
Reproducibility study:
Generative causal explanations of black-box classifiers

Anonymous Author(s)
Affiliation
Address
email

Summary1

Scope of reproducibility2

In the paper by O’Shaughnessy et al. [1], the authors claim to have created a conceptual framework that is able to3

explain black-box classifiers using latent variables and an appropriate generative model. They also claim that this4

framework works for any classifier and that the latent variables are disentangled (the latent variable describe independent5

features).6

Methodology7

In this report, we re-implement their code and aim to generate results similar to theirs. Additionally, we extent their8

research by testing the framework on new datasets. These datasets are the complete MNIST set [2] (in constrast to just9

the digits 3 and 8) and the CIFAR-10 dataset [3]. Finally, we purposefully used an poorly performing model to discover10

if the framework is able to find out why the model struggles.11

Results12

It was possible to reproduce the results presented in the paper. Furthermore, the framework was able to highlight the13

cause of the poor performance of the purposefully poorly performing model. When applying their framework to a more14

complex dataset, the framework proved to be effective.15

What was easy?16

Although the original code did not work immediately once the code was fixed it was easy to get similar results.17

What was difficult?18

The available code of the original authors did not work completely. There where some issues with broken references19

and lengthy code which could be hard to understand therefore reusing parts and rewriting others was more time efficient20

than debugging the available code. Furthermore understanding algorithm 1 in their paper was difficult as many details21

were left out, such as how to choose an appropriate step size.22

Communication with original authors23

We have not communicated with the original authors.24

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction25

The ongoing research in the field of machine learning allows the creation of better and more innovative deep learning26

architectures. However, these advances can lead to increased model complexity, making it harder to explain the behavior27

of a classifiers.28

Gaining insight into causal processes in deep learning models, which often tend to be applied as black-box solutions,29

will not only increase usefulness in industry applications where transparency is valued or legally required, but also30

potentially allow machine learning researchers and engineers to better visualize, understand and further develop more31

robust models.32

Some methods that create post-hoc explanations have been constructed, using decision trees [4] or using saliency maps33

[5]. In contrast to these methods that aim to find explanations using the input values, O’Shaughnessy et al. [1] propose34

a framework that can explain a models behaviour using a low number of latent variables that represent the data. These35

latent variables describe features of the input data that can be used to explain the classifiers decision. In this report, we36

aim to reproduce the results that O’Shaughnessy et al. found and analyse their claims and conclusions. Additionally, we37

extent their research by evaluating their framework on new models and datasets.38

The proposed framework uses a generative network to recreate the dataset using a set of latent variables. As these latent39

variables describe the data, changing certain variables, the causal factors α ∈ RK , should change the decision of the40

classifier. Changing the other variables, the non-causal factors β ∈ RL that are needed to accurately describe the dataset41

(e.g. thickness of MNIST digits), should not influence the output of the classifier. The loss function of the generator42

consists of a term that maximises the similarity between the modelled distribution and the data distribution, as well as a43

term that maximizes the influence of α on the classifier output. The relative importance of the similarity term can be44

adjusted with a value λ.45

The main claim of the paper is that the proposed framework is able to explain the decisions of the classifier by observing46

how the prediction changes based on adjustments of the causal factors α. Additionally, they claim that this framework47

works on all classifiers.48

As the original authors propose a conceptual framework, recreating this framework with a different implementation49

should be possible. Therefore, most of the code base necessary was recreated. Even though the original code is50

available, re-implementing proved more time efficient than debugging and understanding the original code. With the51

re-implemented code, we aim to reproduce the results the original authors got using the framework on the MNIST52

dataset, using the digits 3 and 8, (which can be seen in figure 1) and the results of the framework on the Fashion MNIST53

[6] with the classes tops, dresses and coats.54

Additionally, we extend the research by examining the framework’s ability to find causal relationships in a poorly55

performing classifier model. If proven effective, the framework could be used to, for example, analyze overfit models to56

find the features that the classifier overfit on, therefore finding and displaying biases in the model, or the dataset itself.57

Finally, we test the framework on more complex datasets than those used in the original paper. These datasets are the58

complete MNIST dataset [2] (as opposed to just using the digits 3 and 8), and the CIFAR-10 dataset [3]. As the authors59

claim that their framework works on all models, the framework should still work on models designed to classify more60

complex datasets. The re-implemented code is available on our GitHub repository1.61

2 Method62

This section presents all experiments that are conducted to reproduce and extent the research of O’Shaughnessy et al.63

The hardware used to do these experiments, ranges from notebooks to a computer cluster. The only factor affected by64

these differences in hardware should be the time needed to train and test the models.65

2.1 Re-implementing the code66

To run the experiments, most of the code base necessary was recreated. The author’s code base was updated after we’ve67

finished most of the re-implementation so for the purposes of this report we consider the old version (as of 05/01/2021)68

as our reference point. To train the classifiers, a simple loop was written using PyTorch that continuously uses stochastic69

gradient descent to optimize the model. The loop is written in such a way that it is model- and dataset-agnostic, allowing70

us to train all classifiers needed for all experiments that will be conducted for this study. As the method for training the71

generative model is more complex, PyTorch Lightning was used for the training and debugging process, as well as the72

1https://github.com/FrisoVerweij/FACT

2

https://github.com/FrisoVerweij/FACT


(a) Sweep α1 (b) Sweep β1 (c) Sweep β2 (d) Sweep β3

Figure 1: Figure 3 from the original paper [1]. Each row represents a sample. The y-axis represents change in the given
latent variable while keeping all others fixed. We can observe that changing α (a) results in a different output of the
classifier, which is denoted by the color of the border. α, therefore, is a causal factor that explains the output of the
classifier. The opposite is visible in (b), (c), (d), where changing the non-causal factors β do not result in different
output of the classifier.

Adam optimizer [7]. There was no need to re-implement the calculation process of the causal term used to optimize the73

generative model, as the framework uses a specific causal influence metric.74

In the paper, the authors also present Algorithm 1 that is used to find optimal values for K,L and λ. Although the75

algorithm was re-implemented, using it proved too time consuming as it requires a large number of re-runs of the76

training procedure. If the problem is more complex, both the training time and the number of possible combinations of77

hyperparameters increase. Therefore, the hyperparameters from the original paper were used or slightly adjusted in78

case the experiment involved a different problem.79

Finally, all code that is used to prepare and load the datasets has been re-implemented.80

2.2 MNIST with digits 3 and 881

To create figure 1, the authors used a convolutional neural network (CNN) to classify the digits 3 and 8 of the MNIST82

dataset. The chosen generative model was a convolutional variational autoencoder (CVAE). Their latent distribution83

was designed to have a single α-value (K = 1) and 7 β-values (L = 7). For λ, a value of 0.05 was chosen. As we can84

see in figure 1, the framework succeeds. Changing α changes the output of the classifier, while changing β does not.85

To reproduce this figure, the architecture of both models were copied. All hyperparameters were the same as those86

described in the original paper, apart from the number of training epochs for the CVAE. Instead of training for 4387

epochs, the model trained for 30 epochs. Instead of downloading the dataset directly, the library torchvision.datasets88

was used, allowing us to download the MNIST dataset in a format suited for the trainloop using PyTorch. However,89

these datasets are not exactly the same, as the original authors used an MNIST dataset where the digits were black on a90

white background, while the MNIST dataset used in this study uses white digits in a black background. This change,91

however, should not influence the framework, as the information contained in the images is still the same. Following92

the training process, a number of latent samples are generated, whose values are adjusted to see the response of the93

classifier.94

2.3 Complete MNIST dataset95

A logical next step after reproducing figure 1 using just the digits 3 and 8, would be to do the previous experiment96

using the entire MNIST dataset. The model architectures for classifying and generating the data remained as before, as97

both the CNN and CVAE architecture are sufficiently complex to classify and generate this relatively simple dataset.98

As this dataset now has 10 classes, K was increased to 3, allowing the framework to model more causal factors. L99

remained the same as before, making the number latent distribution consist out of 10 variables. λ was increased to100

0.1, which makes the generative model focus more on modelling the now more complex data distribution. All other101

hyperparameters also remained as before.102

2.4 Fashion MNIST with tops, dresses and coats103

The second result we aim to reproduce is the result the original authors got after training the framework on a subset of104

the Fashion MNIST dataset, a part of which is shown in figure 2. The full figure is available in appendix B.3. This105

3



subsection includes images with the classes t-shirt/top, dress and coat. The classifier and generative model architecture106

is the same as those used by the authors, which is also the same architecture used for the previous experiments, regarding107

the MNIST dataset.

(a) Sweep α1 (b) Sweep α2 (c) Sweep β1 (d) Sweep β2

Figure 2: A subsection of figure 17 from the original paper [1]. This figure shows how the generated samples result in
different images when altering a single latent value. In this figure it can be seen that changing the α-values results in a
different classification by the classifier, while changing the β-values does not.

108

2.5 Poor model analysis109

Because the framework can be used to explain why a classifier made a certain decision, it should be able to explain110

and visualize why a poor model yields a low performance in terms of test accuracy. To examine this, we purposefully111

created a poorly performing classifier that only uses the average pixel intensity values of an image. Again, for this112

experiment, the MNIST dataset was used, where we only considered digits 3 and 8. The classifier has a simple linear113

layer that uses the average intensity of the image as input and transforms it into two output values, one for each possible114

class. After applying softmax, the probability for each class is generated. For the generative model we used the same115

CVAE architecture as for the other MNIST models.116

Because the model uses just a single attribute as input, a single α-value would be enough to make the causal effect117

visible. To model the data distribution, 7 β-values are used. To make sure the cause of the poorly performing classifier118

is highlighted, the relative importance of the causal term is increased by decreasing λ to 0.001. After generating an119

image that showcases the effect of changing the α-value on randomly generated samples, we would expect the samples120

changing from very dark images to very bright images (or vice versa). All unnamed hyperparameters remain as before.121

2.6 The framework on the CIFAR-10 dataset122

The MNIST and Fashion MNIST datasets are fairly non-complex datasets, which are suited for a proof of concept. In123

practice, however, more complex data is often used and although something seems to work fine on less complex data,124

increasing complexity might lead to unexpected results. For this reason we decided to test the authors framework125

and loss function on the CIFAR-10 dataset [3] which consists of 32 x 32 colored images. The dataset could also be126

downloaded from torchvision.datasets which made implementing it with the framework we already had a lot easier.127

128

For the generative model on the CIFAR-10 dataset, a more complex model was needed than the one used on129

the MNIST and Fashion MNIST datasets. After testing and altering several models [8; 9; 10] we designed our own130

architecture inspired by these sources. This architecture is specified in Appendix A.1.131

For the classifier on just two classes, using the same classifier as for MNIST was sufficient. However, on multiple132

classes the classifier did not reach the desired accuracy, which is why we used a pretrained VVG-11 [11] model. This133

model is obtained from [12].134

135

We trained our model on 2 classes, as well as all the classes of the CIFAR-10 dataset. For the full dataset,136

we kept the total number of latent variables at 64 while varying the α-value between 1 and 4 with λ = 0.5. Additionally,137

we also kept the α-value at 1 with different values for λ, namely λ = 0.5, λ = 0.275, λ = 0.05. The remaining138

hyperparameters were kept the same as for the MNIST and Fashion MNIST datasets. For the classifier, we quickly139

trained the model for 3 epochs, starting with the pretrained weights, with a decreased learning rate of 0.001 to make140

sure that it was performing as desired.141

4



3 Results and analysis142

3.1 MNIST with digits 3 and 8143

The results of the attempt to reproduce figure 1 are shown in figure 3. Looking at this figure, we can see that a change in144

α1 corresponds to a change of the output of the classifier. For each sample in subfigure (a), the classifier changed its145

decision after the digits changed shape. Looking at subfigures (b), (c) and (d), we see that changing β1, β2 or β3, does146

not result in a different output of the classifier. Looking at (b) and (d), we can see that changing β1 changes the width of147

the digit, while changing β3 changes the thickness of the digit. Even though the specific latent factors β encode for148

different attributes when compared to the original figure, we consider this a successful reproduction. Additional results,149

displaying all latent factors, can be found in appendix B.1.

(a) Sweep α1 (b) Sweep β1 (c) Sweep β2 (d) Sweep β3

Figure 3: The reproduced figure 1. In each subfigure, one latent factor is varied, while all others are fixed. Each row
represents one sample. The color of the border indicates the decision of the classifier.

150

3.2 Complete MNIST dataset151

After training the same CNN and CVAE architecture on the complete MNIST dataset, generating samples and varying152

the latent variables resulted in figure 4. This figure shows the sweeping process of four of the ten latent variables.153

Subfigure (a) shows that changing α2 again results in different classifications. This time, as there are multiple classes,154

we can see that changing α2 can change the prediction of the classifier multiple times. Subfigures (b), (c) and (d)155

show that changing the β-values barely affects the classification process. We can see that the digit 3 is consistently156

classified the same as the 8. However, this is most probably due to a bad sample for the digit 3. Looking at the effect of157

changing the β-values on the generation process, we can see a clear change in angle, thickness and width for β3, β4 and158

β6, respectively. Therefore, the framework seems to perform well on this more complex dataset. Additional results159

regarding the complete MNIST dataset can be found in appendix B.2.160

3.3 Fashion MNIST with tops, dresses and coats161

The effect of changing the latent variables are visible in figure 5. Looking at subfigures, we can see that when changing162

the α-values, the classifications change. In contrast, changing the β-values change some attributes of the shapes, such163

as width at the bottom of the image, but do not change the decision of the classifier. This is in line with the original164

authors findings. The full figure is available in appendix B.3.165

3.4 Poor model analysis166

After training the framework, the effect of changing the α-value is visible in figure 6. As expected, changing the α167

changes the average intensity of the image, which is exactly the only input that the classifier uses. We can see that the168

classifier works as intended, as all bright images are marked with an orange border, while all dark images are marked169

with a blue border. We can see that latent factor β1 and β2 seem to encode for digit brightness and/or thickness as170

well, but this might be because the causal term is designed to maximise the causal influence of the α-factors, but not to171

minimize the β-factors. The result of changing all latent factors not shown in figure 6 are presented in appendix B.4172

5



(a) Sweep α2 (b) Sweep β3 (c) Sweep β4 (d) Sweep β6

Figure 4: Each subfigure show the results of changing a single latent factor, while keeping the others fixed, on the
complete MNIST dataset.

(a) Sweep α1 (b) Sweep α2 (c) Sweep β1 (d) Sweep β2

Figure 5: The results of the Fashion MNIST experiment.

3.5 The framework on the CIFAR-10 dataset173

When training on just two classes, the causal term seems so have the desired effect, which can be seen in Figure 13 in174

appendix B.5. Here, we can can clearly see the output of the classifier change when we vary alpha while the output175

remains the same when we vary beta. In this example it seems to be the case that the colors red and blue influence the176

classifier output the most and therefore alpha encodes these colors. One issue is that the generated images are not very177

detailed which is especially important when testing on more complex generated images.178

179

Even though the CVAE was a lot more complex than before, the images did not reach the visual quality that we desired180

in order to test the extent of the authors framework. When training on the full CIFAR-10 dataset we saw that the181

generated images were a lot better. This was the case for training the CVAE without and with the causal term. The182

increase in quality is likely caused by having more training samples and/or having more diverse images which results in183

more detailed images for all the classes. Therefore, we decided to abandon the CIFAR-10 dataset with just two classes184

and focus on the full dataset. The results for the full dataset with one α and λ = 0.5 are shown in figure 7. Here we can185

clearly see that the colors red and blue seem to be encoded in the α-variable. Besides these colors we can also see a186

lot of artifacts occuring in the images. This makes sense as generating such an artifact is an effective way of creating187

causality between α and the classifier. Even when we increase the number of α-values the artifacts remain in most of188

6



(a) Sweep α1 (b) Sweep β1 (c) Sweep β2 (d) Sweep β3

Figure 6: The results of the poor model analysis. In subfigure (a), α1 encodes for the image brightness. It is important
to note though, that β1 and β2 seem to do the same.

the images and are often visible in the first few epochs. When looking at the loss curves we can also see that the lower189

the causal loss becomes the more the artifacts become visible even before it converges. Changes λ also does not make190

much of a difference as we found that λ mainly controls the rate with what the causal loss drops which is illustrated in191

Figures 14 and 15 in appendix B.5.192

(a) Sweep α1 (b) Sweep β1 (c) Sweep β2 (d) Sweep β3

Figure 7: The results of the CIFAR-10 dataset with one α-value and λ = 0.5.

4 Discussion193

4.1 Overall Reproducibility194

After obtaining the results, we can conclude that we were able to reproduce both figure 1 and 2 that were produced by195

the O’Shaughnessy et al. Additionally, we found that the framework still succeeds when using the complete MNIST196

dataset. As expected, the framework was able to highlight the problem of the poorly performing model, as the model197

showed that changing the α-value, changed the average pixel intensity of the image. When testing the framework on the198

CIFAR-10 dataset the results were harder to interpret. It was possible to get a latent space with causal and non-causal199

dimensions but it was harder to interpret these dimensions.200

4.2 Issues Encountered201

Because we experimented with different datasets and even different models, hyperparameters greatly influence the202

results, which was an issue we faced, as the algorithm provided by the authors to find the optimal hyperparameters was203

not entirely clear and is not very feasible for larger models due to limited computational resources.204

7



Another issue we faced and discussed was actually quantifying the quality of the encoder-decoder model results.205

Because there isn’t a concrete metric for disentanglement of α and β, we often relied on our intuition to judge the206

quality of results and whether the β factors really did not overlap with the features that α controlled, and vice versa.207

This approach is of course prone to personal bias and interpretations of certain patterns that might have arised from a208

good random result. Nevertheless, experimentation lead us to reproduce the paper’s results and even expand them by209

additional experiments.210

For the CIFAR-10 dataset a lot more issues arised especially surrounding the explanability of the causal factors as we211

saw in section 3.5.212

4.3 Usefulness of Explanations213

The proposed method does indeed produce visual representations of causal factors that are disentangled from the214

non-causal factors and is therefore able to provide a explanation and gives insight into the model itself. However, we215

question the usefulness of the visual explanation of the latent factors α when used on more complex datasets. Looking at216

Figure 8 and other examples, we can see that there are disentagled causal and non-causal factors and using intuition we217

could even derive verbal explanations such as ’thickness’ or ’sharpness’ being non-causal, furthermore we can see that218

the the transition between a ’3’ and an ’8’ is consistent with intuition that the right hand side of an ’8’ has to be removed219

to get a ’3’. However when we look at α2 from Figure 3.2 we do not know how to interpret that latent dimension220

because the generated images just seem to change from one digits to the other without a clear human interpretable221

transition between the digits. Another issue is with the full CIFAR-10 dataset in which artifacts arise in the causal latent222

dimensions. On the one hand this could be a good explanation, highlighting that the classifier is not as good as we223

thought because it is heavily influenced by those artifacts, on the other hand this could be an anomaly that arises from224

the framework itself. More research is needed to find out why these artifacts arise.225

Overall it seems that for simple models this framework works as one would hope for and generates sensible explanations226

but it seems not so straightforward to adopt this technique to more complex datasets.227

4.4 Feasibility of Hyperparameter Optimization228

Although not the central part of the paper, Algorithm 1 was used to find the optimal hyperparameters of K, L, and229

λ. The issue we see is that even with low granularity of increments, the algorithm still necessitates tens of re-runs of230

the encoder-decoder training process, which can be unfeasible for big state of the art models working on datasets with231

hundreds of gigabytes of complex multi-dimensional data. Additionally, it is likely that the encoder-decoder model232

itself has to be tweaked and possibly enlarged when working on more complex data and classifiers such as with the233

CIFAR-10 dataset, therefore further multiplying the computational resources needed. It would be useful to find sets of234

initial hyperparameters or α / β ratios for certain types of datasets or models that performs decently well so that the235

process converges faster.236

4.5 Causal Influence237

In the original paper they present the loss function of this method as238

argmax
gεG

C(α, Y ) + λ ·D(p(g(α, β)), p(X)) (1)

where D(p(g(α, β)), p(X)) is a measurement of similarity between the generated image and the sample, and C(α, Y )239

is the metric of causal influence of α on Y . In this function, the causal term maximizes the causal influence of α240

while the β is only used in the similarity term. However, this means that β factors can also have a causal effect if the241

dimensionality of α is insufficient to cover all the causal features, because it’s causal effect is only minimized implicitly.242

In further research it would be interesting to introduce a term that explicitly minimizes the causal influence of β to243

make sure that only α has causal influence.244

8



References245

[1] M. O’Shaughnessy, G. Canal, M. Connor, M. Davenport, and C. Rozell, “Generative causal explanations of246

black-box classifiers,” arXiv preprint arXiv:2006.13913, 2020.247

[2] L. Deng, “The mnist database of handwritten digit images for machine learning research [best of the web],” IEEE248

Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.249

[3] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.250

[4] M. Craven and J. W. Shavlik, “Extracting tree-structured representations of trained networks,” in Advances in251

neural information processing systems, pp. 24–30, 1996.252

[5] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising image classification253

models and saliency maps,” arXiv preprint arXiv:1312.6034, 2013.254

[6] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking machine learning255

algorithms,” arXiv preprint arXiv:1708.07747, 2017.256

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.257

[8] S. Malysheva, “Pytorch-vae.” https://github.com/SashaMalysheva/Pytorch-VAE.git, 2018.258

[9] CaptainDredge, “Variational-autoencoder-in-pytorch.” https://github.com/CaptainDredge/259

Variational-AutoEncoder-in-Pytorch.git, 2018.260

[10] M. K. Philip Lippe, “uvadlc_notebooks.” https://github.com/phlippe/uvadlc_notebooks.git, 2020.261

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv262

preprint arXiv:1409.1556, 2014.263

[12] Z. H. S. Huy Phan, David Widmann, “Pytorch_cifar10.” https://github.com/huyvnphan/PyTorch_264

CIFAR10.git, 2021.265

9

https://github.com/SashaMalysheva/Pytorch-VAE.git
https://github.com/CaptainDredge/Variational-AutoEncoder-in-Pytorch.git
https://github.com/CaptainDredge/Variational-AutoEncoder-in-Pytorch.git
https://github.com/CaptainDredge/Variational-AutoEncoder-in-Pytorch.git
https://github.com/phlippe/uvadlc_notebooks.git
https://github.com/huyvnphan/PyTorch_CIFAR10.git
https://github.com/huyvnphan/PyTorch_CIFAR10.git
https://github.com/huyvnphan/PyTorch_CIFAR10.git


Appendix A: Used models and datasets266

A.1: Model architectures267

In this section, all model architectures are specified. The classifier architecture used in the experiments using the MNIST268

or Fashion MNIST is shown in table 1 and the architecture used for the poor model analysis is displayed in table 2.269

The architecture of the generative model used in the MNIST and Fashion MNIST datasets are presented in table 3. The270

architecture of the generative mdel used in the experiment using the CIFAR-10 dataset is shown in table 4.271

Architecture for MNIST and Fashion MNIST
Input (28×28)

Conv2d (32 channels, 3×3 kernels, stride 1, pad 0)
ReLU

Conv2d (64 channels, 3×3 kernels, stride 1, pad 0)
ReLU

MaxPool (2×2 kernel)
Dropout (p = 0.5)
Linear (128 units)

ReLU
Dropout (p = 0.5)
Linear (M units)

Softmax

Table 1: The classifier architecture used for all experiments using either the MNIST dataset or the Fashion MNIST
dataset.

Architecture for the poor model analysis
Input (28×28)

average over each pixel value (hard coded)
Linear(2)
Softmax

Table 2: The classifier architecture used for the poor model analysis. This model is a mixture of a hard coded model
and a neural net

Architecture of the generative model used in the MNIST and Fashion MNIST experiments
Encoder architecture Decoder architecture

Input (28×28) Input (K + L)
Conv2 (64 chan., 4×4 kernels, stride 2, pad 1) Linear (3136 units)

ReLU ReLU
Conv2 (64 chan., 4×4 kernels, stride 2, pad 1) Conv2Transp (64 chan., 4×4 kernels, stride 1, pad 1)

ReLU ReLU
Conv2 (64 chan., 4×4 kernels, stride 1, pad 0) Conv2Transp (64 chan., 4×4 kernels, stride 2, pad 2)

ReLU ReLU
Linear (K + L units for both µ and σ) Conv2Transp (1 chan., 4×4 kernel, stride 2, pad 1)

Sigmoid

Table 3: The architecture of both the encoder and decoder that make up the CVAE used in the MNIST and Fashion
MNIST experiments.

10



Architecture of the generative model used in the CIFAR-10 experiments
Encoder architecture Decoder architecture

Input 32x32 Input K+L
Conv2 (128 chan., 3×3 kernels, stride 2, pad 1) Linear(512)

ReLU ReLU
Conv2 (128 chan., 3×3 kernels, stride 1, pad 1) Linear(2*16*256)

ReLU ReLU
Conv2 (256 chan., 4×4 kernels, stride 2, pad 1) Conv2Transp(256, 3x3 kernels, stride 2, padding 1, output_padding 1)

ReLU ReLU
Conv2 (256 chan., 4×4 kernels, stride 1, pad 1) Conv2Transp(256, 3x3 kernels, stride 1, padding 1, output_padding 0)

ReLU ReLU
Conv2 (256 chan., 4×4 kernels, stride 2, pad 1) Conv2Transp(128, 3x3 kernels, stride 2, padding 1, output_padding 1)

ReLU ReLU
Linear(512) (both µ and σ) Conv2Transp(128, 3x3 kernels, stride 1, padding 1, output_padding 0)

ReLU (both µ and σ) ReLU
Linear(K + L) (both µ and σ) Conv2Transp(3, 3x3 kernels, stride 2, padding 1, output_padding 1)

- Sigmoid

Table 4: The architecture of both the encoder and decoder that make up the CVAE used in the experiment using the
CIFAR-10 dataset.

A.2: Dataset statistics272

The number of train samples and test samples for each dataset used in this study is visible in table 5.273

MNIST MNIST 3 8 Fashion MNIST 0,3,4 CIFAR 10
Number of samples train set 60,000 11,982 18,000 50,000
Number of samples test set 10,000 1,984 3,000 10,000

Table 5: The architecture of both the encoder and decoder that make up the CVAE used in the MNIST and Fashion
MNIST experiments.

11



Appendix B: Additional results274

B.1: MNIST dataset with digits 3 and 8275

The accuracy of the CNN after training was 99,8% on the testset. This suggests that the model performs close to276

flawlessly, making it a good model to apply the framework to. After training the CVAE, the sampling process and the277

varying of these samples resulted in figure 8.

(a) Sweep α1 (b) Sweep β1 (c) Sweep β2 (d) Sweep β3

(e) Sweep β4 (f) Sweep β5 (g) Sweep β6 (h) Sweep β7

Figure 8: The full results of the attempt to reproduce figure 1. In this figure, the sweeping process of β4, β5, β6 and β7
and the consequent changes in the generation and classification process are also shown.

278

B.2: Complete MNIST dataset279

After the training process of the CNN model, the model yielded an accuracy of 99,1% on the testset. As the dataset is280

more complex compared to the previous experiment, this decrease in performance is expected. Applying the framework281

around the classifier resulted in figure 9.282

B.3: Fashion MNIST with tops, dresses and coats283

The complete figure of the results by the original authors on the Fashion MNIST experiment is shown in figure 10. The284

complete recreation of our results are displayed in figure 11. These complete versions also include β3 and β4.285

B.4: Poor model analysis286

The classifier that was designed to perform poorly had an accuracy of 52,8% on the testset. This makes the classifier287

ideal to test the capabilities of the framework on. The extended version of figure 6 is presented in figure 12.288

B.5: CIFAR-10 results289

12



(a) Sweep α1 (b) Sweep α2 (c) Sweep α3 (d) Sweep β1 (e) Sweep β2

(f) Sweep β3 (g) Sweep β4 (h) Sweep β5 (i) Sweep β6 (j) Sweep β7

Figure 9: The full results of changing a specific latent factor while keeping the others fixed, on the complete MNIST
dataset. In this figure α1, α3, β2, β3, β4 and β5 are also shown.

13



(a) Sweep α1 (b) Sweep α2 (c) Sweep β1 (d) Sweep β2

(e) Sweep β3 (f) Sweep β4

Figure 10: The complete version of figure 17 from the original paper.

14



(a) Sweep α1 (b) Sweep α2 (c) Sweep β1 (d) Sweep β2

(e) Sweep β3 (f) Sweep β4

Figure 11: The complete version of the results after recreating figure 17 from the original paper.

15



(a) Sweep α1 (b) Sweep β1 (c) Sweep β2 (d) Sweep β3

(e) Sweep β4 (f) Sweep β5 (g) Sweep β6 (h) Sweep β7

Figure 12: The full figure containing all latent variables, after training with the poorly performing classifier. In this
figure, the sweeping process of β4, β5, β6 and β7 and the consequent changes in the generation and classification
process are also shown.

(a) Sweep α1 (b) Sweep β1 (c) Sweep β2 (d) Sweep β3

Figure 13: The alpha and some beta values of the model trained on classes "3" and "8" of the CIFAR-10 dataset.

16



(a) Negative log loss (b) Causal loss

Figure 14: Validation loss curves for different values of lambda: orange: λ = 0.5, green:
λ = 0.275, blue: λ = 0.05

(a) Sweep α1 with λ = 0.5 (b) Sweep α1 with λ = 0.275 (c) Sweep α1 with λ = 0.05

Figure 15: The results of the CIFAR-10 dataset at epoch 5 with different lambdas.

17



(a) Sweep α1 at epoch 5 (b) Sweep α1 at epoch 10

(c) Sweep α1 at epoch 15 (d) Sweep α1 at epoch 20s

Figure 16: The results of the CIFAR-10 dataset with one α-value and λ = 0.5 with probabilities shown.

18



(a) Sweep α1 at epoch 5 (b) Sweep α1 at epoch 10 (c) Sweep α1 at epoch 15 (d) Sweep α1 at epoch 20s

Figure 17: The results of the CIFAR-10 dataset with one α-value and λ = 0.5.

19


	Introduction
	Method
	Re-implementing the code
	MNIST with digits 3 and 8
	Complete MNIST dataset
	Fashion MNIST with tops, dresses and coats
	Poor model analysis
	The framework on the CIFAR-10 dataset

	Results and analysis
	MNIST with digits 3 and 8
	Complete MNIST dataset
	Fashion MNIST with tops, dresses and coats
	Poor model analysis
	The framework on the CIFAR-10 dataset

	Discussion
	Overall Reproducibility
	Issues Encountered
	Usefulness of Explanations
	Feasibility of Hyperparameter Optimization
	Causal Influence


