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ABSTRACT

Ensuring AI models align with human values is essential for their safety and
functionality. Reinforcement learning from human feedback (RLHF) leverages
human preferences to achieve this alignment. However, when preferences are
sourced from diverse populations, point estimates of reward can result in subop-
timal performance or be unfair to specific groups. We propose Pareto Optimal
Preference Learning (POPL), which enables pluralistic alignment by framing dis-
crepant group preferences as objectives with potential trade-offs, aiming for poli-
cies that are Pareto-optimal on the preference dataset. POPL utilizes lexicase se-
lection, an iterative process that selects diverse and Pareto-optimal solutions. Our
theoretical and empirical evaluations demonstrate that POPL surpasses baseline
methods in learning sets of reward functions and policies, effectively catering to
distinct groups without access to group numbers or membership labels. We verify
the performance of POPL on a stateless preference learning setting, a Minigrid
RL domain, Metaworld robotics benchmarks, as well as large language model
(LLM) fine-tuning. We illustrate that POPL can also serve as a foundation for
techniques optimizing specific notions of group fairness, ensuring safe and equi-
table AI model alignment.

1 INTRODUCTION

For both safety and functionality, it is critical for AI models to align with the values of human users
and stakeholders. Recently, reinforcement learning from human feedback (RLHF) (Christiano et al.,
2017) has emerged as an effective mechanism for model alignment, using preferences to capture
human values. However, when preferences are sourced from large groups of potentially diverse
people, methods that rely on point estimates of human values are bound to either be suboptimal for
all groups or unfair to certain groups, both of which are problematic in their own ways.

In this work, we build upon the notion of hidden context proposed by Siththaranjan et al. (2023)
and focus on the problem of Reinforcement Learning from Human Feedback with Hidden Context
(RLHF-HC). Hidden context refers to information that is unavailable to a preference learning system
yet affects the preferences given. For example, a person’s dominant hand might determine on which
side they would prefer a robotic assistant to hand them an object. Under this formulation, our goal
is to build a set of policies that contains the optimal policy under the reward function for each group
of people. In practice, we see two clear use cases of such a set of policies. First, they can be
selected from at test time to find an optimal policy for a given user without in a few-shot manner.
Second, this set can be used to measure and ensure fairness between groups. Minimizing risk with
respect to this diverse distribution of policies ensures that no specific group is disregarded in the risk
measurement–thus enhancing safety.

Preferences with hidden context may be contradictory i.e., not mutually satisfiable by a well-
regularized policy or reward function. So, we propose to frame these preferences as objectives
with potential trade-offs between each other. With this re-framing, the optimal policy for each indi-
vidual hidden context group would be Pareto-optimal (non-dominated) on the dataset of preferences.
With this in mind, we propose Pareto Optimal Preference Learning (POPL), where we learn a set of
reward functions or policies (directly) that are optimized towards being Pareto-optimal with respect
to the set of preferences given by a potentially diverse set of human annotators. To do this, we use
an iterative selection process known as lexicase selection (Spector, 2012), which has been shown
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Figure 1: An outline of the proposed Pareto Optimal Preference Learning (POPL) framework. Given
a set of pairwise preferences over trajectory segments from groups with potentially different ground
truth reward functions, we infer a set of reward functions or policies that captures each group’s
ground truth, without group membership labels. To do this, we frame reward inference as multi-
objective optimization, where each preference forms a single objective, and find a set of Pareto-
optimal reward functions or policies.

under mild assumptions to select individuals that are both Pareto-optimal and diverse. An outline of
our method can be found in Figure 1. Our contributions can be summarized as follows:

• We extend the problem of Reinforcement Learning from Human Feedback with Hidden
Context (RLHF-HC) introduced by Siththaranjan et al. (2023), addressing critical limita-
tions in preference learning for sequential, time-based domains, as opposed to contextual
bandits.

• We derive theoretical results proving that optimal reward functions and policies for hid-
den context groups are inherently Pareto-Optimal with respect to the given preferences,
establishing a rigorous mathematical basis for our approach.

• We develop “Pareto-Optimal Preference Learning” (POPL), a framework leveraging lex-
icase selection to generate a set of Pareto-Optimal reward functions or policies. POPL
ensures diverse, group-specific alignment with human preferences, enabling robust person-
alization and fairness.

• We demonstrated POPL’s superiority over strong baselines in diverse settings, including:
– Minigrid RL: Policy learning in grid-based decision making dsomains.
– Metaworld: Balancing safety and speed in 3D robotics manipulation tasks.
– LLM Jailbreaking Detection: Mitigating harmful outputs by aligning preferences for

both helpfulness and harmlessness (without labels).
• We showcased POPL’s ability to efficiently scale to high-dimensional tasks, such as those

involving LLMs, while maintaining computational efficiency. POPL achieves robust results
with pre-trained models, making it broadly applicable across domains requiring fairness,
alignment and diversity.

2 RELATED WORK

Diversity in Human Preferences Data used for RLHF systems often comes from multiple people,
who are diverse in their preferences and values (Bobu et al., 2023; Peng et al., 2023; Biyik & Sadigh,
2018; Santurkar et al., 2023). This data, when considered in its aggregated form, can not be captured
perfectly by a decision-making model that relies on a point estimate of utility (Casper et al., 2023).
These models try to find a single reward function that is most likely, which is often not the optimal
reward function for any one single person. When the groups are not perfectly balanced, the minority
groups might be underrepresented in the inferred reward function (Siththaranjan et al., 2023; Feffer
et al., 2023; Kirk et al., 2023; Myers et al., 2021) or simply treated as noise (Baumler et al., 2023).
There have been attempts at explicitly modeling different people with different levels of expertise
(Gordon et al., 2021; Daniels-Koch & Freedman, 2022; Gordon et al., 2022; Barnett et al., 2023),
but these methods generally rely on concrete ways to distinguish between groups.
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Dealing with this Diversity In the context of RL, Myers et al. (2021) outlines an approach to
learning a multi-modal reward function from online interaction between a human expert and a pref-
erence learning system. Ramé et al. (2024) learn a set of reward models by optimizing for diversity
amongst the outputs. While similar to our approach, we also aim to align our reward models with
hidden context groups through optimizing for Pareto-optimality. For generative AI models and
LLMs, there have been a variety of studies attempting to align large models with diverse human
preferences. Chakraborty et al. (2024) and Siththaranjan et al. (2023) learn a mixture of preference
distributions or a parameterized reward distribution, respectively. However, both these techniques
operate under a contextual bandit setting which results in sub-optimal performance when used in
the more general RL setting (discussed further in Section 3). Bradley et al. (2024) and Ding et al.
(2024) leverage fine-tuning to improve the diversity of model responses for better alignment and
creativity, which do not directly address the ambiguity and hidden context in human preferences.
Jang et al. (2023) and Dai et al. (2023) elicit preferences specifically along different dimensions in
order to cater custom reward functions for users in test time, and to be safe with respect to con-
flicting objectives, respectively. Whilst we also aim to cater reward functions in test time as well
as optimize fairness between groups, we do not have access to labels regarding the context of the
preferences generated. Finally, Rame et al. (2024) also generates a set of Pareto-optimal reward
functions. However, in their setting, the system has access to ground truth reward functions for each
group, and the Pareto-front is generated through weight interpolation between these functions.

Bayesian Reward Inference Bayesian Reward Extrapolation (B-REx) (Brown et al., 2020b) in-
stead learns a distribution of reward models from pairwise human preferences. B-REx is then able to
perform Bayesian inference using MCMC (MacKay, 1992) to sample from the posterior of reward
functions. With this distribution, a practitioner can establish high confidence performance bounds
that can be used to assess risk in evaluated policies as well as detect reward hacking behaviors.
However, B-REx and other reward inference methods often rely on a faulty assumption that humans
provide preferences in a Boltzmann-rational way.

3 PRELIMINARIES

Learning from Human Preferences Reinforcement learning from human feedback considers hu-
man preferences over trajectories (or more generally, outputs of a model) in order to learn a reward
model or policy that respects the preferences (Brown & Niekum, 2019; Rafailov et al., 2024; Hejna
et al., 2024; Casper et al., 2023; Finn et al., 2016).

In order to learn meaningfully from human preferences, one must characterize how preferences are
generated from some parameterized preferences model P (σi ≺ σj). Usually, this preference model
is based on the notion of Boltzmann-rationality, where humans generate preferences in accordance
to the Bradley-Terry (BT) model (Bradley & Terry, 1952). The probability of pairwise preference
(σi ≻ σj) between two trajectories segments given some utility function f(σ) can be written as

P (σi ≻ σj) =
eβf(σi)

eβf(σj) + eβf(σi)
(1)

where β models the confidence in the preference labels. β →∞ signals that the preference provider
is perfectly rational, and β = 0 signals that preferences are random. The BT model is used in many
fields, such as psychology (Baker et al., 2009; Goodman et al., 2011; Goodman & Stuhlmüller,
2013). However, this model does not perfectly capture the mechanisms driving these preferences
(Ghosal et al., 2023; Jeon et al., 2020; Knox et al., 2022; Bobu et al., 2020; Lee et al., 2021).

Hidden Context Siththaranjan et al. (2023) introduce the problem of preference learning with
hidden context. This is the idea that preferences are generated not only based on the exponential
utility (partial return or regret), but also on some latent hidden context variable z. This variable is
not accessible to preference learning systems and poses a challenge as it is often the case that this
variable results in breaking the assumption that preferences are generated Boltzmann-rationally.

Marginalized Distributional Preference Learning In order to account for hidden context in the
preferences learned, Siththaranjan et al. (2023) introduce Distributional Preference Learning, which
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Figure 2: An example of a situation where using POPL is preferable to using a Marginalized Dis-
tributional Preference Learning (MDPL) system. Due to the fact that these systems marginalize
over the hidden context z for each state, MDPLs are unable to be sensitive to persistent annotator
identity. MDPLs represent the distribution of utility values in a column-wise fashion, or maintain
a distribution of utilities for each state, that is decoupled from that for other states. Therefore, the
utility for both groups of the trajectory AB is indistinguishable from that for BC by an MDPL.
POPL, on the other hand, represents the distribution row-wise, finding a set of utility functions that
should include the ground truth for each group. In this case, POPL can represent the fact that AB is
an unfair trajectory and BC is fair, whereas MDPLs are unable to make this distinction.

relies on a single model of utility u(s|z) to output a distribution of utility assignments u(s) for
each state s ∈ S, marginalizing over the hidden context variable z. In other words, they are able
to represent the marginalized probability P (R|s) of a specific utility R in a state s. Herein, we
will refer to a model that outputs a distribution per state as a Marginalized Distributional Preference
Learning (MDPL) system.

Due to the marginalization process inherent in these systems, the utility function is unable account
for persistent annotator identity—the fact that hidden context transcends a single preference an-
notation. In a contextual bandit setting such as those often found for finetuning LLMs (Rafailov
et al., 2024), this is not an issue, as determining that an output has high risk simply depends on the
distribution of rewards attributed to that specific state. However, in sequential tasks, where there
are relationships between preferences at different times, it is important to maintain full, coherent,
reward functions or policies for each group.

An example of how using an MDPL can lead to fairness issues is outlined in Figure 2. There are two
groups that have different utilities for three states A, B and C. MDPLs fail to differentiate between
trajectories like AB, BC, and AC, which have distinct fairness profiles and utilities for different
groups, as their representation marginalizes over group-specific utilities.

Contrastive Preference Learning Contrastive Preference Learning (CPL) (Hejna et al., 2024)
learns a policy directly from preferences without needing to learn an intermediate reward function.
This method uses a regret-based model of preferences rather than the standard partial return inter-
pretation. The probability of a preference under a candidate policy can be written as the ratio of the
exponentiated sum of log-likelihoods of the chosen segment to the disregarded segment. We choose
CPL over Direct Preference Optimization (DPO) Rafailov et al. (2024) as DPO can be derived as a
special case of CPL with trajectories of length 1, starting from the same state. Furthermore, POPL is
designed to be used in a variety of sequential, time-based domanis, but DPO and other contemporary
RLHF methods restrict themselves to contextual bandit settings (such as in large language models).
CPL, on the other hand, overcomes these limitations Hejna et al. (2024).

4 PROBLEM STATEMENT AND THEORETICAL FOUNDATION

We operate in a common RLHF setting in which, given a dataset D = {σ1, · · · , σm} of trajectory
segments and a set P = {(i, j) : σi ≻ σj} of pairwise preferences over these segments, we wish
to infer an unknown reward function r : S 7→ R that respects the preferences. This reward function
represents an assignment of utility r(s) to each state s in the state space S. r can then be used as the
reward function to train a policy π(a|s) : S ×A 7→ [0, 1] with RL.
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In light of our discussion in section 3, we re-frame the problem of preference learning with hidden
context as follows. The goal is to learn a set Π = {π1, π2 · · · , πn} of policies such that, for the
hidden context group represented by a variable z ∈ Z , there is a policy πz ∈ Π that is the optimal
policy for the ground truth reward function rz for the group. Note that this can be accomplished
by standard (reward-based) RLHF (experiments in sections 6.1 and 6.4) or direct (reward-free)
RLHF (experiments in sections 6.2 and 6.3). For the standard approach, a series of reward functions
R = {r1, r2 · · · , rn} are first learned from preferences, then used to train n optimal policies. In
the direct approach, the policies are learned directly from preferences such as done by Hejna et al.
(2024) and Rafailov et al. (2024).

We now show that optimal policies for hidden context groups are Pareto-optimal with respect to the
set of preferences given by all annotators. Therefore, recovering the set of pareto-optimal policies is
a viable way to solve the RLHF-HC problem formatted above.

Definition 1 (Policy passing preference). A policy π(a|s) : S × A 7→ [0, 1] passes a pref-
erence (σi≺σj) if the probability of the preferred segment

∏
(s,a)∈σj

π(a|s) is higher than the
probability of the other segment

∏
(s,a)∈σi

π(a|s). Or, equivalently, if
∑

(s,a)∈σj
log π(s, a) >∑

(s,a)∈σi
log π(s, a).

Definition 2 (Policy-set-relative Pareto-optimality). A policy π(a|s) : S × A 7→ [0, 1] is Pareto
optimal with respect to a set of preferencesP relative to a set of other policies Π = {π1, π2, · · · , πn}
if and only if there exists a preference (σi ≻ σj) ∈ P that only π passes out of all policies in Π

Definition 3 (Hidden context group). A hidden context group is a group of m annotators, each
with their own reward function r1, r2, . . . , rm that identically rank the segments σ ∈ D.

Definition 4 (Optimal policy for hidden context group). An optimal policy π∗
g for a hidden

context group g is an optimal policy in a given environment (MDP/R) using the group’s implicit
ground truth reward function rg as the reward function.

Definition 5 (Contradictory preferences). A pair of preferences (σi ≻ σj), (σx ≻ σy) are con-
tradictory under a specific policy regularization scheme if the likelihood of any policy that satisfies
both is lower than the likelihood of a policy that satisfies either.

With no regularization, a policy that satisfies two preferences should have a higher likelihood than
one that satisfies one but not the other. This is because the likelihood of a certain policy is related to
the total number of preferences passed by it. Passing two preferences would therefore elicit a higher
likelihood than passing just one of them. However, if by satisfying both preferences, the models
would need to incur a much greater regularization loss, it is likely that these two preferences came
from individuals with differing hidden contexts.

Theorem 1. In a completely noiseless setting, all policies that are optimal for specific HC groups
are Pareto optimal with respect to the set of all preferences P generated from all the groups, and the
space of all possible policies Π = {π|π ∈ S ×A 7→ [0, 1]}
A proof of Theorem 1 can be found in the appendix. In essence, a set of Pareto-optimal policies must
each satisfy a unique set of mutually satisfiable preferences (ones that do not contain a contradictory
preference). As such, the optimal policies for a group with hidden context would also be Pareto-
optimal.

5 PARETO OPTIMAL PREFERENCE LEARNING

In this section, we outline an algorithm that can be used to generate a set of polices or reward func-
tions that align with the preferences of different groups of people. We introduce lexicase selection,
a method that can select candidate hypotheses that lie on the Pareto front. Our population represents
a belief distribution that is updated based on observed evidence. Lexicase selection continually nar-
rows the hypothesis space based on selection criteria, effectively ‘learning’ which policies or reward
functions hold promise given the current (hidden-context-laden) data.
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Figure 3: Lexicase selection being used to select a single candidate hypothesis. Starting with a
random ordering, the pool of reward hypotheses is filtered down based on the preferences in order,
until a single individual remains or we run out of preferences. The resulting reward function is added
to the next pool, and this process is repeated (with new shuffles) to fill the population.

Lexicase Selection for Pluralistic Outcomes To obtain a set of Pareto optimal policies, we adopt
the idea of lexicase selection (Spector, 2012; Helmuth et al., 2015), which uses a random ordering
of metrics for each selection event, with only the candidates that perform the best on each successive
metric retained for filtering by the remaining metrics. This process is repeated until all metrics are
exhausted or a single individual remains. Through this process lexicase selection prioritizes, over
multiple selection events, each particular metric and each particular combination of metrics to the
exclusion of all others. We can consider this to be a “particularity” approach for achieving pluralistic
outcomes (Spector et al., 2024).

In the setting of preference learning, each metric corresponds to a preference sourced from a human
with hidden context. The preference is ‘passed’ if the candidate policy correctly ranks the pair
of segments in the preference corresponding to that metric (formally defined in Section 4). If no
individuals in the current pool pass the preference, all individuals make it through this selection step.
With this feature, contradictory preferences are addressed by giving priority to the first preference
in the shuffle. Each random shuffle of preferences therefore results in a diverse profile of reward
functions being selected for. Figure 3 shows an example of a single selection event.

A key property of lexicase selection is that it selects candidates that are Pareto-optimal relative to a
starting set of candidates (as opposed to all possible candidates). These individuals tend to spread
the corners of the Pareto front and thus be diverse (La Cava et al., 2019). Lexicase selection also
gives individuals that are good at more subsets of things greater weight. This idea has been utilized
in many machine learning optimization problems for improving generalization, as shown in recent
work (Ding et al., 2022; 2023; Ni et al., 2024; Boldi et al., 2023; Ding & Spector, 2022).

Overview With a method to select Pareto-optimal candidates such as lexicase selection in hand,
one can infer a set of reward functions or policies directly from preferences. Initially, a random set
of candidate models is created. Then, the chosen method is applied to select (with replacement) the
Pareto-optimal candidates from this random starting set. This pool is perturbed by adding random
Gaussian noise, generating a new set of candidates. The selection and perturbation steps are repeated
iteratively until the average performance converges, or a fixed number of iterations is passed. where
a distribution of hypotheses are The final set of candidates should align with the preferences of
hidden context groups. A full overview of our algorithm can be found in Appendix A.

6 EXPERIMENTS

In this section, we detail our experimental results to validate the proposed POPL method. To verify
that POPL can work in a large variety of settings at different scales, as well as for generating both re-
ward functions and policies, we perform four sets of experiments. A synthetic, stateless experiment
(reward inference), a Minigrid RL environment (policy inference), a Metaworld robotics environ-
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ment (policy inference) and LLM finetuning from human preferences (reward inference). Further
implementation details are provided in Appendix C.

Baselines Throughout our experiments, we will use 3 main baselines. In the experiments on re-
ward function inference, we use Bayesian Reward Extrapolation (B-REx) (Brown et al., 2020b) as
a baseline, as it generates a large set of reward function hypotheses (i.e., candidate models) based
on a Boltzmann-rational likelihood function, and has demonstrated efficacy in RL domains. For our
policy inference experiments, we compare to Contrastive Preference Learning (Hejna et al., 2024)
as it is a leading RLHF algorithm for sequential tasks. We also use a naive method of learning a set
of policies based on CPL that we call Multi-CPL. In this approach, after pretraining, we fine-tune
the last layer using the CPL objective multiple times to generate a large set of policies. Although
we could do full network fine-tuning, we wanted to hold constant the trainable parameters available
to each approach to ensure a fair comparison to POPL, which uses last-layer fine-tuning. Policy
learning settings in this work model human preferences as being generated based on regret, as op-
posed to partial return (Knox et al., 2022). Including the policy inference experiments allows us
to ensure our method is not sensitive to assumptions regarding how the preferences are generated.
For our language model (contextual bandit) experiments, we compare to both B-REx and Distribu-
tional Preference Learning (DPL) (Siththaranjan et al., 2023), as well as standard the standard RLHF
paradigm (Christiano et al., 2017), as these present a variety of approaches for generating reward
models that can be used to ensure fairness across groups.

Metrics Given a set of reward functions or policies, we can verify how well they perform on the
two downstream tasks we have identified for this work: personalization and fairness. For personal-
ization, we inspect the content of the personalized policies or reward functions to verify their align-
ment with each hidden context group’s preferences. For fairness, we ensure that no single group is
having its values undermined (by taking low-probability actions) in an attempt to satisfy a different
group. Although this is a relatively simple notion of fairness, this method could be extended to be
compatible with other fairness optimization approaches Mehrabi et al. (2021).

6.1 SYNTHETIC STATELESS EXPERIMENT

(a) B-REx Catering (b) POPL Catering

Figure 4: (a) and (b) show the catered reward
functions for each of the two hidden context
groups z = 0, z = 1. From a set of reward func-
tions that is inferred from a diversity of human
preferences, we select a single reward function for
each unique group with a small number of prefer-
ences (2% the size of the training set). POPL is
able to cater for both groups, while B-REx is only
able to cater for one of the two groups (z = 1,
red line). For B-REx, the z = 0 (green) group’s
catered reward function doesn’t capture the fact
that any state a < 0.8 is preferred to any state
a ≥ 0.8.

The first set of experiments we perform will test
whether POPL is able to recover a set of reward
functions from a series of preferences generated
with hidden context in a very simple stateless
domain. Doing this, we are testing whether the
fact that the outputs of lexicase selection are an
approximation of the global Pareto-front signif-
icantly degrades the quality of reward functions
generated. Then, we will select a personalized
reward function for each group and compare
them to the ground truth reward functions used
to generate the preferences.

Following the synthetic experiments outlined
by Siththaranjan et al. (2023), we compare B-
REx and POPL on learning from preferences
where with hidden context variable z ∼ B(0.5)
where B(0.5) is a Bernoulli distribution. The
utility in this scenario can be modeled as

u(a, z) =

{
a if a < 0.8

2az otherwise
(2)

In order to test whether POPL covers the hidden context groups, we inspect some selected reward
functions for each group. We use a smaller set of the preferences that all have a shared hidden
context, and select a reward function for each group. Figure 4 shows the results of catering a reward
function for each of the hidden context classes z = 0 and z = 1. Due to B-REx using the Boltzmann
rationality assumption, it concentrates much of the distribution on the z = 1 case, and does not
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(a) button-press-v2 (b) reach-v2

Figure 6: Metaworld Policy Inference Results. Box plots outline the performance of the best
(catered) individual from each population on both identities across 10 random seeds. We also show
the average performance of the best “compromise,” or the single policy that does the best across
both identities. POPL tends to have a higher catered policy performance across both identities, and
also discovers a more fair compromise between values of the two groups.

capture the preferences given by the z = 0 group. POPL, on the other hand, is able to recover the
reward functions for both groups from the learned distributions.

6.2 MINIGRID POLICY INFERENCE

(a) Domain (b) HC Groups

(c) POPL for Group 1 (d) POPL for Group 2

(e) MultiCPL for Group 1 (f) MultiCPL for Group 2

Figure 5: Minigrid experiments. Plots in (c), (d),
(e) and (f) show average state occupancy for poli-
cies catered for each hidden context group. POPL
is able to cater distinct policies for each group,
while MultiCPL collpases to a single group’s pref-
erences.

After demonstrating POPL’s efficacy in reward
inference from preferences with hidden con-
text, we perform a second set of experiments
to verify whether 1) POPL is able to generate
policies directly from preferences, and 2) POPL
is able to perform in a sequential RL domain,
where annotators’ hidden context is persistent
(i.e. potentially affects more than one segment
preference annotation). The domain used in
these experiments is outlined in Figure 5a. The
agent (red triangle) must make it to the solid
green goal tile as fast as possible. The agent
must choose one of the two doors (top or bot-
tom) to use to reach the goal. The hidden con-
text groups in this scenario delineate whether
the annotator inherently prefers the bottom or
top door to be used to get to the goal (Fig-
ure 5b). The preferences were labeled accord-
ing to the regret preference model from mem-
bers of both groups (extracted from the opti-
mal policy for each group’s ground truth reward
model).

After running this optimization, the state occu-
pancy distribution for catered policies for each
group can be found in Figures 5c and 5d for
POPL, and 5e and 5f for MultiCPL. We find
that POPL is able to successfully cater policies
for both groups of people (as exhibited by poli-
cies reaching the goal via both doors), despite
not having labels regarding their group mem-
bership. MultiCPL, on the other hand, is unable
to cater a policy for Group 1.
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6.3 METAWORLD POLICY INFERENCE

Figure 7: Case study for a single
button-press-v2 run. POPL finds policies
that perform well under both ground truth reward
functions. We also include a behavior cloning
(BC) baseline, where the policies are simply
trained to match the demonstrations.

In order to verify how well POPL can infer poli-
cies in larger scale sequential environments, we
include results performing policy inference on
the Metaworld Robotics Benchmark (Yu et al.,
2019). We artificially create two hidden con-
text groups, one that prefers safe (low angu-
lar velocity) robotic movements, and one that
prefers speed (having tasks completed quickly).
We generate preferences from these two groups
at random, and then compare POPL and Mul-
tiCPL’s ability to cater individual policies for
each group.

Figure 6 outlines the performance of all the
policies generated by POPL and the MultiCPL
baseline. We also include a case study com-
paring a single run of POPL and MultiCPL in
Figure 7. POPL is able to generate policies
that outperforms the MultiCPL and behavior
cloning baselines. POPL finds policies that are
maximally good for either group, as well as those that find strong compromises between the two
group’s values.

6.4 LANGUAGE MODEL EXPERIMENTS

In this section, we test the ability of POPL to scale to domains involving human annotations. We
investigate whether POPL can be sensitive to hidden context in whether annotators prefer harmless
or helpful responses (Bai et al., 2022). When reward models are trained on the entire set of prefer-
ences, whether they were generated based on helpfulness or harmlessness is hidden context, as this
information affects preferences but is unavailable to a reward inference system.

Importantly, preferences based on helpfulness and harmlessness can often be contradictory. In fact,
Wei et al. (2024) find examples of user prompts that directly pit these objectives against each other,
leading a language model to output harmful outputs, a phenomenon known as jailbreaking. An
RLHF system built with hidden context in mind would help detect jailbreaking before a harmful
output would be given to a user. In the context of this work, a model that is susceptible to jailbreaking
would be unfair to certain groups (compromising its efficacy for the harmlessness group in order to
optimize for the helpfulness group).

Table 1 presents the jailbreak rates and helpfulness accuracy for standard RLHF, B-REx, DPL, and
our proposed POPL. For B-REx and POPL, we generate a set of reward functions by extrapolating
the last layer of a fine-tuned LLAMA-2-7b (Touvron et al., 2023) preference model. Default settings
use the mean reward across the entire set. For fairness optimization, we use the 10th percentile of
reward values across all the reward functions in the set.

The results indicate that B-REx’s performance is inferior to standard RLHF, even when employing
fairness-focused strategies using the lower quantile of rewards. This suggests that the likelihood
estimated by the BT model does not adequately accommodate scenarios where preferences are in
conflict, and B-REx fails to accurately approximate the distribution of rewards. POPL performs the
best out of all methods without employing any fairness optimization. Given the high-dimensional
nature of reward features in LLM tasks, a population-based approach is essential for accurately
modeling and enhancing the diversity of reward hypotheses.

When compared to the current state-of-the-art, POPL outperforms Mean & Var DPL and competes
closely with Categorical DPL. Notably, unlike DPL which requires training a new reward model with
different outputs, POPL efficiently extrapolates directly from the last layer of pre-trained RLHF re-
ward models, making it highly efficient and broadly applicable. For example, POPL can be applied
to a pre-trained 7b-LLM reward model in under an hour on a single NVIDIA A100 GPU. Another
advantage of POPL is its independence from assumptions about the distribution of reward hypothe-
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Table 1: Results on LLM jailbreaks. POPL has the lowest jailbreak rate across all methods without
any fairness optimization. For fairness optimization, POPL has a lower jailbreak rate than B-REx,
standard RLHF, as well as Mean & var. DPL, and is competitive with categorical DPL.

Method Training data Jailbreak rate (%) Helpfulness acc. (%)

Standard Helpful 52.4 72.6
Standard Harmless 3.7 49.5
Standard Combined 25.1 68.2

Mean & var. DPL Combined 30.5 68.4↰

Fair 20.3 66.4
Categorical DPL Combined 32.1 66.2↰

Fair 13.4 66.2

Bayesian REx Combined 28.3 67.5↰

Fair 27.8 50.4
POPL Combined 17.6 66.1↰

Fair 15.0 65.7

ses. In contrast, DPL methods require a predefined reward distribution, such as the assumption of
normally distributed rewards for Mean & Var DPL, or correctly sized bins for Categorical DPL.

7 CONCLUSION

When learning from human preferences for the sake of aligning to human values, systems often
rely on point estimates of return or regret, limiting them to aligning to a single group of humans.
Preferences, however, often come from distinct groups with diverse preferences. We have formalized
this as the problem of preference learning with hidden context. Under this conception, a set of
policies must be generated that contains the optimal policy for each distinct group.

To solve this problem, we relied on the concept of Pareto-optimality to generate a series of reward
functions and/or policies that are optimal with respect to unique sub-sets of preferences. To optimize
towards Pareto-optimality, we used a technique known as lexicase selection, that selects individuals
from a large set based on a randomized (lexicographic) prioritization of the training data.

We verified that lexicase selection can be used to generate diverse distributions of either reward
functions or policies that align with the diverse preferences that human annotators have. We evalu-
ated and verified the performance of POPL in a variety of domains, including a synthetic stateless
domain, a Minigrid RL domain, a Metaworld Robotics benchmark, and even language model jail-
break detection. Across these domains, we have demonstrated POPL’s efficacy when compared to
contemporary algorithms in dealing with hidden context in the preferences. Without modifications
to the framework, POPL can be used to optimize for diverse reward functions or policies, and can
work in stateless and sequential domains at a variety of scales.

One limitation of this work is the lack of use of gradients in training policies. The optimization
procedure used after lexicase selection relies on random variations and repeated selections, which
allows for effective trade-offs between exploration and exploitation of the preference landscape.
Although empirically verified to work well, it may be possible to augment the core idea in future
work to allow it to utilize gradients. Furthermore, a study into the conditions required for the output
of the procedure to be globally Pareto-optimal could be instrumental.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our results. We include full code to reproduce the results
in this paper as supplemental material. This code includes dataset generation and the full POPL
training pipeline. Furthermore, we outline experimental details needed to independently reproduce
the results in Appendix C. The theory performed in Section 4 has proofs associated in Appendix B
and assumptions outlined therein.
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Data: A dataset of demonstrations D and a series of pairwise preferences P
Result: A set of reward function or policy hypotheses

candidates← randomly initialize p hypotheses
for iter 1→ N do

for ind 1→ p do
shuffled prefs← Shuffle(P)
for pref in shuffled prefs do

old subset← candidates
candidates← subset of candidates that pass pref.
// if all individuals have failed, we skip this preference
// as it is likely to be contradictory with a previous preference
if candidates contains no candidates then

candidates← old subset
end
if candidates contains only one candidate then

break
end

end
candidate← a random individual from candidates
Append candidate to new population

end
candidates← add random noise to candidates

end
return candidates

Algorithm 1: Pareto Optimal Preference Learning

A FULL ALGORITHM

Algorithm 1 gives an outline of a single step of Pareto Optimal Preference Learning (POPL).

B PROOFS

Proof of Theorem 1 (Contradiction). Let us assume that there is a policy π∗
z that is the optimal

policy according to a hidden context group z. This means π∗
z passes all the preferences compatible

with the values of group z and fails only the preferences that are not compatible with preferences
given by group z. For sake of contradiction, we assert that this reward function is not Pareto optimal
with respect to all other reward function candidates. This means there exists another reward function
π′ that performs better than or equal to π∗

z across every preference in P , including those generated
by group z. This is a clear contradiction as that would imply π′ is the optimal policy for group z
instead of π∗

z .

C IMPLEMENTATION DETAILS

In this section, we include more implementation details of our experiments.

C.1 SYNTHETIC EXPERIMENTS

We follow the experimental procedure of Siththaranjan et al. (2023) in generating preferences, ex-
cept modify their code such that we ensure that annotator identity is held constant for each pref-
erence. We use last layer finetuning on a neural network that is randomly initialized. We did not
include any pre-training here to ensure that we are not pushing our reward models towards any
modes before starting to train. We use a batch size of 2048 preferences, a step size of 0.1 and 10000
steps of MCMC for B-Rex. For POPL, we use a population size of 100 and a generation count of
100. We use a β (confidence) value of 10, although have found that changing this value does not
significantly affect B-REx’s performance.
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C.2 MINIGRID EXPERIMENTS

For the Gridworld model experiments, we base our environment on the Minigrid package Chevalier-
Boisvert et al. (2023). Demonstrations were generated by rolling out many checkpointed policies
at different levels of performance, trained using Proximal Policy Optimization (PPO). Then, these
demonstrations were annotated based on a high performing policy’s action selection probabilities.

For MultiCPL and POPL, we use behavior cloning directly on the demonstrations for 1000 iterations
with a batch size of 64 and a learning rate of 0.001 with the Adam optimizer Kingma & Ba (2014)
as pretraining. The model architecture was a simple convolutional neural network that takes input
from the agent’s view window, and has a single fully connected layer with 128 nodes to output the
7 actions from the environment. For both MultiCPL and POPL, we use last layer fine-tuning. For
MultiCPL, we use the CPL objective, a learning rate of 0.001, where each model in a population
of 500 models is trained for 20 iterations. For POPL, we use a learning rate of 0.2, and 1000 total
steps. We sample 640 preferences every 10 iterations (as we can cache the last layer features for this
examples for improved performance), and sub-sample a batch of size 64 for each step of lexicase
selection. For a fair comparison between these two approaches, we approximately hold constant
total wall clock time on the same hardware. Given a final population of policies generated by POPL
or MultiCPL, we select the top 10 models for each hidden context class as the catered policy for that
group.

C.3 METAWORLD EXPERIMENTS

For the Metaworld robotics benchmark (Yu et al., 2019), we create augmented reward functions with
greater emphasis on speed or safety, respectively. For the speed reward function, we add a penalty
of 10

T , where T is the maximum timesteps allowed for that environment, for every timestep until the
goal (as defined by the metaworld environment) is met. For the safety reward function, we add a
penalty of 10 · ∥Ω∥2 where Ω is the angular velocity of all the robot’s joints. We also include, for
each group, the reward from the other group, weighted with 0.1 instead of 10.

We generated demonstrations by training optimal policies on each task studied using Proximal Pol-
icy Optimization (Schulman et al., 2017) with the Stable Baselines package (Raffin et al., 2021).
Every 100,000 steps, we cached the policy parameters to be used to generate sub-optimal perfor-
mance. We train one policy on each reward function for a total of 1 million timesteps. We then roll
out the policies at each checkpoint to generate 600 demonstrations, that are used to select snippets of
length 150 that are ranked using log-likelihoods of the trajectory snippets under the optimal policy.
These preferences are fed to the preference learning system.

The experiments follow a very similar outline to the Minigrid experiments outlined in Appendix C.2
above. All frameworks use the same network architecture: A simple two layer Neural Network
with 1024 hidden nodes. For the button-press-v2 env, for example, this policy has 35 input
nodes, 1024 hidden nodes, and 4 output nodes, with ReLU activation at the hidden layer. For both
MultiCPL and POPL, we pre-train with behavior cloning directly from the demonstrations for 1000
iterations at a batch size of 16 and learning rate of 0.001. We use last layer finetuning for both POPL
and MultiCPL. For MultiCPL, we use the CPL objective, and train the last layer using a batch size
of 16, learning rate of 0.001, and for 50 iterations each. For POPL, we sample 512 preferences every
25 iterations, and sub sample a batch of size 256 to use for lexicase selections. We use a Gaussian
mutation with mean 0 and standard deviation of 0.01 to mutate our policies at each step.

C.4 LANGUAGE MODEL EXPERIMENTS

In the LLM experiments, we assess the performance of reward learning by examining preference
accuracy on the test set. To investigate vulnerabilities to jailbreak, we analyze pairs of responses to
jailbreak prompts designed by Wei et al. (2024) to deceive the model into giving a harmful response.
We calculate the percentage of prompts where it assigns a higher reward to the jailbroken response
(“jailbreak rate”). Additionally, we evaluate the reward function’s ability to assess helpfulness on
non-harmful prompts, i.e., the reward function predicts higher rewards on the more helpful response.
We compare our method to normal RLHF with an LLM-based preference model, Bayesian Reward
Extrapolation (B-REx), and distributional preference learning (DPL). DPL methods predict parame-
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ters of the distribution of reward values for each response, rather than a single reward value, in order
to better account for hidden context in human preferences.

For standard RLHF, we use the pre-trained LLAMA-2-7b (Touvron et al., 2023) preference model
by Siththaranjan et al. (2023), which is fine-tuned on the HH-RLHF dataset using LoRA (Hu et al.,
2022). We implement B-REx by performing linear reward extrapolation on the last layer of the
pre-trained LLAMA-2-7b preference model. Following the B-REx implementation in (Brown et al.,
2020a), we run 200,000 steps of MCMC with a step size of 0.05. We use a burn-in of 5000 and
a skip every 20 samples to reduce auto-correlation. For POPL, we run lexicase selection for 100
generations with a population size of 1000, and randomly sample 100 reward functions in the last
generation.

Because the ranking likelihood is invariant to affine transformations of the rewards, we normalize
the rewards by subtracting the median reward calculated on the training set over all the responses.
This ensures that the reward values are comparable when calculating the lower quantile of rewards
in risk-averse optimization.

D BROADER SOCIETAL IMPACTS

The proposed work on Pareto Optimal Preference Learning (POPL) aims to enhance the alignment
of AI systems with diverse human values, thereby addressing critical issues of fairness and repre-
sentation. By focusing on learning from human preferences with hidden context, our method seeks
to ensure that AI models do not disproportionately favor or disadvantage specific groups, making
them more equitable and just. This has the potential to significantly improve the societal acceptance
and trust in AI systems, particularly in sensitive applications such as healthcare, education, and law
enforcement, where fairness and inclusivity are critical.

However, there are potential negative societal impacts to consider. The deployment of AI systems
that can cater to specific groups might inadvertently reinforce existing biases if the hidden context re-
flects social prejudices or discriminatory practices. Therefore, it is crucial to incorporate safeguards
and robust validation mechanisms to detect and mitigate any biased outcomes. As researchers and
developers, we must be vigilant about the sources of our training data and continually audit AI
systems for unintended consequences.

Moreover, the computational work required for training these models can have environmental im-
pacts, given the high-energy consumption associated with large-scale AI computations. Researchers
should consider optimizing algorithms to be more efficient and exploring the use of renewable en-
ergy sources to mitigate this impact.

By considering these factors, we aim to advance AI technologies in a direction that promotes fair-
ness, inclusiveness, and sustainability, ensuring that they serve the broader interests of society.
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