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Abstract

Language Models (LM) have been exten-
sively utilized for learning DNA sequence pat-
terns and generating synthetic sequences. In
this paper, we present a novel approach for
the generation of synthetic DNA data using
pangenomes in combination with LM. We in-
troduce three innovative pangenome-based to-
kenization schemes that enhance long DNA
sequence generation. Our experimental re-
sults demonstrate the superiority of pangenome-
based tokenization over classical methods
in generating high-utility synthetic DNA se-
quences, highlighting significant improvements
in training efficiency and sequence quality.

1 Introduction

Public availability of genome datasets, such
as the Human Genome Project (HGP) (Lander
et al., 2001), the 1000 Genomes Project (Con-
sortium et al., 2012), The Cancer Genome Atlas
(TCGA) (Weinstein et al., 2013), GenBank (Ben-
son et al., 2012), the International HapMap
Project (Gibbs et al., 2003), the Human Pangenome
Project (Liao et al., 2023), and the Telomere-
to-Telomere project (Nurk et al., 2022), has
been instrumental in advancing genomic research.
However, large-scale genome sequencing remains
costly and resource intensive due to the sophisti-
cated equipment and computational resources re-
quired (Wetterstrand, 2021; Van Dijk et al., 2018).

Synthetic data generation offers a scalable alter-
native for genomic research. Specific tasks such as
De Novo genome assembly (Tran et al., 2017, 2019;
Yang et al., 2019) and genotype imputation (Brown-
ing and Browning, 2016) inherently involve the
generation of unknown sequences, making them
also suitable applications for synthetic data. A
good generative model can significantly improve
their accuracy and efficiency by predicting missing
or incomplete segments.

Deep learning models are widely used in differ-
ent tasks, even in processing genome sequences
and related data (Yun et al., 2020; Kolesnikov et al.,
2021; Kim and Kim, 2018; Elbashir et al., 2019).
Although generative adversarial networks (GANSs)
have been explored for synthetic genome genera-
tion, their output is limited to short sequences (Bae
et al., 2019; Gupta and Zou, 2018). LMs have
shown their capability to generate synthetic nat-
ural languages that are almost indistinguishable
from real data. The generated language text can
be used to train other models (Kumar et al., 2020;
Yoo et al., 2021; Hartvigsen et al., 2022), including
those in the medical domain (Peng et al., 2023b;
Guevara et al., 2024). Proven to be extraordinarily
good at processing human language, LMs can also
interpret and generate broader text, such as code
for programming tasks (Chen et al., 2021), thereby
pushing the boundaries of their application beyond
strictly spoken language-based domains.

The Critical Challenge: DNA vs. NLP To-
kenization Differences. While LMs present a
promising alternative to understanding and gen-
erating long synthetic DNA sequences, effective to-
kenization of DNA sequences is crucial to leverage
LMs. Applying LMs to DNA sequences faces a fun-
damental tokenization challenge that differs from
Natural Language Processing (NLP). Unlike hu-
man language, which has natural word boundaries,
semantic units, and grammatical structures, DNA is
essentially a string with four letters (nucleotides: A,
C, G, T) of billions of characters long and without
inherent segmentation. Traditional NLP tokeniza-
tion methods like Byte Pair Encoding (BPE) rely
on frequency-based subword identification. Tradi-
tional DNA segmentation methods simply segment
sequences into individual nucleotides or length &
substrings. All these methods face a critical lim-
itation as they lack awareness of the underlying
biological structure that determines how genomic
variations should be grouped and segmented.



Missing Opportunity: Structural Information
from Pangenome Graphs. Pangenome graphs en-
code population-level variation patterns by compar-
ing DNA sequences from a whole population and
organizing DNA segments into nodes and connec-
tions that capture how genetic diversity manifests
among individuals (detailed in §2.2). This graph
structure naturally identifies biologically meaning-
ful segmentation boundaries within the DNA se-
quences, offering a principled alternative to tok-
enizations that treat DNA as undifferentiated char-
acter strings. This opportunity has been largely
overlooked in current DNA modeling approaches.

Therefore, we propose three novel pangenome
graph-based tokenization schemes for LM-based
synthetic data generation that leverage the struc-
tural information embedded in pangenome graphs
to create biologically-informed segmentation.

This work presents the first comparative analy-
sis of classical and pangenome-based tokenization
schemes for LMs, specifically GPT-2 and Llama,
in learning DNA sequence patterns and generating
long synthetic sequences. Our findings reveal that
the pangenome graph structure embeds significant
information that enhances neural networks’ com-
prehension of DNA sequences, and can in cases
reduce training time and improve scalability. Our
contributions are as follows.

* First, we introduce three novel pangenome
graph-based tokenization schemes that lever-
age genomic structure to provide biologically-
informed segmentation, fundamentally differ-
ent from frequency-based NLP tokenization ap-
proaches that ignore structural relationships.

* Second, we demonstrate through comprehensive
experiments that our tokenization schemes sig-
nificantly outperform three classical methods in
training efficiency, predictive accuracy, and gen-
eration quality for both GPT-2 and Llama archi-
tectures, establishing clear computational and
performance advantages.

* Finally, we establish the first systematic evalu-
ation framework for pangenome-informed tok-
enization in synthetic DNA generation, providing
evidence that structural graph information trans-
lates into improved biological utility through se-
quence alignment quality metrics.

The following paper is structured as follows:
Section 2 covers background on synthetic genome
generation, Section 3 details tokenization schemes,
Section 4 outlines evaluation metrics, Section 5
presents experiments, Section 6 discusses related

work, and Section 7 concludes with limitations. A
glossary is provided in Table 4 in §B.1.

2 Background
2.1 Language Models

Large language models are advanced artificial in-
telligence systems designed to understand and gen-
erate language text based on the data on which they
have been trained. These models, such as Mis-
tral (Jiang et al., 2023), Anthropic’s Claude (An-
thropic, 2023), OpenAl’'s GPT series (Radford
et al., 2019; OpenAl, 2023), Google’s T5 (Raffel
et al., 2020), Lamda (Thoppilan et al., 2022) and
Gemini (Team et al., 2023), Meta’s OPT (Zhang
et al., 2022), BLOOM (Le Scao et al., 2023) and
LLama (Touvron et al., 2023a,b), etc., take advan-
tage of vast amounts of textual information to learn
patterns, nuances, and complexities of language.
LMs can perform a variety of language-related
tasks, including answering questions, translating
languages, and even participating in casual con-
versations. Their ability to process and generate
coherent and contextually appropriate responses
makes them invaluable tools across multiple fields,
from customer service and education to creative
writing and technical support.

Model Choice with Computational Con-
straints. Due to computational limitations and the
need for systematic tokenization comparison, we
focus on accessible baseline models (90M parame-
ter GPT-2 and Llama) trained from scratch rather
than larger domain-specific DNA models. We se-
lected these architectures for several key reasons:
(1)Tokenization control: Tokenization flexibility to
isolate the effects of different schemes by training
from scratch; (2)Generative capability: We need
autoregressive generation for synthetic sequence
generation, whereas many smaller DNA-specific
models (e.g., DNABERT-2 (Zhou et al., 2023),
GENA (Fishman et al., 2023)) emphasize classi-
fications; (3)Feasibility: Changing vocabularies
alters the embedding matrix, requiring full retrain-
ing to isolate tokenization effects; DNA-specific
models capable of generating long sequences exists
(Nguyen et al., 2024a), but the billion-parameter
structure makes it computationally too expensive
for our academic research.

2.2 DNA Sequences and Pangenome Graphs

DNA basics. DNA carries genetic information and
has four nucleotides: A, C, G, and T. A genome
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Figure 1: The whole pipeline of synthetic data generation and utilization.

is the complete DNA sequence of an organism,
billions long in humans. Individuals of the same
species share > 99% of this string, but small ed-
its (single-base substitutions, insertions/deletions,
structural rearrangements) occur throughout. Un-
like natural language, DNA has no whitespace or
punctuation; any segmentation is our modeling
choice.

Pangenome graph. A “pangenome” aggre-
gates the genomic content of many individuals of a
species, where “pan” means “all”. A pangenome
graph (Eizenga et al.,, 2020) encodes many
genomes as a sequence graph, which is built by
(whole-genome) multiple alignment: shared sub-
strings in DNA are collapsed into nodes, substrings’
breakpoints become node boundaries, edges recon-
nect segments to preserve each genome’s order, and
paths trace each individual (haplotype) through
the graph. Figure 2 shows a toy graph of three
sequences. Details of alignments are given in §4.2.

Why it is useful. The graph structure captures
population-level variation while avoiding single-
reference bias. Many downstream analyses operate
on this structure, caring more about which branch
an individual takes rather than on raw nucleotide
counts. Importantly, this graph-based representa-
tion provides a more principled first-level segmen-
tation that mimics natural language structure: just
as words and phrases have meaningful boundaries
in text, pangenome nodes represent biologically co-
herent segments where genetic variation naturally
occurs, reflecting the underlying biological ‘gram-
mar”. This natural segmentation provides an ideal
foundation for tokenization. More details can be
found in Appendix A.

2.3 Synthetic Genome Sequence Generation
using LMs

We generate synthetic genomes with LMs through
a five-step pipeline (See Figure 1): (1) Raw data
(85.1) are collected; @ Tokenization (§3) converts
sequences into model-ready tokens; (3) LM train-
ing fits a generative model with next-token predic-
tion; (4) Generation (§5.1) samples synthetic se-
quences from the trained model; (5) Downstream

tasks (§4) assess the quality of the generation and
how these sequences can be used.

3 Tokenization of a genome sequence

In this section, we describe the widely used to-
kenization schemes and our novel schemes. All
tokenization schemes are illustrated in Figure 2.

3.1 Classical tokenizations

3.1.1 Genome-based Single Nucleotide
Tokenization (GSNT)

GSNT is a straightforward method to tokenize
genome sequences, previously applied in (Nguyen
et al., 2024b; Schiff et al., 2024). Each nucleotide
(A, C, G, T) is treated as an individual token. For
example, the genome sequence “ACGTA” would
be tokenized as “A”, “C”, “G”, “T”, and “A”.

3.1.2 Genome-based k-mer Tokenization
(GKMT)

An alternative is GKMT, where k-mers, i.e. sub-
strings of DNA of length k, are used as tokens. De-
pending on the stride, the k-mers may overlap or
not overlap, and we focus on the non-overlapping k-
mers in this work. Compared to GSNT, GKMT pro-
vides a longer effective context length, but is also
highly sensitive to sequence mutations or errors: a
single nucleotide insertion or deletion can change
all subsequent tokens. For example, in Figure 2
GKMT, if the first A is missing, the segmentation
will be “GCATGC TAGGCT...”, completely chang-
ing all tokens. A more detailed figure is shown in
Figure 6 in §B.2.

3.1.3 Genome-based Byte Pair Encoding
Tokenization (GBPET)

GBPET, also used in recent studies (Zhou et al.,
2023), applies the BPE algorithm (Sennrich et al.,
2016) to genome sequences. BPE begins with sin-
gle nucleotide tokens and iteratively merges the
most frequent pairs of adjacent tokens to create a
vocabulary of longer subword-like tokens. How-
ever, BPE training requires too large computational
resources if very long DNA sequences are given as
inputs. Manual splitting of DNA text is needed in
GBPET, which can harm the performance.
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3.2 Pangenome graph based tokenization

We introduce three novel pangenome graph-based
tokenization schemes to overcome these limits:

3.2.1 Pangenome-based Node Tokenization
(PNT)

Node IDs are assigned based on the pangenome
graph construction process, which encodes both
sequence content and its structural context to ab-
stract numbers. PNT treats each graph node as a
token. Because nodes encode both the DNA string
and its position, identical strings at different lo-
cations receive different tokens, producing a very
large vocabulary (~450k in our experiments vs.
50k in common NLP), which presents challenges
for model training. We shrink the vocabulary size
by splitting the node IDs into two parts (with an
additional indicator for reversion, a common vari-
ation that causes the sequence to be replaced by
its reverse complement). A drawback of PNT is
its poor extensibility: adding new sequences re-
quires rebuilding the graph and regenerating IDs,
potentially changing the representations largely.
We therefore propose the next two schemes not

using IDs, and new sequences can be segmented
using the original graph without a complete rebuild.

3.2.2 Pangenome-based k-mer Tokenization
(PKMT)

PKMT first splits sequences at pangenome-graph
node boundaries and then cuts each node string into
non-overlapping k-mers as in GKMT (still £=6).
Because the graph localizes insertions/deletions to
specific nodes, PKMT is more tolerant to variations
than GKMT. A main drawback compared with PNT
is the loss of explicit positional/structural informa-
tion from the graph, but using nucleotide strings
rather than node IDs provides extensibility.

3.2.3 Pangenome-based BPE Tokenization
(PBPET)

PBPET first splits sequences at pangenome-graph
node boundaries as in PKMT, then runs Byte-Pair
Encoding (BPE) that iteratively merges the most
frequent adjacent symbol pairs and records the re-
sulting merge rules (the “BPE merges”). We then
apply the learned BPE merges to each node se-
quence, producing variable-length, high-frequency
subwords while staying graph-aware via the node
pre-segmentation. Unlike GBPET, this initial cut
at node boundaries uses and preserves population-
level structure from the graph.

4 Evaluating synthetic DNA generation
quality

A main challenge in proving the utility of our
schemes is evaluating the quality of the synthetic
genome sequence generation. In our study, we use
the prediction accuracy of the model to measure the
quality of the generative model. Furthermore, we
compare the similarity between synthetic and real
genome sequences through sequence alignment.

4.1 Model Prediction Accuracy

* Next token prediction accuracy: measures how
often the model correctly predicts the next token
given the correct previous tokens, making it the
primary metric for generative models. However,
this does not fully reflect sequence accuracy when
tokenization is not single nucleotide-based. Predict-
ing “AAAAAC” or “GCTGCT” for the true k -mer
token “AAAAAA” count both as simply incorrect.
* Character-level prediction accuracy: mea-
sures the percentage of nucleotides predicted cor-
rectly for each token. For example, predicting
“AAAAAC” for the true token “AAAAAA” yields



an accuracy of 0.83, while predicting “GCTGCT”
results in an accuracy of 0. Character-level accu-
racy measures how well each nucleotide is pre-
dicted instead of tokens, making it more consistent
and fair across tokenization schemes.

4.2 Sequence Alignment Scores

The measurement of similarity between two
genome sequences is done using sequence align-
ment, which is an essential process in many bioin-
formatic and computational biology tasks. Se-
quence alignment of DNA involves arranging the
DNA sequences to identify regions of similarity. In
our case, we use wfmash (Guarracino et al., 2025)
where the wavefront algorithm (Marco-Sola et al.,
2021) is primarily used for pairwise alignment be-
tween real and generated DNA sequences. Visu-
alized results (introduced and shown in §5) and
multiple scores can be used to evaluate the quality
of the alignment.

An example of alignment between a reference se-
quence and a query sequence is shown in Figure 3.

Reference Sequence Query Sequence
(_..AGCTAAGTA.. ) (__ ..AGCTACTA.. )

- ( ..AGCTAag-TA..

WAGCTA--CcTA.. :
"""" L " "Sequence Alignment

Graph Construction

AGCTE
Figure 3: An alignment between two sequence and
how it suggests graph nodes. Capitalized nucleotide
and green links indicate matches; lowercase nucleotide

and red crosses indicate no match; the dashes in the
sequences represent the gaps during matching.

L—

An alignment score of 0 indicates no similar-
ity, while a score of 1 represents a perfect match.
Alignment scores can be defined and computed in
two primary ways (Figure 3 as an example):

* BLAST identity (BI): 7/10 = 0.7. Defined as
the number of matching bases in relation to
the number of alignment columns.

» Gap-Compressed Identity (GI): 7/9 = 0.78.
Counting consecutive gaps as one difference.

Alignment scores reflect how well the aligned re-
gions match, and we use alignment percentage to
measure how much of a generated sequence aligns
with references. Together, these metrics assess bio-
logical plausibility and generative quality.

Why alignment? We use alignment scores

as the primary evaluation metric for synthetic se-
quences, rather than short-sequence classifica-
tion tasks, for three fundamental reasons:

(i) Dataset mismatch for classification tasks:
Most datasets of classification tasks, such as those
used in DNABERT-2 (Zhou et al., 2023) and
GENA (Fishman et al., 2023), evaluate the perfor-
mance on short sequences (typically 10k or less),
focusing on relatively more local characteristics.
This length (with possible offset) is too short to
build informative pangenome graphs that require
long genomic regions of the same species.

(ii) Methodological mismatch: Classification
tasks emphasize local motifs and short-range pat-
terns, while pangenome graphs capture structural
variants and long-range dependencies that are the
core advantage of our approach.

(iii) Alignment as metric: Alignment scores
quantify biological plausibility and consistently
track downstream accuracy. Better alignment
quality improves SNP/indel calling (Kosugi et al.,
2013), and increases conserved gene detection, and
aids comparative annotation (Sharma and Hiller,
2017). Alignment-based metrics better match prac-
tical genomic goals than generic divergence mea-
sures (Pillutla et al., 2021). Earlier discussions
in computational biology also treated alignment
score as a robust proxy for sequence similarity and
usefulness (Frith, 2020; Durbin et al., 1998). In
standard pipelines (e.g., reads — reference — vari-
ants), higher alignment of generated sequences to
real genomes indicates they can stand in for real
data (5) in §2.3; see Appendix E).

S Experiments

5.1 Datasets and LM Choices

In our experiments, we used the human Ma-
jor Histocompatibility Complex (MHC) region
of chromosome 6 as our dataset, extracted from
the PanGenome Graph Builder (PGGB) (Garrison
et al., 2024) graph of Human Pangenome Refer-
ence Consortium (HPRC) year 1 assemblies (Liao
et al., 2023). The MHC region was specifically
chosen for its (1) high variation density with com-
plex structural variants essential for pangenome
graph construction; (2) long contiguous sequences
necessary to capture the structural context that
pangenome graphs encode, unlike typical classi-
fication datasets using short sequences (~10 kbp);
and (3) population-level diversity across 126 sam-
ples with 447 million nucleotides total, providing



sufficient variation while maintaining biological re-
alism. The dataset comprises 80% training samples
and 20% test samples, with the reference genome
temporarily used for hyperparameter tuning before
final training.

We used 1024/2048 token context lengths for
GPT-2/Llama respectively with Hugging Face
4.24.0 transformers library (Wolf, 2019). For BPE
methods, we segment long genomes into 10k base
pair (bp) sequences and set vocabulary size to 4096,
following DNABERT?2 (Zhou et al., 2023) speci-
fications due to the computational limits of BPE
tokenizer training on very long sequences. To miti-
gate memorization, we sample with sufficient ran-
domness in generation (see Appendix C), and non-
perfect alignment scores (<1) indicates that the
model is not simply remembering and copying.

Table 1: Training time (hours) of each tokenization
scheme on 90M models for 90 epochs.

Model | GSNT GKMT PKMT GBPET PBPET PNT
GPT-2 56 11 15 17 24 7
LLaMA| 20 5 6 9 12 3

5.2 Experiment Results

We trained the GPT-2 and Llama models on the
dataset using four tokenization schemes: GSNT,
GKMT, PNT and PKMT. Training was carried
out for 90 epochs (§C.1 shows results with more
epochs) with a batch size of 16/8 and 1024/2048-
token sequences for GPT-2/Llama. The dataset
comprises 124 DNA samples totaling 447 million
nucleotides. Training times are shown in Table 1,
obtained on 8 NVIDIA A5500 GPUs. Figure 4
displays token and character-level prediction accu-
racies. The final accuracies are shown in Table 2.
PNT not included in the character-level accuracy
figures due to the vague definition on predictions
and targets with too varied lengths.

PNT demonstrated the fastest training time,
while GSNT is generally the slowest due to its
larger token set. BPE based method is slower than
the k-mer based method but faster than GSNT. PNT
reaches the best peak accuracy the fastest, while
GKMT has the worst performance. GSNT initially
trains much faster than PKMT for token prediction,
but converges to a similar final accuracy. We will
see how they perform differently in alignment. De-
spite having almost the same token tables, we can
clearly tell that PKMT’s pangenome graph-aided
segmentation helps the model to outperform the
one trained by GSNT. The training of the PBPET

tokenizer takes around 20 seconds, while the train-
ing of GBPET tokenizer takes about 10 minutes,
largely due to the larger sequence chunks, and they
both have moderate training time.

Table 2: Final accuracy of each tokenization scheme on
90M models trained for 90 epochs.

Model | GSNT GKMT PKMT GBPET PBPET PNT

Token Prediction Accuracy
97.1% 65.9% 96.9% 97.9%
98.7% 81.8% 97.7% 98.5%

Character-Level Accuracy
97.1% 78.3% 97.9% 98.6%
98.7% 85.3% 98.6% 99.0%

GPT-2
LLaMA

98.0%
98.6%

98.6%
98.8%

GPT-2
LLaMA

99.0% -
99.3% -

We report alignment results for GPT-2 genera-
tions across all tokenization schemes in Figure 5
(GKMT produces virtually no alignable sequence).
The plot shows reference coordinates on the x-axis
and individual generated sequences on the y-axis;
each dot/segment marks a position in the gener-
ated sequence that aligns to the reference. After
90 epochs, only PNT yields long, contiguous align-
ments for GPT-2. Some sequences show no align-
ment at all, probably due to stochastic sampling
for diversity and occasional misaligned patterns
learned during training. LLaMA (see Appendix C)
achieves similar token-level accuracy but exhibits
sparser dots/dashes, indicating fewer matches over-
all. With PNT, LLaMA can initiate long runs, yet
alignments tend to break off early, especially in
high-variation regions (visible as dense dot clusters
along the paths). With PKMT or PBPET, LLaMA
cannot sustain long aligned sequences.

To quantify generation quality, we show the
alignment scores of the generated sequences
against the entire dataset (the best match of a query
against the entire dataset) in Table 3, with the re-
sults for real data as a comparison. A variant-level
check is given in §C.2. In addition to GI / BI
scores, we show the alignment percentage, indicat-
ing the proportion of well-aligned sequences. The
segment length refers to the size of the minimizer
window during alignment. PNT achieves the high-
est alignment scores across all segment lengths,
while GSNT performs the worst.

PNT demonstrates superior token-level predic-
tion accuracy, while GKMT achieves the highest
character-level accuracy in GPT-2 and closely ri-
vals PNT in Llama. Traditional methods under-
perform, with GKMT achieving less than 70%
accuracy and GSNT training significantly slower.
The accuracy gap is more pronounced in alignment
scores (Table 3), where PNT consistently excels
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Figure 4: Model prediction accuracies of all tokenization schemes during GPT-2 training.
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Figure 5: Alignment of a batch of GPT-2 generated sequences against the reference sequence. The X-axis represents
the reference sequence; the Y-axis shows generated sequences. Longer lines indicate consistent alignment, and
denser dots represent frequent short matches. Alignment results from Llama are presented in Appendix C.

Table 3: Alignment percentages and weighted GI/BI scores of the 20 generated sequences per scheme for different
segment lengths, aligned against the original dataset. Real data metrics are computed using 80% of samples as

references and 20% as queries.

Segment 1k 20k 50k 200k

GPT-2 Align % GI BI |[Align % GI BI |Align % GI BI |Align % GI BI
GSNT 81.66 0.8712 0.9955| 21.55 0.8834 0.9893| 1.42 0.8323 0.9849| 0.00 0.0000 0.0000
PKMT 5296 0.9443 0.9856| 50.34 0.9036 0.9932| 47.87 0.8977 0.9936 8.82  0.8656 0.9919
GBPET 71.81 0.9873 0.9981| 53.19 09105 0.9931| 3693 0.9041 0.9921| 0.00 0.0000 0.0000
PBPET 4475 09081 0.9914| 42.03 0.9044 0.9943| 4229 0.9007 0.9935| 9.39 0.9029 0.9955
PNT 89.34  0.9977 0.9999| 31.01 0.9961 0.9990| 33.27 0.9920 0.9985| 36.96 0.9873 0.9982
LLaMA Align % GI BI |Align % GI BI |[Align % GI BI |Align % GI BI
GSNT 7.17  0.7927 0.9906| 0.00 0.0000 0.0000| 0.00 0.0000 0.0000| 0.00 0.0000 0.0000
PKMT 3445 0.9666 0.9960| 21.19 0.8323 0.9907 6.85 0.8232 0.9876| 0.00  0.0000 0.0000
GBPET 1290 0.9543 0.9870| 0.00 0.0000 0.0000| 0.00 0.0000 0.0000| 0.00 0.0000 0.0000
PBPET 33.00 0.9817 0.9969| 6.41 0.8533 0.9861| 586 0.8356 0.9878| 0.00 0.0000 0.0000
PNT 28.80 0.9796 0.9958| 597 09970 0.9984| 849 0.9958 0.9987| 15.02 0.9938 0.9977
Realdata  99.97 0.9994 0.9999] 69.23 0.9996 0.9999[ 61.37 0.9991 0.9997] 50.67 0.9981 0.9993

with GI and BI scores of around 0.99 in segment
lengths of 1k to 200k, closely mirroring the per-
formance of real data. Although PKMT produces
fewer high-quality sequences than GSNT that align
with the reference, it achieves slightly higher align-
ment scores than GSNT in more settings and has a
chance for relatively good generation for large seg-
ments. The newer non-pengenome-based method,
GBPET, performs better in alignment score specifi-
cally under smaller segment length, but still lacks
stable long-sequence generation compared with
pangenome powered PBPET. PNT-generated se-
quences hold greater potential for applications re-

sembling real data, while others may require further
refinement or model optimization. Llama overall
shows the same trend, but lags behind GPT-2 in se-
quence generation, despite higher prediction accu-
racy and longer prompt length, likely due to greater
performance degradation in very limited parameter
numbers for continuous predictions. Llama specifi-
cally underperforms in non-pangenome based tok-
enization methods. Overall, PKMT performs better
than GSNT (and GKMT), and PBPET performs
better than GBPET, directly indicating the useful-
ness of involving pangenome graph structure in
tokenization. One limitation we observe is that



pangenome-based models occasionally generate al-
most entire no match. Classical methods, although
they generate fragmented pieces, do not completely
miss. For PNT specifically, adding a small 20 token
prompt will completely fix this issue.

Discussion. To our knowledge, this work is the
first to compare the effectiveness of pangenome-
based tokenization schemes with classical tokeniza-
tion schemes for ML learning the pattern of DNA
sequences; and also the one of the first to demon-
strate the efficacy of LM in generating long DNA.

Our findings reveal that the pangenome graph
structure embeds significant and meaningful infor-
mation, improving neural networks’ understanding
of DNA sequences. Our experiments demonstrate
how this information can be effectively exploited
by graph-based tokenization. The graph-aided seg-
mentation of PKMT/PBPET provides more stable
and learnable structural information compared to
their classical counterpart, resulting in better over-
all generation quality. Our results underscore the
trade-offs between computational cost and model
performance, with pangenome graph-based tok-
enization schemes showing higher accuracy across
tasks. Previous work (Liao et al., 2023) demon-
strates how improved matching is the key point of
the pangenome, which “aligns” with our use of the
pangenome graph here.

6 Related work

In this section, we introduce two common genome
tasks with the machine learning application. Ta-
ble 8 in Appendix D summarizes this section.

6.1 Classification Tasks

Classification tasks are common in genomics, in-
cluding (more details in Appendix E):

Variant Calling: ML models identify genetic
variants such as SNPs and indels in genomes, link-
ing them to diseases or traits. Deep Variant (Poplin
et al., 2018), a CNN-based variant caller, outper-
forms traditional methods, influencing many oth-
ers (Yun et al., 2020; Kolesnikov et al., 2021). Clair-
voyante (Luo et al., 2019) excels in single-molecule
sequencing (SMS), while Clair (Luo et al., 2020)
offers faster RNN-based inference with fewer pa-
rameters, without sacrificing accuracy.

Gene Expression Analysis: ML models analyze
gene expression data to reveal gene-disease rela-
tionships. Classical methods like KNN (Kim and
Kim, 2018), linear/logistic regression (Han et al.,

2019), and SVMs (Wan et al., 2019) are used to
predict driver genes or cancer risk. CNNs (Lyu and
Haque, 2018; Elbashir et al., 2019) are also applied
for cancer classification with RNA-seq data.

Beyond these, CNNs model protein binding (Ali-
panahi et al., 2015), cell type identification (Yao
et al., 2019), and non-coding variants (Zhou and
Troyanskaya, 2015). RNNs predict non-coding
DNA functions (Quang and Xie, 2016) and RNA-
protein binding preferences (Shen et al., 2020).
Transformer models like DNA-BERT (Ji et al.,
2021; Zhou et al., 2023; Dalla-Torre et al., 2023,
2025) provide strong contextual embeddings for
molecular phenotype prediction but face context
size limitations due to quadratic scaling. Recent
models like Hyena (Nguyen et al., 2024b) and
MambaDNA (Schiff et al., 2024) address these
limitations with sub-quadratic scaling for longer
contexts. More recent applications of DNA LM
like MoDNA (An et al., 2022) for promoter predic-
tion, and GENA (Fishman et al., 2023) for multiple
tasks, both use traditional GKMT. Some papers like
GPN-MSA (Benegas et al., 2024) for genome-wide
variant effect prediction uses GSNT. DNABERT-
2 (Zhou et al., 2023) and following work (Karollus
et al., 2024) for evolutionary conservation and func-
tional annotation prediction use BPE.

A recent paper (Zhang et al., 2024) presents a
similar tokenization approach using pangenome
graphs. Although both works independently de-
velop this idea, ours differs by incorporating PNT
and PBPET, and focusing on long-sequence gen-
eration. In contrast, their work handles shorter
sequences (max 5000bp) with node-aided k-mer
tokenization and focuses on classification tasks.

6.2 Generation Tasks

Synthetic Data Generation: Synthetic data mim-
ics real data for privacy concerns. GANs have been
used for synthetic medical data (Bae et al., 2019)
and DNA sequences coding for proteins (Gupta and
Zou, 2018), though limited by fixed output sizes.
Some work (Avdeyev et al., 2023) utilizes trans-
formers but with limited generation length, and a
more recent large model (Nguyen et al., 2024a)
shows generation of submillions in length with a
certain level of genomic organization.

De Novo Genome Assembly: This involves re-
constructing a genome from short DNA fragments
without a reference. Deep learning has been ap-
plied to de novo peptide sequencing (Tran et al.,
2017, 2019; Yang et al., 2019).



7 Limitations

PNT is the best performed scheme we proposed.
However, it cannot tokenize sequences outside the
nodes of the training pangenome graph, which
makes it less general-purpose. We do have other
two schemes that has no similar issue.

While our study focused on smaller models to
establish a proof-of-concept for our tokenization
scheme, we acknowledge that larger models may
improve results but raise practical concerns around
efficiency and resource use. Furthermore, emerging
architectures designed for long-context processing
(e.g., (Gu et al., 2021; Nguyen et al., 2024b,a;
Gu and Dao, 2023; Peng et al., 2023a)) could po-
tentially further enhance the performance of all
tokenization schemes. These models, by enabling
longer effective context windows, could improve
both the understanding of long-range dependencies
in DNA and the consistency of sequence genera-
tion. Although we believe that pangenome-based
tokenization retains advantages in effective segmen-
tation, such models may help close the performance
gap for other tokenization methods. We agree that
this is a valuable direction and suggest that future
work explores scaling to larger models and incor-
porating long-context architectures to more fully
assess their potential impact.
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A Detailed Explanation of Pangenomes
and Pangenome Graphs

A.1 Definition of Pangenome

The term “pangenome” combines “pan” (meaning
“all” or “every”) with the “genome,” referring to
the complete collection of genetic material across
all individuals in a species or closely related group.
Unlike traditional genomics, which relies on a sin-
gle representative genome sequence, pangenomics
embraces the full spectrum of genetic diversity.

A.2 How Pangenome Graphs are Built

The construction of a pangenome graph involves
several computational steps:

Step 1: Sequence Collection Multiple high-
quality genome assemblies are collected from di-
verse individuals within a species. These DNA
sequences often undergo quality control to ensure
accuracy and completeness(e.g., ensure that the
DNA sequences collected are from the same re-
gions of different individuals).

Step 2: Multiple Sequence Alignment All col-
lected sequences are aligned using sophisticated
algorithms that can handle large-scale structural
variations. This alignment would compare each
sequence with each other, and find the best over-
all matching to determine the “shared” common
subsequences and find variable regions where indi-
viduals differ. The overall goal of the alignment is
to establish a single, internally consistent multiple-
genome homology map. A successful alignment
therefore maximises (i) the amount of sequence
that can be confidently placed as shared columns
and (ii) the biological plausibility of any gaps or
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rearrangements it introduces. In practice, this pro-
cess is done by optimizing the alignment score as
match rewards and mismatch penalties.

Step 3: Graph Construction

Once the multiple-sequence alignment is fixed,
each homologous column (or contiguous run of
columns) becomes a node containing that sequence,
and edges connect nodes in the orders observed in
the input genomes; where the graph branches, alter-
native paths capture the variant sequences. Some-
times the graph structure can then be optimized to
minimize redundancy while preserving all genomic
information.

A.3 Graph Components in Details

(1) Nodes. Each node contains:

* A DNA sequence (typically 100-10,000 base
pairs)

* A unique identifier (node ID)

* Metadata about which genomes contain this se-
quence

Example: Node 123456 might contain the se-
quence “ATCGATCGAAGTC” and appear in 85%
of the individuals in the pangenome. In the ac-
tual map they can be marked as either forward or
reversed orientation.

(2) Edges. Edges represent adjacency relation-
ships between nodes. Multiple incoming/outgoing
edges indicates for alternative paths representing
different variants

Example: Node A connects to both Node B and
Node C, meaning some individuals have sequence
A followed by B, while others have A followed by
C.

(3) Paths. Each path represents one individual’s
genome:

* A sequence of connected nodes
* Preserves the linear order of sequences in the
original genome

A.4 Benefits of Pangenome Graphs

Pangenome graphs offer several advantages:
Comprehensive representation: All genetic
variations in a population are captured in a single
data structure. Further analysis results are less de-
pendent on the choice of a single reference genome.
Context preservation: The graph maintains the
genomic context around variations, which is crucial
for understanding their functional impact.
Algorithmic efficiency: Many genomic analy-
ses can be performed more efficiently in graph rep-
resentation than on multiple individual genomes.
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Scalability: New genomes can be incrementally
extended to existing graphs without starting from
scratch.

This comprehensive representation makes
pangenome graphs particularly valuable for appli-
cations in domains such as population genomics or
evolutionary biology, where understanding the full
spectrum of genetic diversity is crucial.

B More on tokenization schemes

B.1 Glossary of Frequent Terms/Acronyms

Table 4: Glossary of Frequent Terms/Acronyms

Terms Explanation

nucleotide | Units/Letters (A, G, C, T) of DNA

indel Insertion and deletion

bp Base pairs, A-T, C-G pair in DNA

GSNT Genome-based Single Nucleotide Tokenization
GKMT Genome-based k-mer Tokenization

GBPET Genome-based BPE Tokenization

PNT Pangenome-based Node Tokenization

PKMT Pangenome-based k-mer Tokenization

PBPET Pangenome-based BPE Tokenization

B.2 PKMT tokenization

We show how inserting and deletion can affect the
GKMT in Figure 6.

Original Sequence
(_ AGCTAGCTA...
After 1 Insersion

GKMT Tokens

)—»AGCT.AGCT
(_ AGCTAAGCTA... ) GKMT : :
After 1 Deletion GKMT :
(_accT GCTA. ———>AGCTIGCTA)...:

Figure 6: Insertion or Deletion of a sigle nucleotide
change all following GKMT (stride equal to k& = 4)
tokens.

C More experiment details and results

The GPT-2 model uses the gelu_new activation
function, consists of 12 transformer layers, each
with 12 attention heads, and an embedding dimen-
sion of 768 with maximum prompt being 1024.
The LLaMA model uses the SiLLU activation func-
tion and consists of 6 transformer layers, each with
8 attention heads, and an embedding dimension
of 768. It has an intermediate size of 4096, and
supports sequences up to a maximum of 2048 po-
sitions. We used a grid search for the best hyper-
parameters. We use 3e-4 (except Se-4 for GSNT -
GPT-2 and le-4 for le-4 for GSNT Llama) leaning
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Figure 7: Model prediction accuracy of the four tokenization schemes during LLaMA training. PNT is excluded
from the character-level accuracy plot due to the ambiguity in defining accuracy when predicted and target sequences

differ in length.

Table 5: Alignment percentages and weighted GI/BI scores for segment lengths Sk and 100k.

Segment 5k 100k

Model Align % GI BI |[Align % GI BI
GPT-2

GSNT 59.49 0.8919 0.9910| 0.00 0.0000 0.0000
PKMT 5376 0.9015 0.9960| 38.43 0.8928 0.9939
GBPET 63.20 0.9082 0.9961| 14.62 0.9035 0.9884
PBPET 46.22  0.9019 0.9966| 38.04 0.8927 0.9920
PNT 7327 0.9970 0.9997| 33.17 0.9945 0.9988
LLaMA

GSNT 041 0.7414 0.9784| 0.00 0.0000 0.0000
PKMT 30.82  0.8362 0.9917| 0.00 0.0000 0.0000
GBPET 0.10 03070 0.9479| 0.00 0.0000 0.0000
PBPET 2475 0.8609 0.9916| 0.00 0.0000 0.0000
PNT 25779  0.9977 0.9997| 10.96 0.9964 0.9990
Realdata 97.97 0.9994 0.9999| 60.44 0.9989 0.9997

rate, batch size 8/16 for GPT-2/Llama training; and
topk=10, topp=0.92, topk_decend_min=5 for gen-
eration, which is also determined by grid search.
Held-out accuracy is our proxy for interpolation:
high token/character scores show generalization
within the pangenome’s observed variation. Ex-
trapolation is outweighed by interpolation due to
species-level DNA homogeneity. We show addi-
tional alignment scores in Table 5 and the Llama
accuracy in Figure 7. A clearer single query view
of alignment is shown in Figure 8 for a single
generated sequence, and the alignment figures for
Llama are in Figure 10. Figure 9 shows a simple il-
lustration of a small pangenome graph of the MHC
data we use.

C.1 Effects of extensive training

During our experiment, we found that PNT,
GBPET and PBPET did not benefit from more
training epochs but GSNT and PKMT had the
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potential for further improvement. We trained
the better-performing GPT-2 model on half of the
training dataset for an extra 200 epochs, keeping
other parameters the same to further investigate the
best possible performance these two tokenization
schemes can provide. The token prediction accu-
racy increased by about 0.4% for PKMT and 0.3%
for GSNT, which is marginal, but we observed
significant improvements in generation quality for
both methods in alignment score. While predic-
tion accuracy gains may appear small, they have a
compounding effect during generation, where er-
rors accumulate across long sequences. Accuracy
reflects only top-1 correctness for the next token,
whereas generation samples probabilistically from
the top candidates, making it more sensitive to dis-
tributional improvements. The results are shown
in Figure 11 and Table 6. Both methods achieved
slightly higher alignment scores and aligned length,
especially with larger segments. Both tokenization
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Figure 8: Alignment of a single generated sequence against the reference. Longer lines represent continuous
alignment regions, while scattered dots show shorter matching fragments.

T S —

TR

L]

Figure 9: The pangenome graph of the human MHC
region of chromosome 6 of the PGGB graph of HPRC
year 1 assemblies, with 2D graph visualization (above)
and matrix view (below). The circled in the 2D graph
and the gaps in the matrix view indicate mutations.

schemes still underperformed compared to PNT,
even after extensive training. Figure 11 addition-
ally clearly shows that GKMT generates relatively
longer sequences with more longer lines.

The higher utility of the extensively trained
model indicates that substantial investment in com-
putational power has its potential.
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C.2 Downstream task: Variant calling

Variant calling evaluates whether the model cap-
tures heterogeneity (population-level variation)
rather than merely memorizing conserved, homoge-
neous regions. More details are described in §E.1;
here we summarize the experiment setup.
For each tokenization scheme, we sampled 20
sequences generated by the GPT-2 model (chosen
because it achieved the best alignment-based per-
formance). We then combined these synthetic se-
quences with the single training reference path and
built a pangenome graph using PGGB (Garrison
etal., 2024). Variants were called for each synthetic
sequence against the reference path and compared
to the “truth” set obtained by calling variants for
all real (non-reference) genomes in the original
pangenome graph.
Let T be the set of variants from real genomes
(ground truth) and G the set from generated
sequences. After standard normalization (left-
normalization, multiallelic splitting, etc.), a match
is defined when a variant in G is equivalent to
one in T' (e.g., same chromosome, position, and
REF/ALT, or an accepted equivalence rule).
¢ True positives (TP): variants in G that match a
variant in 7.

« False positives (FP): variants in G with no match
inT.

¢ False negatives (FN): variants in 7" with no
match in G.
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Figure 10: Alignment of a batch of LLaMA-generated sequences against the reference. The X-axis is the reference,
and the Y-axis shows the generated sequences. Longer lines indicate consistent alignment, and denser dots indicate

frequent short matches.

Table 6: Alignment percentages and weighted GI/BI scores of the 20 generated sequences each scheme for different
segment lengths of the generated sequences with extensively trained GPT-2 model, against the test set as reference.

Segment 1k 5k 20k

Align % GI BI |Align % GI BI |Align % GI BI
GSNT 90.67 0.8818 0.9972| 75.52 0.8922 0.9926| 42.17 0.8916 0.9920
PKMT 81.42 0.9842 0.9978| 81.87 0.9027 0.9969| 79.74 0.9044 0.9956
Segment 50k 100k 200k

Align % GI BI |Align % GI BI |Align % GI BI
GSNT 9.76  0.8801 0.9916| 0.00  0.0000 0.0000| 0.00 0.0000 0.0000
PKMT 72.52  0.9011 0.9940| 65.51 0.8936 0.9943| 16.19 0.8883 0.9935

chml
chm2
chm7 -
chmé
chmo | «

Generated
Generated

chmg |-3°
chma | *
chma

chms |«

chmo | ° :
0 1000000 2000000 3000000 4000000

Reference

Reference

(a) GSNT

Figure 11: Alignment of a batch of generated sequences
(after extensive GPT-2 training) against training se-
quences. The X-axis is the reference; the Y-axis con-
tains generated sequences. Longer lines indicate consis-
tent alignments, while denser dots reflect frequent short
matches.

(b) PKMT

Precision (of what we predicted, how much was
correct?):

TP

Precision = ——————.
|TP|+ |FP|

Recall (of what was true, how much did we re-
cover?):

7P|
Recall = ————.
|TP|+ |FN|
The F} score balances both:
2 - Prec - Rec 2|TP|

Prec + Rec  2|TP| +|FP|+ |FN|

All scores are reported as percentages in Table 7.
Recall values are modest because only 20 synthetic
sequences are contrasted against a truth set derived
from 126 real genomes; consequently, many true
variants simply never appear in the generated sub-
set. Nonetheless, all pangenome-based tokenizers
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outperform classical baselines in all metrics, indi-
cating they help the model generate biologically
plausible variants (true positives). They more effi-
ciently capture population diversity rather than just
conserved sequence.

Method Precision (%) Recall (%) Fl-score (%)
GSNT 29.5 16.4 21.0
PKMT 65.7 28.2 39.4
GBPET 58.1 229 32.8
PBPET 74.6 29.7 42.4
PNT 69.3 23.3 34.8

Table 7: Variant-calling performance (precision, recall,
and F}) for each tokenization method.

D Summarizing related work

Here we provide a table to summarize our discus-
sion in §6, with a detailed list of the related work
of ML/DL doing genomic tasks.

E Alignment scores and downstream
tasks

Alignment-based evaluations provide a more direct
assessment of how well synthetic data supports real-
world genomic applications. For example, datasets
like those from the Human Pangenome Project de-
pend heavily on alignment-based metrics to assess
data quality and interpret genetic variation. Read
alignment to a reference genome followed by vari-
ant calling is a widely adopted pipeline, and here
alignment consistency and accuracy are critical. In
this context, alignment scores are not only practi-
cal but also well-recognized within the genomics
community as meaningful indicators of quality.



In this section, we introduce two essential tasks
to show how alignment scores can determine the
utility of sequences, and how synthetic sequences
can play a role.

E.1 Variant calling

Read alignment and variant calling are founda-
tional tasks in bioinformatics pipelines, especially
in genome resequencing studies. In this process,
DNA reads generated by sequencing technologies
are aligned to a reference genome to reconstruct
the original genetic material and identify variants
(e.g., calling the inserting and deletion in the bot-
tom two sequences when compared with the top
reference in Figure 6). Determining an accurate
alignment is critical because downstream variant
calling algorithms rely on these mappings to com-
pare the sample DNA against the reference. Numer-
ous tools have been developed to perform this task
efficiently and accurately, including Minimap?2 (Li,
2018) and wfmash (Guarracino et al., 2025). Most
work in §6.1 measure the alignment in their experi-
ment.

A high alignment score indicates a strong match
between the sequenced read and a region in the ref-
erence genome, minimizing mismatches, gaps, or
ambiguous placements. This is essential to identify
true variants confidently, ruling out sequencing er-
rors or misalignments. An incorrect alignment may
map a query DNA sequence to the wrong location
in the reference genome, leading to wrong variant
calls. An example is given in Figure 12. Synthetic
sequences can serve as references in variant calls
or generate potential variant combinations that are
not observed in natural samples.

Reference Sequence
C ..GGGAGCT AGCT AGCT AGCTGGG...
Alignment 1

..GGGAGCT AGCTAAGCT AGCTGGG..

Alignment 2
..GGGAGCT AGCT AAGCTAGCTGGG...

Figure 12: Two possible alignment of a sequence to a
reference sequence. Alignment 1 calls for one insertion
while Alignment 2 calls for 4 deletion then 5 insertion.
Alignment 1 will have higher alignment scores with
more matched nucleotides, and is considered a better
alignment. Therefore the variant calling based on Align-
ment 1 is considered better than Alignment 2.

E.2 De novo assembly

De novo assembly reconstructs a genome from
short sequencing reads without relying on a ref-
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erence genome. This process stitches overlapping
reads into contiguous sequences (contigs) or scaf-
folds, aiming to rebuild the original genome as
accurately as possible. Since there is no reference
during assembly, evaluation is typically performed
by aligning the assembled contigs back to a trusted
reference genome, or comparing them to known
markers or conserved genes.

A high alignment score here indicates that the
assembler has likely reconstructed a biologically
accurate sequence. This suggests high contiguity,
low error rates, and minimal misassemblies. Low
alignment scores often signal fragmented or mis-
assembled regions. Synthetic sequences can act as
trussted reference, improving the assembly.

Many utility metrics used in existing genome
modeling studies are fundamentally rooted in
sequence alignment. For example, in recent
work such as (Nguyen et al., 2024a), tools like
CheckM (Parks et al., 2015) are used to report qual-
ity metrics, including gene density and stop codon
frequencies. These tools rely on foundational com-
ponents like profile Hidden Markov Models (pH-
MMs) that are directly constructed from multiple
sequence alignments, with alignment quality and
consistency playing a central role in shaping their
parameters and performance. In this context, a
high alignment score indicates strong homology
or functional similarity between the generated se-
quence and known sequences, providing evidence
of biological plausibility.



Table 8: DL models used in genome tasks.

Job Type Paper Task Architecture Input
Classification | (Poplin et al., 2018; Variant Calling CNN hundreds of base pairs
Yun et al., 2020;
Kolesnikov et al., 2021)
(Luo et al., 2019) Variant Calling CNN hundreds of base pairs
(Lyu and Haque, 2018; | Cancer Prediction CNN RNA-seq gene expression data
Elbashir et al., 2019)
(Alipanahi et al., 2015) | Protein Binding CNN 10-100 nucleotides & binding
specificities
(Zeng et al., 2016) Protein Binding CNN 10-100 base pairs & binding
specificities
(Yao et al., 2019) Cell Type Identification CNN cell images
(Zhou and Troyanskaya, | Non-coding DNA function | CNN 1k base pairs
2015) prediction
(Luo et al., 2020) Variant Calling RNN binary alignment map (BAM)
(Shen et al., 2020) RNA-protein binding LSTM embedded k-mers
preference
(Quang and Xie, 2016) | Non-coding DNA function | CNN/BLSTM | one hot encoded nucleotides
prediction
(Kim and Kim, 2018) Cancer Prediction KNN SNP genotype syntaxes
(8-mers)
(Han et al., 2019) Cancer Prediction Rao score Mutation Annotation Format
(MAF)
(Wan et al., 2019) Cancer Prediction SVM Human EDTA plasma samples
(Jietal., 2021; Zhou Molecular Phenotype Transformer | tokenized k-mers
et al., 2023) Prediction
(Dalla-Torre et al., Molecular Phenotype Transformer | tokenized k-mers
2023) Prediction
(Nguyen et al., 2024b) 5-way Species Transformer single nucleotide tokens
Classification
(Schiff et al., 2024) Genome Tasks Mamba single nucleotide tokens
(Luo et al., 2019) Variant Calling CNN Hundreds of base pairs
(An et al., 2022) Promoter Prediction Transformer 6-mers of up to 512bp
(Karollus et al., 2024) Evolutionary Conservation | Transformer | 6-mers for 128bp sequences
/ Functional Annotations
(Fishman et al., 2023) Multiple Tasks Transformer | BPE tokens, up to 36000bp
sequence
(Benegas et al., 2024) Genome-wide Variant Transformer | GSNT for 128bp sequences
Effect Prediction
(Dalla-Torre et al., Multiple Prediction Tasks Transformer | Thousands of k-mer tokens
2025)
Generation (Tran et al., 2017) De novo peptide LSTM/CNN | tandem mass spectrometry
sequencing (MS/MS) Spectrum
(Tran et al., 2019) De novo peptide LSTM/CNN | data-independent acquisition
sequencing (DIA) mass spectrometry data
(Yang et al., 2019) De novo peptide learning-to- tandem mass spectrometry data
sequencing rank
(Bae et al., 2019) Synthetic Medical Data GAN medical data
(Gupta and Zou, 2018) Synthetic DNA Sequences | GAN DNA sequences
(Avdeyev et al., 2023) Synthetic DNA Sequences | Transformer | Up to 1024 base-pairs
(Nguyen et al., 2024a) Synthetic DNA Sequences | Transformer | Up to 131072 base-pairs
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