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ABSTRACT

Due to the tractable analysis and control, linear dynamical systems (LDSs) pro-
vide a fundamental mathematical tool for time-series data modeling in various
disciplines. Particularly, many LDSs have sparse system matrices because inter-
actions among variables are limited or only a few significant relationships exist.
However, available learning algorithms for LDSs lack the ability to learn system
matrices with the sparsity constraint. To address this issue, we impose sparsity-
promoting priors on system matrices and explore the expectation–maximization
(EM) algorithm to give a maximum a posteriori (MAP) estimate of both hidden
states and system matrices from noisy observations. In addition, we find that many
learning algorithms based on the gradient descent method use an inappropriate
derivative rule, because they neglect the inherent symmetry of noise covariance
matrices. Here, we consider the derivative rule of structured matrices during the
optimization process to guarantee their symmetry. Experimental results on simu-
lation and real-world problems illustrate that the proposed algorithm significantly
improves learning accuracy over classical ones.

1 INTRODUCTION

Linear dynamical systems (LDSs) are fundamental mathematical models for analyzing time-series
data with application in robotics (Mamakoukas et al., 2019; 2020), systems biology (Jin et al., 2020b;
Pillonetto & Ljung, 2023), and natural language processing (Smith et al., 1999; Belanger & Kakade,
2015). Basically, LDSs consider a linear transformation between finite-dimensional hidden states
disturbed by input signals and noise to capture the time evolution of systems (Hazan et al., 2017).
In addition, LDSs are also widely used to approximate complex nonlinear systems in industrial
processes given their relative simplicity (Yuan et al., 2017; Lusch et al., 2018). Due to a complete
rigorous theory available on LDSs, learning LDSs from noisy observations can enable us to make
tractable analysis and control of systems (Chen & Poor, 2022; Bakshi et al., 2023).

In this paper, we focus on learning LDSs with sparse system matrices for two important reasons.
First, the learned LDSs should include the minimally required parameters to explain time-series
data following the Occam’s razor principle. Additionally, many real-world systems have sparse
topology because each state or measurement variable only depends on a few other state variables
and inputs (Efroni et al., 2022). For example, a gene only regulates the expression of a limited
number of other genes in gene regulatory networks (He et al., 2024). In industry, communication
systems usually have sparse topology to reduce energy consumption (Jin et al., 2020a;b). However,
available learning algorithms lack the ability to learn LDSs with the sparsity constraint on system
matrices. In addition, many algorithms neglect the inherent symmetry of noise covariance matrices
during the optimization process.

To learn the LDSs with sparse system matrices, we impose the sparsity-promoting prior on them
to balance model complexity and modeling error in this paper (Wang et al., 2024). Subsequently,
we can combine the likelihood and prior functions to derive the posterior distribution of system
matrices following the Bayes’ rule. However, directly maximizing such a posterior distribution to
estimate system matrices is intractable because the states of LDSs are unknown. To address this
issue, we explore the expectation–maximization (EM) algorithm to give an alternate maximum a
posteriori (MAP) estimate of hidden states and system matrices. In the expectation step, we use
the Rauch–Tung–Striebel (RTS) smoother, also known as the Kalman smoother, to give a closed-
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Figure 1: The pipeline of the proposed algorithm. Given time-series data and initial guesses of
system matrices and noise covariance matrices, the proposed algorithm alternately learns the hidden
state distribution and unknown LDS until it converges.

form update rule for the hidden states. In the maximization step, we leverage the block gradient
descent method to optimize the system matrices in turn because they are highly coupled in the
objective function. Given the inherent symmetry of noise variance, we consider the derivative rule
of structured matrices during the optimization process. By alternately performing the expectation
and maximization steps until convergence, the proposed algorithm can determine the sparse system
matrices of LDSs from noisy observations.

Contributions. The contributions of this paper are summarized as follows:

• Leveraging sparsity-promoting techniques, we propose an algorithm to learn LDSs with
sparse system matrices from noisy observations. Particularly, the proposed algorithm gives
the MAP estimate of both hidden states and system matrices by exploring the EM algo-
rithm.

• The proposed algorithm utilizes the derivative rule of structured matrices to ensure the
symmetry of noise covariance matrices during the optimization process. While many EM-
based learning algorithms provide the same update rule for noise covariance matrices, we
argue that they use an inappropriate derivative rule.

• Experimental results on simulation and real-world datasets demonstrate that the proposed
algorithm outperforms the classical ones on learning LDSs with sparse system matrices.

2 RELATED WORK

Prediction error minimization. Prediction error minimization (PEM) learns LDSs by minimiz-
ing one-step prediction error objective via gradient-based optimization methods (Ljung, 2002;
Katayama et al., 2005). Expanding LDSs into linear AutoRegressive Moving Average with eX-
ogenous excitation (ARMAX) or AutoRegressive Moving Average (ARMA) models, Li & Zhang
(2006) leverage the PEM-based method to estimate the second-order structural parameters of linear
structural systems. Given a symmetric transition matrix, Hazan et al. (2017) present an efficient
method for the online prediction of discrete-time LDSs by formulating system identification as an
online PEM problem. In particular, Abdalmoaty & Hjalmarsson (2019) extends PEM for learning
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stochastic nonlinear models recently. However, PEM is found to be sensitive to initial values and
cannot characterize the sparsity of system matrices (Martens, 2010).

Subspace state-space system identification. Basically, subspace state-space system identification
(4SID) algorithms project data Hankel matrices onto certain subspaces to estimate the extended
observability matrix and hidden states using linear algebra tools (Larimore, 1990; Verahegen &
Dewilde, 1992; Van Overschee & De Moor, 1994). Leveraging the least squares method, system
matrices can thus be recovered from either the extended observability matrix or hidden states (Fa-
voreel et al., 2000). Based on principal component analysis, Wang & Qin (2002) present a new 4SID
algorithm to learn LDSs under the errors-in-variables situation. By choosing different weighting
matrices to perform the singular value decomposition, Van Overschee & De Moor (2012) provide
a geometric framework to unify almost all classical 4SID methods. Further, Huang et al. (2016)
presents the Weight-Least-Square method to learn stable LDSs by multiplying the unstable compo-
nent with a weight matrix. However, 4SID algorithms learn system matrices via the least squares
method and thus cannot produce sparse system matrices (Tibshirani, 1996). In particular, it is widely
recognized that such algorithms generally cannot obtain accurate system matrices as required (Qin,
2006; Martens, 2010).

Maximum likelihood estimation. Because the joint likelihood function of LDSs involves hidden
states, the EM algorithm is employed to give the maximum likelihood estimation (MLE) of system
matrices (Shumway & Stoffer, 1982; Ghahramani & Hinton, 1996). Leveraging the EM algorithm,
the distribution of hidden states can be explicitly derived using the Kalman smoother based on the
current estimate of system matrices. Subsequently, it updates system matrices by maximizing the
expected log-likelihood with respect to the hidden states. Gibson & Ninness (2005) present a robust
MLE of LDSs by implementing the expectation and maximization steps via the LR and Cholesky
factorisation respectively. To increase the efficiency of EM for learning LDSs, Martens (2010) pro-
poses an approximate second-order statistics (ASOS) scheme to approximate the expectation step.
Combining EM and Lagrangian relaxation, Umenberger et al. (2018) use semidefinite program-
ming to optimize the tight bounds on the likelihood to learn LDSs with model stability constraints.
However, such learning algorithms lack the ability to deal with sparse system matrices. Particularly,
an inappropriate derivative rule is used to take the derivatives of the likelihood function with respect
to noise covariance matrices due to the neglect of the inherent symmetry of them.

3 PROBLEM FORMULATION

Generally, LDSs describe time-series data {(ut,yt)}Tt=1 through the following stochastic difference
equation (Shumway et al., 2000):

xt = Axt−1 +But + εt, (1)
yt = Cxt +Dut + ωt, (2)

where ut ∈ Rp is the input signal, yt ∈ Rm is the noisy observation, xt ∈ Rn is the hidden
state, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, and D ∈ Rm×p are the system matrices, and εt ∼
N (0,R) and wt ∼ N (0,Q) are the process and measurement noise, respectively. In fact, LDSs are
widely used to model complex systems and have been received successful applications in industrial
processes (Favoreel et al., 2000). To make predictions about future outputs and unknown states and
realize the control of systems, it is necessary to propose an algorithm to learn the model parameters
A, B, C, D, R, and Q from time-series data {(ut,yt)}Tt=1. In particular, many systems have
sparse topology to enable efficient working mechanisms (Jin et al., 2020a). As a result, the proposed
algorithm needs to integrate such priori information into the learning process.

Sparsity-promoting prior. Sparsity-promoting priors can enforce the sparsity of model parameters
by balancing model complexity and modeling error (Wang et al., 2023; Tripura & Chakraborty,
2023). Because the likelihood function of LDSs is Gaussian distributed, the Student’s t-distribution
prior severing as its conjugate prior can be imposed on each component of the unknown system
matrices to promote their sparsity. Generally, the Student’s t-distribution prior is implemented in a
hierarchical way (Tipping, 2001). It imposes a Gaussian prior on the system matrices and then adopt
an Inverse-Gamma hyperprior on the unknown variance of the Gaussian distribution. For example,
we can impose the Student’s t-distribution prior on the system matrix A to promote its sparsity as
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follows:

p(A | Γa) =

n∏
i=1

n∏
j=1

p(Aij | Γa,ij) =

n∏
i=1

n∏
j=1

1√
2πΓa,ij

exp

(
−

A2
ij

2Γa,ij

)
, (3)

p(Γa) =

n∏
i=1

n∏
j=1

ab00
Γ(a0)

Γ−a0−1
a,ij exp

(
− b0
Γa,ij

)
, (4)

where Aij and Γa,ij are the ij-th components of A and Γa, respectively. To generate non-
informative hyperprior on Γa,ij , a0 and b0 are typically set to very small values (e.g., 10−6). In
addition, Γb, Γc, Γd, Γb,ij , Γc,ij , and Γd,ij are defined in a similar manner (see Appendix A).

Loss function. Following the Bayes’ rule, we can combine the marginal likelihood function and
sparsity-promoting prior to estimate the model parameters:

p(Θ | Y ) ∝ p(Y | Θ)︸ ︷︷ ︸
Marginal likelihood

× p(Θ)︸ ︷︷ ︸
Prior

, (5)

where Y = [y1,y2, ...,yT ] and Θ = {A,B,C,D,R,Q,Γa,Γb,Γc,Γd}. Note that directly
maximizing equation 5 is generally intractable because p(Y | Θ) is hard to be explicitly computed.
However, the EM algorithm provides an iterative optimization framework to address such a problem.
Instead of maximizing equation 5, the EM algorithm focuses on iteratively improving the expected
value of the log posterior function of Θ with respect to the hidden state vector X = [x1,x2, ...,xT ]
as follows:

H(Θ | Θk) = EX∼p(X|Y ,Θk)[log p(Y ,X | Θ)p(Θ)]. (6)

Notably, improving equation 6 is equivalent to improving equation 5 at each iteration (Little &
Rubin, 2019).

3.1 RAUCH–TUNG–STRIEBEL SMOOTHER

To explicitly compute equation 6, we first need to derive the conditional distribution of xt given the
noisy observation Y and current Θk = {Ak,Bk,Ck,Dk,Rk,Qk,Γk

a,Γ
k
b ,Γ

k
c ,Γ

k
d}, which can be

formulated as a classical smoothing problem. For LDSs, the RTS smoother provides a closed-form
smoothing solution for p(xt | Y ,Θk).
Lemma 1. (RTS smoother (Särkkä & Svensson, 2023)) For LDSs, the RTS smoother states that

p(xt | Y ,Θk) = N (xt | mk
t ,P

k
t ), (7)

where t = 0, ..., T . Here, mk
t and P k

t are derived via the reverse-time recursions as follows:

mk
t = µk

t +Gk
t

(
mk

t+1 − µk
t+1

)
, (8)

P k
t = Σk

t +Gk
t

(
P k

t+1 −Σ
k

t+1

)
(Gk

t )
′, (9)

with Gk
t = Σk

t

(
Ak
)′ (

Σ
k

t+1

)−1

. The quantities µk
t , µk

t , Σk
t , and Σ

k

t coupled in equation 8
and equation 9 are pre-computed using the Kalman filter as follows:

µk
t = Akµk

t−1 +Bkut, (10)

Σ
k

t = AkΣk
t−1

(
Ak
)′
+Rk, (11)

Kk
t = Σ

k

t (C
k)′
(
CkΣ

k

t (C
k)′ +Qk

)−1

, (12)

µk
t = µk

t +Kk
t

(
Yt −Ckµk

t −Dkut

)
, (13)

Σk
t =

(
In −Kk

t C
k
)
Σ

k

t , (14)

where In is an identity matrix of dimension n. Note that the reverse-time recursions of equation 8
and equation 9 start from the initial conditions mk

T = µk
T and P k

T = Σk
T , and the recursions

of equation 10–equation 14 start from the mean µk
0 and covariance Σk

0 of the initial state x0.
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Besides p(xt | Y ,Θk), we also need to derive the covariance matrix between the adjacent states xt

and xt−1 given Y and Θk to compute equation 6. To address this issue, the following lemma gives
necessary recursions.

Lemma 2. (The lag-one covariance smoother (Särkkä & Svensson, 2023)) For the LDSs, the co-
variance matrix P k

t,t−1 between the adjacent states xt and xt−1 given Y and Θk can be recursively
derived as follows:

P k
t,t−1 = Σk

t (G
k
t−1)

′ +Gk
t

(
P k

t+1,t −AkΣk
t

)
(Gk

t−1)
′ (15)

with the initial condition P k
T,T−1 =

(
In −Kk

TC
k
)
AkΣk

T−1.

Based on Lemmas 1 and 2, we are able to calculate the loss function in equation 6 as follows:

H(Θ | Θk) = H1(A,B,R) +H2(C,D,Q) +H3(A,B,C,D,Γa,Γb,Γc,Γd), (16)

where

H1(A,B,R) = EX∼p(X|Y ,Θk)[log p(X | A,B,R)], (17)

H2(C,D,Q) = EX∼p(X|Y ,Θk)[log p(Y | X,C,D,Q)], (18)

H3(A,B,C,D,Γa,Γb,Γc,Γd) = EX∼p(X|Y ,Θk)[log p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)].
(19)

Due to the limited space, the detailed derivation of equation 16 and explicit mathematical expres-
sions of H1(A,B,R), H2(C,D,Q), and H3(A,B,C,D,Γa,Γb,Γc,Γd) are given in Appendix
B.1.

3.2 PARAMETER AND HYPERPARAMETER LEARNING

As H(Θ | Θk) is a non-convex function and unknown parameters are highly coupled, it is dif-
ficult to obtain an efficient algorithm with theoretical guarantees for solving such a problem. A
heuristic method is to leverage the block gradient descent method to iteratively optimize the model
parameters.

Update procedures of A, B, C, and D. For MLE, leveraging the EM algorithm can give a closed-
form solution to update A, B, C, and D (Ghahramani & Hinton, 1996; Gibson & Ninness, 2005).
However, it is intractable to obtain a similar update procedure in this case due to the introduction
of the sparsity-promoting prior. For example, we can calculate the derivative of H(Θ | Θk) with
respect to A at the kth iteration as follows:

∂H1(A,Bk,Rk)

∂A
+

∂H3(A,Bk,Ck,Dk,Γk
a,Γ

k
b ,Γ

k
c ,Γ

k
d)

∂A

=

T∑
t=1

(
Rk
)−1 (

P k
t,t−1 +

(
mk

t −Amk
t−1 −Bkut

)
(mk

t−1)
′ −AP k

t−1

)
−A⊙ Γ

k

a, (20)

where the ijth component of Γ
k

a is 1/Γk
a,ij and ⊙ is the Hadamard product. Obviously, setting

equation 20 to zero and solving for A cannot give a closed-form solution. To address this issue,
we approximate Rk using the diagonal matrix formed by its diagonal components to facilitate the
optimization process. As such, we can calculate the derivative of H(Θ | Θk) with respect to the rth
row of A, denoted as Ar, at the kth iteration as follows:

∂H1(A,Bk,Rk)

∂Ar
+

∂H3(A,Bk,Ck,Dk,Γk
a,Γ

k
b ,Γ

k
c ,Γ

k
d)

∂Ar

=

T∑
t=1

(
Rk

rr

)−1
(
P k

t,t−1,r + (mk
t,r −Arm

k
t−1 −Bk

rut)
(
mk

t−1

)′ −ArP
k
t−1

)
−ArΓ

kd

a,r, (21)

where Rk
rr is the rrth component of Rk, P k

t,t−1,r, mk
t,r, and Bk

r are the rth rows of P k
t,t−1, mk

t ,

and Bk, respectively. In particular, Γ
kd

a,r = diag[Γ
k

a,r] with Γ
k

a,r being the rth row of Γ
k

a. Set-
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ting equation 21 to zero leads to

Ak+1
r =

(
T∑

t=1

(
(mk

t,r −Bk
rut)(m

k
t−1)

′ + P k
t,t−1,r

))

×

(
T∑

t=1

(
P k

t−1 +mk
t−1

(
mk

t−1

)′)
+Rk

rrΓ
kd

a,r

)−1

. (22)

The detailed derivation of equation 22 can be found in Appendix B.2. Similarly, we can update the
rth row of B, C, and D as follows:

Bk+1
r =

(
T∑

t=1

(
mk

t,r −Ak+1
r mk

t−1

)
u′
t

)(
T∑

t=1

utu
′
t +Rk

rrΓ
kd

b,r

)−1

, (23)

Ck+1
r =

(
T∑

t=1

(
yt,r −Dk

rut

)
(mk

t )
′

)(
T∑

t=1

(
P k

t +mk
t (m

k
t )

′)+Qk
rrΓ

kd

c,r

)−1

, (24)

Dk+1
r =

(
T∑

t=1

(
yt,r −Ck+1

r mk
t

)
u′
t

)(
T∑

t=1

utu
′
t +Qk

rrΓ
kd

d,r

)−1

, (25)

where yt,r is the rth component of yt, Qk
rr is the rrth component of Qk, and Γ

kd

b,r, Γ
kd

c,r, and Γ
kd

d,r

are defined as that of Γ
kd

a,r.

Update procedures of R and Q. Because many learning algorithms do not consider the inherent
symmetry of noise covariance matrices, we argue that they use an inappropriate derivative rule to
calculate the derivatives of the loss function with respect to R and Q (Gibson & Ninness, 2005;
Umenberger et al., 2018). Based on the derivative rule of structured matrices (Petersen et al., 2008),
we can calculate the derivative of H(Θ | Θk) with respect to R at the kth iteration as follows:

∂H1(A
k+1,Bk+1,R)

∂R
=

2L(R)−L(R)⊙ In
2

, (26)

where

L(R) =

T∑
t=1

R−1
(
mk

t −Ak+1mk
t−1 −Bk+1ut

) (
mk

t −Ak+1mk
t−1 −Bk+1ut

)′
R−1

+

T∑
t=1

R−1
(
P k

t −Ak+1P k
t,t−1 − P k

t,t−1

(
Ak+1

)′
+Ak+1P k

t−1

(
Ak+1

)′)
R−1 − TR−1.

(27)
To update R, we first introduce the following lemma to simplify the derivation.
Lemma 3. For a square matrix H ∈ Rn×n, if 2H −H ⊙ In = 0, we have H = 0.

The proof of Lemma 3 is straightforward and thus is omitted here. Based on Lemma 3, setting L(R)
to zero yields

Rk+1 =

∑T
t=1

(
mk

t −Ak+1mk
t−1 −Bk+1ut

) (
mk

t −Ak+1mk
t−1 −Bk+1ut

)′
T

+

∑T
t=1

(
P k

t −Ak+1P k
t,t−1 − P k

t,t−1(A
k+1)′ +Ak+1P k

t−1(A
k+1)′

)
T

. (28)

Remark 1. Without considering the symmetry of R, the derivative of H(Θ | Θk) with respect to R
is equal to L(R). Hence, many learning algorithms give the same update procedure of R as ours.
However, we argue that they use an inappropriate derivative rule during the optimization process.

Similarly, we can update Q as follows:

Qk+1 =

∑T
t=1

(
(yt −Ck+1mk

t −Dk+1ut)(yt −Ck+1mk
t −Dk+1ut)

′ +Ck+1P k
t (C

k+1)′
)

T
.

(29)
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Update procedures of Γa, Γb, Γc, and Γd. Because each component of Γa, Γb, Γc, and Γd is
independent, we can update them individually. For example, we can calculate the derivative of
H(Θ | Θk) with respect to Γa,ij at the kth iteration as follows:

H3(A
k+1,Bk+1,Ck+1,Dk+1,Γa,Γ

k
b ,Γ

k
c ,Γ

k
d)

∂Γa,ij
= −2a0 + 3

2Γa,ij
+

(Ak+1
ij )2 + 2b0

2Γ2
a,ij

. (30)

Setting equation 30 to zero and solving for Γa,ij leads to:

Γk+1
a,ij =

(Ak+1
ij )2 + 2b0

2a0 + 3
. (31)

Similarly, we can update each component of Γb, Γc, and Γd as follows:

Γk+1
b,ij =

(Bk+1
ij )2 + 2b0

2a0 + 3
, (32)

Γk+1
c,ij =

(Ck+1
ij )2 + 2b0

2a0 + 3
, (33)

Γk+1
d,ij =

(Dk+1
ij )2 + 2b0

2a0 + 3
. (34)

Based on the block gradient descent method, we derive an analytical update procedure for learning
Θ. During the optimization process of the system matrices, we use diagonal matrices to approximate
R and Q to give a closed-form update rule for them. During the optimization process of R and Q,
we employ the derivative rule of structured matrices to ensure their symmetry. Experimental results
demonstrate that such a learning algorithm can learn LDSs with sparse system matrices accurately.
Finally, Algorithm 1 summarizes the procedure for learning LDSs with sparse system matrices.
Remark 2. For LDSs without input signals, the proposed method can also learn LDSs with sparse
system matrices from {yt}Tt=1 in an unsupervised manner by simply removing B, D, and ut from
the related update procedures or directly setting them to zero in the optimization process.

Algorithm 1: The proposed learning algorithm for LDSs

Input: Time-series data {(ut,yt)}Tt=1, initial guess of Θ and maximum number of iterations
kmax

Output: MAP estimate of Θ and {xt}Tt=1
1 for k = 1, ..., kmax do
2 // MAP estimate of {xt}Tt=1
3 for t = 1, ..., T do
4 Update the mean µk

t of xt via equation 13 ;
5 Update the variance Σk

t of xt via equation 14 ;
6 Update the covariance P k

t,t−1 between xt and xt−1 via equation 15 ;
7 end
8 // MAP estimate of Θ
9 Update system matrices A, B, C, and D via equation 22– equation 25, respectively;

10 Update noise covariance matrices R and Q via equation 28 and equation 29, respectively;
11 Update hyperparameter matrices Γa, Γb, Γc, and Γd via equation 31– equation 34,

respectively;
12 if a stopping criterion is satisfied then
13 Break;
14 end
15 end

4 SIMILARITY TRANSFORMATION OF LDSS

For LDSs, the similarity transformation is an important mathematical operation to transform them
into different coordinate systems, making it easier to analyze system properties like controllability,
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observability, and stability. Specifically, we can transform the state vector xt into a new state vector
xt through the relation:

xt = Pxt, (35)

where P ∈ Rn×n is a nonsingular matrix. As such, we can derive an equivalent realization of the
original LDSs as follows (see Appendix C):

xt = Axt−1 +But + εt, (36)

yt = Cxt +Dut + ωt, (37)

where A = PAP−1, B = PB, C = CP−1, and εt ∼ N (0,PRP ′). However, the similarity
transformation makes it particularly difficult to accurately learn system matrices. Given the input
signals {ut}Tt=1, the transformed LDSs can produce the same output data {yt}Tt=1 as that of the
original LDSs. Hence, classical learning algorithms for LDSs only learn the system matrices up to a
similar transformation (Viberg, 1994). For LDSs with sparse system matrices, such a transformation
changes not only the values but, more importantly, the topological structure of the system matrices,
resulting in misinterpretation of intrinsic working mechanisms.

4.1 BENEFIT OF SPARSE-PROMOTING PRIORS

Unlike classical learning algorithms, the proposed algorithm learns LDSs with sparse system matri-
ces by adopting a sparsity-promoting prior to balance model complexity and modeling error. Given
the sparsity constraint of system matrices, the similarity transformation cannot be applied using any
arbitrary nonsingular matrix. For the LDSs with sparse system matrices following the Occam’s ra-
zor principle, the nonsingular matrix is typically restricted to be a generalized permutation matrix;
otherwise, the transformed LDSs will include redundant parameters to describe the systems. For
example, if we consider the LDSs with sparse system matrices as follows:

A =

[
0 0.9
0.9 0

]
,B =

[
2 0
0 2

]
,C =

[
2 0
0 2

]
,D =

[
1.5 0
0 1.5

]
, (38)

it is easy to verify that such a system follows the Occam’s razor principle because the rank of system
matrices is equal to the number of nonzero components. Hence, we can derive the nonsingular matrix
P must satisfies

P =

[
a 0
0 b

]
or P =

[
0 a
b 0

]
, (39)

where a and b are arbitrary constants. As such, the transformed system matrices do not introduce
additional parameters to increase model complexity.

Note that applying the similarity transformation with a generalized permutation matrix to the original
state variables will scale their magnitudes and reorder them. However, it will scale the nonzero
components and permute the rows or columns of system matrices accordingly. Hence, an additional
advantage of the sparse-promoting prior is its ability to maximally preserve the inherent topological
structure among the variables. While the learned system matrices differ from the true ones in scale,
such a difference is only caused by the scaled definition of state variables. Hence, the learned LDS
has the same topological structure and dynamic behavior as the real one.

5 EXPERIMENT

In this section, we validate the proposed algorithm on simulation and real-world datasets. In addi-
tion, we compare the proposed algorithm with classical ones mentioned previously to demonstrate
its superior performance, including PEM, 4SID, and MLE. Here, we use the built-in functions n4sid
and pem of Matlab to implement the 4SID and PEM algorithms, respectively. To implement MLE,
we remove the sparsity-promoting priors from our derivation and revise the code accordingly. In
all experiments, the dataset is split into training and testing sets with a 2:1 ratio, where 66.7% of
the data is used for training and 33.3% for testing. Here, we use the mean relative error (MRE) to
evaluate the performance of all the algorithms defined as follows:

MRE =

T∑
t=1

∥yt − ŷt∥22
T∥yt∥22

, (40)
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Table 1: Learned result of all the algorithms on the simulation system

Method Ours PEM 4SID MLE

A

[
0 0.900

0.897 0

] [
0 0.877

0.917 −0.002

] [
0.897 0.023
0.038 −0.898

] [
0.007 0.889
0.905 −0.009

]
B

[
4.004 0
0 4.024

] [
−14.284 16.858
16.979 −14.985

] [
0.005 0.004
−0.001 0

] [
2.887 1.235
1.308 2.848

]
C

[
1.001 0
0 1.011

] [
0.880 0.745
0.766 0.861

] [
422.168 −170.034
415.973 179.648

] [
1.777 −0.778
−0.760 1.763

]
D

[
1.473 0
0 1.480

] [
5.521 0.099
0.017 5.550

] [
0 0
0 0

] [
1.404 0.113
−0.092 1.468

]
R

[
1.879 0.986
0.986 1.877

] [
− −
− −

] [
− −
− −

] [
1.543 1.402
1.402 1.546

]
Q

[
0.473 0.199
0.199 0.481

] [
− −
− −

] [
− −
− −

] [
0.455 0.191
0.191 0.469

]
MRE 7.35% 16.37% 17.25% 7.38%

where {ŷt}Tt=1 is the sequence of data points generated by the learned systems in response to the
same input signals. Experimental results illustrate that the proposed algorithm outperforms classical
ones on learning LDSs with sparse system matrices.

5.1 A SYNTHETIC SYSTEM FOLLOWING THE OCCAM’S RAZOR PRINCIPLE

First, we consider a synthetic system to facilitate the comparison between the proposed algorithm
and classical ones as follows:

xt =

[
0 0.9
0.9 0

]
xt−1 +

[
2 0
0 2

]
ut + εt, εt ∼

([
0
0

]
,

[
0.49 0.25
0.25 0.49

])
, (41)

yt =

[
2 0
0 2

]
xt +

[
1.5 0
0 1.5

]
ut +wt, wt ∼

([
0
0

]
,

[
0.49 0.25
0.25 0.49

])
. (42)

To generate data points, the initial values of x0 are drawn from the Gaussian distribution with mean
[1, 1]′ and an identity matrix as the covariance, and the input signal ut is drawn from the uniform
distribution on [0, 2]. As for algorithm implementation, we collect 2000 data points and set the initial
value of A, B, C, D, R, and Q both to be an identity matrix. The learned parameters less than the
threshold 0.001 are removed from the result. In Table 1, we give the learned system matrices of all
the algorithms and the corresponding MRE.

Because n4sid and pem consider the innovation representation of the LDSs (Qin, 2006), they focus
on learning the innovation covariance matrix instead of R and Q, which are thus omitted here. Obvi-
ously, the learned system matrices of classical algorithms are completely different with the original
ones, making it difficult for us to understand the system. However, sparse-promoting priors will
restrict the nonsingular matrix P of the similarity transformation to be a generalized permutation
matrix for this system. Comparing the learned B and C of the proposed algorithm with the real
ones, we can derive P ≈ 2I2, which is indeed consistent with the theoretical analysis. Hence, the
learned LDS of the proposed algorithm preserves the topological structure of the system, differing
only in the scale of the parameters. Consequently, the learned LDS can enable us to explore the
working mechanisms of the system.

5.2 INDUSTRIAL PROCESS SYSTEMS

Next, we validate the proposed algorithm on the real-world datasets obtained from the Database for
the Identification of Systems, which are standard datasets used for learning LDSs (Zhu et al., 1994;
Martens, 2010).

9
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Table 2: Learned result of all the algorithms on the industrial process systems

Dataset Industrial evaporator Glass furnace
Method Ours PEM 4SID MLE Ours PEM 4SID MLE
MRE 13.74% 17.90% 43.77% 18.00% 18.74% 62.47% 24.32% 30.27%

Industrial evaporatoration systems. In industry, multiple-stage evaporators are widely used to
reduce the water content of a product such as milk. The dataset is composed of 3-dimensional time-
series with a length of 6305. The inputs consist of the feed flow, vapor flow to the first evaporator
stage, and cooling water flow to the condenser, while the outputs include the dry matter content,
flow rate, and temperature of the product.

Glass furnaces. The second dataset comes from the Philips glass furnace, which is used to melt
raw materials into glass. The glass furnace has two burners and one ventilator. Hence, the dataset
includes two heating inputs and one cooling input with a length of 1247. In addition, we collect
three outputs from temperature sensors in a cross section of the furnace.

Table 2 displays the MRE between the predicted outputs of all the learned LDSs and real ones.
Due to the lack of the ground truth, the learned system matrices of all the algorithms are not de-
picted for comparison. Note that the proposed algorithm obtains minimum MRE on both datasets,
demonstrating its superiority over classical algorithms.

6 DISCUSSION

To learn the LDSs with sparse system matrices, we impose sparsity-promoting priors on system ma-
trices to balance model complexity and modeling error in this paper. Following the MAP principle,
we then learn system matrices by exploring the EM algorithm to maximize the loss function com-
posed of the priors and likelihood function. During the optimization process, we use the derivative
rule of structured matrices to ensure the symmetry of noise covariance matrices. In addition, we
find that the sparsity-promoting prior is capable of retaining the topological structure of the LDSs,
as the nonsingular matrix of the similarity transformation is typically limited to be a generalized
permutation matrix. Hence, the proposed algorithm is more useful for us to explore the interacting
laws of the LDSs compared to the classical ones.

There still remains some potential limitations for the proposed algorithm. First, it cannot determine
the order n of the system from data directly. While we can compare the performance of the learned
systems across different orders to select the best one, such a method is quite exhaustive. The other
limitation is that the similarity transformation may shrink many parameters to very small values,
potentially leading to numerical errors. However, we believe that the proposed algorithm sheds a
light on the learning of LDSs with sparse system matrices. In our future work, we hope to explore
how to exactly learn LDSs with additional constraints.
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APPENDIX

A SPARSITY-PROMOTING PRIOR

Besides A, we also impose the sparsity-promoting priors on B, C, and D as follows:

p(B | Γb) =

n∏
i=1

p∏
j=1

p(Bij | Γb,ij) =

n∏
i=1

p∏
j=1

1√
2πΓb,ij

exp

(
−

B2
ij

2Γb,ij

)
, (43)

p(C | Γc) =

m∏
i=1

n∏
j=1

p(Cij | Γc,ij) =

m∏
i=1

n∏
j=1

1√
2πΓc,ij

exp

(
−

C2
ij

2Γc,ij

)
, (44)

p(D | Γd) =

m∏
i=1

p∏
j=1

p(Dij | Γd,ij) =

m∏
i=1

p∏
j=1

1√
2πΓd,ij

exp

(
−

D2
ij

2Γd,ij

)
, (45)

where Γb,ij ,Γc,ij , and Γd,ij are the ijth component of Γb,Γc, and Γd, respectively. To complete
the hierarchy, the Inverse-Gamma distribution prior is imposed on each component of Γb,Γc, and
Γd as follows:

p(Γb) =

n∏
i=1

p∏
j=1

ab00
Γ(a0)

Γ−a0−1
b,ij exp

(
− b0
Γb,ij

)
, (46)

p(Γc) =

m∏
i=1

n∏
j=1

ab00
Γ(a0)

Γ−a0−1
c,ij exp

(
− b0
Γc,ij

)
, (47)

p(Γd) =

m∏
i=1

p∏
j=1

ab00
Γ(a0)

Γ−a0−1
d,ij exp

(
− b0
Γd,ij

)
. (48)

B DETAILED MATHEMATICAL DERIVATION

B.1 DERIVATION OF EQUATION 16

Given the conditional independence between the variables, we can derive

H(Θ | Θk)

= EX∼p(X|Y ,Θk)[log p(Y ,X | Θ)p(Θ)]

= EX∼p(X|Y ,Θk)[log p(Y | X,Θ)p(X | Θ)p(Θ)]

= EX∼p(X|Y ,Θk)[log p(Y | X,C,D,Q)p(X | A,B,R)p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)]

= EX∼p(X|Y ,Θk)[log p(X | A,B,R)]︸ ︷︷ ︸
H1(A,B,R)

+EX∼p(X|Y ,Θk)[log p(Y | X,C,D,Q)]︸ ︷︷ ︸
H2(C,D,Q)

+ EX∼p(X|Y ,Θk)[log p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)]︸ ︷︷ ︸
H3(A,B,C,D,Γa,Γb,Γc,Γd)

. (49)

Explicit mathematical expression of H1(A,B,R). Based on equation 1 and the chain rule in
probability, we can derive

p(X | A,B,R)

= p(x0)

T∏
t=1

p(xt | xt−1,A,B,R) (50)

∝
T∏

t=1

| R |− 1
2 exp

(
− (xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)

2

)
. (51)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hence,

H1(A,B,R)

= EX∼p(X|Y ,Θk)[log p(X | A,B,R)]

= EX∼p(X|Y ,Θk)

[
−
T log | R | +

∑T
t=1(xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)

2

]

= −
T log | R | +

∑T
t=1 EX∼p(X|Y ,Θk)(xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)

2

= −
T log | R | +

∑T
t=1

(
mk

t −Amk
t−1 −But

)′
R−1

(
mk

t −Amk
t−1 −But

)
2

−
∑T

t=1

(
Tr(R−1P k

t )− Tr(R−1AP k
t,t−1)− Tr(A′R−1P k

t,t−1) + Tr(A′R−1AP k
t−1)

)
2

. (52)

Explicit mathematical expression of H2(C,D,Q). Based on equation 2, we can derive

p(Y | X,C,D,Q)

=

T∏
t=1

p(yt | xt,C,D)

∝
T∏

t=1

| Q |− 1
2 exp

(
− (yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)

2

)
. (53)

Hence,

H2(C,D,Q)

= EX∼p(X|Y ,Θk)[log p(Y | X,C,D,Q)]

= EX∼p(X|Y ,Θk)

[
−
T log | Q | +

∑T
t=1(yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)

2

]

= −
T log | Q | +

∑T
t=1 EX∼p(X|Y ,Θk)(yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)

2

= −
T log | Q | +

∑T
t=1

(
(yt −Cmk

t −Dut)
′Q−1(yt −Cmk

t −Dut) + Tr(C ′Q−1CP k
t )
)

2
.

(54)

Explicit mathematical expression of H3(A,B,C,D,Γa,Γb,Γc,Γd). Based on the priors im-
posed on the system matrices and corresponding hyperparameters, we can derive:

p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)

= p(A | Γa)p(Γa)p(B | Γb)p(Γb)p(C | Γc)p(Γc)p(D | Γd)p(Γd)

∝
n∏

i=1

n∏
j=1

Γ
− 2a0+3

2
a,ij exp

(
−
A2

ij + 2b0

2Γa,ij

)
×

n∏
i=1

p∏
j=1

Γ
− 2a0+3

2

b,ij exp

(
−
B2

ij + 2b0

2Γb,ij

)

×
m∏
i=1

n∏
j=1

Γ
− 2a0+3

2
c,ij exp

(
−
C2

ij + 2b0

2Γc,ij

)
×

m∏
i=1

p∏
j=1

Γ
− 2a0+3

2

d,ij exp

(
−
D2

ij + 2b0

2Γd,ij

)
. (55)
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Hence, we have
H3(A,B,C,D,Γa,Γb,Γc,Γd)

= EX∼p(X|Y ,Θk)[log p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)].

= −
n∑

i=1

n∑
j=1

(
(2a0 + 3) log | Γa,ij |

2
+

A2
ij + 2b0

2Γa,ij

)

−
n∑

i=1

p∑
j=1

(
(2a0 + 3) log | Γb,ij |

2
+

B2
ij + 2b0

2Γb,ij

)

−
m∑
i=1

n∑
j=1

(
(2a0 + 3) log | Γc,ij |

2
+

C2
ij + 2b0

2Γc,ij

)

−
m∑
i=1

p∑
j=1

(
(2a0 + 3) log | Γd,ij |

2
+

D2
ij + 2b0

2Γd,ij

)
. (56)

B.2 DERIVATION OF EQUATION 22

To provide an efficient closed-form update rule for A, we only keep the diagonal components of Rk

and set the others to zero during the optimization process. As such, we have
H1(A,Bk,Rk) +H3(A,Bk,Ck,Dk,Γk

a,Γ
k
b ,Γ

k
c ,Γ

k
d)

= −
∑T

t=1

∑n
r=1

(
Rk

rr

)−1 (
mk

t,r −Arm
k
t−1 −Bk

rut

)2
2

−
n∑

r=1

ArΓ
kd

a,rA
′
r

2

−

∑T
t=1

∑n
r=1

(
Tr
(
A′

r

(
Rk

rr

)−1
ArP

k
t−1

)
− 2

(
Rk

rr

)−1
Ar

(
P k

t,t−1,r

)′)
2

+ c, (57)

where c is the term unrelated to A. Hence, we can calculate the derivative of H(Θ | Θk) with
respect to Ar at the kth iteration as follows:
∂H1(A,Bk,Rk)

∂Ar
+

∂H3(A,Bk,Ck,Dk,Γk
a,Γ

k
b ,Γ

k
c ,Γ

k
d)

∂Ar

=

T∑
t=1

(
Rk

rr

)−1 (
mk

t,r −Arm
k
t−1 −Bk

rut

) (
mk

t−1

)′ −ArΓ
kd

a,r

−
T∑

t=1

(
Rk

rr

)−1 (
ArP

k
t−1 − P k

t,t−1,r

)
=

T∑
t=1

(
Rk

rr

)−1
(
P k

t,t−1,r + (mk
t,r −Arm

k
t−1 −Bk

rut)
(
mk

t−1

)′ −ArP
k
t−1

)
−ArΓ

kd

a,r. (58)

Setting equation 58 to zero leads to
T∑

t=1

(
Rk

rr

)−1
(
Arm

k
t−1

(
mk

t−1

)′
+ArP

k
t−1

)
+ArΓ

kd

a,r

=

T∑
t=1

(
Rk

rr

)−1
(
P k

t,t−1,r + (mk
t,r −Bk

rut)
(
mk

t−1

)′)
, (59)

Hence, we can update A at the kth iteration as follows:

Ak+1
r =

(
T∑

t=1

(
(mk

t,r −Bk
rut)(m

k
t−1)

′ + P k
t,t−1,r

))

×

(
T∑

t=1

(
P k

t−1 +mk
t−1

(
mk

t−1

)′)
+Rk

rrΓ
kd
a,r

)−1

. (60)
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C EQUIVALENT REALIZATION OF LDSS

Based on the transformed coordinates, we can derive

xt = Pxt = PAxt−1 + PBut + Pεt =
(
PAP−1

)
xt−1 + (PB)ut + Pεt, (61)

yt = Cxt +Dut + ωt =
(
CP−1

)
xt +Dut + ωt. (62)

Hence, an equivalent realization of the original LDSs is as follows:

xt = Axt−1 +But + εt, (63)

yt = Cxt +Dut + ωt, (64)

where A = PAP−1, B = PB, C = CP−1, and εt = Pεt.
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