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Abstract

Hallucinated translations pose significant001
threats and safety concerns when it comes to002
practical deployment of machine translation003
systems. Previous research works have identi-004
fied that detectors exhibit complementary per-005
formance — different detectors excel at detect-006
ing different types of hallucinations. In this007
paper, we propose to address the limitations008
of individual detectors by combining them and009
introducing a straightforward method for aggre-010
gating multiple detectors. Our results demon-011
strate the efficacy of our aggregated detector,012
providing a promising step towards evermore013
reliable machine translation systems.014

1 Introduction015

Neural Machine Translation (NMT) has become016

the dominant methodology for real-world machine017

translation applications and production systems.018

As these systems are deployed in-the-wild for real-019

world usage, it is ever more important to ensure020

that they are highly reliable. While NMT sys-021

tems are known to suffer from various patholo-022

gies (Koehn and Knowles, 2017), the most severe023

among them is the generation of translations that024

are detached from the source content, typically025

known as hallucinations (Raunak et al., 2021; Guer-026

reiro et al., 2022b). Although rare, particularly in027

high-resource settings, these translations can have028

dramatic impact on user trust (Perez et al., 2022).029

As such, researchers have worked on (i) methods to030

reduce hallucinations either during training-time or031

even inference time (Xiao and Wang, 2021; Guer-032

reiro et al., 2022b; Dale et al., 2022; Sennrich033

et al., 2024), and alternatively, (ii) the development034

of highly effective on-the-fly hallucination detec-035

tors (Guerreiro et al., 2022b,a; Dale et al., 2022) to036

flag these translations before they reach end-users.037

In this paper, we will focus on the latter.038

One immediate way to approach the problem of039

hallucination detection is to explore high-quality ex-040

ternal models that can serve as proxies to measure 041

detachment from the source content, e.g., quality 042

estimation (QE) models such as CometKiwi (Rei 043

et al., 2022), or cross-lingual sentence similar- 044

ity models like LASER (Artetxe and Schwenk, 045

2019) and LaBSE (Feng et al., 2022). Intuitively, 046

extremely low-quality translations or translations 047

that are very dissimilar from the source are more 048

likely to be hallucinations. And, indeed, these de- 049

tectors can perform very effectively as hallucina- 050

tion detectors (Guerreiro et al., 2022b; Dale et al., 051

2022). Alternatively, another effective approach is 052

to leverage internal model features such as atten- 053

tion maps and sequence log-probability (Guerreiro 054

et al., 2022b,a; Dale et al., 2022). The assumption 055

here is that when translation models generate hal- 056

lucinations, they may reveal anomalous internal 057

patterns that can be highly predictive and useful for 058

detection, e.g., lack of contribution from the source 059

sentence tokens to the generation of the transla- 060

tion (Ferrando et al., 2022). Most importantly, dif- 061

ferent detectors exhibit complementary properties. 062

For instance, oscillatory hallucinations — trans- 063

lations with anomalous repetitions of phrases or 064

n-grams (Raunak et al., 2021) — are readily iden- 065

tified by CometKiwi, while detectors based on low 066

source contribution or sentence dissimilarity strug- 067

gle in this regard. Therefore, there is an inherent 068

trade-off stemming from the diverse anomalies dif- 069

ferent detectors excel at. 070

In this paper, we address this trade-off by propos- 071

ing a simple yet highly effective method to aggre- 072

gate different detectors to leverage their comple- 073

mentary strengths. Through experimentation in 074

the two most widely used hallucination detection 075

benchmarks, we show that our method consistently 076

improves detection performance. 077

Key contributions are as follows: 078

• We propose STARE, an unsupervised Simple 079

deTectors AggREgation method that achieves 080
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state-of-the-art performance well on two hal-081

lucination detection benchmarks.082

• We demonstrate that our consolidated detector083

can outperform single-based detectors with as084

much as aggregating two complementary de-085

tectors. Interestingly, our results suggest that086

internal detectors, which typically lag behind087

external detectors, can be combined in such a088

way that they outperform the latter.089

We release our code and scores to support future090

research and ensure reproducibility.1091

2 Detectors Aggregation Method092

2.1 Problem Statement093

Preliminaries. Consider a vocabulary Ω and let094

(X,Y ) be a random variable taking values in X×Y ,095

where X ⊆ Ω represents translations and Y =096

{0, 1} denotes labels indicating whether a transla-097

tion is a hallucination (Y = 1) or not (Y = 0). The098

joint probability distribution of (X,Y ) is PXY .099

Hallucination detection. The goal of halluci-100

nation detection is to classify a given translation101

x ∈ X as either an expected translation from102

the distribution PX|Y=0 or as a hallucination from103

PX|Y=1. This classification is achieved by a binary104

decision function g : X → 0, 1, which applies a105

threshold γ ∈ R to a hallucination score function106

s : X → R. The decision function is defined as:107

g(x) =

{
1 if s(x) > γ,
0 otherwise.

108

The objective is to create an hallucination score109

function s that effectively distinguishes halluci-110

nated translations from other translations.111

Aggregation. Assume that we have several hal-112

lucination score detectors2. When evaluating a113

specific translation x′, our goal is to combine the114

scores from the single detectors into a single, more115

reliable score that outperforms any of the individual116

detectors alone. Formally, this aggregation method,117

denoted as Agg, is defined as follows:118

Agg : RK → R119

{sk(x′)}Kk=1 → Agg

(
{sk}Kk=1

)
.120

1Code is available here:
https://github.com/AnasHimmi/
Hallucination-Detection-Score-Aggregation.

2We use the notation {sk}Kk=1 to represent a set consisting
of K hallucination detectors, where each sk is a function
mapping from X to R.

2.2 Proposed Aggregation Method 121

We start with the assumption that we have access 122

to K hallucination scores and aim to construct an 123

improved hallucination detector using these scores. 124

The primary challenge in aggregating these scores 125

arises from the fact that they are generated in an 126

unconstrained setting, meaning that each score 127

may be measured on a different scale. Conse- 128

quently, the initial step is to devise a method for 129

standardizing these scores to enable their aggre- 130

gation. The normalization is performed using the 131

min-max normalization based on the entire training 132

dataset Dn = {x1, . . . , xn}. Formally, for a given 133

score sk, the normalized score s′k is computed as 134

follows: 135

s′k =
sk(x

′)− min
z∈Dn

sk(z)

max
z∈Dn

sk(z)− min
z∈Dn

sk(z)
. 136

Using these normalized scores, we construct a hal- 137

lucination detector by summing them. 138

Agg(x′) =

K∑
k=1

s′k. (1) 139

We denote this method as STARE. 140

3 Experimental Setup 141

3.1 Datasets 142

In our experiments, we utilize the human-annotated 143

datasets released in Guerreiro et al. (2022b) and 144

Dale et al. (2023). Both datasets include detection 145

scores — both for internal and external detectors 146

— for each individual translation: 147

LFAN-HALL. A dataset of 3415 translations 148

for WMT18 German→English news translation 149

data (Bojar et al., 2018) with annotations on critical 150

errors and hallucinations (Guerreiro et al., 2022b). 151

This dataset contains a mixture of oscillatory hal- 152

lucinations and fluent but detached hallucinations. 153

We provide examples of such translations in Ap- 154

pendix A. For each translation, there are six differ- 155

ent detector scores: three are from external mod- 156

els (scores from COMET-QE and CometKiwi, 157

two quality estimation models, and sentence sim- 158

ilarity from LaBSE, a cross-lingual embedding 159

model), and three are from internal methods 160

(length-normalized sequence log-probability, Seq- 161

Logprob; contribution of the source sentence for 162

the generated translation according to ALTI+ (Fer- 163

rando et al., 2022), and WASS-COMBO, an Optimal 164
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DETECTOR AUROC ↑ FPR ↓

Individual Detectors

External
COMET-QE 70.15 57.24
CometKiwi 86.96 35.15
LaBSE 91.72 5 26.86 5

Model-based
Seq-Logprob 83.40 58.99
ALTI+ 84.24 66.19
Wass-Combo 87.02 48.38

Aggregated Detectors

External Only (gap to best single External)
Isolation Forest 92.61 ↑0.89 19.08 ↓7.78
Max-Norm 92.43 ↑0.71 22.09 ↓4.77
STARE 93.32 ↑1.60 20.67 ↓6.19

Model-based Only (gap to best single Model-based)
Isolation Forest 88.19 ↑1.17 36.63 ↓11.8
Max-Norm 83.81 ↓3.21 62.94 ↑14.6
STARE 89.07 ↑2.05 42.50 ↓5.88

All (gap to best overall)
Isolation Forest 92.84 ↑1.12 23.90 ↓2.96
Max-Norm 91.60 ↓0.12 26.38 ↓0.48
STARE 94.12 ↑2.40 17.06 ↓9.80

(a) Results on LFAN-HALL.

DETECTOR AUROC ↑ FPR ↓

Individual Detectors

External
COMET-QE 82.22 47.40
LASER 81.11 47.04
XNLI 82.44 33.20
LaBSE 88.77 5 34.96 5

Model-based
Seq-Logprob 86.72 28.86
ALTI+ 82.26 58.40
Wass-Combo 64.82 84.62

Aggregation Detectors

External Only (gap to best single External)
Isolation Forest 71.35 ↓17.4 57.75 ↑22.8
Max-Norm 88.57 ↑0.48 32.59 ↓2.86
STARE 89.76 ↑0.99 32.74 ↓2.22

Model-based Only (gap to best single Model-based)
Isolation Forest 75.35 ↓11.4 69.71 ↑40.9
Max-Norm 67.70 ↓17.3 83.83 ↑53.1
STARE 89.92 ↑3.20 30.37 ↑1.51

All (gap to best overall)
Isolation Forest 76.25 ↓12.5 56.28 ↑21.3
Max-Norm 80.67 ↓7.01 41.52 ↑1.91
STARE 91.18 ↑2.41 28.85 ↓6.11

(b) Results on HALOMI.

Table 1: Performance, according to AUROC and FPR, of all single detectors available and aggregation methods via
combination of external detectors, model-based detectors, or both simultaneously. We represent with 5 the best
overall single detector and underline the best detectors for each class, according to our primary metric AUROC.

Transport inspired method that relies on the aggre-165

gation of attention maps).166

HALOMI. A dataset with human-annotated hal-167

lucination in various translation directions. We test168

translations into and out of English, pairing En-169

glish with five other languages — Arabic, German,170

Russian, Spanish, and Chinese, consisting of over171

3000 sentences across the ten different language172

pairs. Importantly, this dataset has two important173

properties that differ from LFAN-HALL: (i) it has174

a much bigger proportion of fluent but detached175

hallucinations (oscillatory hallucinations were not176

considered as a separate category), and (ii) nearly177

35% of the translations are deemed hallucinations,178

as opposed to about 8% for LFAN-HALL.3 For179

each translation, there are seven different detec-180

tion scores: the same internal detection scores as181

LFAN-HALL, and four different detector scores:182

COMET-QE, LASER, XNLI and LaBSE.183

We provide more details on both datasets in Ap-184

pendix A.185

3Given the rarity of hallucinations in practical translation
scenarios (Guerreiro et al., 2023), LFAN-HALL offers a more
realistic simulation of detection performance.

Aggregation Baselines. The closest related work 186

is Darrin et al. (2023) on out-of-distribution de- 187

tection methods, using an Isolation Forest (IF; Liu 188

et al., 2008) for per-class anomaly scores. We adapt 189

their method, employing a single Isolation Forest, 190

and designate it as our baseline. Alternatively, we 191

also consider a different way to use the individual 192

scores and normalization weights in Equation 1: 193

instead of performing a sum over the weighted 194

scores, we take the maximum score. We denote 195

this baseline as Max-Norm. 196

Evaluation method. Following Guerreiro et al. 197

(2022a), we report Area Under the Receiver Oper- 198

ating Characteristic curve (AUROC) as our primary 199

metric, and False Positive Rate at 90% True Posi- 200

tive Rate (FPR@90TPR) as a secondary metric. 201

Implementation details. For LFAN-HALL, we 202

normalize the metrics by leveraging the held-out 203

set released with the dataset consisting of 100,000 204

non-annotated in-domain scores. In the case of 205

HALOMI, however, no held-out set was released. 206

As such, we rely on sampling random splits that 207

consist of 10% of the dataset for calibration. We 208
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repeat the process 10 different times. We report209

average scores over those different runs. We also210

report the performance variance in the Appendix.211

3.2 Performances Analysis212

Results on hallucination detection performance on213

LFAN-HALL and HaloMNI are reported in Table 1.214

Global Analysis. STARE aggregation method215

consistently outperforms (i) single detectors’ per-216

formance, and (ii) other aggregation baselines.217

Moreover, we find that the combination of all de-218

tectors — both model-based and external-based de-219

tectors — yields the best overall results, improving220

over the STARE method based on either internal221

or external models only. Importantly, these trends,222

contrary to other alternative aggregation strategies,223

hold across both datasets.224

Aggregation of External Detectors. STARE225

demonstrates robust performance when aggregat-226

ing external detectors on both LFAN-HALL and227

HALOMI: improvements in AUROC (over a point)228

and in FPR (between two to six points). Interest-229

ingly, we also observe that the best overall perfor-230

mance obtained exclusively with external models231

lags behind that of the overall aggregation. This232

suggests that internal models features — directly233

obtained via the generation process — contribute234

with complementary information to that captured235

by external models.236

Aggregation of Internal Detectors. Aggrega-237

tion of internal detectors, can achieve higher AU-238

ROC scores than the best single external detector239

on HALOMI. This results highlights how model-240

based features — such as attention and sequence241

log-probability — that are readily and efficiently242

obtained as a by-product of the generation can,243

when aggregated effectively, outperform more com-244

putationally expensive external solutions.245

3.3 Ablation Studies246

In this section, our focus is two-fold: (i) exploring247

optimal selections of detectors, and (ii) understand-248

ing the relevance of the reference set’s size.249

Optimal Choice of detectors. We report the250

performance of the optimal combination of N -251

detectors on both datasets in Table 2.4 We note252

that including all detectors yields comparable per-253

formance to the best mix of detectors. Interest-254

ingly, aggregation always brings improvement,255

4We report the optimal combinations in Appendix C.

Figure 1: Impact of reference set size on LFAN-HALL.

even when only combining two detectors. As ex- 256

pected, the best mixture of detectors leverages in- 257

formation from different signals: contribution of 258

source contribution, low-quality translations, and 259

dissimilarity between source and translation. 260

LFAN-HALL HALOMI

N AUROC FPR@90 AUROC FPR@90

LaBSE 91.72 26.86 88.77 34.96
2 93.32 20.67 90.40 27.52
3 94.11 17.27 90.61 27.24
4 94.45 13.69 91.09 26.91
5 94.12 17.06 91.25 28.48
6 — — 91.40 27.93

STARE 94.12 17.06 91.18 28.85

Table 2: Ablation Study on the Optimal Choice of De-
tectors when using STARE.

Impact of the size of the references set. The 261

calibration of scores relies on a reference set. Here, 262

we examine the impact of the calibration set size 263

on performance, by ablating on the held-out set 264

LFAN-HALL, which comprises of 100k sentences. 265

Figure 1 shows that the ISOLATION FOREST re- 266

quires a larger calibration set to achieve similar 267

performance. This phenomenon might explain the 268

drop in performance observed on HALOMI (Ta- 269

ble 1). Interestingly, the performance improvement 270

for STARE, particularly in FPR, plateaus when the 271

reference set exceeds 1,000 samples, which sug- 272

gests that STARE can adapt to different domains 273

with a rather small reference set. 274

4 Conclusion & Future Perspectives 275

We propose a simple aggregation method to com- 276

bine hallucination detectors to exploit complemen- 277

tary benefits from each individual detector. We 278

show that our method can bring consistent improve- 279

ments over previous detection approaches in two 280

human-annotated datasets across different language 281

pairs. We are also releasing our code and detection 282

scores to support future research on this topic. 283
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5 Limitations284

Our methods are evaluated in a limited setup due to285

the limited availability of translation datasets with286

annotation of hallucinations. Moreover, in this287

study, we have not yet studied compute-optimal288

aggregation of detectors — we assume that we289

already have access to multiple different detection290

scores.291
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A Model and Data Details 428

A.1 LFAN-HALL dataset 429

NMT Model. The model used in Guerreiro et al. 430

(2022b) is a Transformer base model (Vaswani 431

et al., 2017) (hidden size of 512, feedforward size 432

of 2048, 6 encoder and 6 decoder layers, 8 atten- 433

tion heads). The model has approximately 77M 434

parameters. It was trained on WMT18 DE-EN data: 435

the authors randomly choose 2/3 of the dataset for 436

training and use the remaining 1/3 as a held-out set 437

for analysis. We use a section of that same held-out 438

set in this work. 439

Dataset Stats. The dataset consists of 3415 trans- 440

lations from WMT18 DE-EN data. Overall, there 441

are 218 translations annotated as detached halluci- 442

nations (fully and strongly detached — see more 443

details in Guerreiro et al. (2022b)), and 86 as oscil- 444

latory hallucinations.5 The other translations are 445

either incorrect (1073) or correct (2048). We show 446

examples of hallucinations for each category in 447

Table 4.6 448

A.2 HALOMI dataset 449

NMT model. Translations on this dataset come 450

from 600M distilled NLLB model (NLLB Team 451

et al., 2022). 452

B Variance of performance on the 453

HALOMI dataset 454

We report in Table 3 the average performance as 455

well as the standard deviation across the differ- 456

ent ten runs on different calibration sets. Despite 457

variance between different runs, the STARE aggre- 458

gation method consistently outperforms individual 459

detectors and other aggregation techniques. 460

C Optimal Combination of Detectors via 461

STARE 462

LFAN-HALL. The optimal set of detectors for 463

various values of N is: 464

• for N = 1: LaBSE 465

• for N = 2: CometKiwi, LaBSE 466

5Some strongly detached hallucinations have also been
annotated as oscillatory hallucinations. In these cases, we
follow Guerreiro et al. (2022a) and consider them to be oscil-
latory.

6All data used in this paper is licensed under a MIT Li-
cense.
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DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
COMET-QE 82.22 ± 0.28 47.40 ± 0.82
LASER 81.11 ± 0.21 47.04 ± 0.78
XNLI 82.44 ± 0.18 33.20 ± 0.63
LaBSE 88.77 ± 0.21 34.96 ± 0.72

Model-based
Seq-Logprob 86.72 ± 0.22 28.86 ± 0.64
ALTI+ 82.26 ± 0.28 58.40 ± 0.54
Wass-Combo 64.82 ± 0.20 84.62 ± 0.52

Aggregated Detectors

External Only
Isolation Forest 71.35 ± 1.62 57.75 ± 4.55
Max-Norm 88.57 ± 0.38 32.59 ± 0.60
STARE 89.76 ± 0.19 32.74 ± 0.50

Model-based Only
Isolation Forest 75.35 ± 2.32 69.71 ± 5.01
Max-Norm 67.70 ± 1.31 83.83 ± 1.40
STARE 89.92 ± 0.20 30.37 ± 1.84

All
Isolation Forest 76.25 ± 2.16 56.28 ± 6.29
Max-Norm 80.67 ± 1.37 41.52 ± 5.87
STARE 91.18 ± 0.20 28.85 ± 0.89

Table 3: Performance of individual and aggregated hal-
lucination detectors on the HALOMI dataset, including
average performance and standard deviations across ten
different calibration sets.

• for N = 3: Wass_Combo, CometKiwi,467

LaBSE468

• for N = 4: ALTI+, Wass_Combo,469

CometKiwi, LaBSE470

• for N = 5: ALTI+, SeqLogprob,471

Wass_Combo, CometKiwi, LaBSE472

HALOMI. The optimal set of detectors for vari-473

ous values of N is:474

• for N = 2: LaBSE, SeqLogprob475

• for N = 3: LaBSE, SeqLogprob, Wass-476

Combo477

• for N = 4: LaBSE, SeqLogprob, XNLI,478

COMET-QE479

• for N = 5: LaBSE, SeqLogprob, XNLI,480

COMET-QE, ALTI+481

• for N = 6: LaBSE, Log Loss, XNLI, COMET-482

QE, ALTI+, Wass-Combo483

• for N = 7: LaBSE, SeqLogprob, XNLI,484

COMET-QE, ALTI+, Laser, Wass-Combo485

D Quantile transformation instead of 486

min-max normalization 487

One drawback of min-max scaling is its vulner- 488

ability to outliers, as a single outlier can distort 489

the entire distribution. We compare in this sec- 490

tion STARE with a quantile transformation which 491

maps all values into the [0, 1] range in a mono- 492

tonic fashion and also makes the distribution of the 493

resulting values approximately uniform. The re- 494

sults in Tables 5 and 6 show that Quantile-STARE 495

demonstrates competitiveness STARE. 496

E Comparision with the majority vote 497

Below (Table 7) are the results (F1 score) for the 498

majority vote baseline as it is not possible to define 499

the AUROC or FPR. 500

F Contribution of metrics in the decision 501

of STARE 502

To better understand the strength of STARE, we 503

compare the mean of normalized scores for halluci- 504

nation and non-hallucination. Tables 8 and 9 show 505

that External detectors are the most discriminative 506

and contribute the most to both benchmarks 507

G Additional results on other 508

hallucination categories 509
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Category Source Sentence Reference Translation Hallucination

Oscillatory
Als Maß hierfür wird meist der sogenannte Pearl
Index benutzt (so benannt nach einem Statistiker,
der diese Berechnungsformel einführte).

As a measure of this, the so-called Pearl Index
is usually used (so named after a statistician
who introduced this calculation formula).

The term "Pearl Index" refers to the term
"Pearl Index" (or "Pearl Index") used to
refer to the term "Pearl Index" (or "Pearl
Index").

Strongly
Detached Fraktion der Grünen / Freie Europäische Allianz The Group of the Greens/European Free Al-

liance

Independence and Democracy Group (in-
cludes 10 UKIP MEPs and one indepen-
dent MEP from Ireland)

Fully
Detached

Die Zimmer beziehen, die Fenster mit Aussicht
öffnen, tief durchatmen, staunen.

Head up to the rooms, open up the windows
and savour the view, breathe deeply, marvel. The staff were very friendly and helpful.

Table 4: Examples of hallucination types. Hallucinated content is shown shaded.

DETECTOR AUROC ↑ FPR@90TPR ↓

External Only
STARE 93.32 20.67
Quantile-STARE 93.09 16.03

Model-based Only
STARE 89.07 42.50
Quantile-STARE 90.30 33.92

All
STARE 94.12 17.06
Quantile-STARE 94.00 20.46

Table 5: Comparison of STARE with Quantile-STARE
on LFAN-Hall

DETECTOR AUROC ↑ FPR@90TPR ↓

External Only
STARE 89.76 ± 0.19 32.74 ± 0.50
Quantile-STARE 90.06 ± 0.20 31.73 ± 0.44

Model-based Only
STARE 89.92 ± 0.28 30.37 ± 1.84
Quantile-STARE 90.15 ± 0.14 28.09 ± 0.60

All
STARE 91.18 ± 0.20 28.85 ± 0.89
Quantile-STARE 91.79 ± 0.18 29.39 ± 0.43

Table 6: Comparison of STARE with Quantile-STARE
on HalOmi

LFAN-Hall HalOmi

Majority vote 0.74 0.76 ± 0.01
STARE 0.78 0.78 ± 0.003

Table 7: f1 scores of majority vote and STARE on the
two datasets

METRIC No Hallucinations With Hallucinations

ALTI+ 0.62 0.27
Seq-Logprob 0.57 0.23
Wass-Combo -0.05 -0.43
CometKiwi 0.75 0.34
LaBSE 0.79 0.36

Table 8: Contribution of metrics in the decision of
STARE on LFAN-Hall

METRIC No Hallucinations With Hallucinations

Seq-Logprob 0.82 ± 0.03 0.61 ± 0.07
ALTI+ 0.69 ± 0.04 0.46 ± 0.03
COMET-QE 0.74 ± 0.03 0.52 ± 0.05
LaBSE 0.83 ± 0.01 0.50 ± 0.01
LASER 0.79 ± 0.01 0.59 ± 0.01
XNLI 0.74 ± 0.00 0.17 ± 0.00
Wass-Combo 0.96 ± 0.01 0.90 ± 0.03

Table 9: Contribution of metrics in the decision of
STARE on HalOmi

DETECTOR AUROC ↑ FPR@90TPR ↑

Individual Detectors

External
CometKiwi 91.36 27.17
LaBSE 81.19 53.72

Model-based
Seq-Logprob 68.26 74.65
ALTI+ 71.39 76.63
Wass-Combo 82.07 44.28

Aggregated Detectors

External Only
Isolation Forest 88.78 36.53
Max-Norm 88.18 33.16
STARE 89.86 29.02

Model-based Only
Isolation Forest 68.15 81.14
Max-Norm 70.46 75.51
STARE 78.71 55.84

All
Isolation Forest 86.60 32.17
Max-Norm 87.16 31.87
STARE 88.02 26.81

Table 10: LFAN-HALL, oscillations
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DETECTOR AUROC ↑ FPR@90TPR ↑

Individual Detectors

External
CometKiwi 85.30 37.02
LaBSE 98.05 2.13

Model-based
Seq-Logprob 94.22 6.84
ALTI+ 98.21 2.15
Wass-Combo 95.54 5.52

Aggregated Detectors

External Only
Isolation Forest 94.48 13.83
Max-Norm 94.71 16.41
STARE 96.56 7.53

Model-based Only
Isolation Forest 97.49 2.14
Max-Norm 97.09 1.70
STARE 98.23 1.97

All
Isolation Forest 97.63 4.99
Max-Norm 95.11 14.53
STARE 98.34 2.21

Table 11: LFAN-HALL, fully detached

DETECTOR AUROC ↑ FPR@90TPR ↑

Individual Detectors

External
CometKiwi 78.90 46.37
LaBSE 85.80 32.53

Model-based
Seq-Logprob 77.85 66.95
ALTI+ 73.76 89.43
Wass-Combo 75.69 68.91

Aggregated Detectors

External Only
Isolation Forest 86.82 30.41
Max-Norm 85.81 34.04
STARE 85.01 30.86

Model-based Only
Isolation Forest 79.96 60.54
Max-Norm 74.45 83.14
STARE 80.70 69.87

All
Isolation Forest 88.05 29.71
Max-Norm 84.06 43.87
STARE 86.65 35.04

Table 12: LFAN-HALL, strongly detached

DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
score_comet_qe 73.01 ± 0.27 65.49 ± 0.59
score_labse 84.67 ± 0.15 39.40 ± 0.59
score_laser 75.65 ± 0.21 52.65 ± 0.37
score_xnli 83.56 ± 0.28 55.49 ± 0.96

Model-based
score_log_loss 78.11 ± 0.18 54.99 ± 0.78
score_alti_mean 68.72 ± 0.12 79.10 ± 0.34
score_attn_ot 67.04 ± 1.31 83.67 ± 1.53

Aggregated Detectors

External Only
Isolation Forest 69.27 ± 1.80 57.30 ± 6.29
Max-Norm 84.60 ± 0.50 49.64 ± 5.67
Sum-Norm 85.79 ± 0.26 39.52 ± 1.33

Model-based Only
Isolation Forest 65.29 ± 2.07 83.50 ± 3.69
Max-Norm 74.39 ± 1.51 70.16 ± 2.14
Sum-Norm 78.72 ± 0.71 62.86 ± 1.61

All
Isolation Forest 70.87 ± 2.63 62.66 ± 6.34
Max-Norm 85.47 ± 1.02 49.49 ± 4.90
Sum-Norm 85.59 ± 0.25 42.08 ± 1.36

Table 13: HalOmi, High level language pairs, omissions

DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
score_comet_qe 49.38 ± 0.21 84.53 ± 0.41
score_labse 80.19 ± 0.23 48.89 ± 0.62
score_laser 70.84 ± 0.42 69.92 ± 0.59
score_xnli 59.00 ± 0.37 76.10 ± 0.88

Model-based
score_log_loss 71.47 ± 0.42 71.01 ± 1.97
score_alti_mean 65.55 ± 0.43 77.76 ± 0.49
score_attn_ot 65.10 ± 0.44 80.71 ± 1.06

Aggregated Detectors

External Only
Isolation Forest 38.17 ± 2.27 94.90 ± 0.70
Max-Norm 75.29 ± 0.80 65.03 ± 1.24
Sum-Norm 77.39 ± 0.65 65.77 ± 1.69

Model-based Only
Isolation Forest 60.23 ± 1.63 84.61 ± 1.52
Max-Norm 68.67 ± 1.02 78.98 ± 1.02
Sum-Norm 73.57 ± 0.72 70.70 ± 0.72

All
Isolation Forest 45.54 ± 2.11 93.15 ± 1.04
Max-Norm 70.88 ± 1.28 75.28 ± 2.32
Sum-Norm 79.20 ± 0.58 63.32 ± 0.78

Table 14: HalOmi, Low level language pairs, hallucina-
tions
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DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
score_comet_qe 50.44 ± 0.28 82.16 ± 0.51
score_labse 79.90 ± 0.29 49.44 ± 0.57
score_laser 71.31 ± 0.33 67.88 ± 0.60
score_xnli 61.80 ± 0.33 72.26 ± 0.86

Model-based
score_log_loss 68.62 ± 0.40 71.91 ± 1.48
score_alti_mean 60.94 ± 0.46 84.44 ± 0.27
score_attn_ot 67.52 ± 0.38 76.24 ± 0.84

Aggregated Detectors

External Only
Isolation Forest 35.09 ± 1.67 95.53 ± 0.72
Max-Norm 76.49 ± 0.59 61.00 ± 1.28
Sum-Norm 78.62 ± 0.61 60.61 ± 1.49

Model-based Only
Isolation Forest 60.55 ± 2.22 83.43 ± 1.90
Max-Norm 70.66 ± 0.82 75.42 ± 0.79
Sum-Norm 69.02 ± 0.81 76.23 ± 0.81

All
Isolation Forest 42.53 ± 2.26 92.79 ± 1.07
Max-Norm 73.82 ± 1.20 70.49 ± 2.46
Sum-Norm 78.13 ± 0.51 62.33 ± 0.66

Table 15: HalOmi, Low level language pairs, omissions

DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
score_comet_qe 73.41 ± 0.23 50.40 ± 0.48
score_labse 85.91 ± 0.13 40.33 ± 0.32
score_laser 76.22 ± 0.30 57.17 ± 0.50
score_xnli 75.33 ± 0.19 45.47 ± 0.35

Model-based
score_log_loss 80.64 ± 0.16 49.37 ± 0.45
score_alti_mean 77.45 ± 0.12 60.82 ± 0.52
score_attn_ot 63.93 ± 0.65 84.80 ± 0.67

Aggregated Detectors

External Only
Isolation Forest 44.97 ± 1.47 96.32 ± 1.30
Max-Norm 85.02 ± 0.44 40.95 ± 0.76
Sum-Norm 85.41 ± 0.17 40.83 ± 0.32

Model-based Only
Isolation Forest 65.86 ± 1.68 80.98 ± 2.16
Max-Norm 67.03 ± 0.88 81.95 ± 0.85
Sum-Norm 83.90 ± 0.55 46.37 ± 1.40

All
Isolation Forest 53.16 ± 2.78 92.92 ± 2.44
Max-Norm 76.17 ± 0.97 51.74 ± 2.84
Sum-Norm 87.06 ± 0.21 38.33 ± 0.36

Table 16: HalOmi, all language pairs, hallucinations

DETECTOR AUROC ↑ FPR@90TPR ↓

Individual Detectors

External
score_comet_qe 64.15 ± 0.23 67.79 ± 0.31
score_labse 80.09 ± 0.13 47.70 ± 0.52
score_laser 74.40 ± 0.24 57.70 ± 0.63
score_xnli 74.09 ± 0.11 49.30 ± 0.26

Model-based
score_log_loss 75.33 ± 0.16 60.34 ± 0.55
score_alti_mean 66.78 ± 0.14 79.71 ± 0.14
score_attn_ot 65.81 ± 1.28 83.62 ± 2.43

Aggregated Detectors

External Only
Isolation Forest 45.86 ± 2.06 95.42 ± 1.76
Max-Norm 81.32 ± 0.23 49.11 ± 0.26
Sum-Norm 78.21 ± 0.14 50.49 ± 0.37

Model-based Only
Isolation Forest 60.90 ± 0.98 86.63 ± 1.08
Max-Norm 71.32 ± 1.04 73.63 ± 1.32
Sum-Norm 74.82 ± 0.94 66.71 ± 1.52

All
Isolation Forest 50.65 ± 2.49 93.73 ± 2.29
Max-Norm 78.41 ± 0.65 51.49 ± 3.35
Sum-Norm 78.93 ± 0.25 50.68 ± 0.23

Table 17: HalOmi, all language pairs, omissions
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