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Abstract
Given a graph with positive and negative edge
labels, the correlation clustering problem aims to
cluster the nodes so to minimize the total num-
ber of between-cluster positive and within-cluster
negative edges. This problem has many appli-
cations in data mining, particularly in unsuper-
vised learning. Inspired by the prevalence of large
graphs and constantly changing data in modern
applications, we study correlation clustering in
dynamic, parallel (MPC), and local computation
(LCA) settings. We design an approach that im-
proves state-of-the-art runtime complexities in all
these settings. In particular, we provide the first
fully dynamic algorithm that runs in an expected
amortized constant time, without any dependence
on the graph size. Moreover, our algorithm essen-
tially matches the approximation guarantee of the
celebrated PIVOT algorithm.

1. Introduction
We study algorithms for the Correlation Clustering problem,
which has many applications in Machine Learning and Data
Mining (Bansal et al., 2004; Becker, 2005; Kalashnikov
et al., 2008; Arasu et al., 2009; Firman et al., 2013; Bonchi
et al., 2013; Li et al., 2017). Among the most prominent ap-
plications is clustering products into categories or detecting
communities based on product co-purchasing (Wang et al.,
2013; Veldt et al., 2020; Shi et al., 2021). In this problem,
we are given a set of objects with “similar” or “dissimilar” la-
bels between every pair of objects, and the goal is to cluster
these objects such that similar objects are in the same cluster
and dissimilar objects are in different clusters. Formally,
given a complete graph with edge weights in R, correlation
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clustering with the minimum disagreement objective asks
to cluster the nodes such that the sum of the weights of
positive edges between clusters plus the sum of the weights
of negative edges inside clusters is minimized.1 This paper
focuses on the unweighted setting, where weights are in
{−1,+1}.

Correlation Clustering is APX hard (Charikar et al., 2005).
There has been a long line of work on approximation al-
gorithms for correlation clustering; see e.g., Bansal et al.
(2004); Charikar et al. (2005); Demaine et al. (2006);
Chawla et al. (2015); Jafarov et al. (2021); Cohen-Addad
et al. (2022); Behnezhad et al. (2022); Chakrabarty &
Makarychev (2023); Cohen-Addad et al. (2023). The best
known approximation factor is 1.437 due to Cao, Cohen-
Addad, Lee, Li, Newman, and Vogl (2024).2 However, all
known algorithms with approximation factors less than 3
use linear programming (LP), which makes most of them
impractical for dealing with massive data.

In their seminal work, Ailon, Charikar, and Newman (2008)
introduced an elegant 3-approximation algorithm called
PIVOT, which runs in linear time (time proportional to
the number of positive edges in the graph). It is the algo-
rithm of choice in practice. The algorithm has been adapted
for various computational models including semi-streaming
(Behnezhad et al., 2023; Cambus et al., 2022; Chakrabarty
& Makarychev, 2023), parallel algorithms (MPC) (Cambus
et al., 2022; Behnezhad et al., 2022), local computation
algorithms (LCA) (Behnezhad et al., 2022), and dynamic
algorithms (Behnezhad et al. (2022); see also Chechik &
Zhang (2019)).

We study correlation clustering for massive and dynamic
graphs. Such graphs are used to represent social net-
works (Tantipathananandh & Berger-Wolf, 2011; Hafiene

1Correlation clustering has also been studied on weighted
graphs and with other objectives such as maximum agreement
or minimum ℓp norm (Bansal et al., 2004; Swamy, 2004; Charikar
et al., 2005; Demaine et al., 2006; Puleo & Milenkovic, 2016;
Charikar et al., 2017; Ahmadi et al., 2019; Jafarov et al., 2021;
Kalhan et al., 2019).

2The proof of 1.437 approximation is computer-assisted, but
the same publication also presents an analytical proof of 1.49
approximation.
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et al., 2020), knowledge graphs (Fang et al., 2020; Yan et al.,
2021), and user-product interactions (Ding et al., 2019).
We design a PIVOT-like algorithm that can be easily im-
plemented in the fully dynamic regime and LCA and MPC
models. Our algorithm is inspired by the recent works by
Behnezhad, Charikar, Ma, and Tan (2022) and Chakrabarty
and Makarychev (2023). Behnezhad et al. (2022) presented
a (3 + ε)-approximate algorithm, called R-pivot, that runs
in O( 1ε ) MPC rounds, for any ε > 0. This algorithm can
be implemented in LCA with ∆O(1/ε)-probe complexity,
where ∆ is the maximum node degree in the graph (consist-
ing of positive edges). Chakrabarty & Makarychev (2023)
give a (3 + ε)-approximate semi-streaming algorithm that
uses O(n/ε) words of memory. Behnezhad et al. (2019)
show how to maintain the lexicographically first maximal
matching in a fully dynamic graph. Their result can be used
to implement PIVOT in the fully dynamic setting. The ex-
pected update time for relabelling edges is O(log2 n log2 ∆)
per operation. Chechik & Zhang (2019) provide a similar re-
sult for maximal matching with expected worst-case running
time O(log4 n) per update.

1.1. Our Contributions

In this paper, we provide a new variant of PIVOT, which we
call PRUNED PIVOT, that gives a (3 + ε)-approximation for
Correlation Clustering (see Theorem 4.1). Our algorithm
is local and parallelizable by design: Given a node u and
common randomness, it returns the cluster of u after explor-
ing only O(1/ε) nodes of the entire graph. This makes it
easy to implement PRUNED PIVOT in various computational
models, including dynamic algorithms, MPC, and LCA.

Our first result is an efficient algorithm for dynamically
maintaining a clustering. This is the first dynamic algorithm
for Correlation Clustering, whose expected running time
does not depend on the graph size.

Theorem 1.1 (Fully-dynamic correlation clustering). For
any ε > 0, there is a data structure that maintains a 3 + ε
approximation of correlation clustering in a fully-dynamic
setting with an oblivious adversary. The expected update
time is O(1/ε) per operation.

Theorem 1.1 gives an almost 3 approximation fully dynamic
algorithm with update time O(1), which answers an open
question posed by Behnezhad et al. (2022).

Theorem 1.2 (Correlation clustering in MPC). For any
ε > 0, there is a randomized O(log 1

ε )-round MPC algo-
rithm that achieves a 3 + ε approximation for Correlation
Clustering. This bound holds even when each machine has
a memory sublinear in the node-set size.

The previously best-known MPC algorithm by Behnezhad
et al. (2022) requires O(1/ε) rounds. Hence, our approach
improves the dependence on 1/ε exponentially.

Theorem 1.3 (Correlation clustering in LCA). For any ε >
0, there is a randomized O(∆/ε)-probe complexity local
computation algorithm that achieves a 3 + ε approximation
of correlation clustering on graphs with maximum degree ∆.

Theorem 1.3 gives an almost 3 approximation LCA in, es-
sentially, O(∆) probes, thus answering another question
posed by Behnezhad, Charikar, Ma, and Tan (2022). The
previously best-known algorithms for LCA were the algo-
rithm by Behnezhad et al. (2022) giving 3+ε approximation
in ∆O(1/ε) probes, and the work by Behnezhad et al. (2023)
providing a 5-approximate algorithm in O(poly log n)
space and O(∆ · poly log n) probes.3

We provide empirical evaluations on synthetic graphs in
Appendix A. They show that exploring only 4 nodes to
obtain a node’s clustering suffices for the cost of PRUNED
PIVOT to be within 1% of the cost of PIVOT.

Moreover, in Appendix G we describe how to implement our
algorithm in the CRCW PRAM model in O(1/ε) rounds.

We finally note that our main technical result (Theorem 4.10)
is of independent interest. A seminal work by Yoshida,
Yamamoto, and Ito (2009) shows how to learn whether a
randomly chosen node is in MIS using the average-degree
LCA probes. Our work essentially recovers that claim using
a significantly different analysis.

1.2. Comparison to prior work

Several closely related works have introduced variants of
the PIVOT algorithm. In PIVOT, nodes are processed ac-
cording to a predefined and random order, and each node
queries its neighbors that have already been processed to
determine its cluster (for a formal description of PIVOT see
Section 3). Hence, to determine the cluster of each node,
multiple “query paths” are made, and the collection of these
query paths makes a “query tree”. (For a more formal defi-
nition of query paths and query trees, refer to Section 4.1.)

First, given a parameter R, the R-PIVOT algorithm by
Behnezhad et al. (2022) runs the PIVOT algorithm but only
considers “query paths” of depth at most R. If, to obtain
the cluster of a node, one needs to consider query paths of
length more than R, then this node is put into a singleton
cluster. Behnezhad et al. (2022) show that this algorithm
has approximation factor 3 +O( 1

R ).

Second, the semi-streaming algorithm by Chakrabarty &
Makarychev (2023) is another modified version of PIVOT.
In this approach, given a parameter R, every node only
queries at most its R top-ranked neighbors when deciding
on their cluster. This algorithm yields an approximation
factor of 3 +O( 1

R ).

3Our LCA algorithm uses O(∆/ε · poly logn) space.
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In PRUNED PIVOT, instead of only limiting the number of
neighbors each node queries or the depth of the query paths,
our algorithm limits the total size of the query tree. Our
analysis of the algorithm uses a new approach to counting
query and expensive paths, which is very different from the
approach of Behnezhad et al. (2022).

Our main technical contribution is a proof that by limiting
the total size of the query tree, the existence/non-existence
of each edge only influences at most a constant number of
other nodes. This crucial point allows us to achieve low
probe complexity in LCA and MPC, and constant update
time in the dynamic setting.

2. Preliminaries
An instance of the correlation clustering problem receives
an unweighted graph G = (V,E) on input. We consider E
representing positive and (V ×V )\E representing negative
labels between the nodes of V . This problem aims to cluster
V to minimize the number of positive between-cluster and
negative within-cluster labels. The neighbors of a node
u ∈ V are denoted by N(u). We let u ∈ N(u), i.e., u is a
neighbor of itself. Next, we formally define the MPC and
LCA models.

The MPC model. Massively Parallel Computation (MPC)
is a theoretical model of real-world parallel computation
such as MapReduce (Dean & Ghemawat, 2008). It was
introduced in a sequence of works by Dean & Ghemawat
(2008); Karloff et al. (2010); Goodrich et al. (2011). In
MPC, computation is performed in synchronous rounds,
where in each round every machine locally performs com-
putation on the data that resides locally and then sends and
receives messages to any other machine. Each machine has
a memory of size S, and can send and receive messages of
total size S. As the local computations frequently run in
linear or near-linear time, they are ignored in the analysis
of the complexity of the MPC model, and so the efficiency
of an algorithm in this model is measured by the number
of rounds it takes for the algorithm to terminate where the
memory S plays a key role. We focus on the sublinear mem-
ory regime, where S = nα for some constant α ∈ (0, 1).

The LCA model. Local Computation Algorithms (LCAs)
were introduced by Rubinfeld et al. (2011) for tasks where
the input and output are too large to be stored in the mem-
ory. An LCA is not required to output the entire solution
but should answer queries about a part of the output by
examining only a small portion of the input. In Correla-
tion Clustering, the query is a node v, and the output is the
cluster ID of v. Formally, an LCA A is given access to the
adjacency list oracle for the input graph G, a tape of random
bits, and local read-write computation memory. When given
an input query x, A must compute an answer for x depend-

ing only on x,G and the random bits. The answers given by
A to all possible queries must be consistent, meaning that
they must constitute some valid solution to the computation
problem.

We use probe to refer to accessing a node in an adjacency
list. The LCA complexity of an algorithm is measured by
the number of probes the algorithm makes per single query.

3. Recursive and Pruned Pivot
This section describes our variant of the PIVOT algorithm
that we call PRUNED PIVOT. We remind the reader how the
standard PIVOT algorithm works. First, it picks a random
ordering π : V → {1, . . . , n}. We say that π(u) is the
rank of node u. If π(u) < π(v), then u has a higher rank
than v. Therefore, the node with rank 1 is the highest-
ranked, and the node with rank n is the lowest-ranked node.
The algorithm maintains a list of not yet clustered nodes.
Initially, all nodes are not clustered. At every step, the
algorithm picks the highest not yet clustered node, marks
it as a pivot, and assigns itself and all its not yet clustered
neighbors to a new cluster. The algorithm labels all nodes
in this new cluster as clustered and proceeds to the next
step. Each cluster created by the PIVOT algorithm contains
a unique pivot node. We say that the cluster is represented
by that pivot. If node u belongs to the cluster represented
by pivot v, we say that u is assigned to pivot v.

To describe our variant of the PIVOT algorithm, we first
rewrite the standard PIVOT as a recursive or top-down dy-
namic programming algorithm. The algorithm relies on the
recursive function CLUSTER (see Algorithm 1). For a given
node u and random permutation π, this function returns the
pivot node to which u is assigned, along with a flag indicat-
ing if u is a pivot. Note that u is a pivot if and only if it is
assigned to itself.

Algorithm 1 RECURSIVE PIVOT

1: function CLUSTER(u, π):
2: Sort all neighbors of u (including u itself) by their

rank π(v). Denote the sorted list by Nπ .
3: for all v in Nπ:
4: if v = u:
5: return u belongs to the cluster of u; u is a pivot.
6: CLUSTER(v, π)
7: if v is a pivot:
8: return u is in the cluster of v; u is not a pivot.

To reduce the running time, we can cache (memoize) the
values returned by the function CLUSTER. We want to use
this recursive function in our local computation algorithm
(LCA). The problem is, however, that to cluster some nodes,
the algorithm may need to make as many as Ω(n) calls to
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CLUSTER (for instance, if node u is connected to all nodes
in the left part of the complete bipartite graph Kn,n). That is
why we propose a crucial change: execute only k recursive
calls of PIVOT. If the status of the node is not determined
by then, mark that node as unlucky and make it a singleton.
The algorithm is given below.

Algorithm 2 PRUNED PIVOT

1: Initialize a global variable REC-CALLS to 0.
2: function PRUNED-CLUSTER (u,π):
3: If REC-CALLS ≥ k:
4: terminate this recursion
5: Sort all neighbors of u (including u itself) by their

rank π(v). Denote the sorted list by Nπ .
6: for all v in Nπ:
7: if v = u:
8: return u belongs to the cluster of u; u is a pivot.
9: REC-CALLS ← REC-CALLS + 1

10: PRUNED-CLUSTER (v,π)
11: if v is a pivot:
12: return u is in the cluster of v; u is not a pivot.

The recursion tree for the modified PRUNED-CLUSTER func-
tion contains at most k edges. Consequently, if k is a con-
stant, the running time of function PRUNED-CLUSTER is
also constant. We show how to implement this algorithm
as a Local Computation (LCA), Massively Parallel Compu-
tation (MPC), and Dynamic Graph Algorithm. In the next
section, we prove that the approximation factor of PRUNED
PIVOT is 3 +O(1/k).

4. Sequential Implementation
In the previous section, we described PRUNED PIVOT algo-
rithm. For the sake of analysis, we now examine a sequential
algorithm that produces the same clustering as the recursive
algorithm above and, moreover, marks the same set of nodes
as unlucky. First, we consider the standard PIVOT imple-
mented as a bottom-up dynamic programming algorithm
(see Algorithm 3).

Algorithm 3 SEQUENTIAL PIVOT

1: Pick a random ordering π : V → {1, . . . , n}.
2: Let Vπ be the list of all nodes u ∈ V sorted by the rank

π(u).
3: for each u in Vπ:
4: Sort all neighbors of u by their rank π(v). Denote

the sorted list by Nπ .
5: while u is not assigned to a cluster:
6: Pick the next neighbor v ∈ Nπ(u).
7: if v is a pivot: place u in the cluster of v.
8: if v = u: mark u as a pivot; create a new cluster

for u; and place u in that cluster.

In the main loop (see the for each loop above), the algorithm
iterates over all nodes in V . At iteration i ∈ {1, . . . , n}, the
algorithm processes node u with rank i, i.e., u = π−1(i). It
checks all neighbors v of u with rank higher than that of u.
If one of these neighbors is a pivot, the algorithm assigns u
to the highest-ranked pivot neighbor of u. If none of these
neighbors are pivots, the algorithm marks u as a pivot and
assigns u to itself.

Let us set up some notation. Consider a neighbor v of u. It
is processed at iteration i = π(v). Suppose that no other
neighbor of u (including u itself) is marked as a pivot before
iteration i. Then, we know that u will be assigned to the
cluster of v, since it is the highest-ranked pivot neighbor
of u. Thus, we will say that u is settled at step i. In other
words, u is settled when the first neighbor of u is marked
as a pivot. We denote the iteration when u is settled by
σ(u). Note that node u is assigned to the node processed at
iteration σ(u), i.e., node π−1(σ(u)). In particular, if u is a
pivot, then it is settled at the iteration i = π(u), the same
iteration as it is processed. We always have σ(u) ≤ π(u),
because if u is not settled before iteration π(u), then it is
marked as a pivot and assigned to itself at iteration π(u);
thus, if σ(u) ≥ π(u), then σ(u) = π(u).

If neighbor v of u is considered in the while-loop of the
SEQUENTIAL PIVOT algorithm, then we say that u queries
v. We denote by Q(u) the set of all neighbors queried by
u, except for u itself, and call this set the set of queried
neighbors of u. Observe that Q(u) = {v ∈ N(u) \ {u} :
π(v) ≤ σ(u)}. That is, Q(u) is the set of all neighbors of
u, excluding u, whose rank is higher than the rank of the
pivot to which u is assigned. Finally, we formally define the
recursion tree Tu for node u. The definition is recursive: If
Q(u) is empty, then Tu only contains node u. Otherwise,
Tu is the tree with root u and |Q(u)| subtrees T̃v attached
to it – one tree for every v ∈ Q(u). Each T̃v is a copy of
the recursive tree Tv. We stress that the recursive tree may
contain multiple copies of the same node v. One can think
of nodes of Tu as being “stack traces” or “execution paths”
for the recursive function CLUSTER.

Sequential Pivot with Pruning. We now describe how to
modify the bottom-up algorithm to make it equivalent to
PRUNED PIVOT algorithm. First, we run the bottom-up
algorithm as is and record its trace. We then define the
recursive call count for every node u. The recursive call
count of u equals the number of edges in the recursive tree
Tu. It can be computed using the following recurrence
relation:

call-count(u) =
∑

v∈Q(u)

(1 + call-count(v)). (1)

If Q(u) is empty, then the recursive call count of u equals 0,
by definition. We mark node u as unlucky if its recursive call

4



Pruned Pivot: Correlation Clustering Algorithm

count is at least k. Note that if one of the queried neighbors
of u is unlucky, then u is also unlucky.

Algorithm 4 PRUNING

1: Compute the recursive call count of every node u using
recurrence relation (1).

2: Mark all nodes u with call-count(u) ≥ k as unlucky.
3: Create a new cluster for each unlucky node u, remove u

from its current cluster, and place u in the new cluster.

The pruning step puts all unlucky nodes into singleton clus-
ters. We refer to the standard PIVOT algorithm as PIVOT
without pruning or simply PIVOT. We refer to the PIVOT
algorithm that runs the pruning as PIVOT WITH PRUNING.
Note that the PIVOT WITH PRUNING algorithm produces the
same clustering output as the PRUNED PIVOT algorithm de-
scribed in the previous section. The key difference between
these algorithms lies in their structure: PIVOT WITH PRUN-
ING consists of two distinct steps – a PIVOT step followed
by a PRUNING step – whereas PRUNED PIVOT combines
both steps together. We show that the expected cost of the
PIVOT WITH PRUNING is (3+O(1/k))OPT and obtain the
following theorem.

Theorem 4.1. The expected cost of the clustering produced
by the PRUNED PIVOT is (3 +O(1/k)) OPT.

Ailon, Charikar, and Newman (2008) showed that the ap-
proximation factor of PIVOT is 3. By Lemma F.1, the PIVOT
step (see Algorithm 3) is equivalent to the PIVOT algorithm.
Hence, its approximation factor is also 3. The pruning step
of PIVOT WITH PRUNING removes some nodes (namely,
unlucky nodes) from their original clusters and puts them
into singleton clusters. This pruning step can increase the
number of pairs of nodes (u, v) disagreeing with the cluster-
ing. Note, however, that if u and v are dissimilar (i.e., not
connected with an edge), then the pruning step will never
make them disagree with the clustering if they agreed with
the original clustering. Thus, the pruning step can increase
the objective function only by separating pairs of similar
nodes (u, v) ∈ E. In such case, we say that the pruning
step cuts edge (u, v). Specifically, edge (u, v) is cut by the
pruning step of PIVOT WITH PRUNING if u and v are in
the same cluster after the PIVOT step of the algorithm, but
are separated by the pruning step, because u, v, or both u
and v are unlucky nodes. We say that an edge (u, v) ∈ E is
cut by PIVOT (without pruning), if PIVOT places u and v in
distinct clusters. In the next sections, we show Lemma 4.2
that states that the expected number of edges cut by the
pruning step of PIVOT WITH PRUNING is upper bounded
by the expected number of edges cut by PIVOT divided by
⌈(k − 1)/2⌉/2. The “triangle-based” analysis of PIVOT by
Ailon, Charikar, and Newman (2008) shows that PIVOT cuts
at most 2OPT edges in expectation. Thus, the pruning step
cuts at most 4OPT/⌈(k − 1)/2⌉ edges in expectation. We

conclude that the expected cost of PIVOT WITH PRUNING
is at most (3 + 4/⌈(k − 1)/2⌉)OPT.

Lemma 4.2. The expected number of edges (u, v) cut by the
pruning step of PIVOT WITH PRUNING is upper bounded
by the expected number of edges cut by PIVOT divided
by ⌈(k − 1)/2⌉/2.

4.1. Query Paths

Our goal now is to prove Lemma 4.2.

w

v

b

a

Figure 1. This figure shows an extended query path in the recursion
tree Tv for node v. The path starts with edge (a, b) goes to the root
of the tree, node v, and then proceeds to node w. The path from a
till v is a query path. The path from a to w extends the path from
a to v. If edge (a, b) is cut by the pivot step of PIVOT but edge
(v, w) is not cut, then this path is expensive. We call it expensive
because if v is unlucky, then (v, w) is cut by the pruning step of
PIVOT WITH PRUNING and the cost of (v, w) is partially charged
to this path.

In this section, we define query paths, extended query paths,
and expensive extended query paths. We then show that on
the one hand, the number of edges cut by the pruning step
of the PIVOT WITH PRUNING algorithm is upper bounded
by the number of expensive extended query paths divided
by ⌈(k − 1)/2⌉ (see Corollary 4.9); and, on the other hand,
the expected number of expensive extended query paths is
upper bounded by two times the expected number of edges
cut by the PIVOT algorithm (see Theorem 4.10). This will
imply Lemma 4.2.

Definition 4.3 (Query Paths). A path (u0, u1, . . . , uL) is a
query path if each ui (i > 0) queries ui−1.

Definition 4.4 (Extended Query Paths). A path
(u0, u1, . . . , uL) of length L ≥ 2 is an extended
query path (EQ-path) if the following two conditions
hold: (1) (u0, u1, . . . , uL−1) is a query path; and (2)
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π(uL−2) ≤ σ(uL). We say that EQ-path (u0, u1, . . . , uL)
is an extension of the query path (u0, u1, . . . , uL−1). We
also call every path consisting of one edge (u0, u1) an
extended query path.

Note that a proper prefix of a query or extended query path
is a query path.

Recall, that for every u, we have σ(u) ≤ π(u). Also, a
node u queries its neighbor v (v ̸= u) if and only if u is
not settled before v is processed, i.e., σ(u) ≥ π(v). Thus,
(u0, u1, . . . , uL) is a query path if and only if

σ(u0) ≤ π(u0) ≤ σ(u1) ≤ π(u1) ≤ . . .

≤ σ(uL−1) ≤ π(uL−1) ≤ σ(uL) ≤ π(uL). (2)

Similarly, a path (u0, u1, . . . , uL) of length L ≥ 2 is an
EQ-path if and only if

σ(u0) ≤ π(u0) ≤ σ(u1) ≤ π(u1) ≤ . . .

≤ σ(uL−2) ≤ π(uL−2) ≤ min(σ(uL−1), σ(uL)). (3)

We will charge all edges cut by the pruning step of PIVOT
WITH PRUNING to Θ(k) expensive EQ-paths which are
defined as follows.

Definition 4.5 (Expensive Extended Query Paths). An ex-
tended query path (u0, u1, . . . , uL) is expensive if σ(u0) <
σ(u1) but σ(uL−1) = σ(uL). We denote the set of all
expensive query paths by X .

Note that in every expensive EQ-path, the first edge is cut
by PIVOT (because σ(u0) < σ(u1)) but the last edge is not
cut (because σ(uL−1) = σ(uL)). A path (u0, u1, . . . , uL)
is an EQ-path if and only if condition (3) holds, thus
(u0, u1, . . . , uL) is an expensive EQ-path if and only if

σ(u0) < σ(u1) and σ(u0) ≤ π(u0) ≤ σ(u1) ≤ π(u1) ≤
· · · ≤ π(uL−2) ≤ σ(uL−1) = σ(uL). (4)

The first condition σ(u0) < σ(u1) in (4) can be replaced
with σ(u0) ̸= σ(u1), because we always have σ(u0) ≤
σ(u1) if u0, . . . , uL−1 is a query path.

4.1.1. CHARGING CUT EDGES TO EXPENSIVE PATHS

We now prove a lemma that establishes a connection be-
tween edges cut by the pruning step of PIVOT WITH PRUN-
ING and expensive EQ-paths.

Lemma 4.6. For every unlucky node v and every edge
(v, w) with σ(v) = σ(w), there exist at least ⌈(k − 1)/2⌉
expensive extended query paths that end with edge (v, w).

Proof. Let Tv be the recursion tree for node v. We first
show that Tv contains at least ⌈(k − 1)/2⌉ edges cut by
PIVOT (formally, Tv contains copies of edges cut by PIVOT).

Consider an edge (u′, u′′) in T . Since (u′, u′′) is an edge
in the recursion tree, u′ queries u′′. Thus, u′ is assigned to
u′′ (if u′′ is a pivot) or some neighbor of u′ which is lower
ranked than u′′ (if u′′ is not a pivot). Vertex u′′ is assigned
to itself (if u′′ is a pivot) or one of its neighbors ranked
higher than u′′ (if u′′ is not a pivot). Thus, if edge (u′, u′′)
is not cut by PIVOT, then u′′ is a pivot and u′ is assigned to
u′′. This means that u′′ is the highest-ranked pivot neighbor
of u′. Consequently, for every u′, there is at most one child
node u′′ such that (u′, u′′) is not cut. Moreover, if one such
u′′ exists, then u′ is not a pivot, and hence the edge from
u′ to its parent is cut (unless u′ is the root). We get the
following claim.

Claim 4.7. For every node u in the recursion tree Tv, at
most one edge incident on u is not cut by PIVOT.

Node v is unlucky. Hence, the recursion tree Tv must have
at least k edges. Therefore, by Claim 4.7 and Lemma 4.8
(see below) there are at least ⌈(k − 1)/2⌉ cut edges in Tv.
In Lemma 4.8, red edges are cut edges, and blue edges are
not cut edges.

Lemma 4.8. Consider a tree T with k edges colored red
or blue. Suppose that at most one blue edge is incident on
each node in T . Then, T contains at least ⌈(k − 1)/2⌉ red
edges.

Proof. Tree T has k edges and k + 1 nodes. At most one
blue edge is incident on each node. So, blue edges form a
matching. The size of this matching is at most ⌊(k + 1)/2⌋.
The number of edges not in the matching is at least k −
⌊(k + 1)/2⌋ = ⌈(k − 1)/2⌉. All of them are red.

Now, for every edge (b, a) in T such that b queries a and
(b, a) is cut by PIVOT, we construct an expensive EQ-path.
This path starts with edge (a, b), then goes to the root of tree
T – node v – along the edges of T , and, finally, proceeds
to node w (see Figure 1). Observe that the subpath from a
to v is a query path since each node on the path queries the
preceding node. We know that σ(v) = σ(w). Hence, by (3),
the path (a, b, . . . , v, w) is an expensive query path.

The immediate corollary of this lemma gives us a bound on
the number of edges cut by the pruning step.

Corollary 4.9. The number of edges cut by the pruning step
of PIVOT WITH PRUNING is at most |X |/⌈(k − 1)/2⌉.

Proof. Every edge (v, w) ∈ E cut by the pruning step
of PIVOT WITH PRUNING is not cut by PIVOT. Hence,
σ(v) = σ(w). Moreover, if (v, w) is cut by the pruning
step, then v, w, or both v and w must be unlucky. Thus,
by Lemma 4.6, there are at least ⌈(k − 1)/2⌉ expensive
EQ-paths that end with (v, w) or (w, v). Therefore, there
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exists at least ⌈(k − 1)/2⌉ unique expensive EQ-paths for
each edge (v, w) cut by the pruning step.

4.1.2. EXPECTED NUMBER OF EXPENSIVE EQ-PATHS

We now prove that the expected number of expensive EQ-
paths is at most 4OPT and the expected number of query
paths that start with a fixed directed edge (a, b) – we denote
these paths by Q(a, b) – is at most 2.

Theorem 4.10. For every ordered pair (a, b) with (a, b) ∈
E, we have Eπ|Q(a, b)| ≤ 2, and

Eπ|X | ≤ 2E
[ ∑
(u,v)∈E

1(σ(u) ̸= σ(v))
]
.

We will refer to the time when iteration t of PIVOT occurs
as time t. For the sake of analysis, we shall assume that
the ordering π is initially (at time 0) hidden from us and is
revealed one node at a time. At the beginning of iteration
t, we learn the value of π−1(t), or, in other words, the
identity of the node processed at time t. Note that the state
of the algorithm after the first t iterations is completely
determined by the nodes π−1(1), . . . , π−1(t). In particular,
at time t, for every node u, we can tell if u is settled by
time t and, if it is settled, then we know the value of σ(u);
otherwise, we know that σ(u) > t. Let Ft be the filtration
generated by π−1(1), . . . , π−1(t). We will use the standard
notation Pr[ · | Ft] and E[ · | Ft] to denote the conditional
probability and conditional expectation given the state of
the algorithm after iteration t. Note that each π(u) and σ(v)
is a stopping time with respect to Ft.

Let P(a, b) be the set of all paths that start with edge
(a, b). As we run the PIVOT algorithm, we add paths to
sets Qt(a, b) and Xt(a, b). Loosely speaking, we add a
path from P(a, b) to Qt(a, b) if we can verify that this
path is a query path using condition (2) at time t; we
add a path from P(a, b) to Xt(a, b) if we can verify that
this path is an expensive EQ-path using condition (4) at
time t. Formally, we add path (u0 = a, u1 = b, . . . , uL)
to Qt(a, b) at time π(uL−1) if condition (2) holds; and
we add path (u0 = a, u1 = b, . . . , uL) to Xt(a, b) at
time σ(uL−1) = σ(uL) if condition (4) holds. Thus,
Qt(a, b) is the set of all query paths P ∈ P(a, b) for which
π(uL−1) ≤ t; and Xt(a, b) is the set of all expensive EQ-
paths P ∈ P(a, b) for which σ(uL−1) = σ(uL) ≤ t. Note
that at the times π(uL−1) and σ(uL−1) = σ(uL), we can
check conditions (2) and (4), respectively. We also define
a set of dangerous paths at time t, denoted by Dt(a, b), as
follows.

Definition 4.11 (Dangerous EQ-path). An extended query
path (u0, . . . , uL) (L ≥ 1) is dangerous at iteration t if
π(uL−2) ≤ t, π(uL−1) > t, and σ(uL) > t. We omit the
first condition (π(uL−2) ≤ t) for paths of length 1. Denote

the set of all extended query paths that start with edge (a, b)
and are dangerous at iteration t by Dt(a, b).

Note that a path P ∈ P(a, b) may become dangerous at
some iteration t, stay dangerous for some time, but eventu-
ally it will become non-dangerous. After that, it will remain
non-dangerous until the end of the algorithm. The defini-
tion of dangerous paths is justified by the following lemma,
which, loosely speaking, says that every query path and
every expensive EQ-path is created from a dangerous path.

Lemma 4.12. Consider a path P = (u0, u1, . . . , uL) ∈
P(a, b). Let P ′ = (u0, u1, . . . , uL−1). Then, the following
claims hold for every t ≥ 0:

• If P ∈ Qt+1(a, b) \ Qt(a, b), then P ∈ Dt(a, b) but
P /∈ Dt+1(a, b).

• If P ∈ Dt+1(a, b) \ Dt(a, b), then P ′ ∈ Dt(a, b) but
P ′ /∈ Dt+1(a, b).

• If P ∈ Xt+1(a, b) \ Xt(a, b), then P ∈ Dt(a, b)
or P ′ ∈ Dt(a, b) but P /∈ Dt+1(a, b) and P ′ /∈
Dt+1(a, b).

We prove this lemma in Appendix C.1.

Our approach to bounding E|Qt(a, b)| and E|Xt(a, b)| is
based on the following idea: At time t = 0, the path (a, b)
is dangerous, and there are no query or expensive EQ-paths
that start with (a, b). If P is a dangerous EQ-path at time
t, then at the next iteration, it may be extended to a longer
dangerous path, replaced with a query path, and/or created
one or more expensive EQ-paths. A dangerous path may
also disappear without producing any new dangerous, query,
or expensive EQ-paths. For every EQ-path P dangerous
at iteration t, we will compute the probabilities of creating
new paths and derive the desired bounds on E|Qt(a, b)| and
E|Xt(a, b)|. To make our argument formal, we define two
random processes:

Φt(a, b) = 2|Dt(a, b)|+ |Qt(a, b)|;
Ψt(a, b) = 2|Dt(a, b)|+ |Xt(a, b)|.

We claim that Φt(a, b) and Ψt(a, b) are supermartingales.
That is, E[Φt+1(a, b) | Ft] ≤ Φt(a, b); and E[Ψt+1(a, b) |
Ft] ≤ Ψt(a, b).

Lemma 4.13. Random processes Φt(a, b) and Ψt(a, b) are
supermartingales.

We prove this lemma in Appendix C.2. We now use
it to finish the proof of Theorem 4.10. We first upper-
bound Eπ|Q(a, b)|. Fix a directed edge (a, b). At time 0,
Φ0(a, b) = 2, since (a, b) is a dangerous EQ-path at time 0
but (a, b) /∈ Q0(a, b). Process Φ0(a, b) is a supermartin-
gale. Hence, E[Φn(a, b)] ≤ 2. Note that at time n, there
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are no dangerous EQ-paths because by time n all nodes are
processed and settled. Hence,

E[Q(a, b)] = E[Qn(a, b)] = E[Φn(a, b)] ≤ 2.

We now upper-bound E|X |. Every expensive EQ-path
P = (u0, . . . , uL) starts with a directed edge (u0, u1) and
at some iteration t is added to the set Qt(u0, u1). We have
(in the sum below, we have two terms, E|Xn(a, b)| and
E|Xn(b, a)|, for every edge (a, b) ∈ E):

E|X | =
∑

a,b:(a,b)∈E

E|Xn(a, b)|

=
∑

a,b:(a,b)∈E

E
[
|Xn(a, b)| · 1(σ(a) < σ(b))

]
.

Here, we used the definition of expensive PQ-paths: In every
expensive path P in P(a, b), σ(a) < σ(b). Thus, if σ(a) ≥
σ(b), then Xn(a, b) = ∅. Observe that |Xn(a, b)| =
Ψn(a, b) and E

[
Ψn(a, b) | Fσ(a)] ≤ Ψσ(a)(a, b), because

Ψn is a supermartingale. Moreover,

E
[
Ψn(a, b) · 1(σ(a) < σ(b)) | Fσ(a)] ≤

≤ Ψσ(a)(a, b) · 1(σ(a) < σ(b)),

because the event {σ(a) < σ(b)} is in Fσ(a), or, in other
words, at time σ(a), we already know the value of 1(σ(a) <
σ(b)), and this value does not change over time. Thus,

E|Xn(a, b)| = EE
[
Ψn(a, b) · 1(σ(a) < σ(b)) | Fσ(a)]

≤ E
[
Ψσ(a)(a, b) · 1(σ(a) < σ(b))

]
.

It remains to compute Ψσ(a)(a, b) · 1(σ(a) < σ(b)). If
σ(a) < σ(b), then a is not a pivot (otherwise, we would
have σ(a) = σ(b) = π(a)). Thus, π(a) > σ(a), and
the only EQ-path in P(a, b) dangerous at time τ = σ(a)
is the path (a, b). Hence, |Dσ(a)(a, b)| = 1. Similarly,
there are no expensive PQ-paths in Xσ(a)(a, b), because
σ(b) > τ = σ(a). Therefore, Ψσ(a)(a, b) · 1(σ(a) <
σ(b)) = 2 · 1(σ(a) < σ(b)), and

E|X | ≤ 2E
[ ∑
(a,b)∈E

1(σ(a) ̸= σ(b))
]
.

5. MPC Algorithm
Now we discuss how to simulate PRUNED PIVOT in MPC.
To that end, observe that PRUNED PIVOT has depth at most
k. Moreover, for each node v, there are at most k neighbors
of v, which the computation for v depends on. To find
those k neighbors of v, we sort all the neighbors of v and
select the top k ones. Sorting can be done in O(1) MPC
rounds (Goodrich et al., 2011) and O(m) total memory for
all the nodes simultaneously.

Define a directed graph H on V such that H contains an
edge (u, v) if and only if v is among the top k neighbors
of u. The k-hop neighborhood of u in H contains all the
edges and nodes needed to process u by PRUNED PIVOT.
Given this, our MPC algorithm simultaneously gathers k-
hop neighborhood for each u. This can be done in O(log k)
MPC rounds and O(n · kk+1) total memory via graph expo-
nentiation (see the paper by Lenzen & Wattenhofer (2010)).
The output for u of PRUNED PIVOT is computed on a single
machine using its relevant k-hop neighborhood.

6. Fully Dynamic Algorithm under Oblivious
Adversary

This section explains how to implement PRUNED PIVOT in
the fully dynamic setting with an oblivious adversary. On
a high level, when an edge e is updated, our dynamic algo-
rithm simply recomputes the clustering for each node that
queries e. As Theorem 4.10 states, there are only O(1) such
nodes in expectation. This property is the key to enabling
us to obtain only O(k) expected amortized update time.

In addition, our algorithm updates the neighbor list of the
endpoints of e, which is needed to implement PRUNED
PIVOT. To obtain the desired running time, we use that
PRUNED PIVOT visits at most the top k neighbors of a node.
Therefore, instead of maintaining the entire neighborhood
list of a node in a sorted manner, we do it only for the top
k neighbors of each node. We show how to dynamically
maintain this list in expected amortized O(log k) time.

We now provide details. Our algorithm maintains the fol-
lowing information for each node u:

• Nk(u): Top k neighbors of u kept in an ordered bal-
anced binary tree.

• Q−1
P (u): The nodes that query u, except from u itself,

kept in a double-linked list.

• QP (u): The set of nodes queried by
PRUNED-CLUSTER(π, u), which is maintained
during the recursive calls. Together with every node w
queried by u, in QP (u) is also stored the pointer to
where u is in the double-linked list Q−1

P (w). We use
these pointers to efficiently update Q−1

P (·).

Consider an update of edge {a, b}, i.e., an edge insertion
or removal. This update triggers several updates in the
information we maintain for each node. Without loss of
generality, assume that π(a) < π(b). Note that among all
Nk(·), only Nk(b) changes. We show how to update Nk(b)
in O(log k) expected time in Appendix E.1.

If Nk(b) is changed, but b queries (b, a) neither before nor
after this update, then QP and Q−1

P structures remain the

8



Pruned Pivot: Correlation Clustering Algorithm

same as before the update. However, if whether b queries
(b, a) changes after the update, then all the nodes querying
b, i.e., those in Q−1

P (b) might change their structures. More-
over, only those nodes that query b before the update might
change their structures. To see that, assume that w does
not query b before the edge update. First, if w queries a, it
will not query (a, b) since π(a) < π(b). Second, and taking
into account that w never queries (a, b), if w never reaches
b in the invocation of PRUNED-CLUSTER(w, π) before the
update, then {a, b} cannot be queried by w regardless of the
update. This yields the following observation.

Observation 6.1. Consider an edge update {a, b} with
π(a) < π(b). Then, only the nodes in Q−1

P (b) ∪ {b} are
those whose maintained data structures can potentially
change on the update.

We remind the reader that PRUNED-CLUSTER(w, π) does
not use memoization. In PRUNED PIVOT-UPDATE(·, ·) (see
Algorithm 6) we provide our update procedure, which uses
Algorithm 5 as a subroutine. We analyze its running time in
Appendix E.2.

Algorithm 5 A-NODE-UPDATE(w)
1: for every u ∈ QP (w):
2: Remove w from Q−1

P (u) by using the corresponding
pointer from QP (w).

3: Invoke PRUNED-CLUSTER (w,π) (Algorithm 2) by us-
ing Nk(·) as the neighborhood list. During the execu-
tion, update QP (w).

4: for every u ∈ QP (w):
5: Append w to Q−1

P (u) and record in QP (w) the
pointer where w is appended to.

Algorithm 6 PRUNED PIVOT-UPDATE(a, b)

1: Update Nk(b) as described in Appendix E.1.
2: A-NODE-UPDATE(b)
3: if b queries (b, a):
4: for every w ∈ Q−1

P (b):
5: A-NODE-UPDATE(w)
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Figure 2. Comparison of correlation clustering cost for PIVOT, R-PIVOT, Narrow-PIVOT and PRUNED PIVOT. The optimal clustering has
an expected cost of less than 17970.

A. Empirical Evaluation
In this section, we conduct a simple empirical assessment of our algorithm. We compare the correlation clustering cost of
PRUNED PIVOT to that of PIVOT, R-PIVOT of Behnezhad et al. (2022), and Narrow-PIVOT of Chakrabarty & Makarychev
(2023) on synthetic graphs.

Set-Up. We use stochastic block model graphs generated as follows: Each sample graph has three partitions, each with
200 nodes. The probability of the appearance of an edge inside each partition is 0.9, and between partitions is 0.1.

We generate 100 graphs and run PIVOT, R-PIVOT, Narrow-PIVOT, and PRUNED PIVOT on these graphs with parameter R
ranging from 2 to 30 (Here R is the parameter k for PRUNED PIVOT). Note that PIVOT does not depend on R. For each R,
we take the mean error of these runs for each algorithm (see Figure 2). We remove the standard deviation of the error for
figure readability; the std is very similar for all the algorithms for R > 13 and is around 2300.

Results. First note that the clustering that puts each partition in one cluster achieves an expected cost of 17970, which is
an upper bound on the average optimum value. We selected edge probabilities 0.1 and 0.9 partly to approximate the optimal
clustering cost, as computing the exact value is NP-hard. So, PIVOT’s approximation factor is at least 2.35 in this case.
Furthermore, the trivial clustering that puts each node in one cluster results in 65730 average error which is significantly
more than the error of the other algorithms.

We observe that all three PIVOT variants converge fast to the cost of PIVOT. Even though, as a function of R, PRUNED
PIVOT has the steadiest improvement in cost, it still converges to the cost of PIVOT exponentially. PRUNED PIVOT queries
significantly fewer nodes compared to the other algorithms, albeit at the expense of a negligible increase in its approximation
factor. In fact, for R ≥ 4, the increase in the cost of PRUNED PIVOT compared to PIVOT is less than %1. This property of
PRUNED PIVOT makes it flexible in adapting to parallel and dynamic settings while losing a small factor in the approximation
guarantee.

12
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B. Illustrations for Query, Extended Query, Expensive, and Dangerous Paths

u1 u2 · · · uL−1 uL

σ(u1) ≤ π(u1) ≤ σ(u2) ≤ π(u2) t≤ π(uL−1)

Figure 3. Path (u1, . . . , uL−1, uL) is a query path if each ui (i > 1) queries ui−1. This condition is equivalent to σ(u1) ≤ π(u1) ≤
· · · ≤ σ(uL) ≤ π(uL). Note that σ(u) ≤ π(u) for every node u ∈ V . Set Qt(u1, u2) contains this path for t ≥ π(uL−1).

u1 u2 · · · uL−2 uL−1 uL

Figure 4. Path (u1, . . . , uL−1, uL) is an extended query path (EQ-path) if each vertex on the path, except for the first and last one, queries
the previous vertex and π(uL−2) ≤ σ(uL). This condition is equivalent to σ(u1) ≤ π(u1) ≤ · · · ≤ π(uL−2) ≤ min(σ(uL−1), σ(uL)).
The last inequality says that neither uL−1 nor uL is settled before uL−2 is processed.

u1 u2 · · · uL−2 uL−1 uL

σ(u1) < σ(u2) tπ(uL−2) < σ(uL−1) = σ(uL)

Figure 5. Path (u1, . . . , uL−1, uL) is an expensive extended query path (expensive EQ-path) if (1) each vertex on the path, except for the
first and last one, queries the previous vertex, (2) σ(u1) < σ(u2), and (3) π(uL−2) ≤ σ(uL−1) = σ(uL). This condition is equivalent
to σ(u1) ≤ π(u1) < σ(u2) ≤ · · · ≤ π(uL−2) ≤ σ(uL−1) = σ(uL). Inequality σ(u1) ≤ π(u1) < σ(u2) tells us that PIVOT places
u1 and u2 in distinct clusters (i.e., edge (u1, u2) is cut by PIVOT). Condition σ(uL−1) = σ(uL) tells us that PIVOT places uL−1 and uL

in the same cluster. Set Xt(u1, u2) contains this path for t ≥ σ(uL−1) = σ(uL).

u1 u2 · · · uL−2 uL−1 uL

tπ(uL−2) π(uL−1) σ(uL)

Figure 6. Path (u1, . . . , uL−1, uL) is dangerous at time t if it is an extended query path and π(uL−2) ≤ t but π(uL−1) > t and
σ(uL) > t.

13
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C. Omitted proofs
C.1. Proof of Lemma 4.12

Proof of Lemma 4.12. We remind the reader the definitions of query, extended query, expensive extended query, and
dangerous paths in Figures 3, 4, 5, and 6.

I. We show that if P is included in the set of query paths at time t + 1, then P is dangerous at time t but not at time
t + 1. If P ∈ Qt+1(a, b) \ Qt(a, b), then P is a query path, and π(uL−1) = t + 1. Using condition (2), we get
π(uL−2) < π(uL−1) = t + 1; σ(uL) ≥ π(uL−1) = t + 1. We have π(uL−2) ≤ t and σ(uL) ≥ π(uL−1) > t. Also, as
every query path, P is an extended query path. Thus, P is a dangerous extended query path at time t. However, it is no
longer dangerous at time t+ 1, because π(uL−1) = t+ 1.

II. Now, we show that if P becomes dangerous at time t+ 1, then its prefix P ′ is dangerous at time t but not time t+ 1. We
first note that the length of L cannot be 1 because paths (a, b) of length 1 are dangerous from time 0 till time min(π(a), σ(b))
i.e., they are dangerous from the very first iteration of the algorithm and thus cannot become dangerous at some later time
t+ 1.

If P ∈ Dt+1(a, b) \ Dt(a, b), then the following conditions hold: P is an extended query path; π(uL−2) = t + 1;
π(uL−1) > t + 1; and σ(uL) > t + 1. To see how we derived π(uL−2) = t + 1, observe that P ∈ Dt+1(a, b)
implies π(uL−2) ≤ t + 1, but the fact that P /∈ Dt(a, b), together with π(uL−1) > t + 1 and σ(uL) > t + 1, implies
π(uL−2) > t. Since P ′ is a query path by Definition 4.4, we have σ(uL−1) ≥ π(uL−2) = t + 1 (see (2)). This shows
that P ′ ∈ Dt(a, b) \ Dt+1(a, b) if the length of P ′ is 1, i.e., if L = 2. For L ≥ 3, we need to additionally check that
π(uL−3) ≤ t. This is the case because π(uL−3) < π(uL−2) = t+ 1.

III. Finally, we show that if P is included in the set of expensive paths at time t+ 1, then P or its prefix P ′ is dangerous at
time t but neither of them is dangerous at time t+ 1.

If P ∈ Xt+1(a, b) \ Xt(a, b), then P is an expensive extended query path and σ(uL−1) = σ(uL) = t + 1. Note that
π(uL−1) ≥ σ(uL−1) = t + 1. Since P ′ is a query path, we have π(uL−2) ≤ σ(uL−1) = t + 1. Consider two cases. If
π(uL−2) ≤ t, then P is dangerous at time t but not at time t+ 1 (because σ(uL) = t+ 1). If π(uL−2) = t+ 1, then P ′ is
dangerous at time t (because π(uL−3) < π(uL−2) = t+ 1). However, P ′ is no longer dangerous at time t+ 1 (because
σ(uL−1) = t+ 1).

C.2. Proof of Lemma 4.13

Proof of Lemma 4.13. We first analyze process Φt(a, b). By Lemma 4.12, if path P is added to set Qt+1(a, b) or path Pw
becomes dangerous at step t+ 1, then P is dangerous at step t. Hence,

Φt+1(a, b)− Φt(a, b) = −2|Dt(a, b) \ Dt+1(a, b)|+ 2|Dt+1(a, b) \ Dt(a, b)|+ |Qt+1(a, b) \ Qt(a, b)| =

=
∑

P∈Dt(a,b)

−2 ·1{P /∈ Dt+1(a, b)}︸ ︷︷ ︸
no longer dangerous paths

+1{P ∈ Qt+1(a, b)}︸ ︷︷ ︸
new query paths

+2
∑
w∈V

1{Pw ∈ Dt+1(a, b)}︸ ︷︷ ︸
new dangerous paths

.

We show that the conditional expectation of every term in the sum above given Ft is non-positive. Consider a path
P = (u0, . . . , uL) ∈ P(a, b). Let

∆t+1(P ) = −2 · 1{P /∈ Dt+1(a, b)}+ 1{P ∈ Qt+1(a, b)}+ 2
∑
w∈V

1{Pw ∈ Dt+1(a, b)}.

We need to show that
E
[
∆t+1(P ) | Ft, P ∈ Dt(a, b)

]
≤ 0.

Note that if P ∈ Dt(a, b) and P ∈ Dt+1(a, b), then ∆t+1(P ) = 0, because 1{P ∈ Qt+1(a, b)} = 0 and 1{Pw ∈
Dt+1(a, b)} (for all w) by Lemma 4.12; while 1{P /∈ Dt+1(a, b)} = 0 since P ∈ Dt+1(a, b). Thus, it suffices to prove that
E
[
∆t+1(P ) | Ft, P ∈ Dt(a, b), P /∈ Dt+1(a, b)

]
≤ 0. Let Wt =

{
w ∈ N(uL) : σ(w) > t

}
be the set of neighbors of uL

that are not settled by iterations t. Note that P stops being dangerous at iteration t+ 1 only if uL−1 is processed or uL is
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a b · · · uL−1 uL

ws

· · ·

w2

w1

Figure 7. Illustration for the proof of Theorem 4.13. Path (a, b, . . . , uL−1, uL) is a dangerous EQ-path at iteration t. At iteration t+ 1, it
may become a query path and/or an expensive EQ path. It may also get extended to EQ-paths Pw, where w ∈ Wt \ {uL−1, uL}. These
extended paths Pw may be dangerous or expensive at iteration t+ 1, but they also may be non-dangerous and non-expensive at iteration
t+ 1.

a b · · · uL−1 uL

ws

ws−1

· · ·

w2

w1

Figure 8. Illustration for the proof of Theorem 4.13. Path (a, b, . . . , uL−1, uL) is a dangerous EQ-path at iteration t. Set W (1)
t contains

nodes in Wt that are not neighbors of uL−1. W (2)
t contains nodes in Wt that are neighbors of uL−1.
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settled at iteration t+ 1. The latter event occurs if and only if one of the nodes in Wt is processed at iteration t+ 1. Hence,

E
[
∆t+1(P ) | Ft, P ∈ Dt(a, b), P /∈ Dt+1(a, b)

]
= E

[
∆t+1(P ) | Ft, P ∈ Dt(a, b), π

−1(t+ 1) ∈ Wt ∪ {uL−1}
]
.

Here, π−1(t+ 1) is the node processed at iteration t+ 1. Observe that π−1(t+ 1) is uniformly distributed in Wt ∪ {uL−1}
given that π−1(t + 1) ∈ Wt ∪ {uL−1}. Now, if π−1(t + 1) = uL−1, then π(uL−1) = t + 1, and path P is added to
Xt+1(a, b) (it is an expensive path because condition (2) is satisfied). Moreover, if π−1(t+ 1) = uL−1, then some or all
paths Pw, where w ∈Wt \ {uL−1, uL}, are added to the set of dangerous paths Dt+1(a, b). Note that no path Pw′ with
w′ /∈Wt \ {uL−1, uL} is added to Dt+1(a, b) since for w′ ∈ N(uL) \Wt and w′ /∈ {uL−1, uL}, we have σ(w′) ≤ t, but
for Pw in Dt+1(a, b), we must have σ(w) > t. Thus, if π−1(t+ 1) = uL−1, then ∆t+1(P ) ≤ −2 + 1 + (|Wt| − 1) (here,
we use that uL always belongs to Wt if P ∈ Dt(a, b)). If, however, π−1(t + 1) ∈ Wt \ {uL−1}, then ∆t(a, b) = −2,
because (1) P does not become a query path, and (2) P is not extended to any dangerous paths at iteration t+ 1. We obtain
the following bound

E
[
∆t+1(P ) | Ft, P ∈ Dt(a, b), π

−1(t+ 1) ∈Wt ∪ {uL−1}
]
≤ −2 + 1 + 2(|Wt| − 1)

|Wt ∪ {uL−1}|
< 0.

This proves that Φt(a, b) is a supermartingale. We now show that Ψt(a, b) is also a supermartingale. Using Lemma 4.12, we
get

Ψt+1(a, b)−Ψt(a, b) =
∑

P∈Dt(a,b)

∆′(P ),

where

∆′
t(P ) = −2 ·1{P /∈ Dt+1(a, b)}︸ ︷︷ ︸

no longer dangerous paths

+2
∑
w∈V

1{Pw ∈ Dt+1(a, b)}︸ ︷︷ ︸
new dangerous paths

+1{P ∈ Xt+1(a, b)}+
∑
w∈V

1{Pw ∈ Xt+1(a, b)}︸ ︷︷ ︸
new expensive paths

.

As before, it suffices to show that for every P ∈ P(a, b), we have

E
[
∆′

t+1(P ) | Ft, P ∈ Dt(a, b), P /∈ Dt+1(a, b)
]
≤ 0.

From the previous argument, we know that π−1(t+ 1) is uniformly distributed in Wt ∪ {uL−1} given Ft, P ∈ Dt(a, b),
and P /∈ Dt+1(a, b). We now consider two cases: uL−1 is already settled by iteration t (then uL−1 /∈Wt) and uL−1 is not
yet settled (then uL−1 ∈Wt).

Case 1: σ(uL−1) ≤ t. In this case, P may never become an expensive EQ-path, since σ(uL−1) ≤ t, but σ(uL) > t.
Moreover, if uL−1 is processed at iteration t+ 1, then it will not be marked as a pivot, and, consequently, no nodes will be
settled at iteration t+ 1. In particular, if P is extended to some EQ-path Pw, then this path will not be added to the set of
expensive EQ-paths Xt+1(a, b) (even though it may eventually be added to some set Xt′(a, b) with t′ > t+ 1). However (if
uL−1 is processed at iteration t+ 1), every path Pw with w ∈Wt \ {uL} will be added to the set of dangerous EQ-paths
Dt+1(a, b). If another node in Wt – not uL−1 – is processed at iteration t+ 1, then P is not extended to any other paths.
Denote the event {P ∈ Dt(a, b) \ Dt+1(a, b)} by Et. Then,

E
[
∆′

t+1(P ) | Ft, Et, σ(uL−1 ≤ t)
]
= −2 + 2

|Wt| − 1

|Wt|+ 1
< 0.

Case 2: σ(uL−1) > t. Define two disjoint subsets of Wt: W
(1)
t = Wt\N(uL−1) and W

(2)
t = Wt∩N(uL−1)\{uL−1, uL}.

Then, Wt is the disjoint union of three sets: W (1)
t , W (2)

t , and {uL−1, uL}. If uL−1 is processed at iteration t+1, then (at this
iteration) uL−1 is marked as a pivot and all nodes in W

(2)
t as well as node uL are settled. Consequently, path P and all paths

Pw with w ∈W
(2)
t \{uL} are added to the set of expensive paths Xt+1(a, b). No other extensions of P are added to this set.

All paths Pw with w ∈W
(1)
t are added to the set of dangerous paths Dt+1(a, b). However, paths Pw with w ∈W

(2)
t are

not dangerous by Lemma 4.12. Hence, if uL−1 is processed at iteration t+1, then ∆′
t+1(P ) = −2+2|W (1)

t |+(|W (2)
t |+1).

If uL or any node in W
(2)
t is processed at time t+ 1, then path P becomes expensive, but it is not extended to any other
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EQ-path (since σ(uL) = t+ 1 < π(uL−1) and, as a result, P is not a query path). Hence, ∆′
t+1 = −2 + 1. Finally, if a

node in W
(1)
t is processed, then P is not extended to any other paths, and P does not become expensive. Thus, ∆′

t+1 = −2.
Therefore,

E
[
∆′

t+1(P ) | Ft, Et, σ(uL−1) > t)
]
= −2 + 2|W (1)

t |+ |W
(2)
t |+ 1

|Wt|
+
|W (2)

t |+ 1

|Wt|

= −2 + 2(|W (1)
t |+ |W

(2)
t |) + 2

|W (1)
t |+ |W

(2)
t |+ 2

< 0.

This completes the proof of Lemma 4.13.

D. LCA
Given a node v, our LCA algorithm simply simulates PRUNED PIVOT. The probe complexity of such an approach is almost
direct. Namely, the algorithm visits at most k nodes via recursive calls. Each call scans neighbors of the corresponding node
to find the k-top ones. That scan takes O(∆) probes. Therefore, the probe complexity is O(∆ · k).

It remains to analyze the space complexity and, if any, its effect on the approximation.

Random ordering. Our algorithm assumes it has access to a random node-permutation π. However, it is unclear how to
obtain π in LCA. So, instead, each node v draws an integer rank rv ∈ [0, n10) uniformly at random. If values rv are drawn
independently of each other, then, with probability at least 1− n−5, for each u ̸= v it holds ru ̸= rv . Therefore, the values
rv implicitly define a random permutation, which is enough to simulate our algorithm. (For now, assume that ru ̸= rv , and
at the end of this section, we discuss how to handle the case when ru = rv for two nodes.)

Source of randomness. If the algorithm has access to an arbitrary long tape of random bits with random access, then
whenever a node wants to learn rv , it reads 10 log n bits starting at position v · 10 log n. If such tape is not accessible, then
the corresponding local computation algorithm has to store random bits in its memory. It is obvious how to keep all the
required random bits in O(n log n) memory; a node v uses O(log n) bits independent of other nodes to obtain rv . However,
we show that substantially fewer bits suffice for small ∆. To that end, we first recall the definition of w-wise independence
hash functions and a folklore result about its construction.

Definition D.1 (w-wise independent hash functions). Let w, b,N ∈ N and s be a seed of independent random bits. A function
hs : {0, 1}N → {0, 1}b is a called w-wise independent hash function if for any I ≤ w, all distinct x1, . . . , xI ∈ {0, 1}N
and all distinct y1, . . . , yI ∈ {0, 1}b it holds

Pr

(
I∧

i=1

hs(xi) = yi

)
= 2−I·b.

Theorem D.2 (Folklore). Let w, b,N ∈ N. There exists a w-wise independent hash function hs : {0, 1}N → {0, 1}b with a
seed s of length w ·max{N, b}. Moreover, hs can be stored using O(w · (N + b)) bits of space.

Let h : V → {0, 1, 2, . . . , n10 − 1} be a w-wise independent hash function; we will set w in the remainder of this section.
Consider an LCA execution of our algorithm from v that, instead of randomly pre-generated r-values, uses h; let ALCA refer
to that algorithm. That is, whenever ALCA needs π(u) it uses h(u) instead. So, invoking ALCA on v, the algorithm has to
learn the rank-ordering of the neighbors of v. To achieve that, ALCA evaluates h(u) on each u ∈ N(v).

In the process, ALCA invokes h at most ∆ · k many times. Hence, if w ≥ ∆ · k, each invocation of h is entirely independent
of the previous invocations of h. Therefore, from the point of view of v, the execution ALCA(v) is equivalent to that of
executing ALCA with r values pre-generated using O(n log n) bits of randomness.

Does ALCA executed on all v ∈ V resemble our algorithm? Very likely, no! Namely, for w < n, we should expect lots of
dependencies between execution trees for some, possibly far away, nodes. Nevertheless, we will argue that, in expectation,
the cost of ALCA and our main algorithm are the same for a proper value of w. To that end, in our main algorithm, let cu,v
be the expected cost that pair {u, v} incurs. That is, if {u, v} is an edge, then cu,v is the probability that our main algorithm
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cuts it. If {u, v} is not an edge, then cu,v is the probability that our main algorithm does not cut. In particular, the expected
cost of our main algorithm is

∑
u,v∈V×V cu,v .

Consider {u, v} ∈ V ×V . Then,ALCA behaves the same with respect to {u, v} ifALCA(v) andALCA(u) together resemble
the execution of our main algorithm for v and u. This can be achieved by ensuring that the randomness used for ALCA(u)
and ALCA(v) is independent, which is achieved for w ≥ 2 ·∆ · k.

In this setup, we also have that in the execution tree for v, with probability 1 − n−5 at least, no two ranks are the same.
Taking the union bound over all v ∈ V , with probability at least 1− n−4, no execution tree has two same ranks.

The case when ru = rv for u ̸= v in an execution tree. As argued above, this case happens with probability at most n−4.
We distinguish two cases: when the input graph is a union of cliques and when it is not. In the latter case, the optimum value
is at least 1. Since ru = rv happens with probability at most n−4 and the maximum possible cost of a clustering is n2, we
have that the expected cost in this case is at most (3 + ε)OPT + 1/n2 ≤ (3 + ε+ 1/n2)OPT .

Now, consider the case when the input graph is a union of cliques. In this case, it holds OPT = 0, and an additive cost
of 1/n2 does not yield a (3 + ε) multiplicative one. To handle this case, we add a rule for breaking ties in ranks to our
algorithm. Namely, if a node x has two neighbors u and v such that ru = rv , then our algorithm ranks u before v iff u < v;
u < v means that the label of u is smaller than the label of v. Since each node sees the same neighborhood in a clique – this
neighborhood includes the node itself – then each node chooses the same pivot even if ru = rv for two distinct nodes. So,
each clique is clustered correctly.

E. MPC
E.1. Maintaining Nk(u)

This section describes how to dynamically maintain Nk(u) with O(log k) update time in expectation. To maintain Nk(u),
as the first step, the algorithm organizes the neighbors of u as we describe next. At each algorithm step, we associate
d̃u with u. In particular, d̃u is such that the current degree of u is in the range (1/4 · d̃u, 4 · d̃u). In other words, d̃u is a
4 approximation of the degree of u. Moreover, all the neighbors of u are placed in bu = ⌈d̃u/(80k)⌉ buckets numbered
1, . . . , bu. A neighbor w of u is placed in the bucket j such that (j − 1) · n/bu < π(w) ≤ j · n/bu. Hence, a bucket
corresponds to n/bu consecutive integers. This is convenient as if u has d(u) neighbors, then under randomly chosen π it
holds that in expectation d(u)/n · n/bu = d(u)/bu neighbors are in a given bucket. With at least two buckets, this ratio is in
the range (10k, 320k). When there is a single bucket only, it has at most 320k elements by definition of bu and d̃u.

Each bucket is organized as an ordered balanced binary tree. Therefore, if a bucket contains t elements, then insertion,
deletion, and finding the i-th-rank node can be done in O(log t) time. We use Bu to refer to these buckets for node v. We
note that the number of buckets might change over time. We discuss that towards the end of this section.

Edge insertion. If a new edge {u, x} is inserted, then the algorithm adds x to the bucket in Bu corresponding to π(x). In
expectation, that bucket has Θ(k) nodes. Hence, this operation is done in O(log k) time in expectation. Our algorithm also
checks whether x has a higher rank than the lowest rank node in Nk(u). If that is the case, it removes the smallest-rank
node from Nk(u) and inserts x. This is done in O(log k) time.

Edge deletion. If an edge {u, x} is deleted, then the algorithm first removes x from the bucket corresponding to π(x). In
expectation, that bucket has Θ(k) nodes. Hence, by the concavity of the log function, this operation is done in O(log k)
time in expectation. Second, if x does not belong to Nk(u), then the algorithm does nothing else. Otherwise, the algorithm
removes x from Nk(u) and finds the k-th highest-ranked element in Bu. It does so in the following way: it visits bucket
by bucket in the decreasing order of ranks until it reaches a bucket containing the desired element. We now analyze the
complexity of this search.

Let Y be a random variable representing the cost of this search. Let YB be the time spent searching bucket B; we count 1
even if B is accessed but empty. Then, Y =

∑
B∈Bu

YB . Let Bj denote the j-th bucket in Bu. Let Zi be the event that the
buckets B1 . . . Bi contain less than k elements in total. We have

E
[
YBj

]
= E

[
YBj | Zj−1

]
· Pr (Zj−1) +E

[
YBj | ¬Zj−1

]
· Pr (¬Zj−1) .

Observe that E
[
YBj | ¬Zj−1

]
= 0, as no search is performed on Bj if the buckets B1 . . . Bj−1 contain at least k elements.
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This effectively implies that

E
[
YBj

]
= E

[
YBj
| Zj−1

]
· Pr (Zj−1) . (5)

Also, we have that

E [|Bj | | Zj−1] ∈ O(d̃u/(bu − (j − 1))).

Hence,

E
[
YBj | Zj−1

]
∈ O(1 + log (d̃u/(bu − (j − 1)))). (6)

Next, we upper-bound Pr (Zj−1). Definition of Zi implies

Pr (Zi) ≤ Pr (|Bi| < k | Zi−1) · Pr (Zi−1) (7)

=

i∏
t=1

Pr (|Bt| < k | Zt−1) . (8)

For i = 1, we have E [|B1| | Z0] ≥ d(u)/bu ≥ 10k; the latter inequality follows by our discussion above. For i > 1, we
have

E [|Bi| | Zi−1] ≥
d(u)− k

bu − (i− 1)
≥ E [|B1| | Z0] .

The latter inequality can be easily verified algebraically, but also it is an easy observation that it holds as the first i − 1
buckets in expectation contain at least 10k(i− 1). Hence, d(u)− k nodes distributed over bu − (i− 1) buckets yield the
bucket-average higher than 10k.

Condition on Zi−1. Then, let Xw be a 0/1 random variable that equals 1 if and only if the neighbor w of u is in Bi; in
particular, E [|Bi| | Zi−1] = E

[∑
w∈N(u) Xw | Zi−1

]
. Observe that the random variables X are negatively correlated.

Hence, we can apply Chernoff bound to upper-bound the probability that |Bi| < k. Since E [|Bi| | Zi−1] ≥ 10k, we have
that

Pr (|Bi| < k | Zi−1) ≤ e−k.

Plugging this into Equation (7), we derive

Pr (Zi) ≤ e−ik. (9)

We now turn back to computing E [Y ]. By plugging Equation (6) and Equation (9) into Equation (5), we obtain

E [Y ] =

bu∑
j=1

E
[
YBj

]
(10)

≤
bu∑
j=1

e−k(j−1) ·O
(
1 + log (d̃u/(bu − (j − 1)))

)
.

To upper bound Equation (10), we first let tu = d̃u/bu. By definition, tu ∈ O(k). Observe that

bu ≤ (bu − (j − 1)) · j

when j ranges in the interval [1, bu]; the minimum is achieved for j = 1 and j = bu. This implies that

d̃u/(bu − (j − 1)) = tu · bu/(bu − (j − 1)) ≤ tu · j.
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From Equation (10), this yields the upper-bound

E [Y ] ≤ O

 bu∑
j=1

e−k(j−1) · (1 + log (kj))


= O(1) +O

 bu∑
j=1

e−k(j−1) log k


+O

 bu∑
j=1

e−k(j−1) log j



≤ O(1) +O (log k) +O

 bu∑
j=1

e−jj


≤ O(1) +O (log k) +O (1)

= O (log k) ,

as desired. To upper-bound O
(∑bu

j=1 e
−jj
)

we used that it holds
∑∞

i=1 i/2
i = 2.

Updating Bu when du/d̃u /∈ (1/4, 4). We first describe how to address this change in O(log k) amortized expected time
and then explain how to de-amortize this.

When du becomes d̃u/4 or 4d̃u, then our algorithm updates the current d̃u to d̃′u, and re-creates Bu for d̃′u. If du ≤ d̃u/4,
then d̃′u ← d̃u/2. Similarly, if du ≥ 4d̃u, then d̃′u ← 2d̃u. This approach is standard and typically illustrated through the
example of dynamic arrays. For our problem, this technique yields amortized O(log k) expected update time.

If memory allocation takes O(1) time, this technique can be de-amortized. This de-amortization is standard, but we provide
a couple of sentences of explanation for the sake of completeness. Instead of creating all the buckets from scratch when
du = d̃u/4 or du = 4d̃u, a de-amortized algorithm does that gradually. That is, as soon as it starts updating the buckets for
the current d̃u value, it allocates the memory for buckets for both d̃′u = d̃u/2 and d̃′u = 2d̃u; only an allocation is performed,
without any initialization. The algorithm also maintains a variable IDso-far, which, when d̃u is updated, is initialized to 0.

On a new neighbor w update, if πw ≤ IDso-far, the algorithm carries over that update for all three bucket structures. If
πw > IDso-far, the algorithm only updates the d̃u-buckets. In addition, the algorithm considers 10 elements from the
d̃u-buckets with smallest π but greater than IDso-far values, and copies them to the (d̃u/2)- and (2d̃u)-buckets. The value of
IDso-far is increased properly so to correspond to the last element copied from d̃u-buckets.

E.2. Running Time for our Dynamic Algorithm

Maintaining Q−1
P (u). For each u ∈ QP (w), updating double-linked list Q−1

P (u) is done in O(1) time – appending takes
O(1) time, while the removal also takes O(1) by using the pointers stored in QP (w).

Now we upper-bound the expected running time of PRUNED PIVOT-UPDATE(a, b). In that, we use the following claim.

Lemma E.1. The number of nodes in Q−1
P (b) processed by Algorithm 6 within the if condition is O(1) in expectation.

Proof. If b queries (b, a), then each node that queries b also queries (b, a). Hence, the number of nodes in Q−1
P (b) equals

the number of nodes querying (b, a). By Theorem 4.10, that number in expectation is at most 2. Observe that Theorem 4.10
provides an upper-bound for PIVOT. Hence, PRUNED-CLUSTER might query (b, a) only less frequently.

Lemma E.2. PRUNED PIVOT-UPDATE(a, b) takes O(k) amortized time in expectation per an edge update.

Proof. We show that maintaining Nk(b) takes O(log k) amortized time in expectation in Appendix E.1.
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By Lemma E.1, in expectation, only O(1) nodes w are processed within the if condition. In addition to them, b is also
processed. For each such w or b the following is performed:

• Invocation of PRUNED-CLUSTER. This invocation visits O(k) nodes. To traverse neighbors of a node u, PRUNED-
CLUSTER uses Nk(u). Even though Nk(u) is organized as a binary balanced tree, all its nodes can be traversed in the
rank-decreasing order in O(1) time per node.

• Updating Q−1
P (u) for u ∈ QP (w). As described above, this is done in O(1) per u. By design of PRUNED PIVOT, we

have |QP (w)| ≤ k.

F. Equivalence between PIVOT and Sequential PIVOT

In Algorithm 7 we recall the PIVOT algorithm from (Ailon et al., 2008).

Algorithm 7 PIVOT

1: function PIVOT(G = (V,E))
2: if V = ∅:
3: terminate
4: Pick a random pivot u ∈ V .
5: Cluster together u and its neighbors.
6: Let H be obtained by removing u and its neighbors from G.
7: PIVOT(H)

Lemma F.1. Algorithm 7 and Algorithm 3 are equivalent

Proof. Instead of choosing a random pivot u each time on Line 4 of PIVOT (Algorithm 7), we assume that before the
algorithm is invoked a random permutation π over the input nodes is chosen. Then, Line 4 is implemented by choosing the
first, with respect to π, node available in V in that invocation of PIVOT.

We prove the lemma by induction on π. First, consider the node with rank 1, i.e., let π(u) = 1. u is a pivot in PIVOT, and
since u has no higher ranked neighbors, it executes line 8 in SEQUENTIAL PIVOT and hence is a pivot there as well.

Suppose that for some t ≥ 1, both PIVOT and SEQUENTIAL PIVOT cluster all nodes with ranks 1, . . . , t the same way.
Suppose π(u) = t+ 1. First, suppose that u is a pivot in PIVOT. Then it must be that u does not have any pivot neighbor
with a higher rank: if there is such node v, then when v is being clustered, u is put in the cluster of v in Line 5 of Algorithm 7.
This means that in SEQUENTIAL PIVOT u is also a pivot.

Now, suppose that u is not a pivot in PIVOT. Let v be the pivot of u in PIVOT. Then it must be that v is the highest ranked
pivot in the neighborhood of u: if there is a higher ranked pivot v′ in the neighborhood of u, then when v′ is being processed
(before v), u is put in the cluster of v′ in Line 5 of Algorithm 7. This means that in SEQUENTIAL PIVOT, when u is being
processed, Line 7 is executed when the neighbor v of u is picked.

G. CRCW PRAM Algorithm
We now describe how to execute our approach in CRCW PRAM in O(1/ε) rounds using O(n3) processors. We assume that
the nodes are numbered 1 through n. The same as discussed in Appendix D, instead of finding a random permutation of the
nodes, each node chooses an integer rank from range [0, n10). That is, in the shared memory, there is a designated space of
n memory blocks, each of size 10 log n bits, such that the i-th of those memory blocks stores the rank of node i.

Assume that each node has the sorted list of its k highest-ranked neighbors, where k = O(1/ε) is the parameter used in
Algorithm 2. Then, PRUNED PIVOT can be directly executed in O(k) = O(1/ε) rounds in the CRCW PRAM model. It
remains to discuss how to find k highest-ranked neighbors of each node in O(k) rounds.
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Finding top-k neighbors in O(k) rounds. We assume that the neighbors of each node are given as an array. It is
well-known how to find the maximum of an array in O(1) CRCW PRAM rounds using O(n2) processors (JáJá, 1992;
Akl, 1989); we use ARRAYMAX to refer to that algorithm. To find k highest-ranked neighbors of each node, we apply
ARRAYMAX k times to each neighborhood array for all the nodes in parallel. The i-th of these invocations finds the i-th
highest-ranked neighbors of the nodes. After the i-th highest-ranked neighbor wi of a node v is found, wi is marked with a
special symbol in the neighborhood array of v, implying that in the future invocations of ARRAYMAX, wi is considered
smaller than every other non-marked neighbor of v.

Since ARRAYMAX uses O(n2) processors and is executed for each of the nodes separately, this PRAM implementation of
Algorithm 2 uses O(n3) processors.
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