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ABSTRACT

Vision-Language Models (VLMs) achieve strong results on RGB imagery, yet
their ability to reason over thermal data remains largely unexplored. Thermal
imaging is critical in domains where RGB fails, such as surveillance, rescue, and
medical diagnostics, but existing benchmarks do not capture its unique properties.
We introduce ThermEval-B, a benchmark of 50,000 visual question–answer pairs
for evaluating zero-shot performance of open-source VLMs on thermal imagery
across tasks including modality identification, human counting, temperature rea-
soning, and temperature estimation. ThermEval-B integrates public datasets such
as LLVIP and FLIR-ADAS with our new dataset ThermEval-D, the first to pro-
vide per-pixel temperature annotations across diverse environments. Our evalua-
tion reveals that while VLMs reliably distinguish raw thermal from RGB images,
their performance collapses on temperature reasoning and estimation, and modal-
ity recognition becomes unreliable under false colormap renderings. Models fre-
quently default to language priors or fixed outputs, exhibit systematic biases, or
refuse to answer when uncertain. These recurring failure modes highlight thermal
reasoning as an open challenge and motivate benchmarks like ThermEval-B to
drive progress beyond RGB-centric evaluation.

1 INTRODUCTION

Computer vision research has largely centered on RGB imagery, which captures reflected visible
light with rich color and texture cues. Thermal infrared imaging, by contrast, measures emitted ra-
diation and encodes temperature, producing representations that lack many of the cues conventional
models exploit. While recent vision-language models (VLMs) achieve strong zero-shot performance
on RGB benchmarks, their ability to generalize to thermal imagery remains unclear. This gap raises
a central question: Can VLMs trained predominantly on RGB data reason effectively about
temperature-specific tasks in thermal imagery? The absence of benchmarks that target thermal
understanding prevents the community from addressing this question systematically.

To fill this gap, we introduce ThermEval, which consists of a benchmark (ThermEval-B) and a
dataset (ThermEval-D) for evaluating VLMs on thermal imagery. ThermEval-B defines tasks that
capture both core challenges and real-world applications, including modality identification, human
counting, temperature-based reasoning, and per-pixel and semantic temperature estimation. Unlike
multiple-choice formats that can be solved through textual cues, our benchmark employs classifica-
tion and regression tasks that require precise predictions and reasoning grounded in visual input.

ThermEval-B comprises seven tasks with over 50,000 expert-labeled visual question–answer pairs.
The tasks are organized to increase in difficulty, beginning with modality identification and colormap
robustness, and progressing through human counting, colorbar localization, thermal reasoning, ab-
solute temperature estimation, and temperature interpretation at multiple depths. Together, these
tasks are designed to probe complementary aspects of thermal understanding and to ensure that
models attend directly to thermal signals rather than relying on language-based heuristics.

We evaluate 21 VLMs spanning compact 4B models to those exceeding 200B parameters, covering
both open source and closed source families Our results show that while VLMs can reliably dis-
tinguish raw thermal from RGB images, their performance drops substantially on tasks requiring

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

What is the temperature of the 
person’s forehead in this thermal 

image?  

VLMSince a person’s average body 
temperature is 36.8 °C, the 

forehead can be assumed to 
have a temperature of 36.8 °C

Hallucination from Prior Knowledge

Correct Answer : 33.56

In the thermal image, whose 
nose is hotter, the left or right 

individual?

VLM
Person on the left person has 

hotter nose. 

Visual Grounding Error

Correct Answer : Right person’s 
nose has higher temperature

How many humans are in this 
thermal image?

There are 11 humans in this 
thermal image.

Correct Answer : Zero

VLM

Hallucination from Systemic Bias

Identify the position of the color
bar and extract the minimum and 

maximum temperature values 
indicated on it.

The color bar is on the left side of 
the image, with temperatures 
ranging from 247 °C to 367 °C.

Correct Answer : Color bar on 
left. Min Temp : 36.7 °C 

Max Temp : 24.7 °C

OCR Failure

VLM

Figure 1: Failure cases of vision-language models on thermal tasks. Models often rely on lan-
guage priors rather than thermal input, show systematic biases and hallucinations, or misinterpret
the colorbar, leading to incorrect predictions Li et al. (2024).

temperature reasoning or estimation, and even modality recognition becomes unreliable under false-
colormap renderings. On reasoning tasks, many models rely on language priors instead of thermal
cues, producing plausible but incorrect answers, such as consistently predicting that the forehead
is warmer than the nose or defaulting to 36.8◦C. Others exhibit systematic biases, repeatedly out-
putting fixed values like 0◦C, 273 K, or the number 11, regardless of the scene. A few models refuse
to answer when uncertain, though this safeguard is inconsistent across architectures. These fail-
ure modes appear across model scales, indicating that the limitation lies in cross-modal grounding
rather than model size. Finetuning Qwen-VL 2.5 (7B) improves performance to near-human levels
on most tasks, but even after finetuning the model remains insufficiently reliable for real-world ther-
mal applications. Overall, these findings show that thermal reasoning remains an open challenge
for current VLMs and highlight the need for dedicated benchmarks that surface and diagnose such
limitations.

This work makes the following contributions:

1. We present ThermEval-B, a benchmark of 50,000+ thermal VQA pairs across seven tasks split
between three datasets, providing the first systematic evaluation of VLMs on thermal imagery
and revealing critical gaps in temperature reasoning.

2. We introduce ThermEval-D, a dataset of over 500 thermal images with per-pixel temperature
maps and body-part annotations across indoor and outdoor scenarios, supporting around 8.5k
VQA pairs and enabling more realistic and comprehensive benchmarking than prior datasets.

2 RELATED WORK

Vision-language models (VLMs) have demonstrated strong performance on RGB imagery, sup-
ported by benchmarks such as MME, MMBench, SEED-Bench, and MMVet Fu et al. (2023); Liu
et al. (2023); Zhang et al. (2023); Zheng et al. (2024), which evaluate perception, reasoning, and
problem-solving across diverse domains. More recent benchmarks, including NaturalBench Li et al.
(2024) and ZeroBench Roberts et al. (2025), further challenge VLMs with adversarial samples and
complex reasoning tasks. Despite these advances, existing evaluations remain largely RGB-centric
and do not assess performance on alternative sensing modalities.

We organize related work into two categories. The first covers benchmarks developed for thermal
and multispectral modalities, while the second reviews available thermal and infrared datasets.

2.1 THERMAL AND OTHER MULTI-SPECTRAL BENCHMARKS

Multispectral modalities encode distinct physical signals: thermal reflects temperature, depth en-
codes geometry, and X-ray reveals internal structure. Early VLM work has begun exploring non-
RGB data. Chung et al. Chung et al. (2024) use GPT-4o to generate multiple-choice questions for
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Dataset Temp BBoxes Seg Reliability Subjects Primary Objective
Charlotte Ashrafi et al. (2022) ✓ ✗ ✗ ✗ 10 Facial thermography
M3FD Liu et al. (2022) ✗ ✓ ✗ ✗ Several Multi-modal object detection
LCAS Thermal Physio. Cosar et al. (2018) ✓ ✗ ✗ ✗ 5 Physiological monitoring
LCAS RGB-D-T Cosar & Bellotto (2019) ✓ ✓ ✗ ✗ 15 Human re-identification
FLIR ADAS FLIR (2024) ✗ ✓ ✗ ✗ Several ADAS object detection
LLVIP Zhu et al. (2021) ✗ ✓ ✗ ✗ Several Low-light pedestrian detection
SpeakingFaces Abdrakhmanova et al. (2021) ✗ ✓ ✗ ✗ 142 Speech and lipreading
Thermal Faces in the Wild Kuzdeuov et al. (2022) ✗ ✓ ✗ ✗ 51 Face and landmark recognition
ThermEval (Ours) ✓ ✓ ✓ ✓ 25 Vision Model Benchmarking

Table 1: Comparison of thermal datasets, summarizing temperature data, bounding boxes, segmenta-
tion masks, annotator reliability, subject counts, and primary research objectives. ThermEval (Ours)
provides comprehensive segmentation and annotator reliability across indoor and outdoor scenes.

multispectral images, including thermal, but rely on a single vision backbone and a constrained
MCQ format, limiting generality and reasoning depth. RGB-Th-Bench Zhang et al. (2024b) studies
RGB–thermal transfer but is restricted to binary tasks and does not evaluate temperature interpreta-
tion; its evaluation protocol also penalizes partially valid open-ended answers.

In contrast, ThermEval targets thermal-specific challenges through structured tasks spanning
modality recognition, human counting, temperature reasoning, and per-pixel estimation. Unlike
prior binary setups, our benchmark uses both classification and regression with quantitative metrics,
enabling a more faithful and fine-grained assessment of VLM performance on thermal imagery

2.2 THERMAL AND INFRARED DATASETS

Several thermal datasets exist, but few expose temperature values. Widely used datasets such
as FLIR ADAS FLIR (2024), LLVIP Zhu et al. (2021), ThermalGAN Kniaz et al. (2018), and
Mendely Ashfaq et al. (2021) have advanced multimodal perception research but lack the pixel-level
temperature annotations needed for precise thermal reasoning. Only a few, including Charlotte-
Faces Ashrafi et al. (2022) and the L-CAS Thermal Physiological Monitoring dataset Cosar et al.
(2018), provide per-pixel temperature readings, though these are limited to facial imagery. The
L-CAS RGBD-T dataset Cosar & Bellotto (2019) offers multimodal data but omits meaningful
body-part annotations and focuses mainly on human re-identification. As summarized in Table 1, no
dataset combines raw thermal imagery, per-pixel temperature maps, and diverse semantic contexts,
a gap addressed by ThermEval-D.

2.3 FALSE-COLORED THERMAL IMAGES

Raw radiance or temperature matrices are rarely accessible; major datasets such as FLIR
ADASFLIR (2024), LLVIPZhu et al. (2021), KAISTHwang et al. (2015), and OpenThermal-
PoseKuzdeuov et al. (2025) release only false-colored thermal images. Consequently, false-
colormapped imagery is the practical standard for downstream thermal analysis. Our approach fol-
lows established VLM practice, where sensor measurements are visualized before model ingestion.
Prior work shows that VLMs learn reliably from such visualized physical modalities—including
thermal and depthCai et al. (2025); Ashqar et al. (2024); Cao et al. (2025); Astrid et al. (2025);
Huang et al. (2025). Although VLMs are predominantly trained on RGB, they are not restricted to
it, and false-colored thermal images provide an effective interface for multimodal reasoning.

For ThermEval, we integrate FLIR ADAS and LLVIP for modality diversity, exclude datasets like
ThermalGAN and Mendely that lack per-pixel ground truth, and introduce ThermEval-D to supply
temperature-annotated thermal images with body-part labels missing in existing resources.

3 THERMEVAL

To evaluate vision-language models (VLMs) on thermal imagery, we introduce ThermEval-B, a suite
of benchmark tasks testing perceptual and reasoning abilities, including modality identification,
human counting, thermal reasoning, and temperature estimation. Each task uses a standardized
prompt and is evaluated via an LLM-based judge or parser for consistent assessment. Details of the
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data, evaluation methodology, and code are available in the repository here, with full implementation
in Appendix B.2.

3.1 THERMEVAL-B: BENCHMARK

In this section, we provide an overview of the benchmark tasks.

T1 Modality Identification: The first task evaluates whether VLMs can recognize the visual char-
acteristics of thermal imagery. We frame it as a modality classification problem using thermal–RGB
image pairs from the FLIR and LLVIP datasets, with an equal distribution of RGB and thermal im-
ages. For each image, the VLM receives the prompt: “Is this a thermal image or an RGB image?”,
and the ground truth corresponds to the actual modality of the image.

T2 Modality Identification under Colormap Transformations: This task extends T1 by testing
whether VLMs can recognize thermal images when colorized with different colormaps. The prompt
remains “Is this a thermal image or an RGB image?”. Colormaps enhance human interpretation
of thermal data but alter appearance in ways that may confuse models. For example, Rainbow in
medical diagnostics, Isotherm in industrial maintenance, and White Hot in law enforcement and
wildlife tracking. Although the underlying thermal signal is unchanged, these transformations can
shift model predictions. We evaluate performance on sequential colormaps (Type I, e.g., Magma
and Viridis) and more complex colormaps (Type II, e.g., Summer and Spring), compared to standard
grayscale representations Hunter (2024). The dataset is the same as T1, with colormap transforma-
tions applied to generate new images while retaining the thermal modality as ground truth.

T3 Human Presence and Counting: In Task 3, we evaluate a fundamental capability of VLMs:
counting people in thermal images. Models receive the prompt: “How many people are in this
image? If there are no people, return 0.” We use thermal images from the FLIR and LLVIP datasets,
which contain varying numbers of pedestrians in road scenes. Ground truth counts are determined
from the annotated person labels in each image provided by FLIR and LLVIP datasets.

T4 Reading the Colorbar: This task evaluates whether VLMs can interpret the colorbar in thermal
images, a prerequisite for temperature estimation and thermal reasoning. It consists of three com-
ponents: (1) Colorbar detection, prompted with “You are given a thermal image. Does it contain a
color bar or temperature scale that maps colors to temperature values?” to assess recognition of
the colorbar’s presence, with the colorbar absent in 50% of the images. (2) Colorbar localization,
prompted with “You are given a thermal image. It contains a color bar or temperature scale that
maps colors to temperature values. What is the location of the colorbar?” to identify its position
(Top, Left, Bottom, Right). (3) Temperature range extraction, prompted with “You are given a ther-
mal image with a color bar or temperature scale that maps colors to temperature values. What is the
maximum temperature value in degrees Celsius?” to test interpretation of numerical values on the
scale. Ground truth was programmatically generated by placing the colorbar in various locations.

T5 Thermal Reasoning: This task assesses VLMs’ ability to reason about relative temperatures.
It has two components: (1) Comparative reasoning across individuals, where images contain two
people and models are prompted with “Given the thermal image, determine whether the {body part}
of the left or right person is hotter. Respond with ‘left’ or ‘right’.’’ Evaluated body parts include
chest, forehead, and nose. (2) Within-individual reasoning, where images show a single person and
models are asked “Rank the following body parts from highest to lowest temperature: forehead,
chest, nose.” The expected output is an ordered list reflecting actual thermal intensities. Ground
truth was obtained from human annotations3.2.3, with the mean temperature of each body part used
to determine correct ordering.

T6 Temperature Estimation: This task evaluates VLMs’ ability to estimate temperatures from ther-
mal images containing a colorbar. It has three levels of difficulty: (1) Coordinate-based estimation,
where models are prompted “Given the thermal image, what is the temperature at the coordinates
({x}, {y})? Return a single numerical value in degrees Celsius rounded to one decimal place (e.g.,
17.6).” (2) Pixel-based estimation, where models infer the temperature at a visually marked location,
such as a red arrow. (3) Region-based estimation, with prompts like “Given the thermal image, what
is the temperature of the forehead of the right person? Return a single numerical value in degrees
Celsius rounded to one decimal place (e.g., 17.6).” Because thermal cameras measure skin surface
temperature, which varies with ambient conditions, distance, and perspiration, accurate estimation
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requires combining visual interpretation with reasoning over thermal properties. Ground truth for
the first two subtasks was obtained programmatically using the known pixel locations, while for the
region-based task it was derived from human annotations, using the mean temperature of each body
part as the correct answer.

T7 Temperature Estimation at Varying Depths: This task evaluates how imaging distance affects
VLMs’ ability to estimate temperatures. We prompt models to predict the temperature of semantic
regions such as the forehead or nose across three distances: 2ft, 6ft , and 10 ft. The prompt mirrors
the region-based subtask in T6, for example: “Given the thermal image, what is the temperature
estimate of the forehead of the person according to the image? The temperature scale is in degrees
Celsius. Please return a single numerical value rounded to one decimal place (e.g., 17.6).” This
setup enables systematic analysis of how depth impacts estimation accuracy and robustness.

3.2 THERMEVAL-D: DATASET

We present ThermEval-D, the first thermal image dataset covering both indoor and outdoor human-
centric scenes with dense per-pixel temperature annotations. FLIR captures urban roads, LLVIP
provides elevated street views, and ThermEval-D adds 500 images from everyday environments such
as offices, parks, and workspaces. Each image includes detailed body-region annotations (forehead,
chest, nose), enabling fine-grained tasks. By spanning diverse real-world contexts, ThermEval-
D fills gaps in prior datasets and supports benchmarking of vision-language models across varied
scenarios. Task-wise VQA counts are provided in Table 5. The dataset is available here1.

3.2.1 ETHICS STATEMENT

The study was approved by the Institutional Ethics Committee (IEC) under the protocol “Thermal
Image Benchmarking for VLMs” (May 2025, six-month validity). Participants gave written consent,
all personal data were anonymized, and the study adhered to institutional and national ethical stan-
dards. Any protocol changes or adverse events are reported to the IEC, and no study team members
participated in the review.

3.2.2 DATA COLLECTION PROTOCOL

We collected ThermEval-D across diverse indoor and outdoor environments within our institute,
including offices, laboratories, workspaces, parks, and open grounds, following approval from the
Institutional Ethics Committee (IEC). Twenty-five adult participants (age 18–47, weight 64–108
kg) with varied skin tones provided written consent and voluntarily participated. All procedures
posed minimal risk, with the institute’s medical center located 100 m from the sites. Participants
performed natural activities such as standing, sitting, walking, and navigating stairs, allowing us to
capture varied postures and thermal profiles.

We recorded thermal imagery using the TOPDON TC001 Plus camera, which features a 256 × 192
infrared sensor, <40 mK thermal sensitivity, 25 Hz frame rate, and a temperature range of –20◦C
to 550◦C with ±1◦C accuracy. We selected this commercially available camera because it provides
per-pixel temperature annotations and reflects practical settings, as many applications cannot rely
on high-end thermal equipment.

3.2.3 DATASET ANNOTATION DETAILS

Each thermal image in ThermEval-D includes dense per-pixel temperature annotations, enabling
fine-grained reasoning over spatial temperature patterns. Three expert annotators created polygonal
segmentations following standardized guidelines with illustrative examples. Each image was an-
notated by all three annotators, and uncertainties were discussed collectively to ensure consistency
across tasks. Bounding boxes were defined as follows:

Person: Encompasses the entire visible human body, including limbs, while excluding accessories.

Forehead: Extends from the hairline to the eyebrows, tightly cropped to avoid inclusion of eyes.

Nose: From bridge to nostrils, excluding adjacent facial regions; glasses were excluded unless
thermally indistinguishable.

Chest: From base of neck to waistline, including shoulders and upper torso, excluding arms.

1https://tinyurl.com/ThermEval-Dataset
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Bounding boxes were automatically derived from polygons for compatibility across tasks, support-
ing both coarse and fine spatial resolutions. Inter-annotator agreement, measured via IoU and Dice
metrics, was strong (BBox IoU 0.77, Segm. IoU 0.72, BBox Dice 0.87, Segm. Dice 0.84), with
pairwise agreements summarized in Table 4. For region-based tasks, ground truth temperatures
were computed by averaging per-pixel values within segmentations (see Appendix A.1 for full data
collection details).

4 EVALUATION

In this section, we detail the vision-language models used in our experiments and outline the evalu-
ation protocol followed throughout the study. Please find implementation detail in Appendix B.

4.1 MODEL SPECIFICATIONS

We evaluated 15 open-source, 3 closed source and 3 chart finetuned vision-language models (VLMs)
spanning diverse architectures, sizes, and origins, selected based on popularity and benchmark per-
formance. This includes Intern-VL 3 (8B, 14B, 38B) Chen et al. (2024) and LLaVA 1.5 (7B) Xu
et al. (2024), LLaMA 3.2 (11B) Grattafiori et al. (2024), MiniCPM-V 2.6 (8B) Yao et al. (2024),
Phi-3 (4.2B), and Phi-3.5 (7B) Abdin et al. (2024), Qwen-VL (7B, 32B), Qwen-VL 2.5 (7B) ,
Qwen A22 (235B) Bai et al. (2023), PaliGemma-2 (3B) Steiner et al. (2024), IDEFICS-3 (6.7B)
Laurençon et al. (2024), ,BLIP-2 (9B) Li et al. (2023) , Gemini 2.5 flash Team (2024), GPT-4o Ope-
nAI (2024), Claude Haikuu Anthropic (2024), ChartGemma (3B) Masry et al. (2024b), ChartInstruct
Llama-2(7B) Masry et al. (2024a) and TinyCharts (3B) Zhang et al. (2024a). This diverse set allows
benchmarking across a wide spectrum of sizes and capabilities.

Focusing on open-source VLMs ensures reproducibility, transparency, and full access to weights and
architectures, enabling rigorous evaluation and community-driven follow-up. Establishing strong
zero-shot baselines on accessible models provides a foundation for comparison, fine-tuning, or adap-
tation, while yielding insights relevant to proprietary systems.

4.2 EVALUATION PROTOCOL

We evaluate all models in a strict zero-shot setting using a fixed prompt template, without any fine-
tuning on thermal data. To ensure deterministic outputs, we set the decoding temperature to 0 and
disable sampling. We restrict the maximum output length to 512 tokens, giving models sufficient
capacity to reason and generate precise answers.

LLM as a Judge: Although we provide explicit formatting prompts, VLM outputs often vary struc-
turally (Figure 1). Following prior work Danish et al. (2024); Zheng et al. (2023); Gu et al. (2024),
we employ a language-only LLM judge (Gemini 2.5 models) to standardize and evaluate VLM pre-
dictions. In our pipeline, the judge receives as input the textual output of a VLM along with a
few-shot prompt containing 3–5 examples, but it does not access the image itself. For classification
tasks (T1, T2, T5), the judge outputs “Yes” if the VLM prediction matches the ground truth, and
“No” otherwise. For regression tasks (T3, T4, T6, T7), it extracts numerical values from the VLM
output to enable metric computation, such as mean absolute error. This approach ensures consistent
evaluation across structurally diverse VLM outputs while leveraging the reasoning capabilities of
a language model to parse text predictions. For regression tasks, our setup employs the LLM as a
structured parser rather than as a scorer. Regex-based parsing was unreliable, while LLMs provided
robust extraction, a trade-off also noted in prior work Gu et al. (2024). Stable decoding (temperature
0, sampling disabled) and task-specific few-shot prompts further ensured consistency.

Benchmarking the Judge : We validated our evaluation pipeline on a stratified gold set of 1,350
outputs spanning all tasks and models. Human annotators verified the correctness of the gold set,
and we used structured judging with Gemini 2.5 Pro, Gemini 2.5 Flash, and Gemini 2.5 Flash Lite
through the Instructor framework. These judges achieved agreement levels of 99.01 percent, 99.07
percent, and 98.24 percent respectively. Most remaining errors were due to ambiguous or truncated
VLM responses rather than judge failures. The gold-set size was selected using standard statistical
methods to ensure representativeness at the 95 percent confidence level with a margin of error below
3 percent. Appendix B.4 provides additional details.
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Table 2: Comparison of VLM performance on Task-1 (modality classification), Task-2 (robustness
to colormap transformations), Task-3 (Human counting), and Task-4 (Colorbar localisation and
temperature extraction). ↑ indicates higher accuracy is better. ↓ indicates lower MAE is better. Text
shown in red highlights comparatively lower performance among the models. [NEW RESULTS
ADDED]

Model Params
(in B)

Task-1 Task-2 Task-3 Task-4
FLIR ↑ LLVIP ↑ FLIR ↑ LLVIP ↑ FLIR ↓ LLVIP ↓ Detect ↑ Position ↑ Max ↓ Min ↓

SAM-3 0.9 - - - - 2.07 0.66 - - - -

ChartGemma 3.0 0.50 0.50 0.00 0.00 3.04 1.25 0.48 0.45 0.04 0.03
TinyCharts 3B 0.50 0.50 0.00 0.00 4.72 2.99 0.5 0.14 68.44 24.75
ChartInstruct Llama-2 7.0 0.50 0.50 0.00 0.01 4.48 2.36 0.5 0.25 162.08 74.37

Phi-3 4.2 0.89 0.98 0.64 0.70 3.20 1.29 1.00 0.74 0.00 0.00
IDEFICS-3 6.7 0.92 0.72 0.84 0.83 3.99 0.91 1.00 0.78 0.00 0.20
LLaVA-1.5 7.0 0.97 0.89 0.89 0.72 3.43 1.22 0.50 0.31 11.00 2.51
Phi-3.5 7.0 0.65 0.76 0.82 0.90 3.30 1.08 1.00 0.75 0.00 0.00
Qwen-VL 2 7.0 0.97 0.99 0.99 1.00 3.65 0.75 1.00 0.73 0.00 2.05
Qwen-VL 2.5 7.0 0.71 0.71 0.61 0.80 3.78 1.09 1.00 0.99 0.00 2.66
Intern-VL 3 8.0 0.99 1.00 1.00 1.00 3.66 2.30 1.00 1.00 314.40 15.57
MiniCPM-V 2.6 8.0 0.94 0.97 0.91 0.93 3.88 1.09 1.00 0.99 0.00 0.00
BLIP-2 8.0 0.46 0.22 0.76 0.76 4.69 2.99 0.50 0.25 209.39 42.58
PaliGemma-2 10.0 0.50 0.50 0.00 0.00 4.65 2.68 0.50 0.41 6.95 13.14
LLaMA-3.2 11.0 0.98 0.86 0.77 0.63 2.88 0.70 1.00 1.00 0.00 0.00
Intern-VL 3 14.0 0.96 0.99 0.86 0.97 2.79 0.73 1.00 1.00 0.00 0.00
Qwen-VL 2.5 32.0 0.97 0.99 0.77 0.93 3.51 1.04 1.00 1.00 0.03 12.22
Intern-VL 3 38.0 0.99 1.00 1.00 1.00 2.72 0.51 1.00 1.00 0.00 0.00
Qwen-VL 2.5 (FT) 7.0 1.00 1.00 1.00 1.00 1.85 0.55 1.00 1.00 0.00 0.01

Human – 0.97 0.98 0.98 0.99 1.73 0.30 1.00 1.00 0.00 0.00
Random Chance – 0.50 0.50 0.50 0.50 – – 0.50 0.25 – –

5 RESULTS

5.1 TASK 1 AND TASK 2: MODALITY IDENTIFICATION

Tasks 1 and 2 evaluate modality identification, with Task 2 adding colormap transformations as a
robustness challenge (results in Table 2,). Human performance remained near perfect, with errors
attributable to occasional mistakes. In Task 1, most VLMs perform strongly: Intern-VL 3 (38B)
and Qwen-VL achieve near-human accuracy, indicating that distinguishing RGB from raw thermal
images is relatively straightforward. Task 2 reveals substantial degradation: Intern-VL 3 (38B)
remains robust, but PaliGemma-2, BLIP-2, and several Qwen-VL variants drop to near-random
performance. Performance also varies by colormap type: sequential maps (Type I, e.g., Magma,
Viridis) are more manageable, whereas complex maps (Type II, e.g., Summer, Spring) cause larger
failures, suggesting reliance on low-level color statistics rather than modality-invariant features.
Notably, PaliGemma consistently predicts RGB input, yielding fixed accuracies of 0.5 for Task 1
and 0 for Task 2. Overall, while VLMs handle basic identification well, their robustness to colormap
transformations is inconsistent. This makes Task 2 a stronger diagnostic of true thermal modality
understanding. Extensive results with colormap-specific performance are provided in Table 6.

5.2 TASK 3: HUMAN COUNTING

Task 3 evaluates VLMs’ ability to detect human presence and accurately count individuals in thermal
images. Results (Table 2) reveal wide variability across models. Early-generation systems such as
BLIP-2, PaliGemma-2, and LLaVA-1.5 perform poorly, with MAE exceeding 3.4 on FLIR and 2.0
on LLVIP. In contrast, more recent models, including Qwen-VL, LLaMA-3.2, and Phi-3.5, achieve
substantial improvements, reducing error to around 3 on FLIR and near 1 on LLVIP. Scaling trends
are evident within the Intern-VL family: the 8B model struggles (MAE > 3.5 on FLIR), while the
14B and 38B variants improve markedly, with the 38B model reaching 2.72 on FLIR and 0.51 on
LLVIP. Notably, Intern-VL (8B) exhibits a systematic failure, often defaulting to 11 when unable to
resolve counts. Human annotators remain the most accurate, with MAE of 1.73 on FLIR and 0.3 on
LLVIP. Errors are most pronounced when images contain many individuals or overlapping thermal
signatures, while both models and humans perform near-perfectly when counts are low or people are
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Table 3: Comparison of VLM performance on Task-5 (Thermal reasoning), Task-6 (Temperature
estimation), and Task-7 (Temperature estimation over varying depth). ↑ indicates higher accuracy
is better. ↓ indicates lower MAE is better. Text in red highlights comparatively lower performance
among the models. x indicates that model chose not to answer the question. ? indicates that model
parameters are unknown. [NEW RESULTS ADDED]

Model Params
(in B)

Task-5 Task-6 Task-7
Double ↑ Single ↑ Coords ↓ Arrow ↓ Region ↓ 2ft ↓ 6ft ↓ 10ft ↓

ChartGemma 3.0 0.52 0.27 5.43 5.91 5.43 4.44 3.56 3.25
TinyCharts 3.0 0.39 13.81 5.19 5.25 3.31 3.09 2.85
ChartInstruct Llama 2 7.0 0.00 0.28 32.61 14.01 6.01 3.09 3.18 3 .33

Phi-3 4.2 0.57 0.27 6.02 6.34 4.58 5.82 6.18 6.74
IDEFICS-3 6.7 0.47 0.38 5.91 5.89 4.41 2.35 2.22 2.58
LLaVA-1.5 7.0 0.48 0.24 19.88 5.62 4.12 2.97 3.58 4.47
Phi-3.5 7.0 0.42 0.28 5.65 5.83 3.59 2.15 2.29 2.56
Qwen-VL 2 7.0 0.38 0.26 4.98 4.85 2.55 1.63 1.13 1.04
Qwen-VL 2.5 7.0 0.41 0.42 3.65 4.75 2.91 1.05 1.00 1.00
Intern-VL 3 8.0 0.41 0.34 80.95 31.48 11.15 6.49 16.59 20.30
MiniCPM-V 2.6 8.0 0.40 0.27 4.00 6.32 4.28 2.15 2.03 1.85
BLIP-2 8.0 0.39 0.16 13.08 12.74 14.73 16.96 16.35 15.43
PaliGemma-2 10.0 0.44 0.00 6.39 5.67 7.80 6.29 5.38 4.59
LLaMA-3.2 11.0 0.61 0.26 3.98 5.60 3.48 2.60 1.47 1.30
Intern-VL 3 14.0 0.51 0.32 3.48 5.29 2.19 1.01 1.12 1.70
Qwen-VL 2.5 32.0 0.43 0.33 7.67 8.74 2.95 1.54 1.66 1.97
Intern-VL 3 38.0 0.50 0.37 9.92 4.61 1.76 1.57 1.54 1.73
Qwen A22 235 B 0.58 0.27 3.96 4.21 3.01 1.97 2.09 2.24

Qwen-VL 2.5 (FT) 7B 0.58 0.56 1.58 1.55 1.03 0.53 0.49 0.61
Gemini 2.5 flash ?? 0.54 0.28 3.81 3.48 2.50 1.30 1.80 1.96
Claude Haiku 4.5 ?? 0.28 0.60 4.28 4.45 2.47 1.37 1.57 1.90
GPT-4o ?? 0.46 0.34 x x x x x x

Human – 0.84 0.54 – 2.73 2.04 1.23 1.20 1.22

Random Chance – 0.50 0.167 – – – – – –

well separated.. This persistent gap, especially on FLIR, highlights the difficulty of robust human
counting in thermal imagery and underscores it as a key open challenge for VLM-based reasoning.

5.3 TASK 4: COLORBAR INTERPRETATION

This task evaluates whether VLMs can interpret colorbars in thermal images, which is a prerequisite
for downstream tasks such as temperature estimation. As shown in Table 2, nearly all modern
VLMs, with the exception of PaliGemma 2, LLaVA 1.5, and BLIP 2, achieve near perfect accuracy
in detecting the presence of a colorbar. Localization performance is also strong, with models such as
Intern VL 3 (14B and 38B), LLaMA 3.2, and Qwen VL 2.5 (7B and 32B) reaching perfect accuracy.
In contrast, PaliGemma 2, LLaVA 1.5, and BLIP 2 continue to struggle even with localization.

The main difficulty arises in extracting numerical temperature values. Only a few models, including
Phi 3, Phi 3.5, MiniCPM V 2.6, LLaMA 3.2, and Intern VL 3 (14B and 38B), achieve zero error
on both maximum and minimum temperature estimation. Others such as PaliGemma 2, BLIP 2,
and LLaVA 1.5 produce errors greater than 2 to 6 ◦C. Scaling patterns are visible in the Intern VL
3 series: the 8B version produces very large errors (314.47 and 15.57 ◦C), while the 38B version
eliminates them entirely. Some models exhibit systematic flaws. For example, BLIP 2 outputs
only 0 or 273 for minimum and maximum values, and Intern VL 3 (8B) often shifts decimal points,
reporting 334.2 ◦C instead of 33.42 ◦C. Humans remain perfectly accurate across all subtasks. These
results reveal an important gap. While most VLMs can detect and localize colorbars, only a few
can reliably interpret their numerical ranges. Moreover, scaling model size alone does not ensure
robustness in temperature extraction, which suggests that current architectures face a fundamental
limitation. Please refer to Table 8 for more details.

5.4 TASK 5: THERMAL REASONING

Task 5 evaluates VLMs’ ability to reason over thermal intensities, beyond simple detection or lo-
calization. Performance lags sharply behind humans in both subtasks (Table 3). In the comparative
reasoning setting with two people, accuracies range from 0.38 to 0.61, with LLaMA 3.2 performing
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best, still well below the human benchmark of 0.84. Within-individual reasoning, which requires
ranking body regions by thermal intensity, is even more challenging: most models score near ran-
dom (0.24–0.38), with only Qwen VL 2.5 (7B) achieving 0.42 versus 0.54 for humans. Models such
as PaliGemma 2 and BLIP 2 fail entirely. Scaling provides modest gains (e.g., Intern VL 3 improves
from 0.41 at 8B to 0.51 at 38B) but cannot close the gap. These results highlight a fundamental
limitation: thermal reasoning demands structured relational understanding, not just larger model
size, underscoring the need for architectural innovation rather than parameter growth alone.

5.5 TASK 6: TEMPERATURE ESTIMATION

Task 6 evaluates VLMs’ ability to estimate absolute temperatures from thermal images. Across
coordinate- and arrow-based estimations, performance remains challenging: even the largest model,
InternVL 3 (38B), achieves MAEs of 3.48◦C (coordinate) and 4.61◦C (arrow), still above the hu-
man baseline of 2.73◦C. Smaller models, including InternVL 3 (8B), LLaVA, and BLIP-2, perform
drastically worse (MAEs 80.95◦C, 19.88◦C, 13.08◦C), reflecting their inability to map pixels to tem-
perature values. The most striking failure is that some models, notably LLaVA, ignore the thermal
image entirely, outputting fixed values (e.g., 37.5◦C) for region-based estimation, effectively relying
on language priors rather than visual inputs. Other models, such as PaliGemma 2 and BLIP-2, fail
consistently across all subtasks. Region-based estimation proves more tractable: InternVL 3 (38B)
achieves 1.76◦C, surpassing humans, while Qwen-VL also performs competitively. These results
reveal a systematic limitation: many VLMs fail to ground predictions in thermal signals, default-
ing to prior biases, and highlight the need for models designed to truly interpret and reason over
thermal imagery. Full results are in Table 9.

5.6 TASK 7: TEMPERATURE ESTIMATION AT VARYING DEPTH

Task 7 evaluates VLMs’ ability to estimate temperatures from thermal images across different dis-
tances. Performance varies widely (Table 3). Early baselines such as BLIP-2 perform poorly (MAE
>15 °C), indicating weak grounding in thermal inputs. Instruction-tuned models like Qwen-VL-2.5
and InternVL-14B achieve MAEs near 1 °C and remain stable across 2 ft, 6 ft, and 10 ft, demon-
strating robust scaling behavior. In contrast, non-instruction-tuned InternVL exhibits a sharp degra-
dation, with MAE increasing from 6.49 °C at 2 ft to 20.30 °C at 10 ft, revealing strong distance
sensitivity and unreliable grounding. Mid-range models, including LLaVA and Phi, show moderate
accuracy but gradual error increase with depth. These results highlight the critical importance of
instruction tuning and model scale for reliable thermal reasoning across varying distances.

6 LIMITATIONS

Despite providing a comprehensive benchmark for VLMs on thermal imagery, our study has sev-
eral limitations that also suggest future directions. We evaluate a limited subset of open-source and
closed-source VLMs due to compute constraints, though ThermEval will expand to include more
models. Second, we use a large language model as an automatic judge; while scalable, it can occa-
sionally introduce minor errors, highlighting the value of enhanced automated checks. These limita-
tions collectively point to opportunities for improving evaluation and advancing thermal reasoning
research.

7 CONCLUSION

We present ThermEval, a comprehensive zero-shot benchmark and dataset with per-pixel tempera-
ture annotations for evaluating vision-language models on thermal imagery. Across a diverse set of
classification and regression tasks, we reveal that current VLMs often fail to ground predictions in
thermal signals, instead relying on language priors, showing systematic biases, or struggling with
basic thermal reasoning. These results expose fundamental limitations of existing models and un-
derscore the need for architectures and training strategies that truly integrate thermal modalities. By
providing a rigorous evaluation framework, ThermEval lays the groundwork for developing thermal-
aware multimodal models and advancing their deployment in real-world scenarios.
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8 REPRODUCIBILITY STATEMENT

All the code and information regarding the experiments are available in the repository
https://anonymous.4open.science/r/ThermEval. Additionally, Please find implementation detail in
Appendix B.
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APPENDIX

A DATASETS

A.1 THERMEVAL-D DATASET

We release ThermEval-D, a high-resolution thermal image dataset with dense per-pixel temperature
annotations, designed for tasks requiring precise temperature ground truths. The dataset contains
over 500 images of human subjects, each annotated with detailed regions including the forehead,
chest, nose, and full-body presence. All imagery was captured using the TOPDON TC001 Plus
thermal camera, which features a 256×192 pixel infrared sensor, sub-40 mK thermal sensitivity, 25
Hz frame rate, and a temperature measurement range of –20◦C to 550◦C with ±1◦C accuracy.

ThermEval-D addresses the scarcity of thermal datasets with dense temperature data in the research
community. The complete dataset, along with its accompanying croissant metadata file, is publicly
accessible via Kaggle here. A few sample of images from out Dataset are displayed in Figure 2 .

Terms of Use and Licensing: ThermEval-D is released under the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC 4.0) license, permitting unrestricted use for non-commercial re-
search purposes.

Data Maintenance and Accessibility: The dataset is hosted on Kaggle, where we ensure long-term
maintenance and periodic verification of accessibility. We plan regular expansions to enhance the
dataset’s scope and utility for the research community. Our benchmark involves ThermEval-D with
other publicly available datasets for comprehensive evaluation across multiple tasks. While external
datasets are used for comparative analysis, we do not redistribute them.

ThermEval-D : Data Collection and Ethics: Data collection was conducted across diverse settings
within the authors’ institution, including parks, open grounds, offices, laboratories, and workspaces,
following approval from the Institutional Ethics Committee (IEC). The dataset includes participants
from various demographic groups, covering different genders, age ranges, body types, and heights,
all performing distinct activities with informed consent. This study was approved by the IEC under
the protocol titled “Thermal Image Benchmarking for VLMs,” valid from May 2025 for six months.
All identifiable participant information was anonymized, and data collection posed minimal risk.
Emergency medical support was readily available via the institutional medical center located ap-
proximately 100 meters from all collection sites.

ThermEval-D Annotation Details : Each image was annotated by three expert annotators who
created polygonal segmentations following standardized guidelines. Bounding boxes were auto-
matically derived from these polygons to maintain compatibility across tasks and allow both coarse
and fine spatial resolution. Inter-annotator agreement was quantified using pairwise IoU and Dice
metrics for both bounding boxes and polygons, with mean values of 0.77 (BBox IoU), 0.72 (Segm.
IoU), 0.87 (BBox Dice), and 0.84 (Segm. Dice), reflecting strong consistency; for context, even
a one-pixel shift in a 10×10 box yields IoU ≈ 0.68, confirming that observed values indicate true
agreement rather than noise. Temperature variability across annotators was assessed by calculating
the standard deviation of per-pixel temperatures within each segmentation, yielding a representa-
tive image example of 32.26◦C, 32.15◦C, and 32.18◦C (majority-vote 32.17◦C, std 0.04◦C), and a
mean per-label standard deviation of 0.18◦C across the dataset, demonstrating robust and reliable
temperature extraction. These procedures ensure that ThermEval-D provides accurate, consistent,
and reproducible annotations for both spatial and temperature-based evaluation tasks.

Metric Annotator Pairs Mean of all Pairs
1 & 2 1 & 3 2 & 3

Bounding Box IoU 0.7754 0.7477 0.7737 0.7656
Segmentation IoU 0.7248 0.7178 0.7308 0.7245
Bounding Box Dice 0.8735 0.8556 0.8724 0.8672
Segmentation Dice 0.8405 0.8357 0.8445 0.8402

Table 4: Inter-annotator agreement (IoU and Dice) for bounding boxes and segmentations across
three annotators. The “Mean of Pairs” is the average of the three pairwise annotator scores.
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Figure 2: Images from ThermEval-D dataset. The top row shows the images having a single person
in the scene whereas the second row shows the images having more than one person in the scene.
Colorbars were added programatically during task evaluation

A.2 FLIR-ADAS DATASET

The FLIR-ADAS dataset2 is a publicly available resource (separate from the ThermEval-D dataset
release) designed to advance research in thermal-visible fusion (RGBT) algorithms for autonomous
driving applications. This dataset contains approximately 13,000 aligned thermal and RGB image
pairs with multi-class annotations, including pedestrian labels; however, it lacks temperature anno-
tations. The thermal images maintain a consistent resolution of 640×512 pixels, while RGB image
resolutions vary throughout the dataset. Samples from the FLIR dataset are illustrated in Figure 3.

A.3 LLVIP DATASET

The LLVIP dataset3 is also a publicly available dataset (not a part of the ThermEval-D dataset re-
lease) that has thermal and RGB aligned images aimed at advancing fusion techniques for pedestrian
detection in low-light conditions. It consists of about 15000 thermal RGB image pairs annotated
with people. Both thermal and RGB images maintain uniform 1280×1024 pixel resolution. No-
tably, this dataset lacks per-pixel temperature annotations for thermal imagery. Sample images from
the LLVIP dataset are presented in Figure 4.

2https://adas-dataset-v2.flirconservator.com/#downloadguide
3https://bupt-ai-cz.github.io/LLVIP/
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Figure 3: Demonstrates some of the images from the FLIR-ADAS dataset, which is used for Tasks
T-1, T-2, and T-3. Top row shows thermal images while the bottom shows RGB for different scenes.
More information regarding the tasks could be obtained from section 3.1.

Figure 4: Demonstrates some of the images from the LLVIP dataset, which is used for Tasks T-1,
T-2, and T-3.Top row shows thermal images while the bottom shows RGB for different scenes. More
information regarding the tasks could be obtained from section 3.1.
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Table 5: Number of VQA samples per task and dataset source in ThermEval benchmark.
Task Source # VQA Samples
T1 - Modality Identification FLIR, LLVIP 10,000
T2 - Modality Identification (Colormap) FLIR, LLVIP 10,000
T3 - Human Counting FLIR, LLVIP 20,000
T4 - Colorbar (Double) ThermEval-D 156
T4 - Colorbar (Single) ThermEval-D 145
T5 - Thermal Reasoning (Arrow) ThermEval-D 2,400
T5 - Thermal Reasoning (Coords) ThermEval-D 2,400
T5 - Thermal Reasoning (Regions) ThermEval-D 717
T6 - Temperature Estimation (Detection) ThermEval-D 480
T6 - Temperature Estimation (Extraction) ThermEval-D 480
T6 - Temperature Estimation (Max-Min) ThermEval-D 960
T7 - Temperature Estimation at Depth (2 ft) ThermEval-D 248
T7 - Temperature Estimation at Depth (6 ft) ThermEval-D 180
T7 - Temperature Estimation at Depth (10 ft) ThermEval-D 138

Total – 50,404

The FLIR-ADAS and LLVIP datasets were employed for Tasks T-1, T-2, and T-3, which evaluate
fundamental VLM capabilities on thermal imagery without requiring specific temperature informa-
tion. The ThermEval-D dataset was utilized for Tasks 4, 5 , 6 and 7, which necessitate precise
temperature ground truth data for evaluation, a feature absent from existing publicly available ther-
mal datasets.

B IMPLEMENTATION DETAILS

B.1 COMPUTE SPECIFICATIONS

To ensure a fair comparison, all evaluations were conducted using the same hardware configuration:
a single NVIDIA A100 GPU with 80GB of VRAM. Each evaluation involves a single forward pass
(no ensembling or repeated sampling), and no access to model internals is assumed beyond what
is publicly available through Hugging Face APIs or official released checkpoints. All prompt tem-
plates, prediction outputs, and evaluation scripts used in this study are provided in the accompanying
GitHub repository.

B.2 REPOSITORY STRUCTURE

The repository is accessible here. The root directory contains the following organizational structure:

1] Datasets: Contains all datasets utilized for model evaluation across different tasks.

2] Evaluation: Contains evaluation scripts for all tasks. These assess model performance across
various tasks and saves the evalaution results, including the prompts used, correct answers, model
outputs, and judge or parser outputs (task-dependent). Results are saved as a CSV separately for all
the datasets.

3] Evaluation Results: Stores task-specific evaluation results as CSV files for all models across
different datasets. These results are used for analysis and for arriving at results. All the results
presented in the paper have been provided for transparency.

4] Labels: Contains task-specific ground truth labels saved as CSV files for model evaluation. These
files include image paths and corresponding ground truth such as modality, colourmap used, person
count, temperature at given coordinates, etc, and other task-relevant annotations.

5] Processing Scripts: Includes Python scripts designed for label generation. These scripts process
the temperature matrices from the datasets folder alongside provided annotations to extract informa-
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tion required for model evaluation. The processed information is stored as CSV files for different
tasks within the Labels folder.

6] Result Scripts: Contains scripts for processing evaluation results and computing performance
metrics. It also stores all plots and figures generated.

7] Run.py: The primary evaluation script for assessing vision-language models on all tasks. This
script accepts model name as input parameter and saves evaluation results for the specified model
in the evaluation results folder. To evaluate additional models not specified in this paper, users
need to define the corresponding load {model name} and infer {model name} functions in the in-
ference model.py file located within the evaluation folder. Detailed instructions for this process are
provided in the repository README.

B.3 MODEL EVALUATION STEPS

Setup:

1] Download datasets: FLIR-ADAS (link), LLVIP (link), and ThermEval-D (link) from provided
links.

2] Place the datasets (FLIR-ADAS, LLVIP and ThermEvalD) in the Datasets folder maintaining
directory structure.

3] Create Python 3.8.10 virtual environment and install dependencies from requirements.txt.

Execution:

4] Run Run.py from root directory, specify model name [for example: ‘llama’, ‘llava’, ‘phi’,
‘qwen vl’, ‘minicpm’, ‘internvl’]. Results are automatically saved to the evaluation results folder.
Complete instructions are available in the repository README.

B.4 SAMPLE SIZE JUSTIFICATION FOR LLM PARSER EVALUATION

To validate the LLM-based parser across all models and tasks, we created a gold set of approximately
1,200 parser outputs sampled from the full population of 700,000 outputs (50,000 VQA examples ×
14 models). This sample size was chosen to provide statistically reliable estimates of parser accuracy
while keeping annotation costs manageable.

Using the standard formula for finite-population proportions:

n =
Z2 p (1− p)

e2
· N

N − 1 + Z2 p (1−p)
e2

where n is the required sample size, N = 700,000 is the population of outputs, p = 0.5 is the
conservative estimate for expected parser accuracy, e = 0.03 is the desired margin of error, and
Z = 1.96 corresponds to a 95% confidence level, we obtain n ≈ 1, 067. This confirms that sam-
pling approximately 1,200 outputs provides a 95% confidence interval of ±3% for proportion-based
metrics such as exact match accuracy.

To ensure the gold set is representative, we performed stratified random sampling across tasks, mod-
els, and answer types, including edge cases such as multi-number outputs and malformed answers.
This approach guarantees coverage of the full distribution of parser outputs, allowing us to estimate
parser performance accurately for the entire population of 700,000 VLM outputs.

B.5 ADDITIONAL RESULTS AND TASK-WISE IMPLEMENTATION DETAILS

B.5.1 TASK 1: MODALITY IDENTIFICATION

Task: This task aims to understand whether VLMs can visually distinguish RGB and Thermal
Images.

Prompt: Is this a thermal image or an RGB image?
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Gray Magma Viridis Spring Summer

Figure 5: Demonstrates various colormaps used for Task T-2. Colormaps used were ‘gray’,
‘magma’, ‘viridis’, ‘spring’ and ‘summer’

Implementation Details: This is a binary classification task, making its evaluation simple. We used
5,000 thermal-RGB image pairs each from the FLIR and LLVIP datasets, ensuring an equal number
of thermal and RGB images for fair assessment. Sample images used for this task are shown in
Figures 3 and 4.

B.5.2 TASK 2: MODALITY IDENTIFICATION UNDER COLORMAP TRANSFORMATIONS

Task: This task extends task 1 by evaluating VLMS on thermal images with colormap transforma-
tions.

Prompt: Is this a thermal image or an RGB image?

Implementation Details: This is a binary classification task, making its evaluation simple. We used
1,000 thermal images each from the FLIR and LLVIP datasets, applying five colormap transforma-
tions per image to create a total of 10,000 images. We used simple sequential colormaps (Type I)
such as Magma and Viridis, and more complex ones (Type II) like Summer and Spring, along with
standard grayscale thermal images. Sample images used in this task are shown in Figures 5.

B.5.3 TASK 3: COUNTING HUMANS

Task: This task assesses the basic object counting capability of VLMS, specifically focusing on
counting people.

Prompt: How many people are in this image? If there are no people, return 0.

Implementation Details: This regression task used 10,000 grayscale thermal images each from the
FLIR and LLVIP datasets. A separate model parsed the outputs to estimate the numerical count of
people.

B.5.4 TASK 4: READING COLORBAR

Task: This task evaluates the VLMs ability to identify and read the colorbar. It comprises of 3
subtasks (a) Identifying the presence of colorbar, (b) Identifying the location of the colorbar (top,
left, bottom or right), and (c) Extracting the max and min value on the Colorbar.
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Model Params (B) Gray Magma Spring Summer Viridis

FLIR LLVIP FLIR LLVIP FLIR LLVIP FLIR LLVIP FLIR LLVIP

Phi-3 4.2 0.80 0.99 0.99 0.93 0.40 0.55 0.06 0.06 0.97 0.98
IDEFICS 3 6.7 0.92 0.54 1.00 0.99 0.42 0.78 0.89 0.98 0.99 0.87
LLaVA-1.5 7.0 0.94 0.83 1.00 0.93 1.00 0.77 0.53 0.35 1.00 0.70
Phi-3.5 7.0 0.31 0.55 1.00 0.98 0.99 1.00 0.81 0.99 1.00 0.99
Qwen-VL 7.0 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MiniCPM-V 2.6 8.0 0.88 0.95 1.00 1.00 0.87 0.91 0.82 0.80 1.00 1.00
InternVL 8.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BLIP-2 9.0 0.58 0.53 0.83 0.75 0.87 0.99 0.99 0.93 0.58 0.64
PaliGemma-2 10.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LLaMA-3.2 11.0 0.97 0.63 1.00 1.00 0.90 0.60 0.01 0.00 0.99 0.94
InternVL 14.0 0.91 1.00 0.84 0.99 0.89 0.99 0.70 0.93 0.99 0.96
Qwen-VL 2.5 32.0 0.74 0.96 1.00 1.00 0.77 0.89 0.40 0.82 0.97 1.00
InternVL 38.0 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

Table 6: Accuracy of VLMS on Task-2: Modality Identification under colormap transformation with
results shown separately for FLIR and LLVIP datasets. Higher numbers are better.

Model Params (B) FLIR LLVIP

MAE ↓ STD ↓ Bias * RMSE
↓

MAE ↓ STD ↓ Bias * RMSE
↓

Phi-3 4.2 3.20 4.24 -3.12 5.26 1.29 1.25 -1.22 1.75
Phi-3.5 7.0 3.30 4.49 -3.23 5.53 1.08 1.15 -1.01 1.53
IDEFICS-3 6.7 3.99 5.31 -3.98 6.63 0.91 1.13 -0.74 1.35
LLaVA-1.5 7.0 3.43 4.75 -3.33 5.80 1.22 1.56 -0.92 1.81
Qwen-VL 7.0 3.65 5.11 -3.63 6.27 0.75 1.09 -0.33 1.14
MiniCPM-V 2.6 8.0 3.88 4.99 -3.87 6.31 1.09 1.32 -0.98 1.65
Intern-VL 3 8.0 3.66 5.42 -1.44 5.61 2.30 3.86 1.64 4.20
BLIP-2 9.0 4.69 5.59 -4.69 7.30 2.99 1.82 -2.99 3.50
PaliGemma-2 10.0 4.65 5.59 -4.65 7.27 2.68 1.88 -2.65 3.25
LLaMA-3.2 11.0 2.88 4.05 -2.72 4.88 0.70 1.04 -0.21 1.07
Intern-VL 3 14.0 2.79 4.15 -2.76 4.98 0.73 1.01 -0.59 1.17
Qwen-VL 2.5 32.0 3.51 4.77 -3.49 5.91 1.04 1.20 -0.91 1.51
Intern-VL 3 38.0 2.72 4.08 -2.69 4.88 0.51 0.82 -0.30 0.88

Table 7: Regression metrics for Task-3 : Human Counting using FLIR and LLVIP datasets. ↓
indicates lower is better. *Bias closer to 0 is better.

Prompt 1: You are given a thermal image. Does it contain a color bar or temperature scale that
maps colors to temperature values? Answer only with ‘Yes’ or ‘No’.

Prompt 2: You are given a thermal image. It contain a color bar or temperature scale that maps
colors to temperature value. What is the location of the colorbar? Possible locations are top, left,
bottom, right.

Prompt 3: You are given a thermal image with a color bar or temperature scale that maps colors to
temperature value. What is the maximum temperature value in degree Celsius?

Implementation Details: This task contains both classification as well as regression task. Prompt
1 and 2 would lead to a classification task where as the task 3 would lead to regression task. From
subtask (a) the random chance accuracy is 50% whereas for subtask (b) the random chance accuracy
is 25%.

B.5.5 TASK 5: TEMPERATURE REASONING

Task: This task evaluates the reasoning capabilities of VLMS in thermal domain. It comprises of
2 subtasks: (a) Ranking the chest, head and nose of a person from hottest to coldest and (b) To
compare the temperature head/chest/nose of 2 people in the image and return “left” or “right”.
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Model Params (B) Detection Position Extraction
Accuracy Accuracy Acc Max Acc Min Acc MAE Max MAE Min MAE

BLIP-2 9.0 0.50 0.25 0.00 0.00 0.00 209.39 42.58 68.42
IDEFICS-3 6.7 1.00 0.78 1.00 1.00 1.00 0.00 0.20 0.10
Intern-VL 3 8.0 1.00 1.00 0.30 0.88 0.59 314.40 15.57 163.40
Intern-VL 3 14.0 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Intern-VL 3 38.0 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
LLaMA-3.2 11.0 1.00 1.00 1.00 0.99 0.99 0.00 0.00 0.00
LLaVA-1.5 7.0 0.50 0.31 0.01 0.18 0.10 11.00 2.51 6.76
MiniCPM-V 2.6 8.0 1.00 0.99 1.00 1.00 1.00 0.00 0.00 0.00
PaliGemma-2 10.0 0.50 0.41 0.19 0.21 0.20 6.95 13.14 10.04
Phi-3 4.2 1.00 0.74 1.00 1.00 1.00 0.00 0.00 0.00
Phi-3.5 7.0 1.00 0.75 1.00 1.00 1.00 0.00 0.00 0.00
Qwen-VL 7.0 1.00 0.73 0.99 0.95 0.97 0.00 2.05 1.02
Qwen-VL 2.5 32.0 1.00 0.99 1.00 0.94 0.97 0.00 2.66 1.33

Table 8: Model evaluation for Task-4: colorbar interpretation task, assessing the ability to detect,
position, and extract temperature values. Acc Max and Acc Min denotes the accuracy of correctly
identifying maximum and minimum values of the colorbar. MAE Max and MAE Min denotes the
MAE is estimating Max and Min temperature of the colorbar.

Prompt 1: Given the thermal image, determine whether the {body part} of the left or right person
is hotter. Respond with ‘left’ or ‘right’.

Prompt 2: Rank the following body parts from highest to lowest temperature: head, chest, nose.

Implementation Details: This task involves binary classification and ordering, using the
ThermEval-D dataset as it requires the temperature ground truths. The thermal image of size 256 x
192 which is same as the size of the temperature matrix, ie, 256 x 192, and mean temperatures were
computed for regions defined by polygon box coordinates.

B.5.6 TASK 6: TEMPERATURE ESTIMATION

Task: This task analyzes the model’s ability to estimate the temperature of given pixels or regions
using the colorbar in the image. It is sub-divided into 3 subtasks- (a) Given the coordinates, the
model is prompted to estimate the temperature of the given pixel, (b) The model is prompted to
estimate the temperature of the pixel marked by a red arrow and (c) The model is required to estimate
the temperature of semantic regions like the head, chest or the nose.

Prompt 1: Given the thermal image, what is the temperature at the coordinates ({x},{y})? The
temperature scale is in degrees Celsius. Please return a single numerical value rounded to one
decimal place (e.g., 17.6).

Prompt 2: Given the thermal image, what is the temperature at the point marked by the red arrow?
The temperature scale is in degrees Celsius. Please return a single numerical value rounded to one
decimal place (e.g., 17.6).

Prompt 3.1: Given the thermal image, what is the temperature estimate of the {body part} accord-
ing to the image? The temperature scale is in degrees Celsius. Please return a single numerical value
rounded to one decimal place (e.g., 17.6).

Prompt 3.2: Given the thermal image, what is the temperature estimate of the {body part} of the
{right/left} person according to the image? The temperature scale is in degrees Celsius. Please
return a single numerical value rounded to one decimal place (e.g., 17.6).

Implementation Details: All three subtasks are regression tasks using the ThermEval-D dataset,
with temperature ground truths obtained via mean of polygon segmentation of temperatures. For the
first two subtasks, the coordinates were generated randomly, constrained to the central region of the
images to avoid excessive background representation or overlapping with the temperature scale. In
the second subtask, the angle of the red arrow marking the pixel was also randomized.
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Model Params (B) Arrow Coordinates Region
MAE↓ RMSE↓ BIAS* STD↓ MAE↓ RMSE↓ BIAS* STD↓ MAE↓ RMSE↓ BIAS* STD↓

IDEFICS 3 6.7 5.89 7.36 3.07 6.69 5.91 7.13 4.61 5.44 4.41 5.81 1.93 5.48
LLaVA-1.5 7.0 5.62 6.94 4.54 5.25 19.88 69.80 13.88 69.77 4.12 4.90 3.96 2.87
Phi-3.5 7.0 5.83 6.89 4.20 5.46 5.65 6.75 4.03 5.41 3.59 4.13 2.77 3.07
Qwen-VL 7.0 4.85 6.19 3.94 4.78 4.98 6.25 -2.22 5.84 2.55 3.35 2.08 2.62
MiniCPM-V 2.6 8.0 6.32 7.48 3.00 6.85 4.00 5.29 -1.97 4.91 4.28 5.43 1.42 5.24
InternVL 8.0 31.48 92.95 29.46 88.16 80.95 152.63 80.12 129.91 11.15 130.18 9.97 129.79
BLIP-2 9.0 12.74 13.17 -12.74 3.35 13.08 15.08 -12.34 8.66 14.73 14.89 -14.73 2.15
PaliGemma-2 10.0 5.67 6.93 -5.65 4.02 6.39 11.75 -4.80 10.72 7.80 8.58 -7.78 3.63
LLaMA-3.2 11.0 5.60 6.74 1.70 6.52 3.98 5.26 1.84 4.92 3.48 4.95 -0.96 4.86
InternVL 14.0 5.29 6.41 1.12 6.31 3.48 4.43 1.69 4.10 2.19 2.85 1.09 2.63
Qwen-VL 2.5 32.0 4.75 5.98 1.66 5.74 3.65 4.71 0.48 4.68 2.91 3.59 2.09 2.92
Qwen-VL 2.5 32.0 8.74 16.09 -2.56 15.89 7.67 15.90 -3.75 15.45 2.95 4.79 2.22 4.25
InternVL 38.0 4.61 5.80 0.70 5.75 9.92 16.32 8.90 13.68 1.76 2.28 1.14 1.98

Table 9: Regression metrics for Task-6: Temperature Estimation on ThermEval Dataset. ↓ indicates
lower is better. *Bias closer to 0 is better.

Model Params (B) 2ft 6ft 10ft
MAE↓ RMSE↓ BIAS* STD↓ MAE↓ RMSE↓ BIAS* STD↓ MAE↓ RMSE↓ BIAS* STD↓

phi 4.2 5.82 14.21 -2.72 13.94 6.18 14.94 -2.33 14.75 6.74 15.30 -2.78 15.04
IDEFICS 3 6.7 2.35 2.67 1.42 2.26 2.22 2.48 1.55 1.93 2.58 2.85 1.28 2.55
LLaVA-1.5 7.0 2.97 3.21 2.97 1.20 3.58 3.84 3.58 1.38 4.47 4.67 4.47 1.37
Phi-3.5 7.0 2.15 2.40 1.82 1.56 2.29 2.48 2.16 1.22 2.56 2.73 2.56 0.95
Qwen-VL 7.0 1.63 1.85 -0.30 1.83 1.13 1.36 -0.12 1.36 1.04 1.29 -0.26 1.26
Qwen-VL 2.5 7.0 1.05 1.33 0.19 1.32 1.00 1.22 0.60 1.06 1.00 1.21 0.62 1.03
MiniCPM-V 2.6 8.0 2.15 2.42 0.53 2.36 2.03 2.31 0.58 2.23 1.85 2.18 0.93 1.97
InternVL 8.0 6.49 38.49 5.67 38.07 16.59 67.33 16.34 65.31 20.30 75.45 20.24 72.68
BLIP-2 9.0 16.96 17.00 -16.96 1.11 16.35 16.40 -16.35 1.28 15.43 15.50 -15.43 1.37
PaliGemma-2 10.0 6.29 6.45 -6.29 1.42 5.38 5.45 -5.38 0.85 4.59 4.66 -4.59 0.84
LLaMA-3.2 11.0 2.60 3.12 -1.78 2.56 1.47 1.79 -0.81 1.59 1.30 1.66 -0.47 1.59
InternVL 14.0 1.01 1.27 0.66 1.09 1.12 1.38 0.94 1.01 1.70 1.96 1.59 1.14
Qwen-VL 2.5 32.0 1.54 1.88 1.34 1.32 1.66 1.89 1.59 1.01 1.97 2.23 1.95 1.08
InternVL 38.0 1.57 1.80 1.15 1.38 1.54 1.80 1.34 1.21 1.73 2.00 1.61 1.19

Table 10: Regression metrics for Task-7: Temperature Estimation at varying depth on ThermEval
dataset. ↓ indicates lower is better. *Bias closer to 0 is better.

B.5.7 TASK 7: TEMPERATURE ESTIMATION AT VARYING DISTANCE

Task: This task analyzes the model’s ability to estimate the temperature of given pixels or regions
using the colorbar in the image. unlike previous task it is devided by varying distances of 1m , 4m
and 6. The model is required to estimate the temperature of semantic regions like the head, chest or
the nose.

Prompt 3.2: Given the thermal image, what is the temperature estimate of the {body part} of the
{right/left} person according to the image? The temperature scale is in degrees Celsius. Please
return a single numerical value rounded to one decimal place (e.g., 17.6).

Implementation Details: Same as that of Task-6.

B.6 SUPERVISED FINETUNING EXPERIMENT

B.6.1 EXPERIMENTAL SETUP

We fine tuned Qwen2.5 VL 7B Instruct for 5 epochs using LoRA with rank (r = 16) and scaling
factor (α = 16), applied to the query, key, value, and output projection layers with dropout (0.1).
We used Paged AdamW 32 bit with a fixed learning rate (5 × 10−6), no warmup, batch size 4 per
device. The dataset was split into three stratified folds to balance tasks and subtasks, ensuring each
VQA sample was seen exactly once and enabling full dataset evaluation without repetition.

B.6.2 FINDINGS

Our results show that finetuning Qwen-VL 2.5 (7B) enables the model to outperform the much
larger Qwen A22 235B and all other evaluated open- and closed-source VLMs. The finetuned model
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Table 11: Comparison of finetuned Qwen-VL 2.5 (7B) with human performance and other models.
↓ indicates lower is better and ↑ indicates higher is better. “–” indicates not applicable.

Task Best Model
(Zero-shot) Human Qwen 2.5 7B

Zero-shot
Qwen 2.5 7B

Finetuned
Qwen
∆

T1 FLIR (Acc ↑) 1.00 0.97 0.71 1.00 +0.29
T1 LLVIP (Acc ↑) 1.00 0.98 0.71 1.00 +0.29
T2 FLIR (Acc ↑) 1.00 0.98 0.61 1.00 +0.39
T2 LLVIP (Acc ↑) 1.00 0.98 0.80 1.00 +0.20
T3 FLIR (MAE ↓) 2.72 1.73 3.78 1.85 −1.93
T3 LLVIP (MAE ↓) 0.51 0.30 1.09 0.55 −0.54
T4 Detect (Acc ↑) 1.00 1.00 1.00 1.00 0.00
T4 Position (Acc ↑) 1.00 1.00 0.99 1.00 +0.01
T4 Max (MAE ↓) 0.00 0.00 0.00 0.00 0.00
T4 Min (MAE ↓) 0.00 0.00 2.66 0.00 −2.66
T5 Double (Acc ↑) 0.61 0.84 0.41 0.58 +0.17
T5 Single (Acc ↑) 0.60 0.54 0.42 0.56 +0.14
T6 Cords (MAE ↓) 3.48 – 3.65 1.58 −2.07
T6 Arrow (MAE ↓) 3.48 2.73 4.75 1.55 −3.20
T6 Region (MAE ↓) 1.76 2.04 2.91 1.03 −1.88
T7 2ft (MAE ↓) 1.01 1.23 1.05 0.53 −0.52
T7 6ft (MAE ↓) 1.00 1.20 1.00 0.49 −0.51
T7 10ft (MAE ↓) 1.00 1.22 1.00 0.61 −0.39

matches or exceeds human performance on most tasks, demonstrating that targeted supervision is
highly effective for thermal reasoning. These results indicate that ThermEval provides meaningful,
domain-grounding supervision and establishes a reliable benchmark for advancing thermal under-
standing in VLMs.

• Finetuning improves performance but does not solve thermal reasoning. SFT reduces MAE
and improves accuracy, indicating that VLMs have the latent capacity to handle thermal data.
However, the remaining errors are still substantial: absolute temperature estimates deviate by
1–2 °C in T6/T7, and performance on semantic comparison tasks (T5) remains below human-
level. For applications such as fever screening or industrial hotspot detection, such error margins
are not acceptable and highlight the need for deeper physical grounding. For instance, a standard
deviation of 1-2 °C would be unsuitable for any model intended for non-contact fever detection.

• SFT closes the gap because current VLMs lack domain grounding, not capacity. VLMs
do not inherently understand temperature as a physical quantity or thermal appearance as a
modality, even though they can acquire these concepts with minimal supervision. The fact that
small-scale finetuning resolves failures on basic tasks suggests that the primary limitation lies
in incomplete training signals rather than in model architecture or scale.

• ThermEval isolates primitive abilities that RGB-centric pretraining does not teach. Pre-
trained VLMs, which are predominantly exposed to RGB photographs, diagrams, and charts,
tend to learn mappings from appearance to semantic categories. Thermal understanding, how-
ever, requires mapping appearance to a physical quantity such as temperature. Because current
models are not trained on this type of signal, they do not naturally acquire it, and SFT can only
partially bridge this gap.

• Future VLM pretraining should include physical sensor modalities. Most existing VLMs
are trained primarily on RGB imagery, and although the training data of closed-source models
are not public, available evidence and model behavior suggest limited exposure to thermal in-
frared data. This likely contributes to why current models interpret thermal images as RGB-like
visuals rather than as physical measurements. Recent efforts, such as the Gemini team’s inclu-
sion of modalities like X-rays and CT scans, and similar advances in remote-sensing VLMs,
demonstrate that expanding pretraining beyond RGB is both feasible and beneficial. These de-
velopments indicate that incorporating additional physical sensing modalities is an important
direction for future VLM development.
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B.7 EXPERIMENTING WITH PROMPT ABLATIONS

In these experiments, we added contextual information about the thermal images to guide the VLM
toward the relevant aspects of the scene. We conducted a systematic study across Intern-VL (14B),
MiniCPM (8B), Qwen-VL-2.5 (7B), and BLIP2 (9B), comparing the original zero-shot prompts
with context-augmented versions.

B.7.1 EXAMPLES OF ABLATION MADE

We describe below the changes we introduced to evaluate the effect of prompt ablations.

Task T1,T2

• Original: “Is this a thermal image or an RGB image?”
• Ablation: “RGB images come from visible light and depict natural color and texture. Each

pixel represents the intensity of red, green and blue channels that together form the visual ap-
pearance of objects under illumination. Thermal images measure emitted infrared radiation and
encode temperature dependent signals. Each pixel represents a temperature value or a value
proportional to heat emission, and any colors seen in the image come from a colormap applied
to these underlying temperature readings Based on above context is the given image an RGB or
Thermal Image?”

Task T3

• Original: “Count the number of humans in the image.”
• Ablation: “You are given a thermal images. Thermal images measure emitted infrared radiation

and encode temperature dependent signals. Each pixel represents a temperature value or a value
proportional to heat emission, and any colors seen in the image come from a colormap applied
to these underlying temperature readings.Count the number of humans in the image.”

Task T4 : Colorbar Identification

• Original: “You are given a thermal image. Does it contain a color bar or temperature scale that
maps colors to temperature values? Answer only with ’Yes’ or ’No’.”

• Ablation: “Thermal images encode temperature dependent signals. Each pixel represents a
temperature value or a value proportional to heat emission, and any colors seen in the image
come from a colormap applied to these underlying temperature readings. They may optionally
include a color bar or temperature scale that visually maps colormap colors to corresponding
temperature values. Such scales are typically placed along an edge of the image and indicate
numeric temperature readings associated with the color gradient. Based on this context, does
the given thermal image contain a color bar or temperature scale? Answer only with Yes or No.”

Task T4 : Colorbar Position Detection

• Original: “You are given a thermal image. It contains a color bar or temperature scale that
maps colors to temperature value. What is the location of the colorbar? Possible locations are
top, left, bottom, right.”

• Ablation: “Thermal images encode temperature dependent signals. Each pixel represents a
temperature value or a value proportional to heat emission, and any colors seen in the image
come from a colormap applied to these underlying temperature readings. They include a color
bar or temperature scale that visually maps colormap colors to corresponding temperature val-
ues. Such scales are typically placed along an edge of the image and indicate numeric temper-
ature readings associated with the color gradient. Based on this context, determine the location
of the color bar in the given thermal image. Possible locations are top, left, bottom, or right.”

Task T4 : Colorbar Min/Max Extraction

• Original : “You are given a thermal image with a color bar or temperature scale that maps
colors to temperature value. What is the maximum temperature value in degree Celsius?”

• Ablation: “Thermal images encode temperature dependent signals. Each pixel represents a
temperature value or a value proportional to heat emission, and any colors seen in the image
come from a colormap applied to these underlying temperature readings. They include a color
bar or temperature scale that visually maps colormap colors to corresponding temperature
values. Such scales are typically placed along an edge of the image and indicate the temperature
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range represented by the colormap. Using this definition, determine the maximum temperature
value shown on the color bar in the given thermal image, expressed in degree Celsius.”

• Original : “You are given a thermal image with a color bar or temperature scale that maps
colors to temperature value. What is the minimum temperature value in degree Celsius?”

• Ablation: “Thermal images encode temperature dependent signals. Each pixel represents a
temperature value or a value proportional to heat emission, and any colors seen in the image
come from a colormap applied to these underlying temperature readings. They include a color
bar or temperature scale that visually maps colormap colors to corresponding temperature val-
ues. Such scales are typically placed along an edge of the image and indicate the temperature
range represented by the colormap. Using this definition, determine the minimum temperature
value shown on the color bar in the given thermal image, expressed in degree Celsius.”

Task T5 : Thermal Reasoning

• Original : “Given the thermal image with colourbar, determine whether the bodypart of the left
person or the right person is hotter. Respond with only ’left’ or ’right’.”

• Ablation: “Thermal images encode temperature dependent signals. Each pixel represents a
temperature value or a value proportional to heat emission, and any colors seen in the image
come from a colormap applied to these underlying temperature readings. They include a color
bar or temperature scale that visually maps colormap colors to corresponding temperature
values. Such scales are typically placed along an edge of the image and indicate the tempera-
ture range represented by the colormap, enabling comparison of temperatures across different
regions. Using this definition, determine which person’s bodypart is hotter in the given thermal
image. Respond only with left or right.”

• Original: “Given the thermal image and the colourbar, rank the following body parts in order
from highest to lowest temperature: chest, forehead and nose. List them from hottest to coolest.”

• Ablation: “Thermal images encode temperature dependent signals. Each pixel represents a
temperature value or a value proportional to heat emission, and any colors seen in the image
come from a colormap applied to these underlying temperature readings. They include a color
bar or temperature scale that visually maps colormap colors to corresponding temperature val-
ues. Such scales are typically placed along an edge of the image and indicate the temperature
range represented by the colormap, enabling comparison of temperatures across different re-
gions. Using this definition, rank the chest, forehead and nose in the given thermal image from
highest to lowest temperature. List them from hottest to coolest.”

Task T6 : Temperature Estimation

• Original: “Given the thermal image, what is the temperature at the coordinates (x,y)? The
temperature scale is in degrees Celsius. Return a single numerical value rounded to one decimal
place (e.g., 17.6).”

• Ablation: “Thermal images encode temperature dependent infrared signals. Each pixel repre-
sents a temperature value or a value proportional to emitted heat, and any visible colors come
from a colormap applied to these values. A visible color bar or temperature scale maps colormap
colors to numeric temperature readings in degrees Celsius. Given image pixel coordinates (x,y)
with origin at the top-left, x increasing to the right and y increasing downward, report the tem-
perature at the specified coordinates as a single numeric value in degrees Celsius rounded to one
decimal place (for example, 17.6).”

B.7.2 KEY FINDINGS

Our ablation reveals three clear trends across models and tasks.

• Models with reasonable visual grounding (InternVL-14B, MiniCPM, Qwen-VL-2.5) show large
gains for simple tasks when contextual modality descriptions are added.

– Qwen-VL-2.5 — T1 FLIR: 0.71 → 0.96 and LLVIP: 0.72 → 0.96
– Qwen-VL-2.5 — T2 FLIR: 0.61 → 0.98 and LLVIP: 0.80 → 0.99
– InternVL-14B — T2 FLIR: 0.86 → 0.99 and LLVIP: 0.97 → 1.00
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Table 12: Performance of models before and after prompt ablations. ↓ indicates lower mae is better,
and ↑ indicates higher accuracy is better.

Task Dataset InternVL
(Original)

InternVL
(Ablation)

MiniCPM
(Original)

MiniCPM
(Ablation)

Qwen2.5-VL
(Original)

Qwen2.5-VL
(Ablation)

BLIP-2
(Original)

BLIP-2
(Ablation)

T1 FLIR (↑) 0.96 0.97 0.95 0.96 0.71 0.96 0.46 0.34
LLVIP (↑) 1.00 1.00 0.98 0.99 0.72 0.96 0.22 0.43

T2 FLIR (↑) 0.86 0.99 0.91 0.89 0.61 0.98 0.77 0.67
LLVIP (↑) 0.97 1.00 0.93 0.95 0.80 0.99 0.77 0.77

T3 FLIR (↓) 2.70 2.53 3.70 2.90 3.78 3.20 4.69 4.65
LLVIP (↓) 0.73 0.60 1.09 0.80 1.09 0.88 2.99 2.94

T4 Detect (↑) 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50
Position (↑) 1.00 1.00 0.99 0.99 0.99 0.97 0.25 0.25
Min (↓) 0.00 0.00 0.00 0.00 2.66 1.36 42.58 25.62
Max (↓) 0.00 0.00 0.00 0.00 0.00 0.00 209.80 20.80

T5 Single (↑) 0.32 0.20 0.27 0.26 0.42 0.39 0.16 0.42
Double (↑) 0.51 0.50 0.40 0.41 0.41 0.51 0.39 0.39

T6 Arrow (↓) 5.28 4.30 6.32 5.95 4.75 4.46 12.74 12.77
Coordinate (↓) 3.48 4.12 4.00 4.85 3.65 4.22 13.08 12.74
Region (↓) 2.18 2.51 4.23 3.29 2.91 3.22 14.73 14.73

T7 2ft (↓) 1.01 2.04 2.15 2.45 1.05 1.63 16.96 16.96
6ft (↓) 1.12 2.26 2.02 2.47 1.00 1.28 16.35 16.35
10ft (↓) 1.70 2.53 1.85 2.01 1.00 1.23 15.43 15.43

Interpretation: Architecture is not the bottleneck; a short textual description helps models
anchor the visual signal and correctly name the modality.

• Across temperature-comparison and temperature-estimation tasks, gains are small, inconsistent,
or negative.

– Qwen T6 Arrow: 4.75 → 4.46 (small improvement)
– MiniCPM T6 Coordinate: 4.00 → 4.85 (worse)
– InternVL T7 (2ft): 1.01 → 2.04 (worse)

Interpretation: Thermal-physics descriptions in prompts cannot replace the sensor-level priors
needed to map pixel or colormap values to temperature. The underlying challenge is the lack
of thermal-domain grounding in model pretraining.

• BLIP-2 often degrades when given extra context:
– T1 FLIR: 0.46 → 0.34
– T2 FLIR: 0.77 → 0.67
– T6/T7: unchanged and poor

Interpretation: When a model lacks basic thermal–visual alignment, prompt engineering can-
not compensate for that gap. This aligns with the reviewer intuition that prompting alone is
insufficient for reliable thermal reasoning.

C VISUALIZATIONS

C.1 TEMPERATURE DISTRIBUTION OF THERMEVAL-D DATASET

Outdoor data were collected during summer evenings, with ambient temperatures ranging from 30°C
to 37°C. In contrast, indoor environments were air-cooled and maintained within a temperature range
of 25–29°C.
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Metric Mean Median Std. Dev. Max Min
Max Temperature 36.56 35.80 3.48 52.50 30.90
Min Temperature 24.62 24.85 4.09 31.40 2.90
Temperature Range 11.94 11.60 4.48 32.10 4.00

Table 13: Summary statistics of temperature measurements from the thermal images. The maximum
temperature refers to the highest recorded value in an image, while the minimum temperature corre-
sponds to the lowest. The temperature range is computed as the difference between the maximum
and minimum temperatures. The table presents various statistical measures across the dataset.
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Figure 6: Histogram showing the distribution of minimum and maximum temperature values across
all thermal images. Minimum temperatures are predominantly in the range of 20–30°C, while max-
imum temperatures typically fall within 30–40°C.
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Figure 7: Histogram illustrating the distribution of temperature ranges (maximum minus minimum)
across all thermal images. The majority of images exhibit a temperature range between 5–10°C.
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