffic time series, it is hard to do a
deeper impact analysis of accidents on traffic based on these datasets. [29] leverages a dataset that
includes 13,338 accident records with the traffic flow. However, the dataset is small and non-public.
[60] proposes a new accident prediction model based on a dataset with accidents and traffic flow.
However, the dataset is not public, either.

2.2 Traffic and Incident Analysis

Traffic Forecasting with Incidents Considered. A large number of works, e.g., STGCN [55]],
STGODE [7], DSTAGNN]I21], are proposed to improve the prediction accuracy based on GNN [52]
and RNN [41] models. However, these works only consider historical traffic for future traffic, yet other
critical impacts, e.g., incidents and meta-features are ignored ([56} 20, 47, [32]] offer detailed reviews
in traffic forecasting). There are a few works that have considered incidents when predicting, whose
main design is incorporating incident-related embedding as auxiliary information into traditional
spatiotemporal prediction framework [53} 14,133, [18]]. For example, DIGC-Net [53] inputs the type
and duration of the incident to predict the affected speed. Yet, the dataset only brings one week
of incident data (17-24 Apr 2019) from a small district, being spatiotemporal limited; STCL [33]
introduced two-month New York City Vehicle incident data as one-hot accident embedding into
the prediction of the 7axi and Bike data. Like what we have observed in most works that analyze
traffic with incidents [33] [18]], the transport modes of traffic data and that of incident data are
NOT seamlessly matched; thus, it will be less convincing to analyze vehicle incidents’ impact
on bike traffic (bike lane is separated from vehicle lane) or on taxi traffic (taxi is only a subset
mode of the whole vehicle). Our TraffiDent is the first and only dataset that is (1) spatially and
temporally large-scale, (2) that modes in traffic and incident are seamlessly matched (all vehicles),
which guarantees unbiased analysis between the traffic and incident.

Incident Classification. It is a crucial task in analyzing non-recurrent congestion [26]. Recently,
several studies have utilized traffic flow data for incident classification [29, |60]. However, these
studies often face at least one of the following three challenges: (1) Small Data Size [29]: Many
studies suffer from limited datasets that fail to capture the diversity and complexity of traffic patterns,
affecting model reliability and generalizability. (2) Limited Dimensionality without Traffic Volume
Data [[19} 54]: The absence of critical data dimensions, such as traffic volume, restricts the depth and
accuracy of incident classification models. (3) Experiments Based on Non-Public Dataset [60, [29]:
Reliance on proprietary datasets impedes the ability of the broader research community to verify,
replicate, or enhance the findings, limiting collaborative advancements.

Traffic Causal Analysis. This task aims to learn the causal structures among different entities in
a traffic system. Usually, the causal structures are formulated as Bayesian networks or DAGs [39],



where a directed edge denotes the causal link. In the traffic domain, given the traffic indexes are
time-series and others can be scalers (e.g., static meta-features), a special DAG structure learning
based on heterogeneous data is needed [22, 23]]. To learn the global relation of various factors,
e.g., traffic flow, meta-attributes, weather, etc., where each DAG node is a factor to be considered,
MultiFun-DAG [23]] views multivariate time-series in traffic as a multi-function and formulate the
structure learning as a “self-expression problem”, i.e., X = WX + Z, based on function-to-function
regression and the directed acyclic regularization on the coefficients W [59], a DAG is constructed
based on W. MM-DAG |[22]] further consider multi-location at the same time. To learn local causal
relation among different locations, where each DAG node is a spacial location, DBGCN [34]
and DCGCN [28]] combines DAG with GCN, DCGCN further considers the causal links across the
time, i.e., node 1 at ¢; affects the node 2 at ¢3, and the dynamics of DAG changing over time. The
preliminary of these four intended tasks are introduced in Appendix [A.4]

3 TraffiDent Datacube

3.1 Comparison with Existing Datasets

Table 1: The comparison of Existing Traffic Dataset Table 2: The comparison of Incidents Dataset
and TraffiDent. Each row represents the largest subset and TraffiDent. We are the only ones who

within the corresponding dataset. combine traffic with incidents.

Dataset Nodes Edges Slot | Location Context Physics Policy Gran. | Incdt. Dataset | Incident Gran. Volume Speed Occupancy

Min) CTC [0 1 Point

PeMSD7(L) | 1,026 14,534 5 v v - - Road NYC Col [38 1 Road

METR-LA 207 1,515 5 v - - - Road - NYS Crashes [11 1 Point

PEMS-BAY | 325 2,369 5 s Road - UKA (39 1 Point

PEMS07 883 865 5 - - - - Road - TAP (19 1 Road

8,600 201,363 15 v v - - Road - TAA [3 1 Road

TraffiDent 16,972 870,100 5 v v v v Lane v
TraffiDent | 7 Point v v v

(1) Base Features Comparison. In Table[I] we introduce the existing four public datasets widely
leveraged in traffic analysis. The PeMSD7(M) and PeMSD7(L) are proposed by [55]. The
PEMSO03,04,07 and 08 are proposed by [46]. The large-scale traffic dataset LargeST which in-
cludes CA, GLA, GBA, and SD subdatasets are proposed by [32]]. We compared the datasets from
7 aspects: Scale (Number of Sensors/Nodes and Neighbors/Edges), Location (Latitude, Longitude,
Abs PM), Context (Road Name, City, County), Physics Meta Feature (Road Width, Terrain, Surface
Material, etc.), Policy meta feature (Design Speed Limit, Population, Functional Class etc.), Gran-
ularity (timer interval, sensor level) and Incident features. As shown in Table [T} our TraffiDent is
larger than the existing datasets, with 16,972 nodes and 870,100 edges. Compared to other datasets,
we include two types of meta features: physics meta feature and policy meta feature. The physics
meta feature details the tangible, structural characteristics of a road, and the policy meta feature
is fundamental for the operational and planning purposes of a road. These features provide strong
support for constructing interpretable traffic forecasting and traffic causal analysis.

In Table [2} there are 6 famous existing datasets for incident analysis. Compared with them, our
TraffiDent includes 7 incident categories besides accidents. The category feature provides fundamental
support for studying the impact of different incidents on traffic and also offers ground truth for
detecting incidents beyond accidents. Also, TraffiDent includes three kinds of traffic time series:
traffic volume, road occupancy rate, and vehicle average speed. Such an integration significantly
broadens the scope of analyzing post-incident impacts.

(2) Comprehensive Road Meta Features in Multiple Aspects. As shown in Table 1, TraffiDent
dataset includes a wide range of road meta-features, categorized into context, location, policy, and
physics-related features. Context features include attributes like district and county, which help
understand traffic patterns within different administrative or urban contexts. Location features
provide precise spatial attributes such as road coordinates and segment information. Policy features
cover regulatory aspects like speed limits, while physics features address road characteristics such as
terrain type. This diverse set of meta-features allows for a holistic analysis of how various factors
influence traffic behavior.

(3) The Bridge between Traffic and Incidents. TraffiDent bridges the gap between traffic and
incident data by integrating detailed traffic flow metrics (such as lane-level flow, speed, and occupancy)
with comprehensive incident records (including various types of accidents). From Traffic View.
As shown in Table 1, the existing datasets often lack incident data and have insufficient road-level
granularity to effectively study the impact of incidents on traffic. For example, the effect of a traffic



incident on one side of the road might be significantly different from the impact on the other side.
TraffiDent offers lane-level traffic flow, speed, and occupancy data with incident features, allowing for
detailed analysis of traffic patterns under incident impact at a micro level. Also, the high resolution
supports the identification of specific traffic bottlenecks, congestion patterns, and variations in traffic
behavior that aggregate or road-level datasets might obscure. Researchers can perform fine-grained
analysis to understand traffic dynamics under different incident impacts with greater precision.
From Incident View. Compared to the existing opensource incidents dataset, as shown in Table
2, TraffiDent has two advantages: (a)Not like other datasets only include accident type incidents,
TraffiDent covers 7 specific incident types, such as hazzards and road closures. (b)TraffiDent includes
three traffic time series (flow, speed, occupancy) more than other public datasets, even more than
some non-public datasets [29,|60]. This allows for sophisticated analyses of how various incidents
impact traffic conditions across different regions and times. Researchers can study patterns like the
frequency and severity of incidents, their spatial distribution, and their temporal effects on traffic flow,
providing a nuanced understanding of incident impacts that single-dataset approaches might miss. By
combining incident data with detailed traffic metrics, our dataset facilitates advanced causal analysis,
enabling researchers to determine how specific incidents influence traffic behavior over time. This
capability supports the development of more effective traffic management strategies and predictive
models that account for the immediate and long-term effects of incidents on traffic conditions.

3.2 Collection and Construction

Both incident and traffic data are collected from Caltrans Performance Measurement System (PEMS).
We started our collection on April 20, 2024, and ended on May 10, 2024. The time span of the data
covers the entire 3 years from 2022 to 2024. For traffic data, we removed the sensor with less than
50% observations of traffic volume and reserved the data of 16,972 sensors with meta-features. These
sensors are located in 42 different cities and counties. We also collected comprehensive meta-features
of these sensors. After excluding the features with the same value and features unrelated to traffic, 27
meta-features are reserved. These meta-features can be divided into 5 types as shown in Table[I} Full
meta-features are in Table [f] Appx.[A.3] As most methods in traffic forecasting are graph-based, the
adjacency matrix is a key component for the model to learn spatial dependency. The construction of
adjacency matrix is introduced in Appendix [A.6]

For incident data, we removed repeated incident records and the records without absolute postmile
(indicating the position and date-time). As the source and CA PM (we have Abs PM to locate the
incident) are relatively redundant in the traffic analysis, thus also being removed. The reserved
incident data includes 1,441,904 samples with 9 features. Identifying which nodes are impacted by
an incident is crucial for leveraging incident records in traffic analysis. To facilitate this, we use
a method that combines the freeway name and absolute postmile (Abs PM) markers to pinpoint
sensors that might be affected by the incident. We provide two methods for this matching process: (1)
involves matching only the nearest sensor on the same freeway as the incident, (2) involves setting a
distance threshold and incorporating all sensors within this specified range.

Data imputation is also a crucial aspect of dataset application. However, Considering that different
researchers may prefer different data cleaning methods (for example, to handle missing data, some
may prefer zero filling for tasks such as classification, while some may avoid zero filling and prefer
linear interpolation if the task is imputation so that they don’t mix the ground-truth zero value and
missing value). Thus, we believe providing the raw data we collected is better. In the experiments
mentioned in Sections 4.2 and 4.3, we used zero-filling to address missing values in the traffic series
features. More data imputation methods applications are discussed in Appendix [A.3]

4 Experiments

4.1 Descriptive Analysis of TraffiDent

To demonstrate the correlations between traffic conditions and incidents across various spatial and
temporal dimensions, we conducted separate analyses for both traffic data and incident data in Year
2023. The cross year data analysis can be found at https://xaitraffic.github.io.

4.1.1 Traffic Trending and Peak Hour Analysis

Traffic Time Series Variation Patterns. We defined weekdays as Monday through Friday and
weekends as Saturday and Sunday. Within each group, we averaged traffic data from all sensors for
the same time interval and normalized the data within each traffic category for visualization. As
shown in Fig. [2(a) and (b), the results reveal a distinct evening peak in traffic between 4:00-5:00
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Figure 2: (a) and (b) represent the average traffic variation of all sensors on weekends and weekdays,
respectively. (c) and (d) represent the average peak flow and the peak time in different districts. The
peak flow is calculated based on all sensors in the specific district. Deeper green indicates the highest
peak flow.
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PM on weekends. In contrast, weekdays exhibit both morning and evening peaks, with high traffic
levels sustained throughout the day. Additionally, the statistical analysis shows an inverse relationship
between speed and occupancy rate, as well as flow.

Traffic Peak Hour Analysis. We define the morning peak hour as between 6:00 and 10:00 and the
evening peak hour as between 15:00 and 20:00. We calculated the average flow for each time interval
across all sensors in different districts during peak hours and identified the peak flow values along
with their corresponding peak times. As shown in Fig. 2Jc) and (d), the peak times in the morning are
consistent across districts, with similar traffic flow patterns. In the afternoon, however, two distinct
peak times are observed: 15:40 and 17:15. Since our flow data is recorded by time intervals, 15:40
and 17:15 represent the time intervals 15:40-15:45 and 17:15-17:20, respectively.

4.1.2 Incidents Analysis on Hub and Fringe Nodes

At first, we summarize the distribution of incident durations and types. Fig. 2fa) reveals a long-tail
distribution where most incidents are relatively short, but a few incidents last for an extended period.
It also demonstrates the geographical distribution of incidents, with higher concentrations in urban
areas. The pie chart in Fig. [3[b) shows hazards constitute the majority (52.2%). Next, we aim
to further explore the frequency of incidents occurring on road segments under different levels of
congestion. In the road network, each sensor can be considered as a node on a specific road. The hub
node represents busy intersections and main roads, while the fringe node represents roads in remote
areas or branch roads. Two cases for hub node and fringe node are shown in Fig. 3[c). Then, we
conduct the following two analyses to reveal the relationship between different types of roads and
incidents. (Details in Appendix [A7).

The Frequency of Different Types of Incidents Next to Hub and Fringe Nodes. We tally the total
number of various types of incidents occurring next to hub nodes and fringe nodes. Fig. [3(d) shows
that hazards and accidents are significantly more frequent on busy roads. In contrast, incidents related
to fires and hazards caused by animals are more common on remote and less-traveled roads. This
may be attributed to the higher activity of animals in less frequented areas and the increased risk of
fire in remote areas due to reduced human attention. Based on the observations above, we find that



the incident patterns for hub nodes and fringe nodes differ significantly. We are now curious about
whether there are also differences in incidents between these two types of nodes in terms of time.
Incident Temporal Patterns on Hub and Fringe Nodes. Firstly, we analyze the distribution of
incidents for two types of nodes throughout the week. Without considering incident types, we
aggregated incidents by the day of the week. As shown in Fig. [3[e), there is a significant difference
between hub nodes and fringe nodes. For hub nodes, the proportion of incidents on weekdays is
higher than on weekends. This is expected, as downtown areas experience greater traffic volumes
and are more prone to accidents on weekdays due to the high traffic flow in main roads and densely
populated areas. On weekends, many people move to rural areas, reducing traffic pressure and leading
to fewer incidents. In contrast, for fringe nodes, we can observe a reversed trend: there is a slight
increase in the number of incidents on weekends compared to weekdays: this might be because
the residents are moving back to rural areas for the weekends, thus bringing higher possibility of
incidents. Interestingly, both types of nodes experience a peak in incidents on Fridays. Such a "Friday
mood" will universally increase the incident risk regardless hub nodes or fringe nodes. Moreover,
we conducted further analysis on the 30-minute variation of incidents. To analyze the differences
in incident patterns between weekdays, Fridays (the day with the highest number of incidents), and
weekends, we examined the variation in incident numbers throughout the day for both hub nodes
and fringe nodes. The results, shown in Fig. Ekf), (g), and (h), reveal that the number of incidents
on hub nodes and fringe nodes varies significantly on weekdays. Incidents typically occur during
morning and evening peak hours. Compared to other weekdays, incidents on Fridays show greater
fluctuations, likely due to Friday being a transitional day between weekdays and weekends.

4.2 Traffic Forecasting after Incidents

The existing models are effective in general traffic forecasting tasks. However, their performance
under irregular volumes caused by incidents has not been thoroughly discussed. To assess these
models’ response in such conditions, we conduct irregular traffic forecasting based on TraffiDent.
Experiment Setting: We selected prediction samples from the test set that one incident occurred
within a 5-minute window. Due to the large volume of data, we chose to conduct experiments using
traffic volume data from the San Bernardino (561 mainline sensors) within the TraffiDent dataset
for the first 3 months. All of the baselines are state-of-the-art in the spatial-temporal forecasting or
traffic forecasting domain. Our forecasting experiments were implemented within the same software
framework employed by [32].

Table 3: The results in different horizons in Monterey (D5 Area). ‘General’ shows the performance of the
model across all samples in the test set, while ‘Incident’ is on samples after an incident has occurred, with the
top 1 in grey, 2nd in boldface, and 3rd underlined.

5 Mins (t=1) 15 Mins (t=3) 30 Mins (t=6)
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

LSTM 12.58 11.81 2145 1541 14.21 2629 18.68 18.03  31.54

ASTGCN 1245 13.11 2090 1459 13.66 23.10 16.03 1556  27.82

DCRNN 1190 11.82 2047 1341 1292 2379 14.84 1432 26.74

AGCRN 1254 1256  22.65 1355 13.18 2527 1462 1424 2792

GWNET 1199 11.85 2030 13.53 1287 2344 1488 14.15 26.05

General STGODE 12.75 1326 21.66 14.12 1457 2464 1550 1634 2743
DSTAGNN 13.18 12.15 2193 1637 18.82 2741 1999 1997 3373
D?STGNN  12.18 12.00 2130 1348 1320 2430 1490 1427 27.28

LSTM 14.17 1013 2375 1741 1538 2943 2093 1433  34.05

ASTGCN  14.06 1055 2322 1642 1506 27.63 1840 1259 3048

DCRNN 13.62 9.86 23.04 1536 1435 2673 1692 11.69  29.38

AGCRN 1448 1098 2541 1596 1478 28.78 17.21 11.78 3142

GWNET 13.73 1044 2290 15,60 1450 2673 1715 1149  29.07

Incident STGODE 1450 10.71 2449 1620 1519 27.69 1755 1229  30.17
DSTAGNN 14.79 10.57 2422 1824 1791 3048 2195 1538  35.67
D?STGNN 13.73 10.05 2330 15.51 1422 2729 17.03 1146 3023

Test Model

Results. As shown in Table |3] all baselines perform significantly better in predicting on the
general test dataset compared to the incident test dataset, since incidents added irregularity into
the traffic systems. This suggests that investigating how to improve the performance of forecasting
models on time series prediction following an incident is worthwhile and warrants further research
and discussion. More details in Appx.



Table 4: Performance among the SOTA time series classification methods across the datasets, with
the top 1 in grey, 2nd in boldface, and 3rd underlined.

Methods ‘ speed channel-only occupancy channel-only flow channel-only All channels Mixed
‘ Acc Precision  Recall ‘ Acc Precision  Recall ‘ Acc Precision  Recall Acc Precision  Recall
DT 41.6% 41.5% 415% | 404%  40.2%  40.2% | 39.4% 393% 393% | 41.6% 41.4% 41.5%
TS2Vec 36.6% 36.2% 36.2% | 36.6% 36.5% 36.4% | 37.3% 37.0% 37.0% | 37.3% 37.0% 37.0%
gMLP 41.3% 412% 41.1% | 38.4% 38.3% 383% | 37.3% 37.2% 372% | 41.6%  41.5% 41.5%

Sequencer 35.8% 35.8% 35.6% | 35.6% 35.3% 352% | 34.1% 33.9% 33.9% | 40.3% 40.2% 40.2%
OmniScaleCNN | 35.7% 35.1% 35.1% | 36.9% 36.3% 36.3% | 37.0% 36.8% 36.8% | 40.9% 40.8% 40.8%
PatchTST 38.3% 38.1% 38.1% | 39.0%  38.6% 38.7% | 39.5% 39.3% 39.3% | 39.4% 39.4% 39.3%
FormerTime 35.9% 31.0% 334% | 41.0%  41.1% 40.8% | 37.8% 382%  37.3% | 40.5% 40.5% 40.1%

4.3 Incident Classification

Since traffic incidents typically affect the traffic on roads, it is viable to deduce the traffic conditions
based on the dynamics of the parameters. In this work, a time series classification task is designed on
TraffiDent, which involves inferring incident categories based on the traffic during particular time
slots detected by the sensors.

Experimental setting. Since traffic sensors are not always available at the site of an incident, we start
by identifying the nearest sensor affected by each incident according to the distance (i.e., the ABS
PM in Table @ Then, we extract recorded indexes (traffic speed, lane occupancy, and traffic flow) in
these sensors during a time window when the incident occurs. Augmented with normal data, these
form the basis for characterizing traffic, which fall into three categories: “accidents”, “hazards”, and
“normal”. According to Fig. [3[b), we standardize the duration length as the 95th percentile, i.e., 2
hours (w=24). The task is defined as a multivariate time series classification which uses three-channel
time series to infer the situations of the traffic. We selected representative baselines from various
families including statistical learning, contrastive learning, sequential models and Transformer-based
models. More details of experiments in Appx. [A.9]

Performance Evaluation. From Table |4} (1) The best classification can achieve 41% accuracy,
indicating classifying traffic conditions based on traffic indexes is feasible (better than random
guess). Among the datasets with different inputted features, DT and PatchTST always outperform the
baselines. gMLP also shows strong performance, notably achieving top ranks in several categories
and particularly excelling in the mixed channels. (2) Variability across channels. Different methods
exhibit varying degrees of effectiveness depending on the channel used, e.g., Sequencer performing
better with speed and worse with flow, and OmniScaleCNN opposite. Thus, selecting appropriate
features can guarantee the model effectiveness.(3) Integrating multiple features often leads to
better classification. However, the performance gain is method-dependent. DT and gMLP show
improvement, while 7S2Vec and OmniScaleCNN benefit less.

Fig. d{a) visualizes the extracted feature from OmniS-
caleCNN by t-SNE [50]] using flow data.The selected
furthest embeddings (in Fig. (b)) shows clear dis-
tinct flows between the three classes, yet the closest
o) Three ases i €Mbeddings (Fig. Hl(c)) not. (1) There are distinct
furthest embeddings  and separated patterns in the embeddings of traf-

= fic incidents located in corner and center areas,

\ AN AL which facilitates classification, causing better perfor-
> vV VT mance than random guess. (2) Not all incidents
(a) t-SNE visualization ofth‘re'e classes using flow only (?l,:-s};::se;]lab:‘;:;h impact traffic indices largely. As car fires and ac-
cidents with no injuries are short-lived, these hard
cases confuse the classifier since the traffic patterns
do not change significantly.

\U A

Figure 4: Visualization of the representation of
the time series on the dataset, extracted from the
last hidden layer of OmniScaleCNN.

4.4 Global Traffic Causal Analysis

Experiment Setting. In our TraffiDent dataset, we
have static variables, e.g., road information, represented as scalar and vector, and dynamic variables,
e.g., accidents and traffic flow, represented as functional data. Considering the multimodal nature
of the variables, we employ MM-DAG [22] to construct the causal network in different districts.
We collect data on 17 variables across four districts with the highest incident rates throughout 2023.
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Figure 5: Global causal: (a) The learned DAG among meta-features, incidents, and traffic indexes.
(b) The factual explanation for selected edges.

These variables fall into three categories: (1) meta-feature variables, e.g., temporal, environmental,
road structural information; (2) incident variables, i.e., the occurrence of incidents; and (3) traffic
statistics, which reflect traffic conditions. (Details in Table[7] Appx. [A.10). We consider the data
collected at each road node for each day as a single sample, using a granularity of one hour.

Results. Fig. [5]a) illustrates the four causal networks derived by MM-DAG. (1) Certain static
variables are essential; such as road surface, terrain, and road width, they exert significant influences
on the incidence of traffic events and the overall traffic conditions. (2) The static variables’ impacts
are consistent: Across various districts, due to their inherent properties, these underlying attributes
consistently influence road and traffic dynamics across different regions. (3) Dynamic variables
like time, weather, and visibility also affect traffic incidents, though their causal relationships
appear to be weaker and vary by district. Like, causal links from events to fire and to hazards
show variability and weaker connections in different districts.

We further explain four significant edges. In Fig. [5[b1), the probability of encountering hazards
is higher during the early morning (5 AM to 8 AM) and late afternoon (after 3 PM) on weekdays
compared to weekends, likely due to increased traffic flow during peak commuting hours. In Fig.
[Blb2), rain increases the probability of accidents compared to dry conditions, but the amount of
rainfall does not significantly affect the accident rate. In Fig. [5[b3), bridges and road surfaces with
a base thickness of >7 inches have a lower probability of hazards compared to concrete surfaces.
This may be due to the enhanced durability and grip provided by thicker road surfaces and bridge
constructions. In Fig. [5|b4), flat terrain is associated with higher average speeds compared to rolling
terrains. The tendency for higher speeds on flat terrains is likely due to the reduced need for vehicles
to decelerate for climbs or curves, allowing for more consistent and faster travel.

The use of causal graph learning for causal analysis is not necessarily aimed at uncovering the
absolute "true" causal structure or relationships. For the global causal analysis, we provide case
studies to verify whether the discovered causal relationships are consistent with real-world traffic
patterns. These factual examples serve to qualitatively validate the reliability of the causal analysis
results. For the local causal analysis, the primary value lies in providing useful insights into the
underlying data and relationships, which can support better interpretation, hypothesis generation, and
downstream decision-making.

4.5 Local Causal Analysis for Road Relations

To demonstrate the value of our TraffiDent dataset in revealing the causal relations among the roads,
we conduct local causal analysis on a real case from TraffiDent. We employ the PCMCI" [42]
algorithm for causal structure learning. Since the underlying ground truth of causal dependencies is
unknown, the hyperparameters, e.g., significance level and maximum time lag, are set for better
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Experiment Setting. In Fig. [ we select the road network
near an interchange in Novato, California. On the evening
of February 11, 2023, a traffic incident “1141” occurred
at the eastbound exit of the interchange. This incident
indicates that a traffic collision occurred and that there
were potential injuries requiring a medical response. We
then select four traffic nodes, represented by their traffic
flow indexes, { X!, X2, X3, X%}, that might be affected
by the traffic incident. We see from Fig. [6] (a2) that the
decrease in traffic flow of X2, which is the node closest
to the incident, accelerated after the incident occurred.

requiring a medical response. (a2) Traffic flow series of the selected nodes.

Results. The causal graphs learned by PCMCI™ are in
Fig. [6] (b), where the colors depict the strength of causal

: ’ dependencies and the label of a link represents the time lag
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®
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of causal dependencies. The pre-incident causal structure
matches the common understanding about traffic propa-
gation, indicating that traffic flow propagates from X?2
through X3 to X*. Compared to the pre-incident graph,
the post-incident graph has two additional lagged causal

links X3 2% X2 and X* ™3 X1 Insucha complicated
dynamic traffic system, explaining the change of causal
dependencies is challenging and we endeavour to provide
some conjectures for reference. Due to the traffic collision
between X2 and X3, congestion likely occurred near X2,
reducing the traffic flow at each time slot. However, the traffic demand from X? to X? did not
decrease in the short term, causing the congestion to gradually spread to X 2. The congestion at the
eastbound exit of the interchange led to a decrease in traffic demand from X! to X*. Fewer vehicles
chose to slow down to enter the ramp, causing increased speed and higher traffic flow at X!, (Details

in Appx. [ATT))

5 Conclusion
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(b2) Post-Incident Graph
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(b) Causal process graph learned by PCMCI". (b1) Pre-incident causal graph.
(b2) Post-incident causal graph. Node and link colors depict the strength of
t ies or d respectively.

Figure 6: Case of Local Causal Analysis

We propose a pioneering traffic and incident dataset TraffiDent. It integrates traffic flow data with
incident records and road comprehensive meta-features, filling a significant gap in traffic analysis and
Incident analysis. TraffiDent lays a solid groundwork for research focused on understanding traffic
dynamics, causality, and interrelationships. Through four groups of experiments, we demonstrate
that our dataset offers expanded possibilities for research in traffic forecasting, incident classification,
and detection, as well as causal analysis.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: These claims are substantiated within the paper through detailed descriptions
of the dataset’s structure and the methodologies employed for each analysis task. We provide
experimental results demonstrating the feasibility and effectiveness of these tasks, thereby
validating the dataset’s utility for comprehensive deep traffic and incident analysis.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: We provide a limitation discussion in the
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We don’t include theories in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release the code on Github with a README file for detailed reproduction:
https://github.com/X Al Traffic/XTraffic/

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:The data is released on Kaggle: https://www.kaggle.com/datasets/gpxlcj/xtraffic/data
and the code is released on Github: https://github.com/XAITraffic/XTraffic/

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings are introduced in section 4, and more details are
attached in the appendix. You can find them in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The main contribution of our work is releasing a novel dataset. Two of our
experiments (global causal analysis and local causal analysis) cannot be evaluated with error
bars. For the traffic forecasting and incident classification experiments, we will provide the
error bar in the final version.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: As the motivation of all the experiments are not for presenting a novel model
performance, the experiments are finished to prove that our dataset can support deep and
comprehensive traffic and incident related work. The memory and time of execution are not
our concerns.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We release the data by obeying the data source terms. The terms of the data
source is provided in the paper appendix A.2. The data is anonymous without any personal
information.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

Answer: [NA]

Justification: The contribution of our work is proposing and constructing a foundation traffic
dataset. The future work based on the dataset may bring societal impacts, but the dataset
itself don’t bring any societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The released data for traffic analysis is collected through the data table directly.
It doesn’t contain any personal information and it cannot cause a high risk of misuse in
image generation or deepfake.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: According to the Ownership section in Caltrans Terms of Use of PEMS, we
can collect and construct a dataset from the source and distribute it. We mentioned it in
Appendix A.2. The term link is https://pems.dot.ca.gov/?view=tou
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13.

14.

15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the code document on Github and data introduction on Kaggle.
The link is the same as we mentioned before.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human data is included.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLM is only used for fixing the Grammarly check and does not impact
the originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

In this Appendix, we will introduce the data sheet of TraffiDent, the statement of responsibility,
more details of TraffiDent data, related work of the 4 traffic tasks, and the experiment settings of the
Post-Incident Traffic Forecasting, Incident Classification, Global Causal Analysis, and Local Causal
Analysis.

A.1 Data Sheet of TraffiDent

In this section, we follow the datasheet format [13]] to answer the critical questions to a standard
dataset.

A.1.1 Motivation

* For what purpose was the dataset created? The TraffiDent is the most recent in terms
of the collection period and contains the largest number of sensors, covering three distinct
types of traffic volume. This ensures the timeliness of traffic research, providing a robust
foundation for studies aiming to capture and explain traffic dynamics, causation, and
interrelations. TraffiDent serves as a rigid testing bed and empirical support to justify model
effectiveness and interoperability in deep learning and the traffic community.

* Who created the dataset? The Machine Intelligence and kNowledge Engineering (MINE)
lab.

* Who funded the creation of the dataset? The creation of the dataset and research reported
in this paper was supported by funding from King Abdullah University of Science and
Technology (KAUST).

A.1.2 Composition

* What do the instances that comprise the dataset represent. See the Section 3 Data
Introduction.

* How many instances are there in total? For traffic time series data, the total number of
instances is 105120 (Time Slots Number) x 16,972 (Sensor Number) x 3 (Feature Number).
For incidents, the instances is 1,441,904.

* Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? All possible instances excluding the sensors with a large
number of missing values.

* What data does each instance consist of? See the Section 3 Data Introduction.

* Is there a label or target associated with each instance? See the Section 3 Data Introduc-
tion.

* Is any information missing from individual instances? Raw data missing.

* Are relationships between individual instances made explicit Yes, they are connected by
time, location, and sensor ID.

* Are there recommended data splits? For Traffic forecasting, we recommend the ratio of
6:2:2 for training, valid, and test dataset. It is a common setting [44, [15].

* Are there any errors, sources of noise, or redundancies in the dataset? Yes. The traffic
time series are collected from sensors, and it may not count all of the passing vehicles.

* Is the dataset self-contained, or does it link to or otherwise rely on external resources?
No.

* Does the dataset contain data that might be considered confidential? No.

* Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.
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A.1.6

Collection Process

* How was the data associated with each instance acquired? The data is directly
observable.

¢ What mechanisms or procedures were used to collect the data (e.g., hardware appara-
tuses or sensors, manual human curation, software programs, software APIs)? We use
the PeMS data table corresponding URLSs to collect the data.

* If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)? Not fit.

¢ Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g.,how much were crowdworkers paid)? No
person is involved in the collection process.

* Over what timeframe was the data collected? The data was collected from April 20, 2024,
to May 10, 2024. The dataset covers the entire 3 years from 2022 to 2024.

* Were any ethical review processes conducted (e.g., by an institutional review board)?
No.

Preprocessing/cleaning/labeling

* Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)?Yes. We construct the adjacency matrix for sensors in the
road network.

* Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? Yes.

* Is the software that was used to preprocess/clean/label the data available? The code is
released in our GitHub repository https://github.com/xaitraffic/xtraffic

Uses
¢ Has the dataset been used for any tasks already? No.

¢ Is there a repository that links to any or all papers or systems that use the dataset? No.

What (other) tasks could the dataset be used for? Interpretable traffic forecasting, incident
classification, incident duration prediction, and traffic causal analysis.

* Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? The adjacency matrix is
generated based on a threshold. It could be revised based on the task requirement.

¢ Are there tasks for which the dataset should not be used? No.

Distribution

* Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes.

* How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Kaggle
Dataset.

* When will the dataset be distributed? June 11, 2024.

* Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? Yes. Please see the section 4.

* Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? Yes. Please see the section 4.

* Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? Yes. The use of data is required to satisfy the Caltrans Terms of Use
of PeMS.
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A.1.7 Maintenance

* Who will be supporting/hosting/maintaining the dataset? The first author of the dataset
paper.

* How can the owner/curator/manager of the dataset be contacted? After accepting, we
will release the email of the owner.

 Is there an erratum? No.

» Will the dataset be updated? Anual. If someone reports the error to us via GitHub, Kaggle
or Email, we will check the data and fix the errors.

« If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted)? There is no person
information included in TraffiDent.

* Will older versions of the dataset continue to be supported/hosted/maintained? Yes.
The largest difference between the old version and the new version is the time, and it’s not
hard to maintain the old versions. we will fix the errors reported.

* If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? No. We don’t have enough resources to verify the external
contributions.

A.2 Statement of Responsibility

According to the Ownership section in Caltrans Terms of Use of PeM we can collect and construct
a dataset from the source and distribute it. We collected all of the data before 17/05/2024. More
details and the introduction of the dataset can be found in the supplementary material. Our TraffiDent
is released under a CC BY-NC 4.0 International Licenseﬂ The code for the experiments is released
under an MIT Licenseﬂ We claim that we are responsible for the data release and collection.

A.3 Details of TraffiDent

Licence. According to the Ownership section in Caltrans Terms of Use of PEMS, we can collect and
construct a dataset from the source and distribute it. We collected all of the data before 17/05/2024.
More details and the introduction of the dataset are clarified in the Appendix[A.3] Our TraffiDent
is released under a CC BY-NC 4.0 International License. The code for the experiments is released
under a MIT Licensel

Meta data. The meta data for the TraffiDent dataset can be accessed at the https://github. com/
XAITraffic/XTraffic/blob/main/xtraffic-metadata. json!

3https://pems.dot.ca.gov/?view=tou
*https://creativecommons.org/licenses/by-nc/4.0
>https://opensource.org/licenses/MIT
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Incidents. The details of incident data features are shown in Table [l

Table 5: Meta Feature Introduction

Feature Type Description
Incident ID Integer Unique identifier for each recorded traffic incident.
Duration Integer  Length of the incident measured in minutes from start to resolution.
Abs PM Float Point of the incident in absolute postmile notation along the road.
Fwy String The freeway ID where the incident occurred.
AREA String The city or town where the incident took place.
DESCRIPTION String A brief narrative describing the specifics of the incident.
LOCATION String The exact address on the freeway where the incident happened.
Type String Category of the incident, such as Noinjure, CarFire, and Hazzard.
dt DateTime Timestamp indicating when the incident was first reported.
Latitude Float The latitude where the incident was first reported.
Longitude Float The longitude where the incident was reported.
Direction String The direction of the lane where the incident happened.
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Lane meta features. The details of the lane meta features are in Table [6]

Table 6: Meta Feature Introduction

Feature Type Description
Sensor ID String Unique identifier for each traffic sensor.
Inner Shoulder Width  Float Width in meters of the inner shoulder on the lane.
Outer Shoulder Width  Float Width in meters of the outer shoulder on the lane.
Functional Class String Classification of roads based on the function they provide.
Inner Median Type String Type of median on the inner side of the road.
Inner Median Width Float Width in meters of the median on the inner side of the road.
Road Width Float Total width in meters from one side to the other.
Lane Width Float Width in meters of each traffic lane on the road.
Design Speed Limit ~ Integer =~ Maximum speed limit designed for the road in kilometers per hour.
Terrain String Physical features and shape of a landscape, e.g., flat, mountainous.
Population String Type of terrain surrounding the road, e.g., urban, rural.
Barrier String Description of any barriers along the road, e.g., guardrail, none.
Surface String Road surface type, e.g., asphalt, concrete.
Roadway Use String Primary use of the road, e.g., commercial, residential.
Length Integer The total length of the lane on the road.
Latitude Float Geographical latitude of the road’s location.
Longitude Float Geographical longitude of the road’s location.
Abs PM Float Point of measurement in absolute postmile notation along the road.
Direction String The direction of the lane, e.g., East, North.
Fwy String The ID of the freeway where the sensor is located in.
Fwy Name String The name of the freeway where the sensor is located in.
District Integer The district ID, e.g..
County String  The county where the sensor is located in, e.g., Orange, Los Angeles.
City String The city where the sensor is located in, e.g., Marina, Oakland.
Sensor Type String The sensor cateogry, e.g., radars, magnetometers.
Type String The level of the road, e.g., mainline, On Ramp.
HOV String Whether it is HOV lane or not
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A.4 Preliminary of Four Intended Tasks

Traffic Forecasting is to predict traffic indexes at nodes within a road network based on historical
data collected by sensors at each node. Consider a traffic road network represented as a graph
G = (V, E), where V denotes the set of N traffic nodes, with |V| = N, and E represents the set of
undirected edges. An edge E;; = 1 indicates a physical connection between nodes 7 and j in the
road network; otherwise, F;; = 0. Traffic volume data is recorded by sensors in evenly spaced time
intervals and can be represented as a sequence of matrices (X!, X2, ..., XT) € R¥*T where X is
the matrix of volume signals (2%, 2, ..., z'y) at time slot ¢ for all N nodes.

The goal in traffic flow forecasting is to devise a function 7 that uses the observed traffic data from

. . . F

T time slots to predict the traffic volumes for the subsequent 75 time slots: (X*~T1+1  X*) =}

(XtFL .., XtH72) where X!T! represents the prediction at time ¢ + 1, and a general loss function is
cmin L S ' &

defined as: min 7- >, 2, £4(X", X).

Incident Classification is to identify traffic incidents using traffic indexes. Since traffic sensors are
not always available at the site of an incident, for brevity, we associate the traffic in the nearest single
sensor to classify an incident, rather than aggregating data from multiple neighboring sensors. For
the ¢-th paired sample (X, y;) in the dataset D, X§ € RE* ig the input and y; represents its corre-
sponding label, where C' denotes the number of multivariate feature channels (e.g., speed and flow)
and w indicates the time window at the post-incident timing ¢. There is X§ = {x!, x!™! ... x!Tw=1}
and the j-th entity x**7 € RC. The classification task is: §; = F» (X¢;©), where g; is the predicted
result, F5 is the classifier, and © is trainable parameters. The overall objective is to minimize the

classification loss £, (e.g., cross-entropy) on D: ming ﬁ lel:)'l Lo(F2(X$50),v5).

Causal Analysis and Directed Acyclic Graph (DAG) In causal analysis, the primary objective is to
elucidate the causal relationship, which is represented in a dynamic acyclic graph (DAG). Within a
DAG, each node corresponds to a variable, and each directed edge delineates a causal relationship
between two variables. The causal structural model enables the representation of a node’s distribution
w; through w; = fi(wpm ,€;), where Wpa, denotes the set of all parents of node w;, and e; represents
the exogenous noise associated with node w;. We consider two subtasks:

(1) Global Causal Analysis for The Whole System. In global causal analysis, we focus on the problem
that macro-level phenomena influence each other, such as the impact of weather on accident rates.
Therefore, each node within the graph represents distinct variables like weather conditions, traffic
accidents, or overall traffic statistics. This approach helps in understanding the broader implications
of various environmental and systematic factors on traffic dynamics.

(2) Local Causal Analysis for Road Relations. In local causal analysis, we focus on the temporal
dependency structure underlying the complex traffic road network. We aim to find a graph G where
the nodes are the variables representing traffic nodes at different lag-times and the links represent
lagged or contemporaneous causal dependencies between traffic nodes. This approach helps in
understanding how topologic of the road network affects traffic conditions.

A.5 Data Cleaning

Besides filling zero and linear interpolation, there are also some specific filling models for traffic
data. For example, ST-MVL][6] combined several empirical statistical models with user-based and
item-based collaborative filtering to collectively fill in missing values in geo-sensory time series
data. However, the model suffers from overlooking the global correlations of data. The [7] regards
the raw data as a tensor and models the data recovery as a low-rank robust tensor completion via
leveraging the inherent low-rank structure to address the issue. On the other hand, to discover
the anomaly/dirty/outlier data, the [8] leverages DBSCAN to discover the outlier points in spatio-
temporal data. Furthermore, it’s necessary to repair the discovered dirty data. [9] proposes a metric
to evaluate the dissimilarity between the raw dataset and the repaired one. Then it utilizes space-
and time-distortion rules and employs a hybrid simulated-annealing approach to avoid local minima
during the repair process. We will add the discussion of potential data cleaning methods in the final
paper or on the dataset project website. Exploring better data-filling techniques to mitigate the impact
of data gaps is an excellent direction for future research.
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A.6 Construction of Adjacency Matrix

Typically, the adjacency matrix is constructed based on distance [32]]. In order to get the real travel
distance, we set up an open-source rooting machine engine [35]] based on OpenStreetMap, and
calculate the shortest travel distance between two sensors based on the coordinate. One more precise
adjacency matrix is constructed based on the direction of the lanes and the coordinates of two sensors
A and B. To ensure directional consistency in the spatial graph, we exclude neighboring sensors
located on roads with opposite traffic directions. Since the meta features of each sensor already encode
its directional attribute, the inclusion of reverse-direction neighbors would introduce redundancy. For
example, if a sensor is positioned on a northbound road, its southbound counterparts are removed
from the adjacency set, while neighbors located along the west, east, and north directions are retained.

A.7 Definition of Hub and Fringe Nodes

We calculate the degree of each node using the adjacency matrix described in the paper. Nodes
with the 500 highest degrees are classified as hub nodes, and those with the 500 lowest degrees are
classified as fringe nodes. We match all incidents with the closest node/sensor and also remove the
incident samples that the distance between the incident and its closest sensor is larger than 0.05 mile.
We count the incident number of the hub nodes and fringe nodes, respectively.

A.8 Experiment Details on Post-Incident Traffic Forecasting

Baselines. The baselines we selected to do the forecasting experiments are typical models in traffic
forecasting domain.

* LSTM[17]: A basic model focusing solely on the temporal relationships within traffic data.

* ASTGCNJ13]: Enhances the STGCN by incorporating an attention mechanism to better
capture node correlations.

¢ DCRNN]|27]: An RNN-based model that utilizes diffusion convolution to model traffic
flows.

* AGCRNI[4]: An adaptive model that combines RNN architecture with an attention mecha-
nism to focus on spatial correlations.

« GWNET[51]]: Utilizes a gated mechanism in a TCN framework to filter out irrelevant
information effectively.

* STGODE[12]: Uses ordinary differential equations to dynamically model relationships
among traffic nodes.

* DSTAGNN]|21]: Designed to dynamically capture changing correlations among traffic
Sensors.

» D2STGNN[44]: A dual-layer spatial-temporal GNN that addresses hidden correlations in
traffic data for forecasting.

Implementation Details. We adhered to the identical experimental settings outlined within the
work. We divided all the data into training, validation, and test sets in a 6:2:2 ratio. We set the batch
size as 24 for DSTAGNN and 64 for all of other models. The learning rate is set as 0.001. Other
hyperparameters of models are set as the same as the original settings. Our baselines follow the
optimal settings from their sources. For the batch size in the training set, we used different settings to
ensure that the model converges as quickly as possible during training. The batch size settings are
mentioned in Section 4.2. For LSTM, the hidden layer dimension is set as 64, the last linear layer
dimension is set as 512. For ASTGCN, the dimension of the attention layer is as 64. For DCRNN,
the number of RNN layers is set as 2, and the dimension for each RNN layer is 64. For AGCRN, the
hidden dimension is set as 64 for all cells and the embedding dimension is set as 10. For GWNET,
the dimension of input and output linear layer are set as 32 and 512, respectively. The dimension of
hidden layers is set as 256. For STGODE, the regular hyperparameter « is set as 0.8. The thresholds
o and e of spatial adjacency matrix (AM) are set to 10 and 0.5 respectively, and the threshold ¢ of the
semantic AM is set to 0.6. For DSTAGNN, the attention dimension is set as 32, and the number of
attention heads is set as 3. For D2STGNN, the hidden dimension is set as 32.
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Traffic and incident Alignment. To explain which types of traffic are affected by incidents, we
perform the following traffic—incident alignment. The traffic and incident data in TraffiDent can be
spatially aligned using geographical coordinates (longitude and latitude) and absolute postmile (abs
PM). The features of sensors measuring traffic and incident samples all include these locations. For
temporal alignment, we provide: Timestamps for all incident records, and 5-minute interval traffic
time series, starting from 2022-01-01 00:00. Users can derive the time slot of any traffic measurement
using the known start time and interval length.

In the traffic forecasting experiment (Section 4.2), we provide the following alignment steps.

(1) For each reported incident in one specific area (In the experiment introduced in this section, it is
D5 (Monterey)), we identify the corresponding freeway. (2) We match the incident with the closest
sensor (e.g., Sensor A) on the same freeway based on the Absolute Postmile (Abs PM). (3) The
incident timestamp is converted into a 5-minute time slot (e.g., 19:13 becomes 19:10-19:15), and the
next slot (e.g., 19:15-19:20) is defined as the starting point of post-incident influence. (4) Given the
multistep nature of our forecasting task, we select the traffic from 19:15 to 19:45 at Sensor A as a
single post-incident test case (Using traffic from 18:15 to 19:15 as input feature).

We select all post-incident samples based on the above (2)-(4) steps.

A.9 Experiment Details on Incident Classification
Baselines. We adopt the following representative time series classification baselines.

* Decision Tree (DT): We tailor the canonical decision tree algorithm for the task, recursively
partitioning data based on feature values to create a tree-like model that makes classifications
at its leaf nodes.

* TS2Vec [57]: It is a universal framework for learning robust and flexible time series repre-
sentations using hierarchical contrastive learning over augmented context views, making the
classification by a linear classifier.

e gMLP [31]: It is a simple network architecture based solely on MLPs with gating, which
performs as well as Transformers in key language and vision applications.

* Sequencer [49]: It models long-range dependencies using LSTMs without self-attention
layers, which enhances performance by reducing the sequence length and creating spatially
meaningful receptive fields.

* OmniScaleCNN [48]]: It is a 1D-CNN architecture that utilizes a set of prime number-based
kernel sizes to efficiently capture optimal receptive field sizes without scale tuning across
diverse time series classification tasks.

o PatchTST [37]: It incorporates patching of time series into subseries-level patches and
channel-independence to improve long-term forecasting accuracy based on the Transformer
backbone.

e FormerTime [6]: It employs a hierarchical Transformer-based architecture to learn multi-
scale feature maps and introduces an efficient temporal reduction attention mechanism and
a context-aware positional encoding generator for multivariate time series classification.

Implementation Details. We randomly sampled 9,000 examples to experiment, 3,000 samples per
category. The data is divided into training and testing sets in a 7:3 split.

We set the hyperparameters based on the recommended values in the original method and adjust them
around those values, taking the parameter values corresponding to the best results as the final result.
Specifically, the hyperparameters for each method are as follows:

For the Decision Tree, the minimum number of samples required for a leaf node is set to 1, and for
splitting an internal node, it is set to 2. In TS2Vec, the pretraining stage has an output dimension
of 320 and a hidden dimension of 64. The model is trained for 100 epochs with a batch size of 16,
and the linear layer is chosen as the downstream classification module with 1e~3 learning rate. For
FormerTime, the model is configured with 3 stages, each having 2 layers with a hidden size of 64.
The number of slices per stage is 4, 2, 2, with a stride of 4, 2, 2. The model is trained for 100 epochs
with 1le—3 learning rate. In PatchTST, the patch length is set to 16, the stride to 8, the number of
encoder layers to 2, the number of heads to 8, and the model dimension to 512. gMLP is configured
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Figure 7: Critical difference diagram over the mean ranks of the compared methods

with a patch size of 1, a model dimension of 256, a fully forward network dimension of 512, and a
depth of 6. PatchTST, TSSequencer, OmniScaleCNN, and gMLP are trained for 100 epochs with
a batch size of 128, and the learning rate of them is set as 3e~ 4.

More Results. Fig. [7]reports the critical difference diagram as presented in [9]], which compares
the mean ranks of the baseline methods on the four datasets (three channel-only and all mixed) in
the classification task. The thick horizontal lines in the diagram denote groups of methods whose
performance differences are not statistically significant within the critical difference (CD) threshold.
It can be seen that DT, gMLP, and PatchTST are among the top-performing methods with the
lowest mean ranks, indicating their superior performance. Although DT, gMLP, and PatchTST
are highlighted as top performers, the differences among the top five methods are not statistically
significant since they are in a group, suggesting comparable effectiveness in this task.

A.10 Experiment Details on Global Causal Analysis

The introduction of MM-DAG. MM-DAG is a score-based causal discovery algorithm. It learns
multiple DAGs with multimodal data where their consensus and consistency are maximized. For
multimodal data, it proposes a multi-modal regression for linear causal relationship description of
different variables by functional principal component analysis. For multitask learning, it uses causal
difference to ensure the consistency. The overall optimization problem can be represented as:

L
. N 1
C(l), ceny C(L) = argmin 7||A(l) — A(Z)C(I)H%
Cy,-Cry ; 2N,
L
+p Y 51, DCD(W(,), Wa,)) + A [Cylh
1,02 =1

s.t. (W) = tr(eW®) — P, =0,VI

where A is variables after FPCA, C are causal matrix and W ;);; = [|C1y;[|%- 51,1, is the given
constant reflecting the similarity between tasks /; and [, p controls the penalty of the difference in
causal orders, where larger p means less tolerance of difference. A controls the L;-norm penalty of
causal matrix which guarantees that edges are sparse. In our setting, we set A = 0.001, p = 1 and
Syl = 1, Vg, o

Explaination of the nodes: The details of the nodes in the global causal graph in listed in Table

Constraints of the experiment:In learning DAG, two constraints are placed: (1) edges are not
allowed to point toward meta-feature variables since meta-feature variables generally describe
environmental and infrastructural contexts that inherently influence other variables rather than being
influenced by them. (2) traffic statistics variables are restricted from directing edges towards other
nodes since these statistics fundamentally represent outcomes or states of the traffic system, typically
influenced by both high-level environmental conditions and specific incidents, rather than serving as
direct causes themselves.
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Table 7: The description and types of the variables used in traffic causal analysis

Category Name Type Description
Time Scalar Day type indicator: = 1 if the day is a weekend; = 0 otherwise.
Event Scalar Public holiday indicator: = 1 if the day is a public holiday; = 0 otherwise.
Visibility ~ Functional ~An integer ranged from 0 to 16 to indicate the visibility of the road in the district.
high-level variables Surface Vector Attributes describing road material, e.g., concrete, bridge deck.
Terrain Vector Characteristics of the terrain surrounding the road, e.g., flat, rolling.
Width Scalar The width of the road.
Weather  Functional An integer ranged from 0 (No rain) to 3 (Heavy rain).
Hazard Functional Details of any hazards present, e.g., obstacles, spillage.
Nolnj Functional Records of accidents with no injuries.
Unknlnj Functional Records of accidents with unknown injury statuses.
incident variables 1141 Functional Records of accidents needing an emergency response (coded 1141).
Fire Functional Incidents involving vehicle fires or roadside fires.
AHazard  Functional Presence of animals on the road that could cause hazards.
CarFire Functional Specific incidents involving car fires.
Flow Functional Measures of traffic flow, typically in vehicles per hour.
traffic statistics Occupancy Functional Percentage of the road occupied by vehicles at a given time.
Speed Functional Average speed of traffic flow.

A.11 Experiment Details on Local Causal Analysis

In local causal analysis, We employ the PCMCI™" algorithm to discover the causal relations in traffic
data, which utilizes momentary conditional independence (MCI) test to determine the existence of
causal links. Typically, the lagged and contemporaneous causal relations are displayed in a dynamic
Bayesian network (DBN) as shown in Fig. [§](a). In this work, to simplify the visualization, we
choose to use the process graph as shown in Fig. [§](b) to aggregate the information in the DBN. In
both DBN and process graph, the link color denotes the magnitude of the causal effect measured by
the MCI test statistic (e.g., the partial correlation coefficient). The label of a link lists all significant
lags of cross-dependencies in process graph. Since we are more interested in the causal links between
different traffic nodes, the links denoting auto-dependencies in DBN are summarized into node colors
in process graph and the auto-dependency lags are omitted.
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Figure 8: Examples of causal graphs for time series variables. (a) Dynamic Bayesian network (DBN). (b)
Process graph which summarizes the information in DBN. Process graph aggregates the information in the DBN
to simplify the causal structure visualization. While the process graph is nicer to look at, the time series graph
better represents the spatio-temporal dependency structure from which causal pathways can be read off. In both
graphs, link colors depict the magnitude of the cross-node causal effects as measured by the MCI test statistics.
In process graph, node colors depict auto-dependency strength.

The choice of causal structure learning method influences the results of local causal analysis. Ideally,
we would like to perform analysis on real cases or datasets with known underlying ground truth
of causal dependencies. However, such cases or datasets are rare especially in complex dynamic
scenarios such as traffic. To enhance the credibility of the learned causal structure, we use different
causal discovery methods and verify the consistency of the results obtained by the different methods.
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Fig. [0 shows the pre-incident causal graphs of case I learned by score-based method DyNotears
[40] and constrained-based method PCMCI" [42]. The graph structures learned by both methods
are similar, but the time lag of the link X3 — X* is different, which is greatly influenced by the
sampling frequency of traffic data. Due to the limited number of samples affected by the incidents,
we use PCMCI™ to discover post-incident causal structure for its robustness with small sample size
and high dimensionality.

x1 x1
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(a) DyNotears (Pre-incident) (b) PCMCI* (Pre-incident)

Figure 9: Pre-Incident Causal Graphs for Local Causal Analysis Case Learned by Different Methods.
(a) Process Graph Learned by DyNotears. (b) Process Graph Learned by PCMCI*.

The primary Hyperparameters of PC M CI ™ are the maximum time delay 7y, and the significance
threshold for the MCI test o p. The maximum time delay should be determined based on the specific
application, reflecting the maximum expected causal time lag in the scenario under investigation. To
identify this maximum time lag, we plot the results of the bivariate lagged conditional independence
test. The significance threshold apc is adjusted on a case-by-case basis to ensure the derived
causal structure is reasonable for the analysis. Further details about PC M CI* implementation and
parameter tuning can be found in the public causal discovery tutorialsE]

A.12 Incident Information—Enhanced Traffic Forecasting Test

To examine the influence of incident information on traffic forecasting performance, we extend the
STID[43] model by incorporating incident-related features. We follow the standard experimental
configuration with 12 historical and 12 forecasting time slots. The number of nodes is 8,614 (only
main road sensor). Both the original STID model and the incident-enhanced variants are implemented
based on the official STID repository.

We introduce an additional feature dimension representing the presence of incidents. Traffic samples
affected by incidents are labeled with an index of 1, and all others are labeled as 0. Following the
same criteria as in the main experiments, if a sensor is the closest one to an incident, its traffic data
are considered incident-related within the subsequent 10 minutes.

We evaluate the baseline STID model and two variants that integrate incident information:

1. STID + Incidents (32ED): uses an embedding hidden size of 32.

2. STID + Incidents (16ED): reduces the feature embedding size to 16 to maintain comparable
final embedding dimensions.

The experimental results are summarized in Table[8]

Overall, incorporating incident information leads to consistent improvements over the original STID
model. The STID + Incidents (32ED) variant achieves better performance across all metrics, while
the 16ED configuration further reduces MAE and RMSE by maintaining balanced feature embedding
dimensions. Notably, in long-horizon forecasting (e.g., 60 minutes), incident-aware models exhibit
a clear performance advantage. However, as traffic incidents are relatively sparse, the direct use of
incident indicators provides limited overall gains. These findings suggest that developing dedicated
models to capture incident-driven traffic dynamics is a promising direction for future research.

Shttps://github.com/jakobrunge/tigramite/blob/master/tutorials/causal_discovery/
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Table 8: Performance of STID and incident-enhanced variants.

Horizon Model MAE RMSE MAPE (%)
STID (32ED) 13.11 2398 23.32
Average STID + Incidents (32ED) 13.01  23.71 22.81
STID + Incidents (16ED) 12.69  23.32 23.55
STID (32ED) 10.50 18.69 20.73
1 (Smin)  STID + Incidents (32ED) 10.32  18.52 18.44
STID + Incidents (16ED) 10.29  18.34 21.37
STID (32ED) 13.10 24.07 22.03
6 (30 min)  STID + Incidents (32ED) 13.01  23.82 23.25
STID + Incidents (16ED) 12.63  23.41 22.72
STID (32ED) 1537 27.85 27.70
12 (60 min)  STID + Incidents (32ED) 15.09  27.35 25.31
STID + Incidents (16ED) 14.63  26.76 25.73

33



	Introduction
	Related Work
	Related Work of Traffic and Incident Datasets
	Traffic and Incident Analysis

	TraffiDent Datacube
	Comparison with Existing Datasets
	Collection and Construction

	Experiments
	Descriptive Analysis of TraffiDent 
	Traffic Trending and Peak Hour Analysis
	Incidents Analysis on Hub and Fringe Nodes

	Traffic Forecasting after Incidents
	Incident Classification
	Global Traffic Causal Analysis
	Local Causal Analysis for Road Relations

	Conclusion
	Appendix
	Data Sheet of TraffiDent
	Motivation
	Composition
	Collection Process
	Preprocessing/cleaning/labeling
	Uses
	Distribution
	Maintenance

	Statement of Responsibility
	Details of TraffiDent
	Preliminary of Four Intended Tasks
	Data Cleaning
	Construction of Adjacency Matrix
	Definition of Hub and Fringe Nodes
	Experiment Details on Post-Incident Traffic Forecasting
	Experiment Details on Incident Classification
	Experiment Details on Global Causal Analysis
	Experiment Details on Local Causal Analysis
	Incident Information–Enhanced Traffic Forecasting Test


