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Abstract

Current pathogen biosurveillance systems reactively monitor evolving sequences1

from environmental samples and assess mutation risks to guide public health2

responses. To enable proactive surveillance, we developed PEVO, a deep learning3

framework that explores direct prediction of future protein evolution by learning4

mappings between temporal and sequence representations. Our approach combines5

TOTEM (Time-Ordered Evolutionary Modeling) embeddings to capture quarterly6

temporal patterns with ESM (Evolutionary Scale Modeling) protein sequence7

embeddings, training a neural network to map from TOTEM time space to ESM8

sequence space. We demonstrate our method on Ebola virus L protein sequences9

collected from 1976-2018 (n = 2343) with quarterly temporal binning, generating10

predictions for 2019-2030 and validating on known sequences after 2019 (n =11

596). While our TOTEM-to-ESM mapping achieved an MSE of 0.002 (RMSE12

= 0.045), phylodynamics baseline outperformed our approach with an RMSE of13

0.007. Additionally, our model’s prediction variations (RMSE = 0.045) exceed14

the natural variability observed in training data (STD = 0.0292), indicating room15

for improvement in capturing evolutionary constraints. Despite current limitations,16

this work establishes a foundational framework for temporal-sequence learning17

that could potentially complement traditional phylodynamic approaches. With18

further refinement, such neural approaches may offer computational advantages for19

automated biosurveillance systems, contributing to the transformation of pathogen20

surveillance from reactive monitoring toward proactive preparedness for future21

pandemic threats.22

1 Introduction23

Microbial pathogens exist under continuous evolutionary pressure from environmental factors, host24

immune responses, and anthropogenic interventions such as vaccination and antimicrobial treatment25

[Smith et al., 2023]. These multifaceted selection pressures drive pathogens through perpetual26

cycles of mutation, selection, and adaptation, fundamentally shaping their genomic and proteomic27

landscapes over time. From this perspective, pathogen evolution can be conceptualized as a temporal28

mapping function that transforms chronological progression into specific genomic and proteomic29

mutations.30

The traditional approach to modeling pathogen evolution relies on phylodynamic methods, which31

combine phylogenetic analysis with epidemiological dynamics to infer evolutionary parameters and32

reconstruct transmission histories [Volz et al., 2013]. Established phylodynamic frameworks such33

as BEAST2 [Bouckaert et al., 2019] and TreeTime [Sagulenko et al., 2018] construct phylogenetic34

trees from sequence data and estimate evolutionary rates, while platforms like Nextstrain [Hadfield35

et al., 2018] provide real-time phylogenetic tracking for pathogen surveillance. These methods have36
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proven invaluable for understanding historical evolutionary trajectories and are widely adopted in37

epidemiological practice due to their interpretability and theoretical grounding. However, phylody-38

namic approaches typically assume constant or slowly varying evolutionary rates and may struggle to39

capture complex, non-linear temporal patterns that characterize rapidly evolving pathogens under40

dynamic selection pressures.41

Recent advances in protein language models (PLMs) have demonstrated remarkable success in42

learning intricate patterns within amino acid sequences, protein structures, and functional relationships.43

Models such as ESM model series [Rives et al., 2021, Lin et al., 2023], alongside structure prediction44

breakthroughs like AlphaFold [Jumper et al., 2021], RosettaFold [Baek et al., 2021], and generative45

approaches like RFdiffusion [Watson et al., 2023], have shown that deep learning can capture46

the underlying statistical regularities that govern protein sequence space. Critically, PLMs learn47

representations of the biologically viable protein sequence space—a constrained subset of the48

theoretically possible sequence combinations. While a protein of n amino acid residues theoretically49

permits 20n possible sequences, only a minute fraction of these combinations occur in nature,50

constrained by requirements for proper protein folding, stability, and biological function. This51

constraint implies that during evolutionary processes, pathogens navigate within this restricted,52

functionally viable region of sequence space rather than exploring the full combinatorial possibility53

space.54

Parallel developments in temporal representation learning have introduced sophisticated methods for55

encoding time series data. Notable among these is TOTEM (Tokenized Time Series Embeddings)56

[Talukder et al., 2024], which provides a framework for learning rich temporal embeddings that57

capture complex time-dependent patterns. The convergence of these advances in protein sequence58

modeling and temporal representation learning presents an opportunity to test whether direct mappings59

between time and sequence representations can outperform traditional phylodynamic approaches for60

pathogen evolution prediction.61

In this work, we introduce PEVO (Protein Evolution Predictor), a novel deep learning framework62

that combines TOTEM temporal embeddings [Talukder et al., 2024] with ESM-2 protein sequence63

representations [Rives et al., 2021] to explore direct temporal-to-sequence prediction for pathogen64

evolution. PEVO represents an exploratory effort to establish learnable mappings between time space65

and protein sequence space, bypassing explicit phylogenetic reconstruction while aiming to capture66

evolutionary dynamics through neural architectures.67

Using a comprehensive dataset of historical Ebola virus L protein sequences spanning over four68

decades, we evaluate PEVO’s ability to predict future protein sequence embeddings and compare69

its performance against established phylodynamics approaches. While our initial results show that70

phylodynamics currently outperforms PEVO (RMSE = 0.007 vs. 0.045), and the neural model71

introduces variations larger than the natural standard deviation observed in training sequences, this72

work establishes a foundational framework for temporal-sequence learning that could potentially73

surpass traditional methods with further development.74

2 Dataset75

We queried GenBank [Sayers et al., 2019] for all Ebola RNA-dependent RNA polymerase (L protein)76

sequences, which together with VP35 are essential for viral RNA replication and transcription.77

After removing synthetic sequences and those shorter than 500 base pairs, we processed sequences78

containing unknown amino acids (Xs) by aligning them with the GenBank reference sequence using79

pairwise alignment and replacing unknown residues with corresponding reference amino acids. The80

dataset was temporally split with sequences from 1976–2018 as training data (n=2343) and sequences81

from 2019 onward as testing data (n=596), creating an approximate 75/25 train-test split.82

3 Phylodynamics Analysis83

For phylodynamic baseline comparison, we created consensus sequences for each quarter using84

Clustal Omega [Sievers et al., 2011] and EMBOSS [Rice et al., 2000]. We constructed maximum-85

likelihood phylogenetic trees with IQ-TREE [Nguyen et al., 2015] and estimated evolutionary parame-86

ters using TreeTime [Sagulenko et al., 2018]. Future sequences were predicted using continuous-time87

2



Markov chain models with extracted substitution rates, and RMSE was calculated by embedding88

predicted and actual sequences with ESM2. See details in Appendix A.89

4 Model Architecture90

Our PEVO-TOTEM (Protein Evolution with TOTEM Time Embeddings) model learns the mapping91

from temporal tokens to protein sequence representations. Unlike conventional approaches that embed92

sequences into temporal space, our architecture directly maps time periods to ESM2 embedding93

space, enabling the model to learn f : time → sequence features.94

The temporal tokenizer converts quarterly time periods into discrete tokens:95

Temporal Tokenizer : {1976Q1, 1976Q2, . . . , 2030Q4} → {0, 1, . . . , 219} (1)

This creates a vocabulary of 220 temporal tokens spanning 55 years of quarterly periods between96

[1976, 2030]. Each time period is mapped to a unique integer identifier that serves as input to the97

TOTEM embedding layer to generate rich temporal representations:98

TOTEM Embedding : RB×L → RB×L×dmodel (2)

where B is batch size, L is the temporal sequence length (number of quarterly tokens, default L = 8,99

and dmodel is the model dimension. In our example study, dmodel = 512. The TOTEM embedding100

incorporates: 1) Base temporal embeddings: Learnable representations for each time token; 2)101

Positional encoding: Enhanced with multiple temporal cycles (quarterly=4, monthly=12, weekly=52);102

3) Dropout regularization: Applied to prevent overfitting.103

We used a six layer transformer encoder with 8 attention heads to processes temporal embeddings104

to capture temporal features in a 512 dimension space. The transformer uses causal masking to105

ensure that predictions at time t only depend on information from times t′ ≤ t, maintaining temporal106

causality. The sequence projection layer uses linear model with layer normalization to project107

temporal features in 512 dimensions to ESM2-t6-8M embedding space in 320 dimensions.108

To prepare the data for model training, we begin with a CSV file containing protein sequences and109

their associated quarterly collection dates. Multiple sequences from the same quarter are averaged110

using their ESM2 embeddings, while missing quarters use the previous quarter’s embedding. Each111

sequence is embedded using ESM2 and organized chronologically into quarterly time series. We112

then construct a sliding window dataset where each input contains 8 consecutive historical quarters113

and targets the subsequent 4 future quarters, with the window advancing by 1 quarter per step. The114

SlidingWindowDataset creates training pairs:115

Input : Historical quarters [t− w + 1, . . . , t] (3)
Target : Future quarters [t+ 1, . . . , t+ h] (4)

where w is the window size (8 quarters) and h is the prediction horizon (4 quarters).116

For prediction, the model uses the 8 historical quarters as context to predict the next 4 future117

quarters. We obtain temporal embeddings for future time tokens using the TOTEM embedding layer,118

then compute a context vector by mean-pooling the transformer-encoded representations from the119

historical sequence. This context vector is broadcast across all future time steps and added to the120

future temporal embeddings. The enhanced embeddings are then projected into the ESM2 sequence121

space to yield predicted future sequence features.122

The model optimizes a multi-component loss function: L = λTL, where λ = [λr, λp, λs, λc, λd]
T123

are loss weights and L = [Lrecon,Lpred,Lsmooth,Lconsist,Ldiv]
T are individual loss components.124

The reconstruction loss Lrecon uses combined MSE and L1 loss between predicted and ground truth125

ESM2 embeddings for the 8 historical quarters, evaluating the model’s ability to reconstruct known126

sequences. The prediction loss Lpred applies the same combined loss to the 4 future quarters, assessing127

forecasting accuracy for unseen sequences.128

Three regularization losses ensure prediction quality: Lsmooth encourages smooth temporal changes129

in predicted embeddings to match ground truth dynamics; Lconsist enforces temporal consistency by130

matching first- and second-order temporal dynamics; and Ldiv promotes prediction diversity across131

batch samples using cosine similarity to prevent mode collapse.132
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Default weights are λr = 1.0, λp = 1.0, λs = 0.1, λc = 0.2, λd = 0.05. The model uses AdamW133

optimization with cosine annealing learning rate schedule, weight decay of 10−5, and gradient134

clipping at 1.0.135

5 Results and Discussion136

We trained the model for 145 epochs on sequences spanning 1976-2019 and evaluated performance137

on sequences after 2019Q1-2021Q2 (Fig. 1). The model demonstrated near perfect convergence138

across both the composite total loss (Fig. 1A) and individual loss components (Fig. 1B, D-G) and139

achieved an MSE of 0.002 for ESM embedding prediction, corresponding to an RMSE of 0.045 (Fig.140

1E). In comparison, the phylodynamics baseline produced an RMSE of 0.007 (Fig. 2 in Appendix).141

A. C.B.

F.D. E. G.
Epoch Epoch Epoch

EpochEpochEpoch Epoch

Figure 1: Final training summary from 146 epochs of training. A: Overall loss curve. B: Time->
ESM2 MSE, C: Time-> ESM2 consine similarity, D: Reconstruction ESM MSE, E: Future Prediction
ESM MSE, F: Temporal consistency; G: Diversity.

To properly interpret these results, we note that the ground truth ESM embeddings exhibited a mean142

standard deviation of 0.0292 across all dimensions (Fig. 3 in Appendix). Our model’s RMSE (0.045)143

exceeds this natural variability by 1.5-fold, indicating prediction errors surpass inherent variation144

in the ESM embedding space. In contrast, phylodynamics achieved superior performance with an145

RMSE of 0.007—4 times smaller than natural data variability and 6.4 times better than our neural146

approach.147

This performance gap demonstrates that traditional evolutionary modeling remains highly competitive148

for protein sequence prediction. The gap likely reflects our relatively small dataset, high-dimensional149

ESM embeddings, sparse data between 1977Q1 and 1994Q3, or specific temporal patterns in Ebola L150

protein evolution that mechanistic phylodynamic models capture more effectively.151

Given the phylodynamics baseline’s superior performance, we plan two key refinements: Dataset152

Refinement using only sequences from 1994 onward to address data sparsity and temporal gaps,153

and Consensus Sequence Approach replacing averaged embeddings with consensus sequences per154

quarter, matching phylodynamics methodology.155

While PEVO’s direct time-to-sequence mapping approach currently underperforms, it remains156

valuable for biosurveillance by predicting functional and epidemiological characteristics of future mu-157

tations. Comparing predicted embeddings with historical sequences enables quantitative assessment158

of evolutionary similarity and identification of significant deviations for public health monitoring159

without requiring explicit amino acid reconstruction.160

This work establishes a foundational framework for neural temporal-sequence learning in pathogen161

evolution prediction. While phylodynamics currently outperforms our approach, PEVO demonstrates162

the feasibility of direct time-to-sequence mapping and offers potential advantages in computational163

efficiency and automated integration for real-time biosurveillance systems. The planned refinements164

targeting data quality and methodological alignment provide clear pathways for improving predictive165

accuracy.166
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A Phylodynamic Baseline Details218

Multiple sequences per quarter were aligned using Clustal Omega [Sievers et al., 2011], and consensus219

sequences were generated with EMBOSS [Rice et al., 2000]. Unknown amino acids were replaced220

using the previously described method.221

For phylogenetic projections, consensus training sequences were aligned with MUSCLE [Edgar,222

2004], then maximum-likelihood trees were constructed using IQ-TREE with 1000 bootstrap repli-223

cates and ModelFinder for automatic model selection [Nguyen et al., 2015, Kalyaanamoorthy et al.,224

2017]. Quarter dates were converted to the first day of each quarter and input with phylogenetic trees225

into TreeTime (clockfilter=5, gtr=infer) [Sagulenko et al., 2018].226

The substitution rate (µ) extracted from TreeTime was used with uniform distributions for the rate227

matrix of amino acid substitutions (normalized Q) and state frequencies. Using the final training228

consensus sequence (2022Q4) as the starting point, each site was modeled as a continuous-time229

Markov chain over 20 amino acids with ∆t = 0.25 years. For each site with rate multiplier r, the230

transition probability matrix was calculated as P(∆t, r) = exp(Q · µ∆tr).231

Predicted sequences were combined with original training data, realigned with MUSCLE, and232

phylogenetically analyzed using IQ-TREE with ModelFinder and TreeTime (Appendix Fig. 2).233

Figure 2: Phylodynamics predictions

B Loss Terms234

Table 1 in Appendix lists the details of the error terms used in PEVO.235

C Per ESM Dimension Variation236

We generated sequence-level ESM2 embeddings for all sequences (training and testing) and computed237

the standard deviation across each embedding dimension (Fig. 3). The mean standard deviation238
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Loss Term What it Measures Input/Output Used Formula / Code
Lrecon Reconstruction loss: how well the

model reconstructs ESM2 embeddings
for historical (input) periods

Predicted and target ESM2 for
historical periods

0.8MSE(ŷhist,yhist) +
0.2L1(ŷhist,yhist)

Lpred Prediction loss: how well the model pre-
dicts ESM2 embeddings for future peri-
ods

Predicted and target ESM2 for
future periods

0.8MSE(ŷfuture,yfuture) +
0.2L1(ŷfuture,yfuture)

Lsmooth Smoothness loss: encourages smooth
temporal changes in predictions

Differences between consecutive
predicted and target ESM2 (his-
torical & future)

MSE(∆ŷhist,∆yhist) +
MSE(∆ŷfuture,∆yfuture)

Ltemp-cons Temporal consistency loss: matches the
temporal evolution (velocity & acceler-
ation) of predictions to targets

First and second differences (gra-
dients, accelerations) of pre-
dicted and target future ESM2

MSE(∆ŷfuture,∆yfuture) +
0.1MSE(∆2ŷfuture,∆

2yfuture)

Ldiv Diversity loss: encourages diversity
among predictions in a batch

Pairwise cosine similarity of pre-
dicted future ESM2

Mean of cosine similarity matrix
between batch predictions

Table 1: Summary of loss terms used in the PEVO-TOTEM model. Here, ŷhist and yhist are predicted
and ground truth ESM2 embeddings for historical periods, ŷfuture and yfuture are for future periods, ∆
denotes the first difference (temporal gradient), and ∆2 the second difference (acceleration).

across all dimensions is 0.0292, representing the natural variability present in the ESM2 embedding239

space for our Ebola L protein dataset.240

Figure 3: Per ESM embedding dimension standard deviations. X axis: 320 dimensions from ESM2
embedding space. Y axis: standard deviations
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