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Abstract: Manipulating objects to achieve desired goal states is a basic but important1

skill for dexterous manipulation. Human hand motions demonstrate proficient2

manipulation capability, providing valuable data for training robots with multi-finger3

hands. Despite this potential, substantial challenges arise due to the embodiment gap4

between human and robot hands. In this work, we introduce a hierarchical policy5

learning framework that uses human hand motion data for training object-centric6

dexterous robot manipulation. At the core of our method is a high-level trajectory7

generative model, learned with a large-scale human hand motion capture dataset,8

to synthesize human-like wrist motions conditioned on the desired object goal states.9

Guided by the generated wrist motions, deep reinforcement learning is further used to10

train a low-level finger controller that is grounded in the robot’s embodiment to physi-11

cally interact with the object to achieve the goal. Through extensive evaluation across12

10 household objects, our approach not only demonstrates superior performance but13

also showcases generalization capability to novel object geometries and goal states.14

Furthermore, we transfer the learned policies from simulation to a real-world bi-15

manual dexterous robot system, further demonstrating its applicability in real-world16

scenarios. Project website: https://sites.google.com/view/obj-dex.17

Keywords: Dexterous Manipulation, RL, Learning from Human18

1 Introduction19

Developing bimanual multi-fingered robotic systems capable of handling complex manipulation tasks20

with human-level dexterity has been a longstanding goal in robotics research. Regardless of how the21

goals are specified, a common element across these definitions is an object-centric perspective focusing22

on the state of the objects being manipulated. As such, the goal of our work is to train a policy for23

a bimanual dexterous robot to manipulate the objects according to the task goal defined as a sequence24

of object pose trajectories.25

Prior works primarily utilize deep reinforcement learning (RL) to learn object-centric dexterous ma-26

nipulation skills [1–3]. Training RL policy that controls both robot arms and two multi-finger hands is27

possible in theory, but presents substantial challenges in practice due to the high degree of freedom of the28

robot action space. Imitation learning (IL) can potentially tackle this challenge by leveraging the guid-29

ance from human motion data to assist policy learning. However, another challenge arises due to the mor-30

phological differences between human and robotic hands, often referred to as the “embodiment gap”.31

One critical observation is that human finger motions are not consistently useful across various manip-32

ulation tasks due to the embodiment gap. Based on this observation, we propose a hierarchical policy33

learning framework consisting of a high-level planner for the wrist and a low-level controller for the34

hand. The high-level planner is a generative-based policy, trained by imitation learning with human35

wrist movements, to generate robot arm actions conditioned on a desired trajectory of the object’s move-36

ments. Based on the generated arm motions, the low-level controller outputs fine-grained finger actions37

learned through RL exploration rather than imitation of human data. Our experiments demonstrate that38
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Figure 1: Overview of our framework. (A) Training: We train a generation model to synthesize dual
hand trajectory and then use the RL to train a low-level robot controller. (B) Inference: Given a single
object goal trajectory, our framework generates dual hand reference trajectory and guides the low-level
controller to accomplish the task.

the learned policy exhibits generalization to novel object geometries and unseen motion trajectories.39

In addition, we successfully transfer our policy from simulation environments to a real-world bimanual40

dexterous robot, further validating its practical applicability in real-world manipulation tasks.41

2 Related Works42

2.1 Dexterous Manipulation43

Dexterous manipulation is a long-standing research topic in robotics [4–7]. Traditional methods rely44

on analytical dynamic models for trajectory optimization [4, 5, 7–10], which fall short in complex45

tasks due to the simplification of contact dynamics. Recently, deep reinforcement learning (RL)46

has showcased promising results in training dexterous manipulation skills such as in-hand object47

reorientation [11–16, 16–21], bimanual manipulation [1, 2, 22], sequential manipulation [23–25],48

and human-like activities [26]. Despite the progress, successfully training a dexterous RL policy49

often requires extensive reward engineering and system design, which limits its practicality in50

some scenarios. Besides RL, imitation learning (IL) is also widely used for training dexterous51

policies [27, 28]. By performing supervised-learning with human teleoperation data [29–33], prior52

works show impressive results in dexterous grasping [34, 35] and general manipulation tasks [36–43].53

2.2 Learning from Human Motion54

Recently, learning from human motion data has started to receive more attention because it allows55

scaling up data collection without robot hardware. Prior works leverage human data [44–49], motion56

capture data [50–55] to extract valuable motion hints for manipulation [44–46, 48, 52]. For dexterous57

manipulation, [31, 36, 48, 51, 56, 57] showcase the potential of using analytical methods (e.g., inverse58

kinematics) to retarget human hand motion to robot hardware. However, due to the embodiment gap59

between human and robot hands, position-based retargeting methods do not guarantee the replication60

of task success. In contrast, our approach uses human data as guidance for RL training, which learns61

the motion retargeting conditioned on the robot’s embodiment. Notably, [27, 58–62] share the same62

idea of utilizing human data as guidance or reward for reinforcement learning.63
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3 Task Formulation64

The goal of an object-centric manipulation task is to let the robot physically interact with the object65

to achieve the desired motion trajectory. We define the motion trajectory as the sequence of the object’s66

SE(3) transformationG=(g1,g2,...,gT ), where each time stepgi=(gR
i ,g

T
i ,g

J
i ) consists a 3D rotation67

gR
i , a 3D translation gT

i , and the joint angle gJi . gJi can be omitted if the object is a single rigid body.68

We then formulate an object-centric manipulation task as a Markov Decision Process (MDP)69

M=(SSS,AAA,π,T ,R,γ,ρ,G), whereSSS is the state space,AAA is the action space, π is the agent’s policy,70

T (st+1|st,at) is the transition distribution, R is the reward function, γ is the discount factor, and ρ71

is the initial state distribution. The policy π conditions on the reference object state trajectory G and72

the current state st, and generates robot action distributions at to maximize the likelihood between73

the future object states (st+1,st+2,...,st+T ) and the reference trajectory G.74

4 Method75

In this section, we introduce our framework for object-centric manipulation. The overview of76

the framework is shown in Figure 1. Our framework consists of three parts: high-level planner77

(Section 4.1), low-level controller (Section 4.2). The data augmentation loop and the details of our78

sim-to-real policy transfer are introduced in Appendix.79

4.1 High-Level Planner80

We train a Transformer-based generative model πH that takes object category ID c, and the desired81

object motion trajectory G = (gt,gt+1,...,gt+T ) as inputs and outputs a sequence of 6-DoF wrist82

actions (aW
t ,aW

t+1,...,a
W
t+T ), where each action aW

i =(pl
i,p

r
i ) consists the 6-DoF pose of the left hand83

pl
i and right hand pr

i in SE(3). In our experiments, we use T =10.84

4.2 Low-Level Controller85

We use Proximal Policy Optimization (PPO) [63] to train πL. The policy πL takes the current86

observation si , the desired object motion trajectory G=(gt,gt+1,...,gt+T ), and a sequence of 6-DoF87

wrist actions (aW
t ,aW

t+1,...,a
W
t+T ) generated by high-level planner as inputs, and outputs the finger88

joint action aF
t . Here the observation st contains the object pose and robot proprioception. The reward89

function is defined as rt=exp−(λ1∗∥gR
t −ĝR

t ∥2+λ2∗∥gT
t −ĝT

t ∥2+λ3∗∥gJ
t −ĝJ

t ∥2), aiming to minimize the90

distance between object’s movements and the desired goal trajectory. πL also learns to output a residual91

wrist action ∆aW
t within a fixed range. The final robot action is a combination of (aW

t +∆aW
t ,aF

t ).92

Please refer to Appendix B for more detail about the observation space and the reward function.93

5 Experiments94

The experiments are designed to answer the following research questions: (1) Can the high-level95

planner generalize to unseen trajectories and unseen objects? (Sec. 5.1) (2) Does our hierarchical96

approach help bridge the embodiment gap between human and robot hands? (Sec. 5.2) (3) Can our97

trained policy generalize to unseen object geometries and goal trajectories? (Sec. 5.3) (4) Can we98

transfer the policy from simulation to a real-world bimanual dexterous robot system? (Sec. 5.4).99

5.1 Performance of the high-level planner100

Table 1 shows that Ours performs the best in generating wrist motions, with the lowest cumulative101

translation and orientation error.102

5.2 Effectiveness of learning from human with hierarchical pipeline103

Table 3 demonstrates that our hierarchical learning framework outperforms traditional hand pose104

matching methods (Finger Joint Mapping, Fingertip Mapping) by 50% in completion rate, indicating105

that our low-level RL significantly helps in bridging the embodiment gap when learning from human106
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MLP RNN Ours

Trained TE 5.4±0.2 5.0±0.1 4.2±0.2

OE 14.6±0.7 12.4±0.8 9.6±0.6

Unseen TE 5.6±0.5 6.2±0.3 5.0±0.8

Traj OE 9.4±1.0 9.2±0.5 7.2±0.7

Unseen TE 18.2±1.5 17.7±1.2 12.4±1.1

Object OE 109.4±5.8 82.2±4.2 75.5±4.7

Table 1: Results for the high-level planner

Fingertip
Mapping

Vanilla
RL Ours

Box 13.1±1.8 20.4±1.8 69.8±6.6

Micro. 60.6±2.7 56.1±9.8 100±0.0

Laptop 9.2±0.5 8.6±1.4 76.7±4.1

Coffee. 8.2±0.6 9.2±3.1 74.8±3.8

Mixer 8.3±2.1 10.8±3.2 82.8±2.1

Notebook 4.5±0.1 4.5±0.3 64.3±8.4

Table 2: Results for the real-world experiments

Fingertip
Mapping

Finger Joint
Mapping

Vanilla
RL

Ours
(w. FR)

Ours
(w.o. DAL) Ours

Box 14.6±0.3 8.9±0.2 23.5±3.5 56.2±7.4 100±0.0 100±0.0

Coffee Maker 9.3±0.6 9.0±0.5 10.7±2.7 78.6±1.6 71.5±2.6 86.1±5.5

Espresso Machine 22.2±0.4 7.0±0.8 14.3±1.5 70.7±3.5 75.4±4.3 81.1±8.6

Ketchup 14.8±0.7 9.5±0.2 4.9±2.7 15.2±1.7 21.8±7.2 41.2±13.3

Microwave 38.7±0.2 27.5±0.6 43.5±2.4 61.2±5.3 100±0.0 100±0.0

Mixer 21.7±0.9 10.7±0.8 42.1±1.4 42.2±4.0 44.2±6.4 57.6±4.9

Notebook 10.1±0.5 5.9±0.4 10.6±2.9 31.1±4.1 38.1±4.8 38.7±3.3

Scissors 4.2±0.5 4.1±0.6 4.4±0.6 20.7±2.0 35.9±4.0 41.4±14.9

Laptop 9.9±0.4 8.8±1.1 33.0±2.1 42.5±5.4 100±0.0 100±0.0

Table 3: Results for the experiments of using one policy per object.

Fingertip
Mapping

Finger Joint
Mapping

Vanilla
RL

Ours
(w. FR)

Ours
(w.o. DAL) Ours

Single Obj - Trained Traj 10.4±2.8 7.1±4.8 17.1±9.6 30.8±12.1 59.6±14.4 83.8±9.1

Single Obj - Unseen Traj 4.8±0.3 5.5±0.8 18.8±5.7 19.6±10.1 42.5±7.5 57.1±10.2

Multi Obj - Trained Obj 6.9±1.7 5.3±1.2 17.7±10.1 15.5±6.2 35.2±2.8 47.6±4.2

Multi Obj - Unseen Obj 3.2±0.6 2.9±0.2 8.1±4.2 8.2±5.3 18.6±3.7 36.4±5.0

Table 4: Results for the generalization experiments.
data. Moreover, Ours surpasses Vanilla RL by 47.3% on average, underscoring the challenge of107

training arm and hand actions together with RL, and emphasizing the advantage of our high-level108

planner for guiding the RL in high-dimensional action space.109

5.3 Generalization to unseen scenarios110

In Table 4, our algorithm surpassing the results of Vanilla RL on Single Obj - Unseen Traj and Multi Obj111

- Unseen Obj by more than 28%. This indicates that our hierarchical structure substantially improves112

generalization capabilities across unseen trajectories and unseen object geometries.113

5.4 Transfer from simulation to real-world114

In Table 2 real-world experiments, our approach has more than a 50% completion rate improvements115

compared to prior methods, which barely achieve any success (< 20% completion rate) on several116

objects. This result showcases the ability of our approach on tackling real-world bimaual dexterous117

manipulation tasks.118

6 Conclusion119

In this work, we present a hierarchical policy learning framework that effectively utilizes human hand120

motion data to train object-centric dexterous robot manipulation. Our approach demonstrated superior121

performance across various household objects and showcased generalization capabilities to novel122

object geometries and goal trajectories. Moreover, the successful transfer of the learned policies from123

simulation to a real-world bimanual dexterous robot system underscores the practical applicability124

of our method in real-world scenarios.125
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