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Abstract

We use a two-step procedure to train Bayesian neural networks that provide un-
certainties over the solutions to differential equation systems provided by Physics-
Informed Neural Networks (PINNs). We take advantage of available error bounds
over PINNs to formulate a heteroscedastic variance that improves the uncertainty
estimation. Furthermore, we solve forward problems and utilize the uncertainties
obtained to improve parameter estimation in inverse problems in the fields of
cosmology and fermentation.

1 Introduction

Physics-Informed Neural Networks (PINNs) are a type of neural network (NN) first proposed by
[25] that are trained to solve a differential equation (DE) by incorporating the underlying physics
of the problem into the network architecture. This allows the network to learn the DE solution
without needing additional data. PINNs present many advantages over traditional numerical solvers;
they are continuous, differentiable, and parallelizable, i.e., they do not need to compute previous
time steps in order to compute the next one. Although these advantages are noteworthy, the task of
computing solution errors or error bounds remains largely unresolved, with ongoing research in this
area [28, 29, 15].

Since the first appearance of PINNs, there has been a rapid growth of publications that cover a wide
range of applications. Heat transfer [6], wave equations [39] and fluid mechanics [23, 5, 30] are some
examples. There has also been interest in identifying and overcoming failure modes and optimization
challenges [36, 42, 24, 14]. Bayesian PINNs have also been explored [45, 27, 20].

Given the lack of advances for estimating errors, we leverage Bayesian NNs to obtain uncertainties
over the solutions. The contributions of our work are the following:

• We propose an error bound based heteroscedastic variance that improves uncertainty quality.

• We solve forward problems for equations in the fields of cosmology and fermentation
processes.

• Finally, we utilize solution bundles [17] to solve inverse problems, i.e., do parameter
estimation over the equation parameters.
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2 Background

2.1 Problem Formulation

We adopt a slightly different formulation from [38]. The DEs we will work with can be defined as
follows:

Fλ[u(x)] = f(x), x ∈ Ω, (1)
Bλ[u(x)] = b(x), x ∈ Γ, (2)

where x is the space-time coordinate, Ω is a bounded domain with boundary Γ, f(x) is the source
term (also called forcing function), u is the solution of the system, Fλ is a differential operator, Bλ

and b(x) are the initial condition (IC) or boundary condition (BC) operator and term, respectively,
and λ denotes the parameters of the system.

In this paper, we will focus on problems where the operators Fλ, Bλ and terms f(x), b(x) are known.
If λ is assumed to be known, the goal is to find the solution u, which is referred to as the forward
problem. Conversely, if u is known and the aim is to estimate λ, then this is known as the inverse
problem.

2.2 Physics-Informed Neural Networks

A Physics-Informed Neural Network uses a deep neural network, uθ(x), to approximate the true
solution u(x). The network is trained to minimize the residual rθ(x) = Fλ[uθ(x)]− f(x), aiming
for rθ(x) = 0.

The mean squared error is commonly used as the loss function. A transformation ũθ(x) ensures that
initial conditions are met (we use the transformation shown in [20, 9]). The optimization problem is:
minθ

∑N
i r̃2θ(xi).

Solution bundles [17] extend PINNs by allowing the network to take system parameters λ ∈ Λ as
inputs. This eliminates the need for multiple trainings for different λ values, and the optimization
objective becomes: minθ

∑N
i

∑M
j r̃2θ(xi, λj).

2.3 Uncertainty Quantification with Bayesian Neural Networks

To quantify uncertainty in NNs, we will employ the Bayesian approach. There are a number of
different methods for posterior p(θ|D) calculation. In this paper, we will focus on the following three:

Bayes By Backpropagation (BBB) [3] employs variational inference to approximate the posterior.
It assumes a variational distribution q(θ|ρ) and minimizes its Kullback-Leibler divergence from the
true posterior.

Hamiltonian Monte Carlo (HMC) [16] draws samples from the posterior distribution using a
Markov chain. Specifically, it is a Metropolis-Hastings algorithm [31, 21] that generates proposals by
simulating the movement of a particle using Hamiltonian dynamics [37]. We will use the No-U-Turn
Sampler (NUTS) [22] which is an extension of HMC.

Neural Linear Model (NLM) [41] is a Bayesian linear regression model with learned feature basis.
Given specific priors and likelihood choices, analytical forms for both the posterior p(θ|D) and the
posterior predictive p(y|x) can be derived.

2.4 Error Bounds for PINNs

Good quality uncertainties should correlate with the true error of a solution. Since true error is not
accessible, in Section 3.2 we use error bounds to improve the uncertainty in the Bayesian NNs.

In [28, 29], the authors present algorithms for calculating error bounds on PINNs. These bounds are
applicable to linear ODEs, systems of linear ODEs, non-linear ODEs in the form ϵvk1, as well as
certain types of PDEs. These algorithms are independent of the NN architecture and depend solely
on the structure of the equation as defined in Eq. (1) and the residuals of the DE.

1Here, v is a variable and |ϵ| ≪ 1.
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The network error is denoted as η(x) := u(x)− ũθ(x), and the error bound is represented by a scalar
function B such that ∥η(x)∥ ≤ B(x).

3 Two-Step Bayesian PINNs

We use a two-step approach to obtain uncertainties in the solutions of equations. In the first step, we
train a PINN as a bundle network (Section 2.2) that we refer to as the deterministic network. We
denote this network as uθdet : Ω,Λ → R.

3.1 Bayesian Neural Network Training

The second step involves training a Bayesian neural network using the outputs of uθdet as targets.

Dataset: We define a dataset by taking the space-time coordinates as independent variables, the
equation parameters as additional input variables, and the outputs of the deterministic net as dependent
variables D = {(xi, λi, uθdet(xi, λi)) | xi ∈ Ω, λi ∈ Λ, uθdet(xi, λi) ∈ R}N ′

i=1.

Distributions: We define a Bayesian neural network uθ by assigning distributions to the network
parameters and dataset as it is done in [20]. For all three methods described in Section 2.3 we use the
following distributions:

θ ∼ N (0, σprior), (3)

uθdet(x̂, λ̂) | x̂, λ̂, θ ∼ N (uθ(x̂, λ̂), σLikelihood(x̂, λ̂)). (4)

Given Eq. (4), we define the likelihood as p(D|θ) =
∏N ′

i=1 p(uθdet(xi, λi) | xi, λi, θ).

For BBB, we also define the variational posterior distribution using the mean field approximation [2].

For NLM, we can obtain the posterior and posterior predictive distributions through analytical
derivation:

u | x, λ,D ∼ N (Φθ(x, λ)µpost, σ
2
Likelihood(x, λ) + Φθ(x, λ)ΣpostΦ

T
θ (x, λ)), (5)

where µpost and Σpost are the posterior parameters and Φθ(x, λ) is the learned feature map, we provide
details in Section VII.I.I of the supplementary material.

3.2 Heteroscedastic Variance Based on Error Bounds

Bayesian NNs are usually trained using homoscedastic variance, i.e., σLikelihood(x, λ) = const. We
take advantage of the error bounds described in Section 2.4 to define a heteroscedastic variance
σLikelihood(x, λ) = B(x, λ).
Since the error bounds are not available for all equations, we use a slightly modified homoscedastic
variance in the remaining equations; it is defined as:

σLikelihood(x, λ) =

{
0 x ∈ Γ,

const x ̸∈ Γ,
(6)

which means that we set to zero the variance at the coordinates of ICs. The reason for this is the
enforcement of ICs, thus we are certain that the solution is correct at those coordinates.

3.3 Uncertainty Computation

The calculation of uncertainty is straightforward as it is the standard deviation of the posterior
predictive distribution. We can obtain it by applying the law of total variance, its derivation can be
found in Section VII.I.II of the supplementary material.

4 Parameter Estimation for Inverse Problems

We can use Bayesian framework to estimate the parameters λ of a DE system. For a given set
of observations O = {(xi, µi, σi) | xi ∈ Ω, µi ∈ R, σi ∈ R+}Oi=1, we seek to find the posterior
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(a) Homoscedastic variance (b) Error bounds based heteroscedastic variance

Figure 1: ΛCDM Bayesian solutions

distribution p(λ|O) of the parameters. Here µi and σi are the mean and standard deviation of the true
solution, respectively.

In this work, we assume a uniform prior over λ. To define the likelihood p(O|λ), we assume the
observations have a normal distribution around the true solution, i.e., µi ∼ N (u(xi), σi). Since in
Section 3 we obtain a distribution over all possible solutions, we need to marginalize over them to get
the likelihood, the details of this marginalization are provided in Section VII.I.III of the supplementary
material. Having defined the prior and likelihood, we can apply a sampling algorithm to approximate
p(λ|O). We use the emcee Python library [18] which implements the samplers introduced in [19].

5 Experiments and discussion

In this section we present the results we
obtained for solving the forward prob-
lem using the standard PINN as de-
scribed in Section 3 and inverse problem
using bundle solutions and estimating
the parameters as described in Sections
2.2 and 4, respectively.

Cosmology We address the same four
cosmological models as in [8]. De-
tails of the equations are given in Sec-
tion VII.II.I of the Supplementary Mate-
rial. In Fig. 1 we present the solutions we
obtained using the three Bayesian meth-
ods described in Section 2.3. To solve
this forward problem we select fixed val-
ues for the equation parameters. Figure 2: Bayesian solutions for LAB fermentation.

We estimated the parameters of the equation for the ΛCDM model as explained in Section 4. The
ΛCDM model has only one parameter for which we obtained 10,000 samples for each Bayesian
NN and also for a deterministic net. The means and standard deviations obtained were: 0.25 ±
0.025, 0.22± 0.0024, 0.20± 0.012, 0.1± 0.0001 for the deterministic net, NLM, BBB, and HMC,
respectively.

Fermentation: We solve equations for Lactic Acid Bacteria (LAB) fermentation and cacao fermen-
tation proposed in [44, 32], respectively. Details of the equations are given in Section VII.II.II of
the Supplementary Material. In Fig. 2 we present the solutions to the forward problem for the LAB
system.

6 Conclusions

We successfully applied a two-step procedure to train a Bayesian NN and proposed a heteroscedastic
variance based on error bounds. We have shown that the use of this heteroscedastic variance effectively
improves uncertainty quality on equations from cosmological and fermentation dynamical models.
This emphasizes the need for methods that provide PINNs’ error bounds for any DE class.
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The results show that when using homoscedastic variance BBB heavily underestimates the uncertainty
while NLM and HMC tend to increase their uncertainty as the solution moves away from the training
region. We then utilized the solutions to estimate the parameter of the ΛCDM model and observed
that Bayesian solutions yield a less disperse estimation than deterministic nets.

In future work we intend to do parameter estimation for the remaining DEs and analyze in depth the
benefits of using well calibrated uncertainties.
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VII Supplementary Material

VII.I Bayesian Methods Details

VII.I.I NLM Posterior Predictive Parameters

Σpost =
(
ΦT

θ (x, λ)ΣΦθ(x, λ) + σ2
priorI

)
(7)

µpost = Σpost
(
Σ−1Φθ(x, λ)

)T
uθdet(xD, λD) (8)

VII.I.II Law of Total Variance Derivation

Var(u|x, λ,D) = Eθ|D [Var(u|x, λ, θ)] + Varθ|D [E(u|x, λ, θ)]
= Eθ|D

[
σ2

Likelihood(x, λ)
]
+ Varθ|D[uθ(x, λ)]

≈ σ2
Likelihood(x, λ) +

1

M

M∑
i=1

(uθi(x, λ)− u(x, λ))2,

(9)

where θi ∼ p(θ|D) and u(x, λ) ≈ 1
M

∑M
i=1 uθi(x, λ) is the sample mean of the net outputs.

The latter approximation applies to BBB and NUTS, for BBB the samples are taken from the
variational posterior and for NUTS we use the samples of the true posterior the method yields. For
NLM we have the analytical expression in Eq. (7).

VII.I.III Marginalization Over Solutions

p(xi, µi, σi|λ) =
∫
U
N (µi;u(xi, λ), σi) · p(u(xi, λ)|xi, λ,D)du

≈ 1

M

M∑
j=1

N (µi;u
(j)(xi, λ), σi), where u(j) ∼ p(u(xi, λ)|xi, λ,D),

(10)

p(O|λ) =
O∏
i=1

p(xi, µi, σi|λ). (11)

VII.II Equation details

We now describe the equations, initial conditions and parameters of each dynamical model.

VII.II.I Cosmology

In this section we specify the cosmological equations we used. These equations were solved with
PINNs in [8].

ΛCDM

Equation:
dxm

dz
=

3xm

1 + z
(12)

Initial conditions: xm(z) = Ωm,0 (13)
Parameters: Ωm,0 (14)

Hubble function: H(z) = H0

√
xm(z) + 1− Ωm,0 (15)
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Parametric dark energy [26, 10]

Equation:
dxDE

dz
=

3xDE

1 + z

(
1 + w0 +

w1z

1 + z

)
(16)

Initial conditions: xm(z) = 1− Ωm,0 (17)
Parameters: w0,w1,Ωm,0 (18)

Hubble function: H(z) = H0

√
Ωm,0(1 + z)3 + xDE(z) (19)

Quintessence [7, 1, 13, 46]

Equation:
dx

dN
= −3x+

√
6

2
λy2 +

3

2
x(1 + x2 − y2) (20)

dy

dN
=

√
6

2
xyλ+

3

2
y(1 + x2 − y2) (21)

Initial conditions: x0 = 0 (22)

y0 =

√
1− ΩΛ

m,0

ΩΛ
m,0(1 + z0)3 + 1− ΩΛ

m,0

(23)

Parameters: H0,Ω
Λ
m,0 (24)

Hubble function: H(z) = HΛ
0

√
ΩΛ

m,0(1 + z)3

1− x2 − y2
(25)

f(R) gravity [11, 4]

Equation:
dx

dz
=

1

z + 1
(−Ω− 2v + x+ 4y + xv + x2) (26)

dy

dz
=

−1

z + 1
(vxΓ− xy + 4y − 2yv) (27)

dv

dz
=

−v

z + 1
(xΓ + 4− 2v) (28)

dΩ

dz
=

Ω

z + 1
(−1 + 2v + x) (29)

dr

dz
= − rΓx

z + 1
(30)

where Γ(r) =
(r + b)

[
(r + b)2 − 2b

]
4br

(31)

Initial conditions: x0 = 0 (32)

y0 =
ΩΛ

m,0(1 + z0)
3 + 2(1− ΩΛ

m,0)

2
[
ΩΛ

m,0(1 + z0)3 + (1− ΩΛ
m,0)

] (33)

v0 =
ΩΛ

m,0(1 + z0)
3 + 4(1− ΩΛ

m,0)

2
[
ΩΛ

m,0(1 + z0)3 + (1− ΩΛ
m,0)

] (34)

Ω0 =
ΩΛ

m,0(1 + z0)
3

ΩΛ
m,0(1 + z0)3 + (1− ΩΛ

m,0)
(35)

r0 =
ΩΛ

m,0(1 + z0)
3 + 4(1− ΩΛ

m,0)

1− ΩΛ
m,0

(36)

Parameters: b,ΩΛ
m,0, H

Λ
0 (37)

Hubble function: H(z) = HΛ
0

√
r

2v
(1− ΩΛ

m,0) (38)
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VII.II.II Fermentation

Lactic acid bacteria This system was proposed in [44].

Equations:
dx

dt
= αx− βx2 − γxy2 − τxz2 (39)

dy

dt
= δy − θy2 − ρyz (40)

dz

dt
= σz − ϕz2 − ωxz (41)

Initial conditions: (x,y, z) = (7.5797, 6.44, 1.9) (42)
Parameters: α,β, γ, τ, δ, θ, ρ, σ, ϕ, ω (43)

(44)

Cocoa This system was proposed in [32]. We present the meaning and initial conditions of each
variable in Table 1 and the specification of the system’s parameters in Table 2.

Equations:
dx

dt
= −YGlc|Y

µYGlc
maxx

x+KY
Glc

w − YGlc|LAB
µLAB
max x

x+KLAB
Glc

r (45)

dy

dt
= −YFru|Y

µYFru
maxy

y +KY
Fru

w (46)

dz

dt
= YGlc

EtOH|Y
µYGlc
maxx

x+KY
Glc

w + YFru
EtOH|Y

µYFru
maxy

y +KY
Fru

w − YEtOH|AAB
µAABEtOH
max z

z +KAAB
EtOH

s

(47)

du

dt
= YLA|LAB

µLAB
max x

x+KLAB
Glc

r − YLA|AAB
µAABLA
max u

u+KAAB
LA s

s (48)

dv

dt
= YAc|LAB

µLAB
max x

x+KLAB
Glc

r + YEtOH
Ac|AAB

µAABEtOH
max z

z +KAAB
EtOH

s+ YLA
Ac|AAB

µAABLA
max u

u+KAAB
LA s

s

(49)

dw

dt
=

µYGlc
maxx

x+KY
Glc

w +
µYFru
maxy

y +KY
Fru

w − kY wz (50)

dr

dt
=

µLAB
max x

x+KLAB
Glc

r − kLABru (51)

ds

dt
=

µAABEtOH
max z

z +KAAB
EtOH

s+
µAABLA
max u

u+KAAB
LA s

s− kAAB sv2 (52)

Table 1: Cocoa fermentation process variables meaning and initial conditions
Variable Meaning Initial Condition

x [Glc] 51.963
y [Fru] 57.741
z [EtOH] 0
u [LA] 0
v [Ac] 0
w [Y] 0.029180401
r [LAB] 0.007868827
s [AAB] 3.36634e-6

11



Table 2: Cocoa fermentation process parameters
Parameter Unit Interpretation

µYGlc
max h−1 Maximum specific growth rate of Y on Glc

µYFru
max h−1 Maximum specific growth rate of Y on Fru

µLAB
max h−1 Maximum specific growth rate of LAB on Glc

µAABEtOH
max h−1 Maximum specific growth rate of AAB on EtOH

µAABLA
max h−1 Maximum specific growth rate of AAB on LA

KY
Glc mg(Glc) g(pulp)−1 Substrate saturation constant of Y growth on Glc

KY
Fru mg(Fru) g(pulp)−1 Substrate saturation constant of Y growth on Fru

KLAB
Glc mg(Glc) g(pulp)−1 Substrate saturation constant of LAB growth on Glc

KAAB
EtOH mg(EtOH) g(pulp)−1 Substrate saturation constant of AAB growth on EtOH

KAAB
LA mg(LA) g(pulp)−1 Substrate saturation constant of AAB growth on LA

kY mg(EtOH)−1 h−1 Mortality rate constant of Y

kLAB mg(LA)−1 h−1 Mortality rate constant of LAB

kAAB mg(Ac)−2 h−1 Mortality rate constant of AAB

YGlc|Y mg(Glc) mg(Y)−1 Y-to-Glc yield coefficient

YGlc|LAB mg(Glc) mg(LAB)−1 LAB-to-Glc yield coefficient

YFru|Y mg(Fru) mg(Y)−1 Y-to-Fru yield coefficient

Y Glc
EtOH|Y mg(EtOH) mg(Y)−1 Y-to-EtOH from Glc yield coefficient

Y Fru
EtOH|Y mg(EtOH) mg(Y)−1 Y-to-EtOH from Fru yield coefficient

YEtOH|AAB mg(EtOH) mg(AAB)−1 AAB-to-EtOH yield coefficient

YLA|LAB mg(LA) mg(LAB)−1 LAB-to-LA yield coefficient

YLA|AAB mg(LA) mg(AAB)−1 AAB-to-LA yield coefficient

YAc|LAB mg(Ac) mg(LAB)−1 LAB-to-Ac yield coefficient

Y EtOH
Ac|AAB mg(Ac) mg(AAB)−1 AAB-to-Ac from EtOH yield coefficient

Y LA
Ac|AAB mg(Ac) mg(AAB)−1 AAB-to-Ac from LA yield coefficient
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Table 3: Measurements of the Hubble parameter H using the Cosmic Chronometers technique
z H(z)± σH

[
km/s
Mpc

]
Ref.

0.09 69 ± 12

[40]

0.17 83 ± 8
0.27 77 ± 14
0.4 95 ± 17
0.9 117 ± 23
1.3 168 ± 17
1.43 177 ± 18
1.53 140 ± 14
1.75 202 ± 40
0.48 97 ± 62

[43]
0.88 90 ± 40

0.1791 75 ± 4

[34]

0.1993 75 ± 5
0.3519 83 ± 14
0.5929 104 ± 13
0.6797 92 ± 8
0.7812 105 ± 12
0.8754 125 ± 17
1.037 154 ± 20
0.07 69 ± 19.6

[12]
0.12 68.6 ± 26.2
0.2 72.9 ± 29.6
0.28 88.8 ± 36.6

1.363 160 ± 33.6
[33]

1.965 186.5 ± 50.4
0.3802 83 ± 13.5

[35]
0.4004 77 ± 10.2
0.4247 87.1 ± 11.2
0.4497 92.8 ± 12.9
0.4783 80.9 ± 9

VII.III Results

We present the results for the rest of the equations in Fig. 3, Fig. 4,Fig. 5, Fig. 6 for the cosmological
models Dark Parametric Energy with homscedastic and heteroscedastic variance, Quintessence and
Hu-Sawicky, respectively. And for the Cocoa fermentation model in Fig. 7
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Figure 3: Dark Parametric Energy with homoscedastic variance solutions

Figure 4: Dark Parametric Energy with heteroscedastic variance solutions

Figure 5: Quintessence solutions
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Figure 6: Hu-Sawicky solutions
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Figure 7: Cocoa fermentation solutions
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