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Abstract

Current pathogen biosurveillance systems reactively monitor evolving sequences
from environmental samples and assess mutation risks to guide public health
responses. To enable proactive surveillance, we developed PEVO, a deep learning
framework that explores direct prediction of future protein evolution by learning
mappings between temporal and sequence representations. Our approach combines
TOTEM (Time-Ordered Evolutionary Modeling) embeddings to capture quarterly
temporal patterns with ESM (Evolutionary Scale Modeling) protein sequence
embeddings, training a neural network to map from TOTEM time space to ESM
sequence space. We demonstrate our method on Ebola virus L protein sequences
collected from 1976-2018 (n = 2343) with quarterly temporal binning, generating
predictions for 2019-2030 and validating on known sequences after 2019 (n =
596). While our TOTEM-to-ESM mapping achieved an MSE of 0.002 (RMSE
= 0.045), phylodynamics baseline outperformed our approach with an RMSE of
0.007. Additionally, our model’s prediction variations (RMSE = 0.045) exceed
the natural variability observed in training data (STD = 0.0292), indicating room
for improvement in capturing evolutionary constraints. Despite current limitations,
this work establishes a foundational framework for temporal-sequence learning
that could potentially complement traditional phylodynamic approaches. With
further refinement, such neural approaches may offer computational advantages for
automated biosurveillance systems, contributing to the transformation of pathogen
surveillance from reactive monitoring toward proactive preparedness for future
pandemic threats.

1 Introduction

Microbial pathogens exist under continuous evolutionary pressure from environmental factors, host
immune responses, and anthropogenic interventions such as vaccination and antimicrobial treatment
[Smith et al.| 2023]. These multifaceted selection pressures drive pathogens through perpetual
cycles of mutation, selection, and adaptation, fundamentally shaping their genomic and proteomic
landscapes over time. From this perspective, pathogen evolution can be conceptualized as a temporal
mapping function that transforms chronological progression into specific genomic and proteomic
mutations.

The traditional approach to modeling pathogen evolution relies on phylodynamic methods, which
combine phylogenetic analysis with epidemiological dynamics to infer evolutionary parameters and
reconstruct transmission histories [Volz et al., [2013]]. Established phylodynamic frameworks such
as BEAST?2 [Bouckaert et al.,|2019] and TreeTime [Sagulenko et al.,|2018]] construct phylogenetic
trees from sequence data and estimate evolutionary rates, while platforms like Nextstrain [Hadfield
et al.,|2018|] provide real-time phylogenetic tracking for pathogen surveillance. These methods have
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proven invaluable for understanding historical evolutionary trajectories and are widely adopted in
epidemiological practice due to their interpretability and theoretical grounding. However, phylody-
namic approaches typically assume constant or slowly varying evolutionary rates and may struggle to
capture complex, non-linear temporal patterns that characterize rapidly evolving pathogens under
dynamic selection pressures.

Recent advances in protein language models (PLMs) have demonstrated remarkable success in
learning intricate patterns within amino acid sequences, protein structures, and functional relationships.
Models such as ESM model series [Rives et al.||2021} [Lin et al., |2023]], alongside structure prediction
breakthroughs like AlphaFold [Jumper et al.,2021]], RosettaFold [Baek et al.,[2021]], and generative
approaches like RFdiffusion [Watson et al.| 2023|], have shown that deep learning can capture
the underlying statistical regularities that govern protein sequence space. Critically, PLMs learn
representations of the biologically viable protein sequence space—a constrained subset of the
theoretically possible sequence combinations. While a protein of n amino acid residues theoretically
permits 20™ possible sequences, only a minute fraction of these combinations occur in nature,
constrained by requirements for proper protein folding, stability, and biological function. This
constraint implies that during evolutionary processes, pathogens navigate within this restricted,
functionally viable region of sequence space rather than exploring the full combinatorial possibility
space.

Parallel developments in temporal representation learning have introduced sophisticated methods for
encoding time series data. Notable among these is TOTEM (Tokenized Time Series Embeddings)
[Talukder et al.| [2024]], which provides a framework for learning rich temporal embeddings that
capture complex time-dependent patterns. The convergence of these advances in protein sequence
modeling and temporal representation learning presents an opportunity to test whether direct mappings
between time and sequence representations can outperform traditional phylodynamic approaches for
pathogen evolution prediction.

In this work, we introduce PEVO (Protein Evolution Predictor), a novel deep learning framework
that combines TOTEM temporal embeddings [Talukder et al.,[2024]] with ESM-2 protein sequence
representations [Rives et al.,[2021]] to explore direct temporal-to-sequence prediction for pathogen
evolution. PEVO represents an exploratory effort to establish learnable mappings between time space
and protein sequence space, bypassing explicit phylogenetic reconstruction while aiming to capture
evolutionary dynamics through neural architectures.

Using a comprehensive dataset of historical Ebola virus L protein sequences spanning over four
decades, we evaluate PEVO’s ability to predict future protein sequence embeddings and compare
its performance against established phylodynamics approaches. While our initial results show that
phylodynamics currently outperforms PEVO (RMSE = 0.007 vs. 0.045), and the neural model
introduces variations larger than the natural standard deviation observed in training sequences, this
work establishes a foundational framework for temporal-sequence learning that could potentially
surpass traditional methods with further development.

2 Dataset

We queried GenBank [Sayers et al., [2019] for all Ebola RNA-dependent RNA polymerase (L protein)
sequences, which together with VP35 are essential for viral RNA replication and transcription.
After removing synthetic sequences and those shorter than 500 base pairs, we processed sequences
containing unknown amino acids (Xs) by aligning them with the GenBank reference sequence using
pairwise alignment and replacing unknown residues with corresponding reference amino acids. The
dataset was temporally split with sequences from 1976-2018 as training data (n=2343) and sequences
from 2019 onward as testing data (n=596), creating an approximate 75/25 train-test split.

3 Phylodynamics Analysis

For phylodynamic baseline comparison, we created consensus sequences for each quarter using
Clustal Omega [Sievers et al., 201 1]] and EMBOSS [Rice et al.,|2000]]. We constructed maximum-
likelihood phylogenetic trees with IQ-TREE [Nguyen et al.,|2015] and estimated evolutionary parame-
ters using TreeTime [Sagulenko et al., 2018]]. Future sequences were predicted using continuous-time



88
89

90

91
92
93
94

95

96
97
98

99
100
101
102
103

104
105
106
107
108

109
110
111
112
113
114
115

116

117
118
119
120
121
122

123
124

125
126
127
128

129
130
131
132

Markov chain models with extracted substitution rates, and RMSE was calculated by embedding
predicted and actual sequences with ESM2. See details in Appendix

4 Model Architecture

Our PEVO-TOTEM (Protein Evolution with TOTEM Time Embeddings) model learns the mapping
from temporal tokens to protein sequence representations. Unlike conventional approaches that embed
sequences into temporal space, our architecture directly maps time periods to ESM2 embedding
space, enabling the model to learn f : time — sequence features.

The temporal tokenizer converts quarterly time periods into discrete tokens:
Temporal Tokenizer : {1976Q1, 1976Q2, ...,2030Q4} — {0,1,...,219} 1

This creates a vocabulary of 220 temporal tokens spanning 55 years of quarterly periods between
[1976, 2030]. Each time period is mapped to a unique integer identifier that serves as input to the
TOTEM embedding layer to generate rich temporal representations:

TOTEM Embedding : RE*L — REX L dmoa 2)

where B is batch size, L is the temporal sequence length (number of quarterly tokens, default L = 8,
and dyodel 1S the model dimension. In our example study, d;,oqe; = 512. The TOTEM embedding
incorporates: 1) Base temporal embeddings: Learnable representations for each time token; 2)
Positional encoding: Enhanced with multiple temporal cycles (quarterly=4, monthly=12, weekly=52);
3) Dropout regularization: Applied to prevent overfitting.

We used a six layer transformer encoder with 8 attention heads to processes temporal embeddings
to capture temporal features in a 512 dimension space. The transformer uses causal masking to
ensure that predictions at time ¢ only depend on information from times ¢’ < ¢, maintaining temporal
causality. The sequence projection layer uses linear model with layer normalization to project
temporal features in 512 dimensions to ESM2-t6-8M embedding space in 320 dimensions.

To prepare the data for model training, we begin with a CSV file containing protein sequences and
their associated quarterly collection dates. Multiple sequences from the same quarter are averaged
using their ESM2 embeddings, while missing quarters use the previous quarter’s embedding. Each
sequence is embedded using ESM?2 and organized chronologically into quarterly time series. We
then construct a sliding window dataset where each input contains 8 consecutive historical quarters
and targets the subsequent 4 future quarters, with the window advancing by 1 quarter per step. The
SlidingWindowDataset creates training pairs:

Input : Historical quarters [t —w + 1,...,¢] 3)
Target : Future quarters [t + 1,...,t + h) 4)
where w is the window size (8 quarters) and h is the prediction horizon (4 quarters).

For prediction, the model uses the 8 historical quarters as context to predict the next 4 future
quarters. We obtain temporal embeddings for future time tokens using the TOTEM embedding layer,
then compute a context vector by mean-pooling the transformer-encoded representations from the
historical sequence. This context vector is broadcast across all future time steps and added to the
future temporal embeddings. The enhanced embeddings are then projected into the ESM2 sequence
space to yield predicted future sequence features.

The model optimizes a multi-component loss function: £ = )\TL, where A = [Ar, A, As, Ac, )\d]T
are loss weights and L = [Lyecon, Lpred, Lsmooth Leonsist Lgiv]T are individual loss components.

The reconstruction 10ss Lecon Uses combined MSE and L1 loss between predicted and ground truth
ESM2 embeddings for the 8 historical quarters, evaluating the model’s ability to reconstruct known
sequences. The prediction loss Lp.q applies the same combined loss to the 4 future quarters, assessing
forecasting accuracy for unseen sequences.

Three regularization losses ensure prediction quality: Lmeoth €ncourages smooth temporal changes
in predicted embeddings to match ground truth dynamics; Lonsis enforces temporal consistency by
matching first- and second-order temporal dynamics; and Lg;, promotes prediction diversity across
batch samples using cosine similarity to prevent mode collapse.
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Default weights are A, = 1.0, A, = 1.0, Ay = 0.1, A¢ = 0.2, Aq = 0.05. The model uses AdamW
optimization with cosine annealing learning rate schedule, weight decay of 10>, and gradient
clipping at 1.0.

5 Results and Discussion

We trained the model for 145 epochs on sequences spanning 1976-2019 and evaluated performance
on sequences after 2019Q1-2021Q2 (Fig. [I). The model demonstrated near perfect convergence
across both the composite total loss (Fig. [T]A) and individual loss components (Fig. [IB, D-G) and
achieved an MSE of 0.002 for ESM embedding prediction, corresponding to an RMSE of 0.045 (Fig.
[IE). In comparison, the phylodynamics baseline produced an RMSE of 0.007 (Fig. [2]in Appendix).
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Figure 1: Final training summary from 146 epochs of training. A: Overall loss curve. B: Time->
ESM2 MSE, C: Time-> ESM?2 consine similarity, D: Reconstruction ESM MSE, E: Future Prediction
ESM MSE, F: Temporal consistency; G: Diversity.

To properly interpret these results, we note that the ground truth ESM embeddings exhibited a mean
standard deviation of 0.0292 across all dimensions (Fig. E]in Appendix). Our model’s RMSE (0.045)
exceeds this natural variability by 1.5-fold, indicating prediction errors surpass inherent variation
in the ESM embedding space. In contrast, phylodynamics achieved superior performance with an
RMSE of 0.007—4 times smaller than natural data variability and 6.4 times better than our neural
approach.

This performance gap demonstrates that traditional evolutionary modeling remains highly competitive
for protein sequence prediction. The gap likely reflects our relatively small dataset, high-dimensional
ESM embeddings, sparse data between 1977Q1 and 1994Q3, or specific temporal patterns in Ebola L
protein evolution that mechanistic phylodynamic models capture more effectively.

Given the phylodynamics baseline’s superior performance, we plan two key refinements: Dataset
Refinement using only sequences from 1994 onward to address data sparsity and temporal gaps,
and Consensus Sequence Approach replacing averaged embeddings with consensus sequences per
quarter, matching phylodynamics methodology.

While PEVO’s direct time-to-sequence mapping approach currently underperforms, it remains
valuable for biosurveillance by predicting functional and epidemiological characteristics of future mu-
tations. Comparing predicted embeddings with historical sequences enables quantitative assessment
of evolutionary similarity and identification of significant deviations for public health monitoring
without requiring explicit amino acid reconstruction.

This work establishes a foundational framework for neural temporal-sequence learning in pathogen
evolution prediction. While phylodynamics currently outperforms our approach, PEVO demonstrates
the feasibility of direct time-to-sequence mapping and offers potential advantages in computational
efficiency and automated integration for real-time biosurveillance systems. The planned refinements
targeting data quality and methodological alignment provide clear pathways for improving predictive
accuracy.
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A Phylodynamic Baseline Details

Multiple sequences per quarter were aligned using Clustal Omega [Sievers et al.,|2011]], and consensus
sequences were generated with EMBOSS [Rice et al.,[2000]. Unknown amino acids were replaced
using the previously described method.

For phylogenetic projections, consensus training sequences were aligned with MUSCLE [Edgar,
2004, then maximum-likelihood trees were constructed using IQ-TREE with 1000 bootstrap repli-
cates and ModelFinder for automatic model selection [Nguyen et al., 2015} | Kalyaanamoorthy et al.|
2017]]. Quarter dates were converted to the first day of each quarter and input with phylogenetic trees
into TreeTime (clockfilter=5, gtr=infer) [[Sagulenko et al., 2018]].

The substitution rate (1) extracted from TreeTime was used with uniform distributions for the rate
matrix of amino acid substitutions (normalized Q) and state frequencies. Using the final training
consensus sequence (2022Q4) as the starting point, each site was modeled as a continuous-time
Markov chain over 20 amino acids with At = 0.25 years. For each site with rate multiplier r, the
transition probability matrix was calculated as P(At,7) = exp(Q - pAtr).

Predicted sequences were combined with original training data, realigned with MUSCLE, and
phylogenetically analyzed using IQ-TREE with ModelFinder and TreeTime (Appendix Fig. 2).
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Figure 2: Phylodynamics predictions

B Loss Terms

Table[T]in Appendix lists the details of the error terms used in PEVO.

C Per ESM Dimension Variation

We generated sequence-level ESM2 embeddings for all sequences (training and testing) and computed
the standard deviation across each embedding dimension (Fig. [3). The mean standard deviation
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Loss Term | What it Measures Input/Output Used Formula / Code

Lrecon Reconstruction loss: how well the | Predicted and target ESM2 for | 0.8 MSE(¥hist, Ynist) +
model reconstructs ESM2 embeddings | historical periods 0.2 L1($hist, Yhist)
for historical (input) periods

Lopred Prediction loss: how well the model pre- | Predicted and target ESM2 for | 0.8 MSE(¥uwre, ¥tuture) +
dicts ESM2 embeddings for future peri- | future periods 0.2 L1(Ffuture Ytuture)
ods

Lsmooth Smoothness loss: encourages smooth | Differences between consecutive | MSE(Aynist, AYnist) +
temporal changes in predictions predicted and target ESM2 (his- | MSE(AY fuwre, AYfuture)

torical & future)

Liemp-cons Temporal consistency loss: matches the | First and second differences (gra- | MSE(A¥tuwre, AYfuture) +
temporal evolution (velocity & acceler- | dients, accelerations) of pre- | 0.1 MSE(A%Ytuture, A% Yfuture)
ation) of predictions to targets dicted and target future ESM2

Lgiv Diversity loss: encourages diversity | Pairwise cosine similarity of pre- | Mean of cosine similarity matrix
among predictions in a batch dicted future ESM2 between batch predictions

Table 1: Summary of loss terms used in the PEVO-TOTEM model. Here, yp;s; and yp;s are predicted
and ground truth ESM2 embeddings for historical periods, ¥ and yewre are for future periods, A
denotes the first difference (temporal gradient), and A2 the second difference (acceleration).

across all dimensions is 0.0292, representing the natural variability present in the ESM2 embedding
space for our Ebola L protein dataset.
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Figure 3: Per ESM embedding dimension standard deviations. X axis: 320 dimensions from ESM2
embedding space. Y axis: standard deviations
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