
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING LINEAR DYNAMICAL SYSTEMS WITH
SPARSE SYSTEM MATRICES

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the tractable analysis and control, linear dynamical systems (LDSs) pro-
vide a fundamental mathematical tool for time-series data modeling in various
disciplines. Particularly, many LDSs have sparse system matrices because inter-
actions among variables are limited or only a few significant relationships exist.
However, available learning algorithms for LDSs lack the ability to learn system
matrices with the sparsity constraint. To address this issue, we impose sparsity-
promoting priors on system matrices and explore the expectation–maximization
(EM) algorithm to give a maximum a posteriori (MAP) estimate of both hidden
states and system matrices from noisy observations. In addition, we find that many
learning algorithms based on the gradient descent method use an inappropriate
derivative rule, because they neglect the inherent symmetry of noise covariance
matrices. Here, we consider the derivative rule of structured matrices during the
optimization process to guarantee their symmetry. Experimental results on simu-
lation and real-world problems illustrate that the proposed algorithm significantly
improves learning accuracy over classical ones.

1 INTRODUCTION

Linear dynamical systems (LDSs) are fundamental mathematical models for analyzing time-series
data with application in robotics (Mamakoukas et al., 2019; 2020), systems biology (Jin et al., 2020b;
Pillonetto & Ljung, 2023), and natural language processing (Smith et al., 1999; Belanger & Kakade,
2015). Basically, LDSs consider a linear transformation between finite-dimensional hidden states
disturbed by input signals and noise to capture the time evolution of systems (Hazan et al., 2017).
In addition, LDSs are also widely used to approximate complex nonlinear systems in industrial
processes given their relative simplicity (Yuan et al., 2017; Lusch et al., 2018). Due to a complete
rigorous theory available on LDSs, learning LDSs from noisy observations can enable us to make
tractable analysis and control of systems (Chen & Poor, 2022; Bakshi et al., 2023).

In this paper, we focus on learning LDSs with sparse system matrices for two important reasons.
First, the learned LDSs should include the minimally required parameters to explain time-series
data following the Occam’s razor principle. Additionally, many real-world systems have sparse
topology because each state or measurement variable only depends on a few other state variables
and inputs (Efroni et al., 2022). For example, a gene only regulates the expression of a limited
number of other genes in gene regulatory networks (He et al., 2024). In industry, communication
systems usually have sparse topology to reduce energy consumption (Jin et al., 2020a;b). However,
available learning algorithms lack the ability to learn LDSs with the sparsity constraint on system
matrices. In addition, many algorithms neglect the inherent symmetry of noise covariance matrices
during the optimization process.

To learn the LDSs with sparse system matrices, we impose the sparsity-promoting prior on them
to balance model complexity and modeling error in this paper (Wang et al., 2024). Subsequently,
we can combine the likelihood and prior functions to derive the posterior distribution of system
matrices following the Bayes’ rule. However, directly maximizing such a posterior distribution to
estimate system matrices is intractable because the states of LDSs are unknown. To address this
issue, we explore the expectation–maximization (EM) algorithm to give an alternate maximum a
posteriori (MAP) estimate of hidden states and system matrices. In the expectation step, we use
the Rauch–Tung–Striebel (RTS) smoother, also known as the Kalman smoother, to give a closed-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

if not converged

Time-series data

u1 u2 u
p

Initial guesses of system matrices and noise covariance matrices

t tt

y1 y2 ym

Input data

Output data

x1t t tx2 xn

t tt

t tt t tt

Learned LDS

Sparse

Symmetric

xt=Axt-1+But+εt yt=Cxt+Dut+wt

Learned

state distribution

Figure 1: The pipeline of the proposed algorithm. Given time-series data and initial guesses of
system matrices and noise covariance matrices, the proposed algorithm alternately learns the hidden
state distribution and unknown LDS until it converges.

form update rule for the hidden states. In the maximization step, we leverage the block gradient
descent method to optimize the system matrices in turn because they are highly coupled in the
objective function. Given the inherent symmetry of noise variance, we consider the derivative rule
of structured matrices during the optimization process. By alternately performing the expectation
and maximization steps until convergence, the proposed algorithm can determine the sparse system
matrices of LDSs from noisy observations.

Contributions. The contributions of this paper are summarized as follows:

• Leveraging sparsity-promoting techniques, we propose an algorithm to learn LDSs with
sparse system matrices from noisy observations. Particularly, the proposed algorithm gives
the MAP estimate of both hidden states and system matrices by exploring the EM algo-
rithm.

• The proposed algorithm utilizes the derivative rule of structured matrices to ensure the
symmetry of noise covariance matrices during the optimization process. While many EM-
based learning algorithms provide the same update rule for noise covariance matrices, we
argue that they use an inappropriate derivative rule.

• Experimental results on simulation and real-world datasets demonstrate that the proposed
algorithm outperforms the classical ones on learning LDSs with sparse system matrices.

2 RELATED WORK

Prediction error minimization. Prediction error minimization (PEM) learns LDSs by minimiz-
ing one-step prediction error objective via gradient-based optimization methods (Ljung, 2002;
Katayama et al., 2005). Expanding LDSs into linear AutoRegressive Moving Average with eX-
ogenous excitation (ARMAX) or AutoRegressive Moving Average (ARMA) models, Li & Zhang
(2006) leverage the PEM-based method to estimate the second-order structural parameters of linear
structural systems. Given a symmetric transition matrix, Hazan et al. (2017) present an efficient
method for the online prediction of discrete-time LDSs by formulating system identification as an
online PEM problem. In particular, Abdalmoaty & Hjalmarsson (2019) extends PEM for learning

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

stochastic nonlinear models recently. However, PEM is found to be sensitive to initial values and
cannot characterize the sparsity of system matrices (Martens, 2010).

Subspace state-space system identification. Basically, subspace state-space system identification
(4SID) algorithms project data Hankel matrices onto certain subspaces to estimate the extended
observability matrix and hidden states using linear algebra tools (Larimore, 1990; Verahegen &
Dewilde, 1992; Van Overschee & De Moor, 1994). Leveraging the least squares method, system
matrices can thus be recovered from either the extended observability matrix or hidden states (Fa-
voreel et al., 2000). Based on principal component analysis, Wang & Qin (2002) present a new 4SID
algorithm to learn LDSs under the errors-in-variables situation. By choosing different weighting
matrices to perform the singular value decomposition, Van Overschee & De Moor (2012) provide
a geometric framework to unify almost all classical 4SID methods. Further, Huang et al. (2016)
presents the Weight-Least-Square method to learn stable LDSs by multiplying the unstable compo-
nent with a weight matrix. However, 4SID algorithms learn system matrices via the least squares
method and thus cannot produce sparse system matrices (Tibshirani, 1996). In particular, it is widely
recognized that such algorithms generally cannot obtain accurate system matrices as required (Qin,
2006; Martens, 2010).

Maximum likelihood estimation. Because the joint likelihood function of LDSs involves hidden
states, the EM algorithm is employed to give the maximum likelihood estimation (MLE) of system
matrices (Shumway & Stoffer, 1982; Ghahramani & Hinton, 1996). Leveraging the EM algorithm,
the distribution of hidden states can be explicitly derived using the Kalman smoother based on the
current estimate of system matrices. Subsequently, it updates system matrices by maximizing the
expected log-likelihood with respect to the hidden states. Gibson & Ninness (2005) present a robust
MLE of LDSs by implementing the expectation and maximization steps via the LR and Cholesky
factorisation respectively. To increase the efficiency of EM for learning LDSs, Martens (2010) pro-
poses an approximate second-order statistics (ASOS) scheme to approximate the expectation step.
Combining EM and Lagrangian relaxation, Umenberger et al. (2018) use semidefinite program-
ming to optimize the tight bounds on the likelihood to learn LDSs with model stability constraints.
However, such learning algorithms lack the ability to deal with sparse system matrices. Particularly,
an inappropriate derivative rule is used to take the derivatives of the likelihood function with respect
to noise covariance matrices due to the neglect of the inherent symmetry of them.

3 PROBLEM FORMULATION

Generally, LDSs describe time-series data {(ut,yt)}Tt=1 through the following stochastic difference
equation (Shumway et al., 2000):

xt = Axt−1 +But + εt, (1)
yt = Cxt +Dut + ωt, (2)

where ut ∈ Rp is the input signal, yt ∈ Rm is the noisy observation, xt ∈ Rn is the hidden
state, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, and D ∈ Rm×p are the system matrices, and εt ∼
N (0,R) and wt ∼ N (0,Q) are the process and measurement noise, respectively. In fact, LDSs are
widely used to model complex systems and have been received successful applications in industrial
processes (Favoreel et al., 2000). To make predictions about future outputs and unknown states and
realize the control of systems, it is necessary to propose an algorithm to learn the model parameters
A, B, C, D, R, and Q from time-series data {(ut,yt)}Tt=1. In particular, many systems have
sparse topology to enable efficient working mechanisms (Jin et al., 2020a). As a result, the proposed
algorithm needs to integrate such priori information into the learning process.

Sparsity-promoting prior. Sparsity-promoting priors can enforce the sparsity of model parameters
by balancing model complexity and modeling error (Wang et al., 2023; Tripura & Chakraborty,
2023). Because the likelihood function of LDSs is Gaussian distributed, the Student’s t-distribution
prior severing as its conjugate prior can be imposed on each component of the unknown system
matrices to promote their sparsity. Generally, the Student’s t-distribution prior is implemented in a
hierarchical way (Tipping, 2001). It imposes a Gaussian prior on the system matrices and then adopt
an Inverse-Gamma hyperprior on the unknown variance of the Gaussian distribution. For example,
we can impose the Student’s t-distribution prior on the system matrix A to promote its sparsity as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

follows:

p(A | Γa) =

n∏
i=1

n∏
j=1

p(Aij | Γa,ij) =

n∏
i=1

n∏
j=1

1√
2πΓa,ij

exp

(
−

A2
ij

2Γa,ij

)
, (3)

p(Γa) =

n∏
i=1

n∏
j=1

ab00
Γ(a0)

Γ−a0−1
a,ij exp

(
− b0
Γa,ij

)
, (4)

where Aij and Γa,ij are the ij-th components of A and Γa, respectively. To generate non-
informative hyperprior on Γa,ij , a0 and b0 are typically set to very small values (e.g., 10−6). In
addition, Γb, Γc, Γd, Γb,ij , Γc,ij , and Γd,ij are defined in a similar manner (see Appendix A).

Loss function. Following the Bayes’ rule, we can combine the marginal likelihood function and
sparsity-promoting prior to estimate the model parameters:

p(Θ | Y) ∝ p(Y | Θ)︸ ︷︷ ︸
Marginal likelihood

× p(Θ)︸ ︷︷ ︸
Prior

, (5)

where Y = [y1,y2, ...,yT] and Θ = {A,B,C,D,R,Q,Γa,Γb,Γc,Γd}. Note that directly
maximizing equation 5 is generally intractable because p(Y | Θ) is hard to be explicitly computed.
However, the EM algorithm provides an iterative optimization framework to address such a problem.
Instead of maximizing equation 5, the EM algorithm focuses on iteratively improving the expected
value of the log posterior function of Θ with respect to the hidden state vector X = [x1,x2, ...,xT]
as follows:

H(Θ | Θk) = EX∼p(X|Y ,Θk)[log p(Y ,X | Θ)p(Θ)]. (6)

Notably, improving equation 6 is equivalent to improving equation 5 at each iteration (Little &
Rubin, 2019).

3.1 RAUCH–TUNG–STRIEBEL SMOOTHER

To explicitly compute equation 6, we first need to derive the conditional distribution of xt given the
noisy observation Y and current Θk = {Ak,Bk,Ck,Dk,Rk,Qk,Γk

a,Γ
k
b ,Γ

k
c ,Γ

k
d}, which can be

formulated as a classical smoothing problem. For LDSs, the RTS smoother provides a closed-form
smoothing solution for p(xt | Y ,Θk).
Lemma 1. (RTS smoother (Särkkä & Svensson, 2023)) For LDSs, the RTS smoother states that

p(xt | Y ,Θk) = N (xt | mk
t ,P

k
t), (7)

where t = 0, ..., T . Here, mk
t and P k

t are derived via the reverse-time recursions as follows:

mk
t = µk

t +Gk
t

(
mk

t+1 − µk
t+1

)
, (8)

P k
t = Σk

t +Gk
t

(
P k

t+1 −Σ
k

t+1

)
(Gk

t)
′, (9)

with Gk
t = Σk

t

(
Ak
)′ (

Σ
k

t+1

)−1

. The quantities µk
t , µk

t , Σk
t , and Σ

k

t coupled in equation 8
and equation 9 are pre-computed using the Kalman filter as follows:

µk
t = Akµk

t−1 +Bkut, (10)

Σ
k

t = AkΣk
t−1

(
Ak
)′
+Rk, (11)

Kk
t = Σ

k

t (C
k)′
(
CkΣ

k

t (C
k)′ +Qk

)−1

, (12)

µk
t = µk

t +Kk
t

(
Yt −Ckµk

t −Dkut

)
, (13)

Σk
t =

(
In −Kk

t C
k
)
Σ

k

t , (14)

where In is an identity matrix of dimension n. Note that the reverse-time recursions of equation 8
and equation 9 start from the initial conditions mk

T = µk
T and P k

T = Σk
T , and the recursions

of equation 10–equation 14 start from the mean µk
0 and covariance Σk

0 of the initial state x0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Besides p(xt | Y ,Θk), we also need to derive the covariance matrix between the adjacent states xt

and xt−1 given Y and Θk to compute equation 6. To address this issue, the following lemma gives
necessary recursions.

Lemma 2. (The lag-one covariance smoother (Särkkä & Svensson, 2023)) For the LDSs, the co-
variance matrix P k

t,t−1 between the adjacent states xt and xt−1 given Y and Θk can be recursively
derived as follows:

P k
t,t−1 = Σk

t (G
k
t−1)

′ +Gk
t

(
P k

t+1,t −AkΣk
t

)
(Gk

t−1)
′ (15)

with the initial condition P k
T,T−1 =

(
In −Kk

TC
k
)
AkΣk

T−1.

Based on Lemmas 1 and 2, we are able to calculate the loss function in equation 6 as follows:

H(Θ | Θk) = H1(A,B,R) +H2(C,D,Q) +H3(A,B,C,D,Γa,Γb,Γc,Γd), (16)

where

H1(A,B,R) = EX∼p(X|Y ,Θk)[log p(X | A,B,R)], (17)

H2(C,D,Q) = EX∼p(X|Y ,Θk)[log p(Y | X,C,D,Q)], (18)

H3(A,B,C,D,Γa,Γb,Γc,Γd) = EX∼p(X|Y ,Θk)[log p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)].
(19)

Due to the limited space, the detailed derivation of equation 16 and explicit mathematical expres-
sions of H1(A,B,R), H2(C,D,Q), and H3(A,B,C,D,Γa,Γb,Γc,Γd) are given in Appendix
B.1.

3.2 PARAMETER AND HYPERPARAMETER LEARNING

As H(Θ | Θk) is a non-convex function and unknown parameters are highly coupled, it is dif-
ficult to obtain an efficient algorithm with theoretical guarantees for solving such a problem. A
heuristic method is to leverage the block gradient descent method to iteratively optimize the model
parameters.

Update procedures of A, B, C, and D. For MLE, leveraging the EM algorithm can give a closed-
form solution to update A, B, C, and D (Ghahramani & Hinton, 1996; Gibson & Ninness, 2005).
However, it is intractable to obtain a similar update procedure in this case due to the introduction
of the sparsity-promoting prior. For example, we can calculate the derivative of H(Θ | Θk) with
respect to A at the kth iteration as follows:

∂H1(A,Bk,Rk)

∂A
+

∂H3(A,Bk,Ck,Dk,Γk
a,Γ

k
b ,Γ

k
c ,Γ

k
d)

∂A

=

T∑
t=1

(
Rk
)−1 (

P k
t,t−1 +

(
mk

t −Amk
t−1 −Bkut

)
(mk

t−1)
′ −AP k

t−1

)
−A⊙ Γ

k

a, (20)

where the ijth component of Γ
k

a is 1/Γk
a,ij and ⊙ is the Hadamard product. Obviously, setting

equation 20 to zero and solving for A cannot give a closed-form solution. To address this issue,
we approximate Rk using the diagonal matrix formed by its diagonal components to facilitate the
optimization process. As such, we can calculate the derivative of H(Θ | Θk) with respect to the rth
row of A, denoted as Ar, at the kth iteration as follows:

∂H1(A,Bk,Rk)

∂Ar
+

∂H3(A,Bk,Ck,Dk,Γk
a,Γ

k
b ,Γ

k
c ,Γ

k
d)

∂Ar

=

T∑
t=1

(
Rk

rr

)−1
(
P k

t,t−1,r + (mk
t,r −Arm

k
t−1 −Bk

rut)
(
mk

t−1

)′ −ArP
k
t−1

)
−ArΓ

kd

a,r, (21)

where Rk
rr is the rrth component of Rk, P k

t,t−1,r, mk
t,r, and Bk

r are the rth rows of P k
t,t−1, mk

t ,

and Bk, respectively. In particular, Γ
kd

a,r = diag[Γ
k

a,r] with Γ
k

a,r being the rth row of Γ
k

a. Set-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ting equation 21 to zero leads to

Ak+1
r =

(
T∑

t=1

(
(mk

t,r −Bk
rut)(m

k
t−1)

′ + P k
t,t−1,r

))

×

(
T∑

t=1

(
P k

t−1 +mk
t−1

(
mk

t−1

)′)
+Rk

rrΓ
kd

a,r

)−1

. (22)

The detailed derivation of equation 22 can be found in Appendix B.2. Similarly, we can update the
rth row of B, C, and D as follows:

Bk+1
r =

(
T∑

t=1

(
mk

t,r −Ak+1
r mk

t−1

)
u′
t

)(
T∑

t=1

utu
′
t +Rk

rrΓ
kd

b,r

)−1

, (23)

Ck+1
r =

(
T∑

t=1

(
yt,r −Dk

rut

)
(mk

t)
′

)(
T∑

t=1

(
P k

t +mk
t (m

k
t)

′)+Qk
rrΓ

kd

c,r

)−1

, (24)

Dk+1
r =

(
T∑

t=1

(
yt,r −Ck+1

r mk
t

)
u′
t

)(
T∑

t=1

utu
′
t +Qk

rrΓ
kd

d,r

)−1

, (25)

where yt,r is the rth component of yt, Qk
rr is the rrth component of Qk, and Γ

kd

b,r, Γ
kd

c,r, and Γ
kd

d,r

are defined as that of Γ
kd

a,r.

Update procedures of R and Q. Because many learning algorithms do not consider the inherent
symmetry of noise covariance matrices, we argue that they use an inappropriate derivative rule to
calculate the derivatives of the loss function with respect to R and Q (Gibson & Ninness, 2005;
Umenberger et al., 2018). Based on the derivative rule of structured matrices (Petersen et al., 2008),
we can calculate the derivative of H(Θ | Θk) with respect to R at the kth iteration as follows:

∂H1(A
k+1,Bk+1,R)

∂R
=

2L(R)−L(R)⊙ In
2

, (26)

where

L(R) =

T∑
t=1

R−1
(
mk

t −Ak+1mk
t−1 −Bk+1ut

) (
mk

t −Ak+1mk
t−1 −Bk+1ut

)′
R−1

+

T∑
t=1

R−1
(
P k

t −Ak+1P k
t,t−1 − P k

t,t−1

(
Ak+1

)′
+Ak+1P k

t−1

(
Ak+1

)′)
R−1 − TR−1.

(27)
To update R, we first introduce the following lemma to simplify the derivation.
Lemma 3. For a square matrix H ∈ Rn×n, if 2H −H ⊙ In = 0, we have H = 0.

The proof of Lemma 3 is straightforward and thus is omitted here. Based on Lemma 3, setting L(R)
to zero yields

Rk+1 =

∑T
t=1

(
mk

t −Ak+1mk
t−1 −Bk+1ut

) (
mk

t −Ak+1mk
t−1 −Bk+1ut

)′
T

+

∑T
t=1

(
P k

t −Ak+1P k
t,t−1 − P k

t,t−1(A
k+1)′ +Ak+1P k

t−1(A
k+1)′

)
T

. (28)

Remark 1. Without considering the symmetry of R, the derivative of H(Θ | Θk) with respect to R
is equal to L(R). Hence, many learning algorithms give the same update procedure of R as ours.
However, we argue that they use an inappropriate derivative rule during the optimization process.

Similarly, we can update Q as follows:

Qk+1 =

∑T
t=1

(
(yt −Ck+1mk

t −Dk+1ut)(yt −Ck+1mk
t −Dk+1ut)

′ +Ck+1P k
t (C

k+1)′
)

T
.

(29)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Update procedures of Γa, Γb, Γc, and Γd. Because each component of Γa, Γb, Γc, and Γd is
independent, we can update them individually. For example, we can calculate the derivative of
H(Θ | Θk) with respect to Γa,ij at the kth iteration as follows:

H3(A
k+1,Bk+1,Ck+1,Dk+1,Γa,Γ

k
b ,Γ

k
c ,Γ

k
d)

∂Γa,ij
= −2a0 + 3

2Γa,ij
+

(Ak+1
ij)2 + 2b0

2Γ2
a,ij

. (30)

Setting equation 30 to zero and solving for Γa,ij leads to:

Γk+1
a,ij =

(Ak+1
ij)2 + 2b0

2a0 + 3
. (31)

Similarly, we can update each component of Γb, Γc, and Γd as follows:

Γk+1
b,ij =

(Bk+1
ij)2 + 2b0

2a0 + 3
, (32)

Γk+1
c,ij =

(Ck+1
ij)2 + 2b0

2a0 + 3
, (33)

Γk+1
d,ij =

(Dk+1
ij)2 + 2b0

2a0 + 3
. (34)

Based on the block gradient descent method, we derive an analytical update procedure for learning
Θ. During the optimization process of the system matrices, we use diagonal matrices to approximate
R and Q to give a closed-form update rule for them. During the optimization process of R and Q,
we employ the derivative rule of structured matrices to ensure their symmetry. Experimental results
demonstrate that such a learning algorithm can learn LDSs with sparse system matrices accurately.
Finally, Algorithm 1 summarizes the procedure for learning LDSs with sparse system matrices.
Remark 2. For LDSs without input signals, the proposed method can also learn LDSs with sparse
system matrices from {yt}Tt=1 in an unsupervised manner by simply removing B, D, and ut from
the related update procedures or directly setting them to zero in the optimization process.

Algorithm 1: The proposed learning algorithm for LDSs

Input: Time-series data {(ut,yt)}Tt=1, initial guess of Θ and maximum number of iterations
kmax

Output: MAP estimate of Θ and {xt}Tt=1
1 for k = 1, ..., kmax do
2 // MAP estimate of {xt}Tt=1
3 for t = 1, ..., T do
4 Update the mean µk

t of xt via equation 13 ;
5 Update the variance Σk

t of xt via equation 14 ;
6 Update the covariance P k

t,t−1 between xt and xt−1 via equation 15 ;
7 end
8 // MAP estimate of Θ
9 Update system matrices A, B, C, and D via equation 22– equation 25, respectively;

10 Update noise covariance matrices R and Q via equation 28 and equation 29, respectively;
11 Update hyperparameter matrices Γa, Γb, Γc, and Γd via equation 31– equation 34,

respectively;
12 if a stopping criterion is satisfied then
13 Break;
14 end
15 end

4 SIMILARITY TRANSFORMATION OF LDSS

For LDSs, the similarity transformation is an important mathematical operation to transform them
into different coordinate systems, making it easier to analyze system properties like controllability,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

observability, and stability. Specifically, we can transform the state vector xt into a new state vector
xt through the relation:

xt = Pxt, (35)

where P ∈ Rn×n is a nonsingular matrix. As such, we can derive an equivalent realization of the
original LDSs as follows (see Appendix C):

xt = Axt−1 +But + εt, (36)

yt = Cxt +Dut + ωt, (37)

where A = PAP−1, B = PB, C = CP−1, and εt ∼ N (0,PRP ′). However, the similarity
transformation makes it particularly difficult to accurately learn system matrices. Given the input
signals {ut}Tt=1, the transformed LDSs can produce the same output data {yt}Tt=1 as that of the
original LDSs. Hence, classical learning algorithms for LDSs only learn the system matrices up to a
similar transformation (Viberg, 1994). For LDSs with sparse system matrices, such a transformation
changes not only the values but, more importantly, the topological structure of the system matrices,
resulting in misinterpretation of intrinsic working mechanisms.

4.1 BENEFIT OF SPARSE-PROMOTING PRIORS

Unlike classical learning algorithms, the proposed algorithm learns LDSs with sparse system matri-
ces by adopting a sparsity-promoting prior to balance model complexity and modeling error. Given
the sparsity constraint of system matrices, the similarity transformation cannot be applied using any
arbitrary nonsingular matrix. For the LDSs with sparse system matrices following the Occam’s ra-
zor principle, the nonsingular matrix is typically restricted to be a generalized permutation matrix;
otherwise, the transformed LDSs will include redundant parameters to describe the systems. For
example, if we consider the LDSs with sparse system matrices as follows:

A =

[
0 0.9
0.9 0

]
,B =

[
2 0
0 2

]
,C =

[
2 0
0 2

]
,D =

[
1.5 0
0 1.5

]
, (38)

it is easy to verify that such a system follows the Occam’s razor principle because the rank of system
matrices is equal to the number of nonzero components. Hence, we can derive the nonsingular matrix
P must satisfies

P =

[
a 0
0 b

]
or P =

[
0 a
b 0

]
, (39)

where a and b are arbitrary constants. As such, the transformed system matrices do not introduce
additional parameters to increase model complexity.

Note that applying the similarity transformation with a generalized permutation matrix to the original
state variables will scale their magnitudes and reorder them. However, it will scale the nonzero
components and permute the rows or columns of system matrices accordingly. Hence, an additional
advantage of the sparse-promoting prior is its ability to maximally preserve the inherent topological
structure among the variables. While the learned system matrices differ from the true ones in scale,
such a difference is only caused by the scaled definition of state variables. Hence, the learned LDS
has the same topological structure and dynamic behavior as the real one.

5 EXPERIMENT

In this section, we validate the proposed algorithm on simulation and real-world datasets. In addi-
tion, we compare the proposed algorithm with classical ones mentioned previously to demonstrate
its superior performance, including PEM, 4SID, and MLE. Here, we use the built-in functions n4sid
and pem of Matlab to implement the 4SID and PEM algorithms, respectively. To implement MLE,
we remove the sparsity-promoting priors from our derivation and revise the code accordingly. In
all experiments, the dataset is split into training and testing sets with a 2:1 ratio, where 66.7% of
the data is used for training and 33.3% for testing. Here, we use the mean relative error (MRE) to
evaluate the performance of all the algorithms defined as follows:

MRE =

T∑
t=1

∥yt − ŷt∥22
T∥yt∥22

, (40)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Learned result of all the algorithms on the simulation system

Method Ours PEM 4SID MLE

A

[
0 0.900

0.897 0

] [
0 0.877

0.917 −0.002

] [
0.897 0.023
0.038 −0.898

] [
0.007 0.889
0.905 −0.009

]
B

[
4.004 0
0 4.024

] [
−14.284 16.858
16.979 −14.985

] [
0.005 0.004
−0.001 0

] [
2.887 1.235
1.308 2.848

]
C

[
1.001 0
0 1.011

] [
0.880 0.745
0.766 0.861

] [
422.168 −170.034
415.973 179.648

] [
1.777 −0.778
−0.760 1.763

]
D

[
1.473 0
0 1.480

] [
5.521 0.099
0.017 5.550

] [
0 0
0 0

] [
1.404 0.113
−0.092 1.468

]
R

[
1.879 0.986
0.986 1.877

] [
− −
− −

] [
− −
− −

] [
1.543 1.402
1.402 1.546

]
Q

[
0.473 0.199
0.199 0.481

] [
− −
− −

] [
− −
− −

] [
0.455 0.191
0.191 0.469

]
MRE 7.35% 16.37% 17.25% 7.38%

where {ŷt}Tt=1 is the sequence of data points generated by the learned systems in response to the
same input signals. Experimental results illustrate that the proposed algorithm outperforms classical
ones on learning LDSs with sparse system matrices.

5.1 A SYNTHETIC SYSTEM FOLLOWING THE OCCAM’S RAZOR PRINCIPLE

First, we consider a synthetic system to facilitate the comparison between the proposed algorithm
and classical ones as follows:

xt =

[
0 0.9
0.9 0

]
xt−1 +

[
2 0
0 2

]
ut + εt, εt ∼

([
0
0

]
,

[
0.49 0.25
0.25 0.49

])
, (41)

yt =

[
2 0
0 2

]
xt +

[
1.5 0
0 1.5

]
ut +wt, wt ∼

([
0
0

]
,

[
0.49 0.25
0.25 0.49

])
. (42)

To generate data points, the initial values of x0 are drawn from the Gaussian distribution with mean
[1, 1]′ and an identity matrix as the covariance, and the input signal ut is drawn from the uniform
distribution on [0, 2]. As for algorithm implementation, we collect 2000 data points and set the initial
value of A, B, C, D, R, and Q both to be an identity matrix. The learned parameters less than the
threshold 0.001 are removed from the result. In Table 1, we give the learned system matrices of all
the algorithms and the corresponding MRE.

Because n4sid and pem consider the innovation representation of the LDSs (Qin, 2006), they focus
on learning the innovation covariance matrix instead of R and Q, which are thus omitted here. Obvi-
ously, the learned system matrices of classical algorithms are completely different with the original
ones, making it difficult for us to understand the system. However, sparse-promoting priors will
restrict the nonsingular matrix P of the similarity transformation to be a generalized permutation
matrix for this system. Comparing the learned B and C of the proposed algorithm with the real
ones, we can derive P ≈ 2I2, which is indeed consistent with the theoretical analysis. Hence, the
learned LDS of the proposed algorithm preserves the topological structure of the system, differing
only in the scale of the parameters. Consequently, the learned LDS can enable us to explore the
working mechanisms of the system.

5.2 INDUSTRIAL PROCESS SYSTEMS

Next, we validate the proposed algorithm on the real-world datasets obtained from the Database for
the Identification of Systems, which are standard datasets used for learning LDSs (Zhu et al., 1994;
Martens, 2010).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Learned result of all the algorithms on the industrial process systems

Dataset Industrial evaporator Glass furnace
Method Ours PEM 4SID MLE Ours PEM 4SID MLE
MRE 13.74% 17.90% 43.77% 18.00% 18.74% 62.47% 24.32% 30.27%

Industrial evaporatoration systems. In industry, multiple-stage evaporators are widely used to
reduce the water content of a product such as milk. The dataset is composed of 3-dimensional time-
series with a length of 6305. The inputs consist of the feed flow, vapor flow to the first evaporator
stage, and cooling water flow to the condenser, while the outputs include the dry matter content,
flow rate, and temperature of the product.

Glass furnaces. The second dataset comes from the Philips glass furnace, which is used to melt
raw materials into glass. The glass furnace has two burners and one ventilator. Hence, the dataset
includes two heating inputs and one cooling input with a length of 1247. In addition, we collect
three outputs from temperature sensors in a cross section of the furnace.

Table 2 displays the MRE between the predicted outputs of all the learned LDSs and real ones.
Due to the lack of the ground truth, the learned system matrices of all the algorithms are not de-
picted for comparison. Note that the proposed algorithm obtains minimum MRE on both datasets,
demonstrating its superiority over classical algorithms.

6 DISCUSSION

To learn the LDSs with sparse system matrices, we impose sparsity-promoting priors on system ma-
trices to balance model complexity and modeling error in this paper. Following the MAP principle,
we then learn system matrices by exploring the EM algorithm to maximize the loss function com-
posed of the priors and likelihood function. During the optimization process, we use the derivative
rule of structured matrices to ensure the symmetry of noise covariance matrices. In addition, we
find that the sparsity-promoting prior is capable of retaining the topological structure of the LDSs,
as the nonsingular matrix of the similarity transformation is typically limited to be a generalized
permutation matrix. Hence, the proposed algorithm is more useful for us to explore the interacting
laws of the LDSs compared to the classical ones.

There still remains some potential limitations for the proposed algorithm. First, it cannot determine
the order n of the system from data directly. While we can compare the performance of the learned
systems across different orders to select the best one, such a method is quite exhaustive. The other
limitation is that the similarity transformation may shrink many parameters to very small values,
potentially leading to numerical errors. However, we believe that the proposed algorithm sheds a
light on the learning of LDSs with sparse system matrices. In our future work, we hope to explore
how to exactly learn LDSs with additional constraints.

REFERENCES

Mohamed Rasheed-Hilmy Abdalmoaty and Håkan Hjalmarsson. Linear prediction error methods
for stochastic nonlinear models. Automatica, 105:49–63, 2019.

Ainesh Bakshi, Allen Liu, Ankur Moitra, and Morris Yau. Tensor decompositions meet control
theory: learning general mixtures of linear dynamical systems. In International Conference on
Machine Learning, pp. 1549–1563. PMLR, 2023.

David Belanger and Sham Kakade. A linear dynamical system model for text. In International
Conference on Machine Learning, pp. 833–842. PMLR, 2015.

Yanxi Chen and H Vincent Poor. Learning mixtures of linear dynamical systems. In International
Conference on Machine Learning, pp. 3507–3557. PMLR, 2022.

Yonathan Efroni, Sham Kakade, Akshay Krishnamurthy, and Cyril Zhang. Sparsity in partially
controllable linear systems. In International Conference on Machine Learning, pp. 5851–5860.
PMLR, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Wouter Favoreel, Bart De Moor, and Peter Van Overschee. Subspace state space system identifica-
tion for industrial processes. Journal of Process Control, 10(2-3):149–155, 2000.

Zoubin Ghahramani and Geoffrey E Hinton. Parameter estimation for linear dynamical systems.
1996.

Stuart Gibson and Brett Ninness. Robust maximum-likelihood estimation of multivariable dynamic
systems. Automatica, 41(10):1667–1682, 2005.

Elad Hazan, Singh Karan, and Zhang Cyril. Learning linear dynamical systems via spectral filtering.
In Advances in Neural Information Processing Systems, volume 30, 2017.

Xin He, Yasen Wang, and Junyang Jin. Bayesian inference and optimisation of stochastic dynamical
networks. International Journal of Systems Science, pp. 1–15, 2024.

Wenbing Huang, Lele Cao, Fuchun Sun, Deli Zhao, Huaping Liu, and Shanshan Yu. Learning
stable linear dynamical systems with the weighted least square method. In International Joint
Conferences on Artificial Intelligence, pp. 1599–1605, 2016.

Junyang Jin, Ye Yuan, and Jorge Gonçalves. A full Bayesian approach to sparse network inference
using heterogeneous datasets. IEEE Transactions on Automatic Control, 66(7):3282–3288, 2020a.

Junyang Jin, Ye Yuan, and Jorge Gonçalves. High precision variational Bayesian inference of sparse
linear networks. Automatica, 118:109017, 2020b.

Tohru Katayama et al. Subspace methods for system identification, volume 1. Springer, 2005.

Wallace E Larimore. Canonical variate analysis in identification, filtering, and adaptive control. In
IEEE Conference on Decision and Control, pp. 596–604. IEEE, 1990.

Jian Li and Yunfeng Zhang. Prediction error method-based second-order structural identification
algorithm in stochastic state space formulation. Earthquake Engineering & Structural Dynamics,
35(6):761–779, 2006.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793. John
Wiley & Sons, 2019.

Lennart Ljung. Prediction error estimation methods. Circuits, Systems and Signal Processing, 21:
11–21, 2002.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature Communications, 9(1):4950, 2018.

Giorgos Mamakoukas, Maria Castano, Xiaobo Tan, and Todd Murphey. Local Koopman operators
for data-driven control of robotic systems. In Robotics: Science and Systems, 2019.

Giorgos Mamakoukas, Orest Xherija, and Todd Murphey. Memory-efficient learning of stable linear
dynamical systems for prediction and control. In Advances in Neural Information Processing
Systems, pp. 13527–13538, 2020.

James Martens. Learning the linear dynamical system with ASOS. In International Conference on
Machine Learning, pp. 743–750. Citeseer, 2010.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University
of Denmark, 7(15):510, 2008.

G Pillonetto and Lennart Ljung. Full Bayesian identification of linear dynamic systems using stable
kernels. Proceedings of the National Academy of Sciences, 120(18):e2218197120, 2023.

S Joe Qin. An overview of subspace identification. Computers & Chemical Engineering, 30:1502–
1513, 2006.

Simo Särkkä and Lennart Svensson. Bayesian filtering and smoothing, volume 17. Cambridge
University Press, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Robert H Shumway and David S Stoffer. An approach to time series smoothing and forecasting
using the EM algorithm. Journal of Time Series Analysis, 3(4):253–264, 1982.

Robert H Shumway, David S Stoffer, and David S Stoffer. Time series analysis and its applications,
volume 3. Springer, 2000.

Gavin Smith, João de Freitas, Tony Robinson, and Mahesan Niranjan. Speech modelling using
subspace and EM techniques. In Advances in Neural Information Processing Systems, volume 12,
1999.

Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Michael E Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, 1:211–244, 2001.

Tapas Tripura and Souvik Chakraborty. A sparse Bayesian framework for discovering interpretable
nonlinear stochastic dynamical systems with Gaussian white noise. Mechanical Systems and
Signal Processing, 187:109939, 2023.

Jack Umenberger, Johan Wågberg, Ian R Manchester, and Thomas B Schön. Maximum likelihood
identification of stable linear dynamical systems. Automatica, 96:280–292, 2018.

Peter Van Overschee and Bart De Moor. N4sid: Subspace algorithms for the identification of com-
bined deterministic-stochastic systems. Automatica, 30(1):75–93, 1994.

Peter Van Overschee and BL De Moor. Subspace identification for linear systems: The-
ory—Implementation—Applications. Springer Science & Business Media, 2012.

M Verahegen and Patrick Dewilde. Subspace model identification. part i: The output-error state-
space model identification class of algorithm. Internation Journal of Control, 56:1187–1210,
1992.

Mats Viberg. Subspace methods in system identification. IFAC Proceedings Volumes, 27(8):1–12,
1994.

Jin Wang and S Joe Qin. A new subspace identification approach based on principal component
analysis. Journal of Process Control, 12(8):841–855, 2002.

Wenlong Wang, Feifei Qi, David Wipf, Chang Cai, Tianyou Yu, Yuanqing Li, Zhuliang Yu, and
Wei Wu. Sparse Bayesian learning for end-to-end EEG decoding. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023.

Yasen Wang, Junlin Li, Zuogong Yue, and Ye Yuan. An iterative min-min optimization method for
sparse Bayesian learning. In International Conference on Machine Learning, volume 235, pp.
50859–50873. PMLR, 2024.

Xiaofeng Yuan, Yalin Wang, Chunhua Yang, Zhiqiang Ge, Zhihuan Song, and Weihua Gui.
Weighted linear dynamic system for feature representation and soft sensor application in nonlin-
ear dynamic industrial processes. IEEE Transactions on Industrial Electronics, 65(2):1508–1517,
2017.

Yucai Zhu, Peter van Overschee, Ban de Moor, and Lennan Ljung. Comparison of three classes of
identification methods. IFAC Proceedings Volumes, 27(8):169–174, 1994.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A SPARSITY-PROMOTING PRIOR

Besides A, we also impose the sparsity-promoting priors on B, C, and D as follows:

p(B | Γb) =

n∏
i=1

p∏
j=1

p(Bij | Γb,ij) =

n∏
i=1

p∏
j=1

1√
2πΓb,ij

exp

(
−

B2
ij

2Γb,ij

)
, (43)

p(C | Γc) =

m∏
i=1

n∏
j=1

p(Cij | Γc,ij) =

m∏
i=1

n∏
j=1

1√
2πΓc,ij

exp

(
−

C2
ij

2Γc,ij

)
, (44)

p(D | Γd) =

m∏
i=1

p∏
j=1

p(Dij | Γd,ij) =

m∏
i=1

p∏
j=1

1√
2πΓd,ij

exp

(
−

D2
ij

2Γd,ij

)
, (45)

where Γb,ij ,Γc,ij , and Γd,ij are the ijth component of Γb,Γc, and Γd, respectively. To complete
the hierarchy, the Inverse-Gamma distribution prior is imposed on each component of Γb,Γc, and
Γd as follows:

p(Γb) =

n∏
i=1

p∏
j=1

ab00
Γ(a0)

Γ−a0−1
b,ij exp

(
− b0
Γb,ij

)
, (46)

p(Γc) =

m∏
i=1

n∏
j=1

ab00
Γ(a0)

Γ−a0−1
c,ij exp

(
− b0
Γc,ij

)
, (47)

p(Γd) =

m∏
i=1

p∏
j=1

ab00
Γ(a0)

Γ−a0−1
d,ij exp

(
− b0
Γd,ij

)
. (48)

B DETAILED MATHEMATICAL DERIVATION

B.1 DERIVATION OF EQUATION 16

Given the conditional independence between the variables, we can derive

H(Θ | Θk)

= EX∼p(X|Y ,Θk)[log p(Y ,X | Θ)p(Θ)]

= EX∼p(X|Y ,Θk)[log p(Y | X,Θ)p(X | Θ)p(Θ)]

= EX∼p(X|Y ,Θk)[log p(Y | X,C,D,Q)p(X | A,B,R)p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)]

= EX∼p(X|Y ,Θk)[log p(X | A,B,R)]︸ ︷︷ ︸
H1(A,B,R)

+EX∼p(X|Y ,Θk)[log p(Y | X,C,D,Q)]︸ ︷︷ ︸
H2(C,D,Q)

+ EX∼p(X|Y ,Θk)[log p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)]︸ ︷︷ ︸
H3(A,B,C,D,Γa,Γb,Γc,Γd)

. (49)

Explicit mathematical expression of H1(A,B,R). Based on equation 1 and the chain rule in
probability, we can derive

p(X | A,B,R)

= p(x0)

T∏
t=1

p(xt | xt−1,A,B,R) (50)

∝
T∏

t=1

| R |− 1
2 exp

(
− (xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)

2

)
. (51)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hence,

H1(A,B,R)

= EX∼p(X|Y ,Θk)[log p(X | A,B,R)]

= EX∼p(X|Y ,Θk)

[
−
T log | R | +

∑T
t=1(xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)

2

]

= −
T log | R | +

∑T
t=1 EX∼p(X|Y ,Θk)(xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)

2

= −
T log | R | +

∑T
t=1

(
mk

t −Amk
t−1 −But

)′
R−1

(
mk

t −Amk
t−1 −But

)
2

−
∑T

t=1

(
Tr(R−1P k

t)− Tr(R−1AP k
t,t−1)− Tr(A′R−1P k

t,t−1) + Tr(A′R−1AP k
t−1)

)
2

. (52)

Explicit mathematical expression of H2(C,D,Q). Based on equation 2, we can derive

p(Y | X,C,D,Q)

=

T∏
t=1

p(yt | xt,C,D)

∝
T∏

t=1

| Q |− 1
2 exp

(
− (yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)

2

)
. (53)

Hence,

H2(C,D,Q)

= EX∼p(X|Y ,Θk)[log p(Y | X,C,D,Q)]

= EX∼p(X|Y ,Θk)

[
−
T log | Q | +

∑T
t=1(yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)

2

]

= −
T log | Q | +

∑T
t=1 EX∼p(X|Y ,Θk)(yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)

2

= −
T log | Q | +

∑T
t=1

(
(yt −Cmk

t −Dut)
′Q−1(yt −Cmk

t −Dut) + Tr(C ′Q−1CP k
t)
)

2
.

(54)

Explicit mathematical expression of H3(A,B,C,D,Γa,Γb,Γc,Γd). Based on the priors im-
posed on the system matrices and corresponding hyperparameters, we can derive:

p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)

= p(A | Γa)p(Γa)p(B | Γb)p(Γb)p(C | Γc)p(Γc)p(D | Γd)p(Γd)

∝
n∏

i=1

n∏
j=1

Γ
− 2a0+3

2
a,ij exp

(
−
A2

ij + 2b0

2Γa,ij

)
×

n∏
i=1

p∏
j=1

Γ
− 2a0+3

2

b,ij exp

(
−
B2

ij + 2b0

2Γb,ij

)

×
m∏
i=1

n∏
j=1

Γ
− 2a0+3

2
c,ij exp

(
−
C2

ij + 2b0

2Γc,ij

)
×

m∏
i=1

p∏
j=1

Γ
− 2a0+3

2

d,ij exp

(
−
D2

ij + 2b0

2Γd,ij

)
. (55)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hence, we have
H3(A,B,C,D,Γa,Γb,Γc,Γd)

= EX∼p(X|Y ,Θk)[log p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)].

= −
n∑

i=1

n∑
j=1

(
(2a0 + 3) log | Γa,ij |

2
+

A2
ij + 2b0

2Γa,ij

)

−
n∑

i=1

p∑
j=1

(
(2a0 + 3) log | Γb,ij |

2
+

B2
ij + 2b0

2Γb,ij

)

−
m∑
i=1

n∑
j=1

(
(2a0 + 3) log | Γc,ij |

2
+

C2
ij + 2b0

2Γc,ij

)

−
m∑
i=1

p∑
j=1

(
(2a0 + 3) log | Γd,ij |

2
+

D2
ij + 2b0

2Γd,ij

)
. (56)

B.2 DERIVATION OF EQUATION 22

To provide an efficient closed-form update rule for A, we only keep the diagonal components of Rk

and set the others to zero during the optimization process. As such, we have
H1(A,Bk,Rk) +H3(A,Bk,Ck,Dk,Γk

a,Γ
k
b ,Γ

k
c ,Γ

k
d)

= −
∑T

t=1

∑n
r=1

(
Rk

rr

)−1 (
mk

t,r −Arm
k
t−1 −Bk

rut

)2
2

−
n∑

r=1

ArΓ
kd

a,rA
′
r

2

−

∑T
t=1

∑n
r=1

(
Tr
(
A′

r

(
Rk

rr

)−1
ArP

k
t−1

)
− 2

(
Rk

rr

)−1
Ar

(
P k

t,t−1,r

)′)
2

+ c, (57)

where c is the term unrelated to A. Hence, we can calculate the derivative of H(Θ | Θk) with
respect to Ar at the kth iteration as follows:
∂H1(A,Bk,Rk)

∂Ar
+

∂H3(A,Bk,Ck,Dk,Γk
a,Γ

k
b ,Γ

k
c ,Γ

k
d)

∂Ar

=

T∑
t=1

(
Rk

rr

)−1 (
mk

t,r −Arm
k
t−1 −Bk

rut

) (
mk

t−1

)′ −ArΓ
kd

a,r

−
T∑

t=1

(
Rk

rr

)−1 (
ArP

k
t−1 − P k

t,t−1,r

)
=

T∑
t=1

(
Rk

rr

)−1
(
P k

t,t−1,r + (mk
t,r −Arm

k
t−1 −Bk

rut)
(
mk

t−1

)′ −ArP
k
t−1

)
−ArΓ

kd

a,r. (58)

Setting equation 58 to zero leads to
T∑

t=1

(
Rk

rr

)−1
(
Arm

k
t−1

(
mk

t−1

)′
+ArP

k
t−1

)
+ArΓ

kd

a,r

=

T∑
t=1

(
Rk

rr

)−1
(
P k

t,t−1,r + (mk
t,r −Bk

rut)
(
mk

t−1

)′)
, (59)

Hence, we can update A at the kth iteration as follows:

Ak+1
r =

(
T∑

t=1

(
(mk

t,r −Bk
rut)(m

k
t−1)

′ + P k
t,t−1,r

))

×

(
T∑

t=1

(
P k

t−1 +mk
t−1

(
mk

t−1

)′)
+Rk

rrΓ
kd
a,r

)−1

. (60)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C EQUIVALENT REALIZATION OF LDSS

Based on the transformed coordinates, we can derive

xt = Pxt = PAxt−1 + PBut + Pεt =
(
PAP−1

)
xt−1 + (PB)ut + Pεt, (61)

yt = Cxt +Dut + ωt =
(
CP−1

)
xt +Dut + ωt. (62)

Hence, an equivalent realization of the original LDSs is as follows:

xt = Axt−1 +But + εt, (63)

yt = Cxt +Dut + ωt, (64)

where A = PAP−1, B = PB, C = CP−1, and εt = Pεt.

16

	Introduction
	Related work
	Problem formulation
	Rauch–Tung–Striebel smoother
	Parameter and Hyperparameter learning

	Similarity transformation of LDSs
	Benefit of sparse-promoting priors

	Experiment
	A synthetic system following the Occam's razor principle
	Industrial process systems

	Discussion
	Sparsity-promoting prior
	detailed mathematical derivation
	Derivation of equation 16
	Derivation of equation 22

	Equivalent Realization of LDSs

