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ABSTRACT

Existing Graph Neural Network-based anomaly detection methods suffer from
over-smoothing issues during feature aggregation. Moreover, most existing meth-
ods are discriminative models that learn the boundaries between anomalous and
normal data points, allowing malicious nodes in a dynamic adversarial environ-
ment to bypass detection boundaries. We propose an advanced Conditional Graph
Anomaly Diffusion Model (CGADM) to model and capture the joint distribu-
tion of anomalies on the whole graph, thereby enabling generative graph anomaly
detection. By iteratively refining node anomaly distributions during the denois-
ing process, CGADM effectively mitigates over-smoothing and reconstructs ob-
fuscated features by leveraging contextual neighborhood information. To avoid
starting the diffusion process from a random state, CGADM introduces a prior-
guided denoising diffusion probability model. To circumvent the need for itera-
tive denoising samplings for each node on large-scale graphs, we adopt a prior
confidence-aware mechanism to dynamically adjust the reverse sampling steps
for each node, significantly reducing the computationaql burden on large-scale
graphs. We conducted experiments on CGADM using standard benchmarks, and
the results demonstrated excellent performance in graph anomaly detection tasks.
Ablation studies confirmed our framework’s computational advantages. 1

1 INTRODUCTION

Anomaly detection is aimed at identifying objects that deviate significantly from the majority within
a vast array of objects. With the massive flow of information on Internet, it is inherently suitable
to use the non-Euclidean graphs for modeling. Examples include social networks formed by users
on social media, transaction networks formed by mobile payments, and bipartite graphs formed by
users and contents. Consequently, graph anomaly detection (GAD) has emerged as a crucial research
field, achieving successful applications, such as financial fraud detection (Huang et al., 2022; Dou
et al., 2020), and telecommunication fraud detection (Yang et al., 2021), among others.

Among the methods employed for GAD, Graph Neural Networks (GNNs) have ascended to promi-
nence, chiefly due to their exceptional capability to model topological structures. GNNs excel in
their iterative refinement of node representations, operating by focusing on a particular node and
aggregating attributes from neighboring nodes via the Message Passing (MP) paradigm (Kipf &
Welling, 2017; Hamilton et al., 2017; Velickovic et al., 2018; Xu et al., 2019). Subsequent to this
feature aggregation, node representations, now enriched with information from their neighboring
nodes, are fed into a classifier to determine whether they are outliers or anomalies. This process
effectively leverages the power of GNNs in capturing high-order information within the graph, pro-
viding a common paradigm for anomaly detection (Li et al., 2019; Wang et al., 2021; Liu et al.,
2021b; Zhu et al., 2020; He et al., 2021).

However, discriminative models based on feature aggregation exhibit inherent shortcomings. From
a topology-level perspective, vanilla GNNs suffer from the over-smoothing problem. As a low-
pass filter, GNNs with feature aggregation tend to average the representations of anomalies, making
them less distinguishable. As illustrated in the left part of Figure 1, some fraudulent nodes can ma-
nipulate their representations by intentionally connecting with a large number of carefully selected

1The code is available on https://github.com/CGADManonymous/CGADM
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neighbors. For instance, in money laundering transactions, fraudsters can distribute transactions or
create numerous interactions with bot accounts to blend in with the crowd. From a feature-level
perspective, discriminative models perform anomaly detection by learning the boundaries between
anomalous and normal data points. This approach may lead to a lack of generalization, as fraudulent
nodes always co-evolve with the detection system. By continuously obfuscating their node features,
these deceptive entities can cross the classifier’s boundary and masquerade as normal nodes.

To address these issues, contemporary research can be summarized along two lines. The first line of
work focuses on enhancing the generalizability of GNN models, such as applying attention mech-
anisms (Wang et al., 2019a; Liu et al., 2021a), designing auxiliary losses (Zhao et al., 2022), and
utilizing contrastive learning (Chen et al., 2023a). The second line of work involves leveraging gen-
erative models, such as Generative Adversarial Networks (GANs), to perform data augmentation,
thereby enriching the diversity of training samples (Chen et al., 2020b). However, these methods
primarily focus on enhancing the discriminative boundary for each individual node, rather than con-
sidering the interdependencies of node anomalies from a holistic graph perspective. Inspired by
the recent powerful capabilities of diffusion models (DMs) in generating high-dimensional data,
such as high-resolution images (Dhariwal & Nichol, 2021), we propose the use of diffusion models
to model the joint distribution of anomaly on the whole graph, capturing the the interdependen-
cies of node anomalies. To address topology-level flaw, we leverage the iterative refinement of
diffusion models. Instead of increasing GNN depth to aggregate distant information, which risks
over-smoothing, our approach applies GNN-based denoiser within each denoising iteration to refine
anomaly modeling. Each iterative refinement step incorporates neighborhood information while pre-
serving node-specific high-frequency anomaly information via a residual propagation mechanism,
thereby preventing oversmoothing and effectively capturing long-range dependencies. To address
feature-level flaw, we leverage the denoising reconstruction of diffusion models. This reconstruc-
tion process ensures that even when malicious nodes disguise their features to blend in with normal
nodes, their underlying anomaly patterns can be recovered.

To achieve these goal, we need to address two notable challenges, as shown in right part of Figure 1:

• Effectiveness. Traditional denoising models have primarily focused on unconditional generative
modeling (Song & Ermon, 2019; Song et al., 2021b; Ramesh et al., 2022). While many tasks in
the image or video domain have introduced guided-diffusion models to generate high-resolution
photo-realistic images that match the semantic meanings or content of the label, text, or corrupted
images, most work in the graph domain has started generating from white noise or empty or
fully connected graphs. However, for anomaly detection on graphs, due to various deceptive
and obfuscating tactics employed by anomalous nodes, directly recovering the underlying true
distribution from a random noise distribution may not yield satisfactory results.

• Efficiency. The reverse process of DMs requires numerous iterative denoising samplings (Yi et al.,
2023; Chen et al., 2023b). Existing graph diffusion models utilize a GNN-based encoder to up-
date all nodes at time step t during each iterative refinement to obtain the nodes at time step t− 1.
While this approach is feasible for standard graph generation tasks, it becomes computationally
prohibitive for anomaly detection tasks on extremely large graphs. Performing such iterative oper-
ations generation across potentially millions of nodes in the entire graph can significantly increase
computational overhead, thereby affecting the practical applicability of the algorithm.

In this paper, we propose a novel Conditional Graph Anomaly Diffusion Model (CGADM) for graph
anomaly detection to address the aforementioned challenges synergistically.

To tackle the effectiveness issue, we propose a prior-guided diffusion process, which injects a pre-
trained conditional anomaly estimator into both the forward and reverse diffusion chains. This
approach constructs a denoising diffusion probabilistic model for more accurate anomaly detection.
Specifically, we introduce a lightweight model to estimate an anomaly prior for each node, serving
as the endpoint for our forward noise addition process and the starting point for our reverse denoising
process. Based on this new probabilistic model, we redesign the probability model and optimization
objective of our CGADM.

To tackle the efficiency issue, we build on the intuition that normal nodes are generally farther
from the decision boundary compared to anomalous nodes that have narrowly evaded detection.
Therefore, in the reverse process, we introduce a prior confidence-aware mechanism to adaptively
determine the reverse time step for each node. Nodes with high confidence in their anomaly prior
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Figure 1: An illustration of Generative Graph Anomaly Detection.

require fewer time steps, while those with lower confidence require more sampling time steps. To
facilitate inference over arbitrary numbers of steps, we propose a conditional non-Markovian reverse
process, and derive its closed-form expression within the framework of the CGADM. This approach
not only accurately estimates the anomaly probability for each node but also reduces the number of
predictions in the reverse process, thereby decreasing computational time.

Our main contributions can be summarized as follows:

• We innovatively propose CGADM, which employs a prior-guided denoising diffusion probabilis-
tic model to capture the joint distribution of anomalies on the whole graph, thereby enabling
generative graph anomaly detection.

• We propose a prior confidence-aware mechanism to dynamically allocate disparate sampling time
steps during the inference process. In support of this mechanism, we derive a conditional non-
Markovian reverse process within the framework of the CGADM. This approach significantly
mitigates the computational burden associated with anomaly detection in large-scale graphs.

• Through experiments on benchmarks for graph anomaly detection, CGADM achieves state-of-
the-art results. Additional studies confirm the computational advantages of our framework.

2 RELATED WORK

2.1 GRAPH ANOMALY DETECTION

Graph anomaly detection (Duan et al., 2023) aims to identify nodes that deviate significantly from
most other nodes. FdGars (Wang et al., 2019b) utilized a predefined tagging system to classify
users according to their content and behavioral characteristics, and employed a multi-layered GNN
to identify fraudulent users. CARE-GNN (Dou et al., 2020) proposed to adjust the threshold in
the process of aggregating neighbors through reinforcement learning, thereby addressing the incon-
sistency issue. FRAUDRE (Zhang et al., 2021) aggregates different relational neighbors of nodes
by applying an imbalanced loss function, addressing the class imbalance problem. PC-GNN (Liu
et al., 2021b) resolves the class imbalance issue by selecting training nodes using a label-balanced
sampler. AMNet (Chai et al., 2022) captures features of normal and abnormal frequency bands
using a dual filter based on Bernstein polynomials and aggregates them through an attention mech-
anism. BWGNN (Tang et al., 2022) adopts a Beta-kernel-based GNN model, effectively dealing
with abnormal high-frequency features by applying multiple filters to various frequency bands.
GHRN (Gao et al., 2023b) eliminates harmful heterogeneous connections on any qualified fraud
detection model through approximating pre-training labels. Recent advancements in graph anomaly
detection have tackled various challenges. Gao et al. (2023a) addressed structural distribution shifts
through feature-specific constraints in Graph Decomposition Networks (GDN), while Xu et al.
(2024) proposed SEC-GFD to handle heterophily and label imbalance via spectral filtering. Qiao
et al. (2024) introduced a semi-supervised generative framework (GGAD) that leverages labeled
normal nodes to generate pseudo-anomalies, and He et al. (2024) developed ADA-GAD to mit-
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igate anomaly overfitting through anomaly-denoised graph augmentation. Unlike these methods,
our CGADM adopts a novel generative diffusion approach to model the joint anomaly distribution
over the graph, enabling holistic and scalable anomaly detection without reliance on augmentation
strategies.

However, the aforementioned methods predominantly rely on discriminative models based on fea-
ture aggregation, which are susceptible to the over-smoothing problem inherent in GNNs and the
camouflage deception of fraudulent nodes. We departs from this traditional perspective and proposes
a novel generative model to jointly model the anomaly distribution of each node on the graph.

2.2 DIFFUSION MODEL

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Song et al., 2021a), or simply
diffusion models, are a class of probabilistic generative models that transform noise into data sam-
ples, hence primarily used for generative tasks (Dhariwal & Nichol, 2021; Rombach et al., 2022).
Diffusion-based generative models have demonstrated strong capabilities in generating high-quality
graphs (Niu et al., 2020; Liu et al., 2019; Jo et al., 2022; Haefeli et al., 2022; Chen et al., 2022;
Vignac et al., 2023; Kong et al., 2023). Haefeli et al. (2022) designed a model limited to graphs
without attributes and similarly observed the benefits of discrete diffusion for graph generation. Pre-
vious graph diffusion models were based on Gaussian noise. Niu et al. (2020) generated adjacency
matrices indicating the presence of edges by thresholding continuous values, while Jo et al. (2022)
extended this model to handle node and edge attributes. Digress (Vignac et al., 2023) was the first
to propose a discrete diffusion model for graphs. Regarding the severe label imbalance problem
in anomaly detection, many existing anomaly detection methods improve datasets by generating
synthetic anomalies (Chen et al., 2020b; Ding et al., 2020), creating a more balanced environment.

We approaches from a different angle, using diffusion models to model the distribution of anomalies
on large-scale graphs for more precise and robust anomaly detection. To the best of our knowledge,
there is currently no work on modeling the distribution of anomalies based on diffusion models.

3 PRELIMINARIES

Attributed Graph We typically characterize an attributed graph as G = {V, E ,X}, where V =
{v1, v2, . . . , vN} represents the set of all N nodes on graph G, and E = {eij |vi, vj ∈ V} signifies
the set of edges, indicating the existence of an edge between nodes vi and vj . For each node vi,
there exists a d-dimensional feature vector, xi ∈ Rd. The feature vectors of all nodes together form
the feature matrix of the graph, denoted as X = [x1, x2, . . . , xN ] ∈ RN×d. For convenience, An
adjacency matrix A records the relationships between nodes on graph G. Each entry Aij = 1 if
there exists eij ∈ E , otherwise, Aij = 0. Additionally, the degree matrix D ∈ NN×N is a diagonal
matrix, in which each entry Dii denotes the number of nonzero entries in the i-th row of A.

Anomaly Detection on Graph Consider two disjoint subsets of V , namely Va and Vn, such that
Va ∩ Vn = ∅. Va contains all nodes labeled as anomalous, and Vn comprises all normal nodes.
The goal of graph anomaly detection (GAD) is to compute anomaly probability p(y|E ,X) of the
unlabeled nodes with partial node labels. Please refer Appendix E for challenges of GAD.

Diffusion Probabilistic Model To construct an efficient diffusion model, it must satisfy three
key properties: (1) The conditional distribution q(zt|x) should possess a closed-form equation to
circumvent the recursive application of noise during training. (2) The posterior q(zt−1|zt, x) should
also have a closed-form solution to serve as the neural network’s target. (3) The limiting distribution
q∞ = limT→∞ q(zT |x) should be independent of x, enabling its use as a prior distribution for
inference. These properties are all met when the noise follows a Gaussian distribution. The common
steps in the diffusion model are shown in Appendix A.

4 METHODOLOGY

We formulate the GAD problem as a task of modeling the joint conditional distribution of anoma-
lies on the graph. Given an attributed graph, a lightweight mean estimator is used to compute a
prior distribution of the anomaly. This prior distribution serves as the endpoint for adding noise
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and the starting point for inference. CGADM gradually transforms the ground truth anomaly dis-
tribution into the prior distribution instead of the conventional Guassian distribution. By utilizing
a topological-guided denoising network, CGADM is capable of simultaneously modeling the topo-
logical information and features of nodes to iteratively recover the ground truth. To expedite the
inference process, we introduce a prior-aware strided sampling strategy. To enable inference over
arbitrary numbers of steps, we propose a conditional non-Markovian reverse process.

4.1 DIFFUSE GROUND TRUTH TO PRIOR

In light of Section 3, we propose to cast the graph anomaly detection problem as a generative task.
We set y0 as the anomaly ground truth and y1:T as the intermediate predictions generated in the
forward process of the diffusion model. The objective of graph anomaly detection then becomes the
maximization of the log-likelihood p(y0|E ,X). Consequently, Equation 2 can be restructured as the
following Conditional Evidence Lower Bound (CELBO) to serve as our new optimization target:

log pθ(y0|E ,X) = log

∫
pθ(y0:T |E ,X)dy1:T ≥ Eq(y1:T |y0,E,X)

[
log

pθ(y0:T |E ,X)

q(y1:T |y0, E ,X)

]
, (1)

where pθ(y0:T |E ,X) is the joint distribution of the target and the predictions under the denoising
model parameters θ, and q(y1:T |y0, E ,X) is the conditional distribution of forward or diffusion
process given the ground truth and the input data.

By substituting Equation 1 into Equation 16, we can express our optimization objective as follows:
L = Eq [− log pθ(y0|y1, E ,X)] + Eq [DKL (q(yT |y0, E ,X)∥ p(yT |E ,X)]

+

T∑
t=2

Eq [DKL (q(yt−1|yt,y0, E ,X)∥ pθ(yt−1|yt, E ,X)] .
(2)

Following the conventions of Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020),
we respectively name the first, second, and third terms of the above objective function as the recon-
struction term Lrecon, the prior matching term Lprior, and the consistency term Lcon.

To avoid our CGADM recovering the joint anomaly distribution starting from random noise (Han
et al., 2022b), we modify the endpoint of the diffusion process from the conventional Guassian
distribution N(0, I) to:

p(yT |E ,X) = N(gϕ(E ,X), I), (3)
where gϕ(E ,X) is a parameterized network pretrained on training set D to estimate the mean

value of the final normal distribution. By doing so, we effectively utilize the condition E ,X in the
distribution p(yT |E ,X) to help us establish a prior understanding of the joint anomaly distribution.

The prior matching term Lprior is a parameter-free term. In order to make it close to zero, we need
to adjust the forward process in combination with the calculation of the prior gϕ(E ,X). Following
the practice of Pandey et al. (2022), we define the noise-adding process at each step as follows:

q(yt|yt−1, gϕ(E ,X)) = N (yt;
√

1− βtyt−1 + (1−
√

1− βt)gϕ(E ,X), βtI), (4)
where N represents the Gaussian Distribution, and βt ∈ (0, 1) regulates the noise scales added

at step t. This noise-adding step allows for a closed-form sampling distribution at any arbitrary
timestep t, according to the additivity of the Gaussian distribution:

q(yt|y0, E ,X) = q(yt|y0, gϕ(E ,X)) = N (yt;
√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X), (1− ᾱt)I), (5)

where αt := 1− βt and ᾱt :=
∏

t αt. This sampling distribution enables Lprior to be close to zero
when t = T . Intuitively, the noise-adding process defined by Equation 5 can be interpreted as an
interpolation between the true data y0 and the estimated prior gϕ(E ,X), which exhibits a gradual
transition from the true data towards the estimated prior over the course of the forward process.

With the above formulation, we can derive a tractable posterior that serves as the target for our
denoising network. It can be expressed as follows:

q(yt−1|yt,y0, E ,X) = q(yt−1|yt,y0, gϕ(E ,X)) = N
(
yt−1; µ̃(yt,y0, gϕ(E ,X)), β̃tI

)
, (6)

where µ̃ := γ0y0 + γ1yt + γ2gϕ(E ,X) and β̃t :=
1−ᾱt−1

1−ᾱt
βt, with:

γ0 =
√

βtᾱt−1, γ1 =
(1− ᾱt−1)

√
αt

(αt − 1)(
√
αt +

√
ᾱt−1)

, γ2 =
1

1− ᾱt
. (7)

For detailed derivation, please refer to Appendix B.
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4.2 TOPOLOGICAL-GUIDED DENOISING NETWORK

According to Equation 4, we define pθ(yt−1|yt, E ,X) as N(yt−1;µθ(yt, t, E ,X),Σθ(yt, t, E ,X))
for 1 < t ≤ T . Following the setup of DDPM, we set Σθ(yt, t, E ,X) = σ2

t I to untrained time-
dependent constants and set σ2

t = β̃t. For the parameterization, we may select:

µθ(yt, t, E ,X) =
1√
αt

(yt −
βt√
1− ᾱt

ϵθ(yt, t, E ,X)), (8)

where ϵθ is a parameterized network intended to predicts the forward diffusion noise ϵ sampled for
anomaly scores yt.

An anomalous node is typically strongly correlated not only with its node features but also with the
its local topological structure. The bias brought about by a few anomalous nodes is high-frequency
information in the frequency domain. Most existing GNNs act as low-pass filters and cannot ef-
fectively capture the high-frequency signals carried by anomalous nodes. Borrowing the idea from
GCNII (Chen et al., 2020a), we adopt a residual propagation mechanism that prevents the high-
frequency information of nodes from being overlooked due to over-smoothing in the multi-layer
graph convolution process:

hl
v = σ

Wl−1

hl−1
v − 1

|N (v)|
∑

u∈N (v)

hl−1
u

 , hfinal = AGG(h0
v,h

1
v, . . . ,h

L
v ), (9)

where L is the number of graph convolution layers and AGG(·) can be a simple aggregation func-
tion such as summation or concatenation. With this message-passing mechanism, we define our
topological-aware denoising network as ϵθ(yt, t, E ,X) = ϵθ(yt, t,H

final). For more details about
the denoising network, please refer to Appendix G.

To execute our training, we sample yt according to Equation 5. Through the reparameterization
trick, we can derive:

yt =
√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X) +

√
1− ᾱtϵ. (10)

We simplify Lrecon and Lcon to obtain the final loss L as follows:

Lϵ = ||ϵ− ϵθ(
√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X) +

√
1− ᾱtϵ, t, E ,X)||2 (11)

Where elements in t is uniformly distributed between 1 and T . The case of t = 1 corresponds to
Lrecon. Similar to DDPM, the cases where t > 1 correspond to an unweighted version of Lcon. The
whole process of training is shown in Appendix H.

4.3 INFERENCE FOR ANOMALY DETECTION

In image synthesis tasks, DMs draw random Gaussian noises for reverse generation, and the gener-
ation results are guided by a pre-trained classifier or other signals such as textual queries. However,
for generating anomaly scores on graphs, due to various deceptive and obfuscating tactics employed
by anomalous nodes, generating directly from pure noise may not yield accurate anomaly detection
results. Therefore, we propose a simple inference strategy that aligns with the CGADM training for
anomaly inference, which is shown in Algorithm 1.
4.4 PRIOR-AWARE STRIDED SAMPLING

As can be seen from Equation 11, our training actually results in a topological-aware denoising
network capable of denoising the predicted prior score at arbitrary time step t. Inspired by Song
et al. (2021a), we can use this denoising network to perform time-step skipping sampling, greatly
reducing the number of sampling steps. By discarding the Markov constraint brought by Equation 4,
we can obtain the conditional non-Markovian reverse process different from Equation 6 as follows:

yt−1 =
√
ᾱt−1ŷ0 + (1−

√
ᾱt−1)gϕ(E ,X) +

√
1− ᾱt−1 − σ2

t ϵθ(yt, t, E ,X) + σtϵt (13)

where ŷ0 is the denoised score in Equation 12. For detailed derivation, please refer to Appendix C.
By substituting Equation 12 into Equation 13, we can obtain:

yt−1 =

√
ᾱt−1

ᾱt

(
yt − (1−

√
ᾱt)gϕ(E ,X)−

√
1− ᾱtϵθ(yt, t, E ,X)

)
+ (1−

√
ᾱt−1)gϕ(E ,X) +

√
1− ᾱt−1 − σ2

t ϵθ(yt, t, E ,X) + σtϵt, (14)
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Algorithm 1 Inference for Anomaly Detection

1: Initialize yT ∼ N (gϕ(E ,X), I)
2: for t = T to 1 do
3: Calculate reparameterized ŷ0 according to Equation 10:

ŷ0 =
1√
ᾱt

(
yt − (1−

√
ᾱt)gϕ(E ,X)−

√
1− ᾱtϵθ(yt, t, E ,X)

)
(12)

4: if t > 1 then
5: Draw z ∼ N (0, I)

6: yt−1 = γ0ŷ0 + γ1yt + γ2gϕ(E ,X) + β̃tz, according to Equation 6.
7: else
8: Set yt−1 = ŷ0

9: end if
10: end for
11: return y0

This allows the use of a forward process defined only on a subset of the latent variables yτ1 , . . . ,yτt
where τ1, . . . , τt is an increasing subsequence of 1, ..., T with length S, where S could be much
smaller than T . To reduce the number of sampling steps from T to K, we use K evenly spaced real
numbers between 1 and T (inclusive), and then round each resulting number to the nearest integer,

as follows: {τi}Ki=1 =
{
1 + (T−1)(i−1)

K−1

}K

i=1
.

Intuitively, when our prior is more confident, our model can use fewer sampling steps, or a smaller
K, and vice versa. We propose a heuristic strategy to dynamically adjust the size of K according
to the confidence of different prior scores of anomalies. We choose the inverse sigmoid function to
simulate the decay of the ratio as the confidence |ϕ(E ,X)− 0.5| increases:

K =
r

1 + exp
(

|gϕ(E,X)−0.5|
0.5

) × T (15)

Typically, with r set to 2, our framework adjusts the sampling steps K to around 1000 for ambiguous
priors near 0.5, and reduces it to about 500 for high-confidence priors close to 1. Notably, most
nodes on the graph are associated with high prior confidence, which leads to a substantial decrease
in computational demand. Conversely, for anomalous nodes that are adept at camouflage, the lower
prior confidence necessitates a larger number of diffusion steps, facilitating their accurate detection.
Our method thus strikes a balance between computational efficiency and thorough identification.
We show the inference process with our prior-aware strided sampling in Appendix I.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We have extensively employed five diverse datasets from various domains to verify our
method. They are the e-finance category dataset Elliptic (Weber et al., 2019), crowd-sourcing cat-
egory datasets Tolokers (Platonov et al., 2023) and YelpChi (Rayana & Akoglu, 2015), and Social
media datasets Question (Platonov et al., 2023) and Reddit (Kumar et al., 2019). For the detail of
dataset statistics and processing, please refer to Appendix F.

Baselines We have compared our CGADM with two categories of methods in the context of graph
anomaly detection: (1) Standard GNNs, which include GCN (Kipf & Welling, 2017), GIN (Xu
et al., 2019), GraphSAGE (Hamilton et al., 2017), and GAT (Velickovic et al., 2018), and (2) GNNs
specifically designed for anomaly detection, such as GAS (Li et al., 2019), PCGNN (Liu et al.,
2021b), BWGNN (Tang et al., 2022), and GHRN (Gao et al., 2023b). For detailed descriptions of
these methods, please refer to Appendix D.

Metrics Following the evaluation setup employed by most anomaly detection works (Han et al.,
2022a), we have chosen the Area Under the Receiver Operating Characteristic Curve (AUROC) and
the Area Under the Precision-Recall Curve (AUPRC) as our metrics for graph anomaly detection.
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Both of these metrics range between 0 and 1, and we record them as percentages for convenience.
For both metrics, a higher value indicates better performance.

Implementation Details For CGADM, the layer number of graph convolution is set to three, a
value considered reasonable by most works (Liu et al., 2021b). For our diffusion process, the noise
levels at the initial and final time steps, β1 and βT , are set to 1e-4 and 0.02, respectively. Addition-
ally, we employ linear interpolation to divide the time steps between them, which is consistent with
DDPM (Ho et al., 2020). For other implementation details, please refer to Appendix J.

5.2 OVERALL COMPARISON

Table 1: Performance Comparison on Graph Anomaly Detection

Ellip Tolo Yelp Quest Reddit
Model AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

GCN 80.19 95.12 41.44 73.58 23.59 59.89 10.27 67.73 5.65 62.55
GIN 83.88 96.21 37.89 74.02 38.13 77.40 11.23 68.07 5.38 65.25
Graphsage 86.16 96.61 43.73 77.30 50.23 83.24 13.86 70.64 5.78 63.67
GAT 87.59 97.11 42.18 76.66 46.64 80.95 13.19 68.19 5.42 63.55

GAS 87.54 97.14 42.39 74.55 39.18 78.63 12.41 66.09 5.66 61.23
PCGNN 67.29 93.88 36.76 71.28 45.32 79.61 13.79 69.12 4.13 54.58
BWGNN 87.90 96.99 45.02 77.80 49.15 81.85 14.64 69.96 5.42 60.63
GHRN 88.13 97.04 45.25 77.98 49.78 82.36 14.61 69.32 5.85 63.51

CGADM 97.03 99.30 46.02 79.68 76.54 92.69 18.51 69.41 5.79 65.85
† Boldface denotes the highest score, and underline indicates the best result of the baselines.

We summarize the performance of all algorithms in terms of AUROC and AUPRC across different
datasets in Table 1. The results demonstrate that our CGADM outperforms most other baselines
across all metrics. We conduct two-sample t-tests, and p− value < 0.05 indicates that the improve-
ments are statistically significant. In addition to these findings, we make the following observations:

• GAD methods such as GHRN and BWGNN represent state-of-the-art methods. This indicates
that GAD, with its unique challenges of data imbalance, data heterogeneity, and deliberate node
obfuscation, cannot be adequately addressed by general GNNs and requires specialized design.

• No single baseline method consistently outperforms on all datasets. We believe this is because
these discriminative models identify anomalous nodes through decision boundaries. Many anoma-
lous nodes manage to cross these boundaries by obfuscating their features, making it difficult for
these methods to adapt to various scenarios. In contrast, our CGADM consider the joint distribu-
tion of anomaly in a generative way, making it difficult for anomalous nodes to obfuscate.

• Among standard GNN methods, GraphSage and GAT perform better than the other two methods,
especially on the YelpChi dataset, which has significantly more edges. This aligns with our analy-
sis in the introduction, where GNN, as a low-pass filter, blurs the distinctive features of anomalies
in its inherent feature aggregation mechanism, a problem that worsens with an increased number
of edges. GraphSage and GAT to some extent mitigate the over-smoothing issue by sampling
neighbors or amplifying the weight of important neighbors, respectively.

• Our method performs exceptionally well on the edge-dense YelpChi dataset. This may be due
to our topological-guided denoising network’s use of a residual propagation mechanism. This
mechanism effectively overcoming the over-smoothing problem during the generation process
and ensuring that each node’s anomaly distribution is influenced by its neighborhood distribution.

5.3 ABLATION STUDIES

5.3.1 COMPARISON WITH DIFFERENT PRIOR MODEL

In generating the final anomaly value with CGADM, to ensure effectiveness, we do not start the
reverse process from a random state. Instead, we opt for a conditional anomaly estimator to guide
the reverse process of the model. For efficiency, we employ a lightweight ensemble trees model
as the estimator. Here, we explore both Random Forest (RF) and Extreme Gradient Boosting Tree
(XGBT) as estimator. We denote CGADM using RF and XGBT as conditional anomaly estimators
as CGADMRF and CGADMXGBT , respectively. Figure 2 records the performance of these models
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Figure 3: Parameter Sensitivity on Different Datasets

on the Elliptic and YelpChi datasets. Two observations can be made from figure 2. Firstly, both
CGADMRF and CGADMXGBT outperform their corresponding initial priors. This proves that
our CGADM’s diffusion process can significantly enhance the performance of GAD. Secondly,
the performance gap between CGADMRF and CGADMXGBT is significantly smaller than that
between RF and XGBT. This indicates that our CGADM possesses strong robustness. Even in the
face of initially inaccurate prior estimates, our CGADM can effectively correct the results under the
iterative refinement of the topological-guided denoising network.

5.3.2 PARAMETER SENSITIVITY

Impact of Graph Convolution Layer L In order to better capture the topological information sur-
rounding nodes for joint distribution modeling, we employ a GNN-based encoder in our topological-
guided denoising network. We explored the impact of the number of graph convolution layers on
the Elliptic and YelpChi datasets. The results are shown in Figures 3 (1) and (2). From the results,
we can observe a slowly gradual improvement in performance as the number of layers increases,
reaching farther topological structure information. Even at a depth of five layers, there is no perfor-
mance degradation. This suggests that our CGADM can effectively overcome the over-smoothing
problem commonly encountered in traditional discriminative methods based on GNNs. We attribute
this mainly to two factors. First, the paradigm shift to generating the joint distribution of anomaly
on the graph allows considering the influence of surrounding neighbor nodes. Second, our residual
propagation mechanism prevents the high-frequency information of nodes, thereby retaining more
valuable information for anomaly value generation.

Impact of the Final Noise Scale βT We modify the endpoint of CGADM’s diffusion process from
the conventional Gaussian distribution N(0, I) to N(gϕ(E ,X), I). Intuitively, βT represents the
maximum degree to which our noise-added yt can deviate from the ground truth. It also represents
the maximum scale at which our denoising network can correct the prior. We studied the magnitude
of this degree on the Tolokers and Questions datasets, with the results shown in Figure 3 (3) and (4).
We can observe that as the maximum correction scale increases, the performance initially improves.
This suggests that the bias of the prior can be better corrected at this point. However, when the
correction scale exceeds 0.02, the performance begins to decline as the maximum correction scale
continues to increase. This may because the maximum correction scale has already surpassed the
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maximum bias produced by the prior. Overcorrection of the prior could prevent CGADM from
modeling the true distribution. Therefore, we recommend using βT = 0.02 in our cases,

5.4 EFFICIENCY ANALYSIS

In Section 4.4, we designed a prior-aware strided sampling strategy to adaptively reduce the reverse
steps needed to generate anomaly values. To verify its efficiency, we designed the following two
ablation experiments. In the first experiment, we tested the computation time and corresponding
model performance of our CGADM with different sampling steps during generation. The results
are shown in Figure 4. As can be seen, as our striding magnitude increases, i.e., the reverse steps of
sampling become fewer, both computation time and model performance decrease. However, the de-
cline in computation time is much greater than the decline in graph anomaly detection performance.
Even when the striding is not large at the beginning, the decline in performance is not significant.
This implies that sacrificing a little performance can result in substantial savings in computation
time. Therefore, we designed another ablation experiment. Here, we denote CGADM configured
with prior-aware strided sampling as CGADMs and present its model performance and average re-
verse steps during inference in Table 2. Compared to the original 1000 sampling steps, our method
reduces the average sampling steps for all nodes to 583, while ensuring only a slight drop in model
performance, which remains highly competitive.
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Figure 4: Time cost and Accuracy w.r.t.
Sampling Steps K

CGADM CGADMS

Average
Reverse Step

1000 583.0256

AUPRC (%) 76.5424 73.6636
AUROC (%) 92.6930 91.9423

Table 2: Performance Metrics

6 CONCLUSIONS

Existing GNN-based graph anomaly detection methods are susceptible to fraudulent nodes in the
network due to their inherent feature aggregation and discriminative characteristics. Therefore, we
propose an advanced Conditional Graph Anomaly Diffusion Model (CGADM) that considers the
interdependencies of node anomalies from a holistic graph perspective, thereby generating a distri-
bution of anomaly values across the entire graph. To address the issue of effectiveness, we propose
a prior-guided diffusion process, which injects a pre-trained conditional anomaly estimator to con-
strain the entire diffusion process. Based on this, we redesign the forward and reverse processes.
To solve the efficiency issue, we introduce a prior confidence-aware mechanism to adaptively deter-
mine the reverse time step for each node, thus significantly saving computational expenses. Through
experiments on standard benchmarks for graph anomaly detection, we demonstrate that CGADM
achieves state-of-the-art results.
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Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 11895–11907, 2019.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021b.

Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly
detection. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu,
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A COMMON PROCESS OF DIFFUSION PROBABILISTIC MODEL

Here we show the common steps in the diffusion model as follows:

• Forward process: Given an input data sample x0 ∼ q(x0), the forward process con-
structs the latent variables x1:T in a Markov chain by progressively adding Gaussian noises
over T steps. Specifically, the forward transition xt−1 → xt is defined as q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI), where t ∈ {1, ..., T} refers to the diffusion step, N denotes the Gaus-

sian distribution, and βt ∈ (0, 1) regulates the noise scales added at step t. If T → ∞, xT

approaches a standard Gaussian distribution (Ho et al., 2020).

• Reverse process: Diffusion models (DMs) aim to remove the added noises from xt to recover
xt−1 in the reverse step, striving to capture minor alterations in the complex generation process.
Formally, taking xT as the initial state, DMs learn the denoising process xt → xt−1 iteratively
by pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), where µθ(xt, t) and Σθ(xt, t) are the mean and
covariance of the Gaussian distribution predicted by a neural network with parameters θ.

• Optimization: DMs are optimized by maximizing the Evidence Lower Bound (ELBO) of the
likelihood of observed input data x0. Denote DKL(p||q) as the Kullback–Leibler (KL) divergence
from distribution p to distribution q:

log p(x0) = log

∫
p(x0:T )dx1:T = logEq(x1:T |x0)

[
p(x0:T )

q(x1:T |x0)

]
≥ Eq(x1:T |x0)

[
p(x0:T )

q(x1:T |x0)

]
= Eq(x1|x0) [log pθ(x0|x1)]− DKL(q(xT |x0)||p(xT ))

−
T∑

t=2

Eq(xt|x0) [DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))]

(16)

• Inference: After training θ, DMs can draw xT ∼ N (0, I) and use pθ(xt−1|xt) to iteratively
repeat the generation process xT → xT−1 → . . . → x0.
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B POSTERIOR COEFFICIENTS DERIVATION

Similar to Han et al. (2022b), here we give the detailed derivation of Equation 6 and 7.

q(yt−1|yt,y0, E ,X) = q(yt−1|yt,y0, gϕ(E ,X)) ∝ q(yt|yt−1, gϕ(E ,X))q(yt−1|y0, gϕ(E ,X))

∝ exp

(
−1

2

((
yt −

(
1−√

αt

)
gϕ(E ,X)−√

αtyt−1

)2
βt

+
(yt−1 −

√
ᾱt−1y0 − (1−√

ᾱt−1) gϕ(E ,X))
2

1− ᾱt−1

))

∝ exp

(
−1

2

(
αty

2
t−1 − 2

√
αt

(
yt −

(
1−√

αt

)
gϕ(E ,X)

)
yt−1

βt

+
y2
t−1 − 2 (

√
ᾱt−1y0 + (1−√

ᾱt−1) gϕ(E ,X))yt−1

1− ᾱt−1

))
= exp(−1

2
((
αt

βt
+

1

1− ᾱt−1︸ ︷︷ ︸
Term 1

)y2
t−1

− 2(

√
αt−1

1− ᾱt−1
y0 +

√
αt

βt
yt +

(√
αt

(√
αt − 1

)
βt

+
1−√

ᾱt−1

1− ᾱt−1

)
gϕ(E ,X)︸ ︷︷ ︸

Term 2

)yt−1)),

(17)
where

Term 1 =
αt (1− ᾱt−1) + βt

βt (1− ᾱt−1)
=

1− ᾱt

βt (1− ᾱt−1)
, (18)

β̃t =
1

(1)
=

1− ᾱt−1

1− ᾱt
βt, (19)

Afterwards, we divide each coefficient in Term 2 by Term 1.

γ0 =

√
ᾱt−1

1− ᾱt−1
/1 =

√
ᾱt−1

1− ᾱt
βt (20)

γ1 =

√
αt

βt
/1 =

1− ᾱt−1

1− ᾱt

√
αt, (21)

and

γ2 =

(√
αt

(√
αt − 1

)
βt

+
1−√

ᾱt−1

1− ᾱt−1

)
/1

=
αt − ᾱt −

√
αt (1− ᾱt−1) + βt − βt

√
ᾱt−1

1− ᾱt

= 1 +
(
√
ᾱt − 1)

(√
αt +

√
ᾱt−1

)
1− ᾱt

.

(22)

Finally, we put every γ0, γ1, and γ2 together and obtain Equation 6 and 7.

µ̃ (yt,y0, gϕ(E ,X)) = γ0y0 + γ1yt + γ2gϕ(E ,X) (23)

C DERIVATION OF CONDITIONAL NON-MARKOVIAN REVERSE PROCESS

Following DDIM, we formally carry out the derivation of discarding the Markov constraint intro-
duced by Equation 4 in our prior-conditional reverse step Equation 6. First, let’s organize our tar-
get: given q (yt | y0, gϕ(E ,X)) and q (yt−1 | y0, gϕ(E ,X)), without q (yt | yt−1), we aim to find
q (yt−1 | yt,y0, gϕ(E ,X)).
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Here we assume that yt−1 is a linear combination of yt, y0 and prior gϕ(E ,X) with coefficients
denoted as mt, nt and ot, respectively. That is,

yt−1 = mtyt + nty0 + otgϕ(E ,X) + σtϵ1 (24)

We also know that

yt =
√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X) +

√
1− ᾱtϵ2, (25)

yt−1 =
√
ᾱt−1y0 + (1−

√
ᾱt−1)gϕ(E ,X) +

√
1− ᾱt−1ϵ3. (26)

Here, the subscripts of ϵn are used to distinguish different samples from the Gaussian distribution.
Substituting Equation 25 into Equation 24, we get

yt−1 = mt

(√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X) +

√
1− ᾱtϵ2

)
+ nty0 + otgϕ(E ,X) + σtϵ1 (27)

=
(
mt

√
ᾱt + nt

)
y0 + (mt −mt

√
ᾱt + ot)gϕ(E ,X) +mt

√
1− ᾱtϵ2 + σtϵ1 (28)

Therefore, we have

mt

√
ᾱt + nt =

√
ᾱt−1, (29)

m2
t (1− αt) + σ2

t = 1− ᾱt−1, (30)

mt −mt

√
ᾱt + ot = 1−

√
ᾱt−1 (31)

Immediately, we can calculate mt and nt:

mt =

√
1− ᾱt−1 − σ2

t

1− ᾱt
, (32)

nt =
√
ᾱt−1 −

√
ᾱt

1− ᾱt
(1− ᾱt−1 − σ2

t ), (33)

ot = 1−
√
ᾱt−1 −

√
1− ᾱt−1 − σ2

t

1− ᾱt
(1−

√
ᾱt). (34)

Substituting back into Equation 24, we have

yt−1 =

√
1− ᾱt−1 − σ2

t

1− ᾱt
yt +

(
√
ᾱt−1 −

√
ᾱt

1− ᾱt
(1− ᾱt−1 − σ2

t )

)
y0

+ (1−
√
ᾱt−1 −

√
1− ᾱt−1 − σ2

t

1− ᾱt
(1−

√
ᾱt))gϕ(E ,X) + σtϵ (35)

=
√
ᾱt−1y0 + (1−

√
ᾱt−1)gϕ(E ,X)

+
√
1− ᾱt−1 − σ2

t

(
1√

1− ᾱt
yt −

√
ᾱt√

1− ᾱt
y0 −

1−
√
ᾱt√

1− ᾱt
gϕ(E ,X)

)
+ σtϵ (36)

=
√
ᾱt−1y0 + (1−

√
ᾱt−1)gϕ(E ,X)

+
√
1− ᾱt−1 − σ2

t

yt −
√
ᾱty0 − (1−

√
ᾱt)gϕ(E ,X)√

1− ᾱt
+ σtϵ (37)

Substituting the model’s predicted value, we have

yt−1 =
√
ᾱt−1ŷ0|t + (1−

√
ᾱt−1)gϕ(E ,X) +

√
1− ᾱt−1 − σ2

t ϵθ(yt, t, E ,X) + σtϵ (38)

At this point, the derived result Equation 38 is completely consistent with Equation 14. That is, we
use the two conditions q (yt | y0, gϕ(E ,X)) and q (yt−1 | y0, gϕ(E ,X)), without q (yt | yt−1), and
obtain q (yt−1 | yt,y0, gϕ(E ,X)). DDPM removes the condition q (yt | yt−1), leading to the more
general DDIM sampling formula.
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D BASELINES

In this section, we introduce the baseline models, which can be broadly bifurcated into two cat-
egories: (1) General-purpose graph neural networks, and (2) Techniques specifically designed for
graph anomaly detection. We have annotated each model with their respective categories for easy
differentiation.

• GCN (Kipf & Welling, 2017) (1): This technique employs the convolution operation on
graphs to propagate information from a node to its adjacent nodes. This allows the network
to learn a representation for each node, grounded on its local neighborhood.

• GIN (Xu et al., 2019) (1): A variant of GNN, GIN is designed to encapsulate the graph’s
structure while maintaining graph isomorphism. This implies that it yields identical em-
beddings for graphs that are structurally indistinguishable, irrespective of permutations in
their node labels.

• GraphSAGE (Hamilton et al., 2017) (1): This is an inductive learning framework that gen-
erates node embeddings by sampling and aggregating features from a node’s local neigh-
borhood.

• GAT (Velickovic et al., 2018) (1): This GNN framework incorporates the attention mecha-
nism, assigning varying degrees of importance to different nodes during the neighborhood
information aggregation process. This enables the model to concentrate on the most infor-
mative neighbors.

• GAS (Li et al., 2019) (2): This is a highly scalable technique for detecting spam reviews.
It expands GCN to manage heterogeneous and heterophilic graphs and adapts to the graph
structure of specific GAD applications using the KNN algorithm.

• PCGNN (Liu et al., 2021b) (2): This framework is designed for imbalanced GNN learning
in fraud detection. It employs a label-balanced sampler to select nodes and edges for train-
ing, leading to a balanced label distribution in the induced sub-graph. Additionally, it uses
a learnable parameterized distance function to select neighbors, filtering out superfluous
links and incorporating beneficial ones for fraud prediction.

• BWGNN (Tang et al., 2022) (2): This technique is proposed to address the ’right-shift’
phenomenon of graph anomalies, where the spectral energy distribution focuses less on
low frequencies and more on high frequencies. It utilizes the Beta kernel to tackle higher
frequency anomalies through multiple flexible, spatial/spectral-localized, and band-pass
filters.

• GHRN (Gao et al., 2023b) (2): This approach addresses the heterophily issue in the spectral
domain of graph anomaly detection by pruning inter-class edges to highlight and outline
the graph’s high-frequency components.

E CHALLENGE OF GRAPH ANOMALY DETECTION

Although GAD is essentially a binary node classification problem, it presents several unique chal-
lenges. Firstly, anomalous nodes typically constitute a small fraction of the total nodes, leading to a
significant data imbalance (Liu et al., 2021b). Secondly, graphs containing anomalies often exhibit
strong heterophily, where connected nodes possess diverse features and labels (Gao et al., 2023b;
Tang et al., 2023). This heterophily necessitates the development of methods that can effectively
handle neighborhood feature disparities during message passing. Lastly, anomalous nodes tend to
camouflage their features and connections, striving to blend in by mimicking normal patterns within
the graph (Liu et al., 2020).

F DETAILS OF THE DATASETS

The detailed statistics of the datasets we used are in Table 3. In line with the data characteristics of
anomaly detection, the selected datasets each contain over 100 anomaly points, and the proportion
of anomalies does not exceed 25%, satisfying the inherent imbalance problem in graph anomaly
detection (Tang et al., 2023). For each dataset, we randomly selected 20% of the points as training
data, 10% of the points as validation data, and the remaining points as test data.
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Table 3: Descriptive statistics of the datasets.

#Nodes #Edges Feature Dim Anomaly Ratio Feature Type

Elliptic 203,769 234,355 166 9.8% Timestamps and transaction information
Tolokers 11,758 519,000 10 21.8% User profile with task performance statistics
YelpChi 45,954 3,846,979 32 14.5% Hand-crafted review features and statistics
Questions 48,921 153,540 301 3.0% FastText embeddings for user descriptions
Reddit 10,984 168,016 64 3.3% Hand-crafted review features and statistics

G IMPLEMENTATION OF TOPOLOGICAL-GUIDED DENOISING NETWORK

Reflecting upon Equation 9, we initially extend the formula of graph convolution to matrix form to
facilitate computation across the entire graph, as shown below:

Hl = σ(Wl−1(I−D−1AHl−1))

After conducting L rounds of convolution, we use weighted summation as our aggregation function
for the hidden representations obtained from each layer of graph convolution. The formula is as
follows:

Hfinal = AGG(H1,H2, . . . ,HL) =

L∑
l=0

αlH
l

Here, αl are the weights for each layer’s representation, which can be learned during training. Hav-
ing obtained the representation of nodes that integrates both topological structure and node features,
we construct our denoising function ϵθ(yt, t,H

final) through a Multilayer Perceptron (MLP). Fol-
lowing the original DDPM Ho et al. (2020), we also adopt position embedding to encode time t.
Therefore, the denoising function ϵθ is as follows:

ϵθ = MLP (Concat[Pos(t),yt,H
final])

In this equation, Pos(t) represents the position embedding of time mathbft, yt is the current
representation of the nodes, and Hfinal is the final aggregated representation after L layers of graph
convolution.

H TRAINING OF CGADM

According to the loss in Equation 11, the pseudo algorithm for training is shown in Algorithm 2

Algorithm 2 CGADM Training

1: Pre-train gϕ(E ,X) that predicts the anomaly prior
2: repeat
3: Draw t ∼ Uniform({1, . . . , T})
4: Draw ϵ ∼ N (0, I)
5: Compute the noise estimation loss:

Lϵ = ||ϵ− ϵθ(
√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X) +

√
1− ᾱtϵ, t, E ,X)||2

6: Take a numerical optimization step on ∇θLϵ

7: until Convergence

I INFERENCE WITH PRIOR-AWARE STRIDED SAMPLING

We show the complete pseudo algorithm for inference with our prior-aware strided sampling strategy
in Algorithm 3
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Algorithm 3 Inference for Anomaly Detection with Sampling Strategy

1: Initialize yT ∼ N (gϕ(E ,X), I)
2: Compute K based on the prior confidence |gϕ(E ,X)− 0.5| using:

K =
r

1 + exp
(

|gϕ(E,X)−0.5|
0.5

) × T

where r is a hyperparameter.
3: Generate sampling time steps {τi}Ki=1:

τi =

⌊
1 +

(T − 1)(i− 1)

K − 1

⌋
, i = 1, . . . ,K

4: for i = K to 1 do
5: Set t = τi
6: Calculate reparameterized ŷ0 using Equation 12:

ŷ0 =
1√
ᾱt

(
yt − (1−

√
ᾱt)gϕ(E ,X)−

√
1− ᾱtϵθ(yt, t, E ,X)

)
7: if i > 1 then
8: Draw z ∼ N (0, I)
9: Update yt−1 using the modified non-Markovian reverse process:

yt−1 =
√

ᾱτi−1 ŷ0 + (1−
√

ᾱτi−1)gϕ(E ,X) +
√

1− ᾱτi−1 − σ2
t ϵθ(yt, t, E ,X) + σtz

10: else
11: Set yt−1 = ŷ0

12: end if
13: end for
14: return y0

J IMPLEMENTATION DETAIL

All experiments were conducted on a Linux machine equipped with an Nvidia GeForce RTX 3090.
The CUDA version used was 11.1, and the driver version was 455.45.01. We implemented our
algorithm and the corresponding baseline methods using PyTorch (Paszke et al., 2019) and the graph
computation framework Pytorch-Geometric (Fey & Lenssen, 2019). For the Random Forest (RF)
and Extreme Gradient Boosting Tree (XGBT) that serve as conditional anomaly estimators, we used
the RF version implemented in the Scikit-Learn library Pedregosa et al. (2011). For XGBoost Chen
& Guestrin (2016), we utilized its official implementation.

We initialize the latent vectors for all models with a Gaussian Distribution, having a mean value of
0 and a standard deviation of 0.01. To ensure a level playing field, the dimension of the hidden layer
for all baseline models, as well as our CGADM, is set to 64. We conducted a grid search for hyper-
parameter tuning. The learning rates were selected from the set [0.005, 0.01, 0.02, 0.05]. To prevent
overfitting, we incorporated an L2 norm with the coefficient tuned from the set [0.001, 0.005, 0.01,
0.02, 0.1]. For all methods, we selected the best models by implementing early stopping when the
AUROC on the validation set did not increase for five consecutive epochs.

K EFFICACY IN HIGHLY IMBALANCED SCENARIOS

We conducted additional experiments on the DGraph dataset Huang et al. (2022), a highly imbal-
anced real-world financial fraud detection dataset where anomalies constitute only 1.3% of the data.
The results are presented in Table 4:

As Table 4 illustrates, CGADM consistently outperforms all baseline methods on both AUPRC and
AUROC metrics in this extremely imbalanced setting. Notably, the AUPRC metric demonstrates
CGADM’s ability to handle rare event detection by excelling in anomaly-specific precision and
recall. Similarly, the superior AUROC indicates robust overall discriminative performance.
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Method AUPRC AUROC
GCN 3.66 74.97
GIN 3.22 73.14
GraphSAGE 3.43 73.81
GAT 3.65 75.17
GAS 2.91 71.21
PCGNN 2.82 71.78
BWGNN 3.63 75.16
GHRN 3.68 75.15
CGADM 3.83 76.43

Table 4: Performance comparison on the DGraph dataset.

Metric Dataset GODM CGenGA CGADM (Ours)
AUPRC Ellip 85.89 87.36 97.03

Tolo 46.15 44.89 46.02
Yelp 51.77 52.76 76.54
Quest 15.11 15.34 18.51
Reddit 5.55 5.78 5.79

AUROC Ellip 93.92 96.07 99.34
Tolo 76.42 78.95 79.68
Yelp 84.33 85.65 92.69
Quest 68.86 68.46 69.41
Reddit 62.10 64.78 65.85

Table 5: Comparisons with Diffusion-based Data-centric Approaches

L COMPARISONS WITH DIFFUSION-BASED DATA-CENTRIC APPROACHES

We have conducted experiments to compare CGADM against the methods in GODM (Ma et al.,
2024a) and CGenGA (Liu et al., 2023) on five benchmark datasets (Elliptic, Tolo, Yelp, Quest,
and Reddit). For fair comparisons, we implemented the diffusion-based data-centric approaches
following the settings and optimal detector configurations specified in their respective papers. We
summarize the results in terms of AUPRC and AUROC in Table 5:

Our results demonstrate that CGADM consistently outperforms GODM Ma et al. (2024a) and
CGenGA Liu et al. (2023) across almost all datasets in both AUPRC and AUROC metrics. This
superior performance underscores the advantages of our generative framework in directly modeling
the joint anomaly distribution, as opposed to relying on downstream discriminative classifiers.

M EMPIRICAL RESULTS ON EFFICIENCY

To provide concrete evidence, we conducted experiments to compare memory usage and inference
time with all the baselines specifically designed for anomaly detection on the Elliptic dataset, which
contains 203,769 nodes and 234,355 edges. The results are summarized in Table 6:

Model Memory (MB) Inference Time (s)
GAS 1418 2.3865
PCGN 914 0.0827
BWGNN 446 0.1185
GHRN 924 0.1249
CGADM (ours) 1048 0.5691

Table 6: Memory usage and inference time comparison on the Elliptic dataset.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We have the following observation:

• Memory Efficiency: The use of sparse matrix computations ensures that CGADM remains
efficient in terms of memory usage, even for large-scale graphs. The marginal increase in
memory usage is negligible compared to the scalability benefits.

• Inference Time: While our inference time is higher than most discriminative methods,
the increase is justified given the novel generative anomaly detection paradigm. Consid-
ering the already low baseline inference time of anomaly detection tasks, the additional
time overhead is acceptable, especially in scenarios where performance improvements are
critical.

N ADDITIONAL EXPERIMENT RESULTS

We have also conducted experiments comparing our Conditional Graph Anomaly Diffusion Model
(CGADM) with XGBGraph (Tang et al., 2023) and CONSISGAD (Chen et al., 2024) on the same
datasets. Below, we present the results in terms of AUPRC and AUROC in Table 7 and 8, two
widely used metrics in the anomaly detection domain:

Model Ellip Tolo Yelp Quest Reddit
XGBGraph 90.47 44.47 75.91 14.33 4.59
CONSISGAD 86.42 40.59 41.74 12.85 5.57
Ours (CGADM) 97.03 46.02 76.54 18.51 5.79

Table 7: Comparison of AUPRC results with XGBGraph and CONSISGAD.

Model Ellip Tolo Yelp Quest Reddit
XGBGraph 94.35 77.28 91.85 64.90 60.58
CONSISGAD 96.38 76.03 79.35 70.54 66.99
Ours (CGADM) 99.34 79.68 92.69 69.41 65.85

Table 8: Comparison of AUROC results with XGBGraph and CONSISGAD.

We computed the F1-scores for our model and baseline methods across all datasets. These results
further confirm the superior performance of our model. Table 9 presents the F1-scores, which show
consistency with the experiment results in Table 1.

Model Ellip Tolo Yelp Quest Reddit
GCN 73.672 47.376 27.658 6.856 7.794
GIN 75.338 49.443 42.214 10.288 6.443
GraphSAGE 81.096 50.226 43.949 12.041 10.075
GAT 80.498 50.878 48.891 11.157 8.432
GAS 77.844 48.253 43.404 10.867 9.071
PCGNN 45.090 47.213 44.608 5.796 6.981
BWGNN 83.134 49.983 47.323 12.788 6.501
GHRN 85.678 51.493 45.970 12.696 6.702
xGBGraph 87.555 51.079 65.121 16.088 2.954
CONSISGAD 79.120 49.762 41.606 9.848 6.443
Ours (CGADM) 93.390 51.595 69.396 17.162 9.754

Table 9: F1-scores comparison across datasets.
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Figure 5: Robustness against Feature Manipulation

O ROBUSTNESS OF CGADM AGAINST FEATURE MANIPULATION

To evaluate the robustness of CGADM against feature manipulation, we introduced feature pertur-
bations in the Elliptic and Tolokers datasets. Specifically, we randomly perturbed the features of
nodes with varying proportions (10%, 20%, and 30%) by randomly selecting values from their pos-
sible ranges with uniform probability. We then compared the performance of CGADM with GHRN
(the best-performing baseline from our original experiments) under these conditions.

The results are summarized in Figure 5. As the proportion of perturbed nodes increases, the perfor-
mance of both models decreases. However, CGADM consistently exhibits a slower decline com-
pared to GHRN. This highlights CGADM’s superior robustness to feature perturbations, which we
attribute to its denoising reconstruction mechanism. This mechanism leverages information from
neighboring nodes during the reverse diffusion process to iteratively restore the true anomaly sig-
nals.

P EFFECT OF HIGH- AND LOW-FREQUENCY SIGNALS

To further substantiate that the high-frequency components are indeed reflected in the resid-
ual propagations, we designed an ablation study comparing our original CGADM (denoted as
CGADMHP ) with a variant (denoted as CGADMLP ) that only propagates low-frequency sig-
nals. In CGADMLP , the graph convolution operation is replaced with the standard GCN:

1

|N (v)|+ 1

hl−1
v +

∑
u∈N (v)

hl−1
u

 , (39)

where the feature representation is averaged across the node and its neighbors, propagating only
low-frequency signals.

We conducted experiments on the Elliptic and YelpChi datasets, varying the number of GNN layers
in the denoiser module. The results are shown in Table 10:
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GNN Layers Model AUPRC (Elliptic) % AUROC (Elliptic) % AUPRC (YelpChi) % AUROC (YelpChi) %
1 CGADMHP 97.13 99.22 75.04 92.37

CGADMLP 95.71 98.43 72.23 91.88
2 CGADMHP 97.31 99.38 75.20 92.62

CGADMLP 93.73 97.60 70.92 90.88
3 CGADMHP 97.32 99.44 76.54 92.69

CGADMLP 90.83 95.58 71.43 89.64
4 CGADMHP 97.53 99.44 77.27 93.05

CGADMLP 87.12 92.60 69.98 87.71
5 CGADMHP 97.57 99.50 77.29 92.92

CGADMLP 81.20 89.49 68.71 86.08

Table 10: Performance comparison of CGADMHP and CGADMLP with varying GNN layers.

According to Table 10, we have the following observations:

1. High-Frequency Signal Preservation Matters: CGADMHP , which retains high-
frequency signals through residual propagation, consistently outperforms CGADMLP

across all metrics and datasets. This highlights the importance of preserving high-frequency
information for anomaly detection, as anomalies often manifest as local deviations that are
captured by these components.

2. Sensitivity to GNN Layers: For CGADMLP , performance declines significantly as the
number of GNN layers increases. This is indicative of the well-known over-smoothing
issue, where stacking multiple low-pass filters causes node representations to converge,
losing discriminative information. Conversely, CGADMHP remains robust, and its per-
formance even improves slightly with additional layers, demonstrating the effectiveness of
residual propagation in mitigating over-smoothing.

3. Iterative Refinement Amplifies Over-Smoothing: In the context of our diffusion model,
the iterative refinement process repeatedly aggregates neighborhood information, exacer-
bating the impact of over-smoothing in CGADMLP . This leads to a failure to capture new
anomaly-relevant signals at each stage of refinement. In contrast, CGADMHP avoids
this issue by leveraging high-frequency signals to refine anomaly detection throughout the
iterative process.

Q COMPARISON WITH DATA-AUGMENTATION METHODS

The main distinction between CGADM and the existing data-augmentation methods lies in the un-
derlying approach to anomaly detection. While prior works focus on using diffusion models for data
augmentation to improve detection performance, CGADM adopts a generative, model-centric
paradigm to directly model the joint distribution of anomalies on the entire graph. Below, we
summarize the key differences:

• CAGAD (Xiao et al., 2024): Uses a graph-specific diffusion model to generate counter-
factual representations by transforming normal neighbors into anomalous ones. This is a
classic data augmentation technique to enhance anomaly distinguishability.

• DEGAD (Pang et al., 2024): Employs diffusion models to generate manipulated neighbors,
enhancing graphs by creating augmented data. This technique is used as a data enhance-
ment module within a contrastive learning framework.

• ConGNN (Li et al., 2024): Introduces a generator based on diffusion models to control
neighborhood aggregation and create augmented data for better anomaly detection per-
formance.

• GD (Liu et al., 2024): Tackles the label imbalance problem by generating positive exam-
ples using a diffusion model in the latent space. The primary goal is to balance datasets,
not directly detect anomalies.

• Diffad (Ma et al., 2024b): Investigates denoising diffusion models to synthesize graph
structures and enhance existing methods. This approach focuses on data synthesis rather
than directly detecting anomalies.
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We have conducted a detailed experimental comparison of our proposed Conditional Graph
Anomaly Diffusion Model (CGADM) with some diffusion-based data augmentation methods CA-
GAD (Xiao et al., 2024), DEGAD (Pang et al., 2024), ConGNN (Li et al., 2024), GD (Liu et al.,
2024), and Diffad (Ma et al., 2024b). We analyzed their performance across several standard bench-
mark datasets (Elliptic, Tolokers, and YelpChi), and the key results are summarized below:

Metric Model Ellip Tolo Yelp

AUPRC

CAGAD 89.75 40.80 72.30
DEGAD 93.86 43.51 75.11
ConGNN 91.60 42.22 73.60

GD 88.63 39.90 68.01
Diffad 90.05 41.75 71.28

CGADM 97.28 45.11 76.54

AUROC

CAGAD 94.82 72.22 90.34
DEGAD 97.88 76.20 92.22
ConGNN 95.60 74.56 91.33

GD 93.53 70.70 83.84
Diffad 92.72 73.31 88.21

CGADM 99.34 78.11 92.69

Table 11: AUPRC and AUROC comparison with Data Augmentation Methods

As shown in the Table 11, CGADM consistently outperforms the data-augmentation methods in both
AUPRC and AUROC across all datasets. This underscores the efficacy of our generative framework
in addressing graph anomaly detection challenges.
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