
Q-Adam-mini: Memory-Efficient 8-bit Quantized Optimizer for Large
Language Model Training

Yizhou Han * 1 2 Chaohao Yang * 1 Xingjian Wang 1 2 Congliang Chen 1 2

Ruoyu Sun 1 2

Abstract
We propose Q-Adam-mini, a memory-efficient
optimizer for Large Language Model (LLM) train-
ing that achieves 8× reduction in GPU mem-
ory usage while maintaining performance parity
with full-precision AdamW. Building upon Adam-
mini (Zhang et al., 2024b), which reduces mem-
ory footprint of optimizer states by 50% compared
to AdamW, we further improve memory efficiency
through states quantization. We achieve this by:
(i) quantizing the first-order momentum (m) to
INT8 and (ii) retaining the second-order momen-
tum (v) in FP32, which occupies less than 1% of
total memory. However, embedding layer exhibits
weight norm instability. We analyze this issue
and address it by applying stochastic rounding for
momentum quantization exclusively to the em-
bedding layer. We validate our approach on both
pre-training and fine-tuning tasks, with the model
size ranging from 60M to 8B. Our results demon-
strate that Q-Adam-mini enables scalable LLM
training with limited computational resources.
Codes are available at https://github.
com/LouisCroix/Q-Adam-mini

1. Introduction
In recent years, large language models (LLMs) (Radford
et al., 2018; Grattafiori et al., 2024; Team et al., 2023;
Liu et al., 2024) have demonstrated remarkable capabili-
ties across various natural language processing (NLP) tasks,
including text generation, dialogue, sentiment analysis, and
reasoning (Brown et al., 2020; Kocoń et al., 2023; Zhang
et al., 2024c; Koroteev, 2021). However, modern LLMs
typically consist of billions or even trillions of parame-

*Equal contribution 1The Chinese University of Hong Kong,
Shenzhen, China 2Shenzhen Research Institute of Big Data. Cor-
respondence to: Ruoyu Sun <sunruoyu@cuhk.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1.29

2.5

5

9.97

0 2 4 6 8 10

Q-Adam-
mini

Q-Adam

Adam-mini

Adam

Memory(GB)

8 × Memory reduction

Figure 1. Optimizer states’ memory consumption for pre-training
Llama-1B

ters, leading to extremely high memory requirements during
training. A key factor contributing to this challenge is the
usage of AdamW (Kingma & Ba, 2014; Loshchilov & Hut-
ter, 2017), the most widely adopted optimizer for training
LLMs. AdamW requires additional storage for both the
first-order momentum m and the second-order momentum
v for each parameter, significantly increasing GPU memory
consumption.

For example, memory usage for training a Llama 7B model
using full precision AdamW is estimated as follows:

Memory Usage = 28GB︸ ︷︷ ︸
Weight

+28GB︸ ︷︷ ︸
m

+28GB︸ ︷︷ ︸
v

= 84GB.

The enormous memory consumption prevents researchers
from studying LLMs. In response to this challenge, many
studies have aimed to reduce the memory footprint of op-
timizers. Among these, Adam-mini (Zhang et al., 2024b)
achieves great improvement by enabling parameter groups
to share learning rate (i.e., 1/

√
v) while maintaining compa-

rable performance. Specifically, Adam-mini groups param-
eters into blocks according to predefined rules and assigns
a single second order momentum value v to all parame-
ters within each block. This approach reduces memory
consumption by approximately 50% compared to AdamW.
Nonetheless, in Adam-mini, all optimizer states are stored
in FP32 format. As a result, for a model like Llama 7B, the
optimizer states alone require more than 28 GB of memory,

1

https://github.com/LouisCroix/Q-Adam-mini
https://github.com/LouisCroix/Q-Adam-mini

Q-Adam-mini: Memory-Efficient 8-bit Quantized Optimizer for Large Language Model Training

which remains a substantial challenge.

To address this issue, we propose Quantized Adam-mini
(Q-Adam-mini), which leverages quantization techniques
(Gray & Neuhoff, 1998) to further reduce memory and
computational requirements.

Our approach makes four key contributions:

• We develop a hybrid precision scheme that maintains
second-order momentum in full FP32 while quantiz-
ing first-order momentum to INT8, capitalizing on
their different sensitivity to precision reduction.

• We demonstrate that quantization errors in first-
order momentum will accumulate in embedding layer
weights, ultimately leading to explosive growth in
weight norms.

• We introduce stochastic rounding technique that allevi-
ates this instability while adding negligible computa-
tional overhead.

• Through extensive experiments on models ranging
from 60M to 8B parameters, we demonstrate that
Q-Adam-mini reduces optimizer memory usage to
just 1/8 of AdamW’s requirements (Figure 1) while
matching its performance on both pre-training and fine-
tuning tasks.

2. Methodology
In Section 2.1, we introduce quantization basics and Adam-
mini’s design principles. Section 2.2 presents a precision
selection scheme for the momentum terms. However, in
later training stages, Q-Adam-mini underperforms original
Adam-mini. For this issue, we provide empirical analysis in
section 2.3.1 and propose a stochastic rounding approach to
stabilize training dynamics in section 2.3.2.

2.1. Preliminaries on Quantization and Adam-mini

2.1.1. QUANTIZATION

Quantization enables efficient computation and reduced
memory usage, which is crucial for deploying models on
resource-constrained devices. In Q-Adam-mini, the opti-
mizer states are saved in INT8, model weights and gradi-
ents are saved in FP32, activations are computed in BF16.
We use INT8 quantization because it is universally sup-
ported, whereas FP8 requires advanced hardware support
(e.g., Hopper GPUs (Elster & Haugdahl, 2022)) that are not
yet widely adopted.

To convert data precision from FP32 to INT8, we use
block-wise quantization as:

Quant(X) = clamp(round(
X

∆
) + z,−2n−1, 2n−1 − 1), (1)

where ∆ and z are scaling factor (FP32) and zero-point
(INT8) respectively, which are calculated within each block
of the tensors.

2.1.2. KEY DESIGNS OF ADAM-MINI

Adam-mini partitions parameters into groups following
some predefined rules and assigns a shared (calculated as
average) second-order momentum to each group, i.e.

v = m = 0 Initialization
m = β1m+ (1− β1) g State 1 update
g2mean = Average(g2) Calculate Average
vmean = β2vmean + (1− β2) g

2
mean State 2 update

wt = wt−1 − α · mt√
vmean+ϵ

Weight update

Adam-mini uniquely incorporates a “Calculate Average”
step, using the averaged gradient to update second order
momentum vmean.

2.2. Precision Selection of Optimizer States

The precision selection for Adam-mini’s momentum re-
quires balancing memory efficiency and convergence. Fol-
lowing Q-Adam (Dettmers et al., 2021), which shows first-
order momentum m exhibits strong quantization robustness
while second-order momentum v is sensitive, we employ
INT8 for m and evaluate two configurations for vmean.

• Case 1: 8bit m + 8bit vmean

The quantization of m follows the approach described
in (Dettmers et al., 2021). For the second-order momen-
tum vmean, since we have adopted asymmetric quantization
(1), to ensure computational efficiency, we first compute its
average value and then apply lower-bit quantization. The
quantization and update pipeline is illustrated in Figure 2.

+

Save
to

Memory

Update
Parameter

INT8

FP32 Dequant

Quant

+

Read
from

Memory

Figure 2. The pipeline of optimizer states quantization and update
in one iteration for Case 1. INT8 data (green) remains permanently
stored, whereas the FP32 data (yellow) are deleted right after
parameter updates.

2

Q-Adam-mini: Memory-Efficient 8-bit Quantized Optimizer for Large Language Model Training

0 2000 4000 6000 8000 10000 12000 14000
Update Step

6

7

8

9

10

11

12

Tr
ai

ni
ng

 lo
ss

Q-Adam-mini

Figure 3. Adam-mini equipped with 8bit m and 8bit vmean. It suf-
fers loss spike after 10K iterations when training Llama 1B.

Our training monitoring revealed a characteristic loss spike
occurring at approximately 10K iterations, followed by com-
plete divergence of the optimization process. Training loss
curve of Llama 1B is shown in Figure 3.

• Case 2: 8bit m + 32bit vmean

In this case we maintain full-precision (FP32) representa-
tion for the second-order momentum vmean throughout the
optimization process. One might consider the memory over-
head of vmean; however, Adam-mini reduces its memory
footprint to below 1%. We validate this through pre-training
experiments on Llama 1B and 7B models (see Table 4 in
Appendix). Consequently, the full-precision storage of vmean
imposes practically no additional memory burden. We show
the update pipeline and training loss curve of Llama 1B re-
spectively in Figure 4 and Figure 5. Under the configuration

+ Save
to

Memory
Update

Parameter

INT8

FP32 Dequant

Quant

+

Read
from

Memory

Read
from

Memory

Save
to

Memory

Figure 4. The update pipeline of Adam-mini for Case 2. In this
case, we keep vmean in FP32.

of Case 2, the training process remains stable. However,
after exceeding 40K update iterations, the convergence rate
of Q-Adam-mini exhibits a significant decrease compared
to Adam-mini. This naturally leads to the question:

Question1: What slows down the convergence rate?

0 10000 20000 30000 40000 50000
Update Step

4

6

8

10

Tr
ai

ni
ng

 lo
ss

Adam-mini
Q-Adam-mini

Figure 5. Adam-mini equipped with 8bit m and 32bit vmean. The
training process remains stable but convergence rate of Q-Adam-
mini slows down after 40K iterations.

2.3. Weight Norm Explosion in Embedding Layer

To answer the question 2.2, firstly, in section 2.3.1 we per-
form a comparison of weight norm patterns across Q-Adam-
mini and Adam-mini. Building upon these observations,
in section 2.3.2 we propose a stochastic rounding strategy
only for embedding layer. This approach not only maintains
training efficiency but also enables Q-Adam-mini to achieve
comparable convergence performance to full-precision opti-
mizers throughout the entire training process.

2.3.1. WEIGHT NORM OF EMBEDDING LAYER SUFFERS
INSTABILITY

To investigate why convergence rate of Q-Adam-mini slows
down in the later training stage, we first monitored the
weight norm across all model layers. This metric provides
preliminary insights into potential anomalies in Q-Adam-
mini’s training behavior. Through experimental observa-
tions, we draw the following point:

• Q-Adam-mini has significant weight norm deviations
in the embedding layer (Figure 6a), but not in the other
layers (Figure 6b).

0 10000 20000 30000 40000 50000
Update Step

162.5

165.0

167.5

170.0

172.5

175.0

177.5

180.0

W
ei

gh
t N

or
m

Adam-mini
Q-Adam-mini

(a) Weight norm of embedding
layer

0 10000 20000 30000 40000 50000
Update Step

66.8

67.0

67.2

67.4

67.6

W
ei

gh
t N

or
m

Adam-mini
Q-Adam-mini

(b) Weight norm of mlp down
project in 10th layer

Figure 6. In the embedding layer (left), the weight norm begins
to explode after 10K steps, whereas in other layers such as the
10th MLP layer(right), Q-Adam-mini and Adam-mini demonstrate
nearly identical optimization properties.

3

Q-Adam-mini: Memory-Efficient 8-bit Quantized Optimizer for Large Language Model Training

In Q-Adam-mini, parameter updates are jointly determined
by m and vmean. To identify the factors contributing to the
anomalous behavior in weight norm, we simultaneously
monitored the norm of both optimizer states. The results
show that:

• In the embedding layer, both the m norm (Figure 7a)
and vmean norm (Figure 7b) remain stable. Compared
to Adam-mini, no significant difference is observed.

The results demonstrate that while Q-Adam-mini’s opti-
mizer states remain stable throughout training, the embed-
ding layer exhibits explosive growth in weight norm. Based
on the above observations, we raise the following question:

Question2: How explosion occurs in Embedding layer?

To formalize this phenomenon, we consider an LLM fθ,θ̂
where θ denotes embedding layer parameters and θ̂ repre-
sents other trainable parameters. During next-token predic-
tion training, only a sparse subset θ0 ⊂ θ (corresponding to
active input tokens Xprompt) receives non-zero gradients.

This sparsity induces critical differences between optimizer
behaviors:

• Non-momentum optimizers (e.g., SGD): Parameters
with zero gradients remain unchanged.

• Momentum-based optimizers (e.g., Adam): Historical
momentum drives parameter updates even when gt = 0
since:

mt = β1mt−1 + (1− β1)gt−1

Now let mθ,mθ̂ represents the momentum corresponding
to θ and θ̂ respectively. Crucially, mθ̂ benefit from gradient

0 5000 10000 15000 20000
Update Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
 N

or
m

Adam-mini
Q-Adam-mini

(a) m norm of embedding layer

0 5000 10000 15000 20000
Update Step

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

v
N

or
m

Adam-mini
Q-Adam-mini

(b) v norm of embedding layer

Figure 7. We specifically monitored the norm of m and vmean in
both Q-Adam-mini and Adam-mini optimizers during the first 20K
steps. The empirical evidence indicates that although the momen-
tum term m is stored in low precision during updates - which
introduces quantization errors - its norm exhibits neither spikes nor
explosion phenomena that could potentially affect weight norm.

0 50000 100000 150000
Update Step

140

145

150

155

160

165

170

175

W
ei

gh
t N

or
m

Q-Adam-mini add SR in Embedding layer
Adam-mini

(a) Weight norm of embedding
layer

0 50000 100000 150000
Update Step

0

2

4

6

8

10

Tr
ai

ni
ng

 L
os

s

Q-Adam-mini add SR in Embedding layer
Adam-mini

(b) Training Loss Curve for
180K iterations

Figure 8. Implementing stochastic rounding exclusively in the em-
bedding layer (left) maintains stable weight norm during training,
while (right) enabling Q-Adam-mini to match the performance of
full-precision optimizers in extended training sessions.

corrections that mitigate quantization errors in each itera-
tion. However, the quantization error in mθ will persist
until the momentum receives a non-zero gradient update.
Throughout this period, the momentum mθ, now carrying
quantization error, is utilized to update the parameters at
each iteration, leading to progressive accumulation of quan-
tization errors in the parameters.

Note that error does not accumulate in the momentum it-
self; rather, the erroneous momentum continuously update
the parameters in same direction, which cause the error
accumulation in parameters, ultimately manifesting as an
explosion in weight norm, while the m norm remains stable.

2.3.2. REDUCING COMPUTATIONAL ERROR VIA
STOCHASTIC ROUNDING

To prevent the accumulation of errors in the same direction,
we need to introduce randomness so that the quantization
error does not always remain in one direction. Specifically,
assuming the quantization function after introducing ran-
domness is Q̂, we hope:

1. For momentum m, Q̂(m) ∈ {⌊m⌋, ⌈m⌉} is a random
variable.

2. The quantization error does not increase, i.e.,∣∣∣E [
Q̂(x)

]
− x

∣∣∣ ≤ |Q(x)− x|

for all x and deterministic quantization Q(·).

Following above two principles, we introduce stochastic
rounding(SR), formulated as follows:

Q̂(W) =

{
⌊W ⌋ with probability p = ⌈W ⌉ −W

⌈W ⌉ with probability p = W − ⌊W ⌋

4

Q-Adam-mini: Memory-Efficient 8-bit Quantized Optimizer for Large Language Model Training

Stochastic rounding introduces randomness to the quanti-
zation process, and we can prove that the quantized value
Q̂(W) satisfies :

E[Q̂(W)−W] = 0 ≤W.

Detailed proof is provided in the Appendix C.

Although stochastic rounding is a lossless quantization
scheme, its substantially higher computational latency (over
80% compared to deterministic rounding; see Appendix D)
makes it infeasible for all network layers. To balance stabil-
ity and computational efficiency, we exclusively employ it
in the embedding layer. Experimental results demonstrate
that this approach effectively maintains Q-Adam-mini’s con-
vergence rate and optimization stability.

3. Experiments
We now validate the effectiveness of Q-Adam-mini in both
pre-training and fine-tuning tasks. Detailed experimental
setups are provided in Appendix E.

3.1. Pre-training

We trained LLaMA-based models from scratch using C4
dataset (Patel, 2020) with different optimizers. We report
the loss on the validation dataset after training, along with
the GPU memory usage. A theoretical analysis of memory
consumption can be found in Section 3.3.

Table 1. Pretraining Results on C4 Dataset. We trained the Llama-
series models with sizes ranging from 60M to 1B from scratch.
For each result, we report the validation loss and the GPU memory
usage of the optimizer states. All optimizers use 32-bit precision,
except for Q-Adam and Q-Adam-mini.

Methods 60M 130M
Val. Loss Memory Val. Loss Memory

AdamW 3.34 0.43G 3.07 1.0G
Q-AdamW 3.35 0.11G 3.08 0.26G
AdamMini 3.37 0.22G 3.08 0.51G
Q-AdamMini 3.38 0.06G 3.09 0.13G

Methods 350M 1B
Val. Loss Memory Val. Loss Memory

AdamW 2.71 2.74G 2.55 9.97G
Q-AdamW 2.71 0.69G 2.55 2.50G
AdamMini 2.73 1.36G 2.55 5.0G
Q-AdamMini 2.73 0.35G 2.55 1.29G

3.2. Supervised Fine-tuning

In supervised fine-tuning, we fine-tune the pre-trained
Llama3 8B model on two multi-task benchmarks: MMLU

(Hendrycks et al., 2020) and GSM-8K (Cobbe et al., 2021).
Experimental results show our Q-Adam-mini optimizer
matches the performance of full-precision AdamW and
Adam-mini. We evaluate using zero-shot fine-tuning, with
results in Table 2. On MMLU, Q-Adam-mini outperforms
full-precision optimizers, and on GSM-8K, it surpasses both
Q-AdamW and LoRA.

Table 2. Zero-shot accuracy for Supervised Fine-tuning

Methods MMLU GSM-8K

AdamW 63.37% 56.86%
Q-AdamW 62.71% 55.57%
AdamMini 62.37% 56.56%
LoRA 61.64% 55.72%
Q-AdamMini 63.50% 56.03%

3.3. Memory Measurement

We perform the theoretical analysis of memory usage when
using Q-Adam-mini training LLMs. These results demon-
strate that our method can significantly improve memory
efficiency compared to the current mainstream optimizers.

Table 3. To theoretically compare the memory footprint of opti-
mizer states, we consider a parameter matrix of size m× n stored
in FP32 format. When employing LoRA, the original matrix is
decomposed into two low-rank matrices of dimensions m× r and
r × n respectively (r ≪ min(m,n)).

Methods Weights Optimizer states

AdamW 4mn 8mn
Q-AdamW 4mn 2mn
AdamMini 4mn 4mn+O(1)
LoRA 4(mn+mr + nr) 8(mr + nr)
Q-AdamMini 4mn mn+O(1)

4. Conclusion
We propose Q-Adam-mini, a memory-efficient optimizer
that reduces GPU memory usage by 8× while matching
the performance of full-precision AdamW. By strategically
quantizing first-order momentum to INT8 and preserving
second-order momentum in FP32, our approach maintains
training stability. The introduction of stochastic rounding
specifically addresses quantization error accumulation in
embedding layers, enabling robust convergence. Extensive
experiments on models ranging from 60M to 8B parameters
demonstrate that Q-Adam-mini achieves memory efficiency
without compromising model performance.

5

Q-Adam-mini: Memory-Efficient 8-bit Quantized Optimizer for Large Language Model Training

Acknowledgements
The work of Ruoyu Sun wa supported by NSFC
(No. 12326608); Hetao Shenzhen-Hong Kong Science
and Technology Innovation Cooperation Zone Project
(No.HZQSWS-KCCYB-2024016); University Develop-
ment Fund UDF01001491, the Chinese University of Hong
Kong, Shenzhen; Guangdong Provincial Key Laboratory
of Mathematical Foundations for Artificial Intelligence
(2023B1212010001).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Anil, R., Gupta, V., Koren, T., and Singer, Y. Memory

efficient adaptive optimization. Advances in Neural In-
formation Processing Systems, 32, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dettmers, T., Lewis, M., Shleifer, S., and Zettlemoyer, L. 8-
bit optimizers via block-wise quantization. arXiv preprint
arXiv:2110.02861, 2021.

Elster, A. C. and Haugdahl, T. A. Nvidia hopper gpu and
grace cpu highlights. Computing in Science & Engineer-
ing, 24(2):95–100, 2022.

Fishman, M., Chmiel, B., Banner, R., and Soudry, D. Scal-
ing fp8 training to trillion-token llms. arXiv preprint
arXiv:2409.12517, 2024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Gray, R. M. and Neuhoff, D. L. Quantization. IEEE trans-
actions on information theory, 44(6):2325–2383, 1998.

Hao, Z., Guo, J., Shen, L., Luo, Y., Hu, H., Wang, G., Yu,
D., Wen, Y., and Tao, D. Low-precision training of large

language models: Methods, challenges, and opportunities.
arXiv preprint arXiv:2505.01043, 2025.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. ICLR, 1(2):3, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kocoń, J., Cichecki, I., Kaszyca, O., Kochanek, M., Szydło,
D., Baran, J., Bielaniewicz, J., Gruza, M., Janz, A., Kan-
clerz, K., et al. Chatgpt: Jack of all trades, master of none.
Information Fusion, 99:101861, 2023.

Koroteev, M. V. Bert: a review of applications in natural
language processing and understanding. arXiv preprint
arXiv:2103.11943, 2021.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437, 2024.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Luo, Y., Ren, X., Zheng, Z., Jiang, Z., Jiang, X., and You,
Y. Came: Confidence-guided adaptive memory efficient
optimization. arXiv preprint arXiv:2307.02047, 2023.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

Patel, J. M. Introduction to common crawl datasets. In
Getting structured data from the internet: running web
crawlers/scrapers on a big data production scale, pp.
277–324. Springer, 2020.

Peng, H., Wu, K., Wei, Y., Zhao, G., Yang, Y., Liu, Z.,
Xiong, Y., Yang, Z., Ni, B., Hu, J., et al. Fp8-lm:
Training fp8 large language models. arXiv preprint
arXiv:2310.18313, 2023.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. In International Con-
ference on Machine Learning, pp. 4596–4604. PMLR,
2018.

6

Q-Adam-mini: Memory-Efficient 8-bit Quantized Optimizer for Large Language Model Training

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Zhang, Y., Chen, C., Ding, T., Li, Z., Sun, R., and Luo,
Z. Why transformers need adam: A hessian perspective.
Advances in Neural Information Processing Systems, 37:
131786–131823, 2024a.

Zhang, Y., Chen, C., Li, Z., Ding, T., Wu, C., Kingma,
D. P., Ye, Y., Luo, Z.-Q., and Sun, R. Adam-mini:
Use fewer learning rates to gain more. arXiv preprint
arXiv:2406.16793, 2024b.

Zhang, Y., Mao, S., Ge, T., Wang, X., de Wynter, A., Xia, Y.,
Wu, W., Song, T., Lan, M., and Wei, F. Llm as a master-
mind: A survey of strategic reasoning with large language
models. arXiv preprint arXiv:2404.01230, 2024c.

Zhang, Z., Jaiswal, A., Yin, L., Liu, S., Zhao, J., Tian,
Y., and Wang, Z. Q-galore: Quantized galore with int4
projection and layer-adaptive low-rank gradients. arXiv
preprint arXiv:2407.08296, 2024d.

7

Q-Adam-mini: Memory-Efficient 8-bit Quantized Optimizer for Large Language Model Training

A. Related Work
A.1. Low Precision Training

Low-precision training has become crucial for efficient deep learning, balancing memory savings with model perfor-
mance (Hao et al., 2025). Early work introduced FP16 training with loss scaling to address numerical limitations (Micikevi-
cius et al., 2017). Recent advances explore INT8 (Zhang et al., 2024d; Dettmers et al., 2021) and FP8 quantization (Peng
et al., 2023; Liu et al., 2024). Q-GaLore (Zhang et al., 2024d) and Q-Adam (Dettmers et al., 2021) reduce memory by
quantizing optimizer states, while LM-FP8 (Peng et al., 2023) uses FP8 gradients with mixed-precision states. DeepSeek
V3 (Liu et al., 2024) accelerates training via FP8 GEMM operations. (Fishman et al., 2024) enables full FP8 training
through redesigned activation functions, achieving comprehensive memory optimization for large language models.

A.2. Learning rate simplification methods

Adam has become the dominant choice for large language models due to its adaptive learning rate mechanism (Kingma
& Ba, 2014). However, Adam’s per-parameter learning rates incur substantial memory overhead, sparking research into
reducing this cost without sacrificing performance. Existing approaches like Adafactor (Shazeer & Stern, 2018), its enhanced
variant CAME (Luo et al., 2023), and SM3 (Anil et al., 2019) attempt to compress second-order moments through low-rank
approximations or compact learning rate sets, but often with noticeable performance degradation. The recent Adam-mini
optimizer (Zhang et al., 2024a) addresses this by exploiting Transformer networks’ block-wise Hessian structure, introducing
a parameter-block sharing mechanism where parameters within each block share identical second-order moments. This
approach achieves a remarkable 99% reduction in memory footprint while maintaining performance comparable to standard
Adam across multiple benchmarks.

B. Memory Usage of m and vmean in Adam-mini
During pre-training, we conducted end-to-end measurements of the GPU memory consumption for both m and vmean. in
Adam-mini, with the results presented below:

Table 4. Memory Usage of m and vmean in Adam-mini

MODEL m vMEAN

LLAMA 1B 1277.3MB 1.6MB
LLAMA 7B 6426.3MB 3.9MB

C. Proof of Stochastic Rounding

E(Q̂(W)−W) = pfloor · ⌊W ⌋+ pceil · ⌈W ⌉ −W

= (⌈W ⌉ −W) · ⌊W ⌋+ (W − ⌊W ⌋) · ⌈W ⌉ −W

= W −W = 0.

(2)

D. Latency Analysis of Stochastic Rounding
To evaluate the computational overhead of stochastic rounding, we conduct the following experiment:

Experimental Setup:

1. Generate a random matrix containing 1 million vectors, each with dimensionality 2048.

2. Apply both deterministic rounding and stochastic rounding to the matrix respectively.

3. Repeat steps 1-2 for 10 trials and compute the average execution time.

The result is shown as follow:

8

Q-Adam-mini: Memory-Efficient 8-bit Quantized Optimizer for Large Language Model Training

Table 5. Latency comparison between deterministic rounding and stochastic rounding

Method Time Latency

Deterministic Rounding 1.75e-2 1.00×
Stochastic Rounding 3.31e-2 1.88×

E. Experimental Setup
Network Architecture. For the pre-training task, we trained models based on the Llama3 (Grattafiori et al., 2024)
architecture ,ranging from 60M to 1B parameters on the C4(Patel, 2020) dataset. For the supervised fine-tuning (SFT) task,
we perform training based on the pre-trained Llama3 8B base model.

Baselines. To demonstrate the effectiveness of our approach, we compared the optimization performance of Q-Adam-mini
against AdamW, Adam-mini, and Q-Adam in the pre-training task. For the fine-tuning experiments, in addition to the
aforementioned optimizers, we incorporated LoRA (Hu et al., 2022) for further evaluation. Except for Q-Adam and
Q-Adam-mini, all other optimizers are 32-bit.

Pre-training. The model sizes are {60M, 130M, 350M, 1B}, and the training data sizes are {1.1B, 2.2B, 6.4B, 13.1B}. The
batch size is set to 256, and all other optimizer hyperparameters follow the same settings as in (Zhang et al., 2024b).

LoRA in Fine-tuning. LoRA can be expressed as W ←W +BA, where B and A are trainable parameters. We set LoRA’s
rank to 256, α = 128, dropout rate (drop) to 0.05, and learning rate (lr) to 2 × 10−5. All other hyperparameters remain
consistent with (Zhang et al., 2024b).

9

