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Abstract001

Language Models (LM) have been exten-002
sively utilized for learning DNA sequence pat-003
terns and generating synthetic sequences. In004
this paper, we present a novel approach for005
the generation of synthetic DNA data using006
pangenomes in combination with LM. We in-007
troduce three innovative pangenome-based to-008
kenization schemes that enhance long DNA009
sequence generation. Our experimental re-010
sults demonstrate the superiority of pangenome-011
based tokenization over classical methods012
in generating high-utility synthetic DNA se-013
quences, highlighting significant improvements014
in training efficiency and sequence quality.015

1 Introduction016

Public availability of genome datasets, such017

as the Human Genome Project (HGP) (Lander018

et al., 2001), the 1000 Genomes Project (Con-019

sortium et al., 2012), The Cancer Genome Atlas020

(TCGA) (Weinstein et al., 2013), GenBank (Ben-021

son et al., 2012), the International HapMap022

Project (Gibbs et al., 2003), the Human Pangenome023

Project (Liao et al., 2023), and the Telomere-024

to-Telomere project (Nurk et al., 2022), has025

been instrumental in advancing genomic research.026

However, large-scale genome sequencing remains027

costly and resource intensive due to the sophisti-028

cated equipment and computational resources re-029

quired (Wetterstrand, 2021; Van Dijk et al., 2018).030

Synthetic data generation offers a scalable alter-031

native for genomic research. Specific tasks such as032

De Novo genome assembly (Tran et al., 2017, 2019;033

Yang et al., 2019) and genotype imputation (Brown-034

ing and Browning, 2016) inherently involve the035

generation of unknown sequences, making them036

also suitable applications for synthetic data. A037

good generative model can significantly improve038

their accuracy and efficiency by predicting missing039

or incomplete segments.040

Deep learning models are widely used in differ- 041

ent tasks, even in processing genome sequences 042

and related data (Yun et al., 2020; Kolesnikov et al., 043

2021; Kim and Kim, 2018; Elbashir et al., 2019). 044

Although generative adversarial networks (GANs) 045

have been explored for synthetic genome genera- 046

tion, their output is limited to short sequences (Bae 047

et al., 2019; Gupta and Zou, 2018). LMs have 048

shown their capability to generate synthetic nat- 049

ural languages that are almost indistinguishable 050

from real data. The generated language text can 051

be used to train other models (Kumar et al., 2020; 052

Yoo et al., 2021; Hartvigsen et al., 2022), including 053

those in the medical domain (Peng et al., 2023b; 054

Guevara et al., 2024). Proven to be extraordinarily 055

good at processing human language, LMs can also 056

interpret and generate broader text, such as code 057

for programming tasks (Chen et al., 2021), thereby 058

pushing the boundaries of their application beyond 059

strictly spoken language-based domains. 060

The Critical Challenge: DNA vs. NLP To- 061

kenization Differences. While LMs present a 062

promising alternative to understanding and gen- 063

erating long synthetic DNA sequences, effective to- 064

kenization of DNA sequences is crucial to leverage 065

LMs. Applying LMs to DNA sequences faces a fun- 066

damental tokenization challenge that differs from 067

Natural Language Processing (NLP). Unlike hu- 068

man language, which has natural word boundaries, 069

semantic units, and grammatical structures, DNA is 070

essentially a string with four letters (nucleotides: A, 071

C, G, T) of billions of characters long and without 072

inherent segmentation. Traditional NLP tokeniza- 073

tion methods like Byte Pair Encoding (BPE) rely 074

on frequency-based subword identification. Tradi- 075

tional DNA segmentation methods simply segment 076

sequences into individual nucleotides or length k 077

substrings. All these methods face a critical lim- 078

itation as they lack awareness of the underlying 079

biological structure that determines how genomic 080

variations should be grouped and segmented. 081
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Missing Opportunity: Structural Information082

from Pangenome Graphs. Pangenome graphs en-083

code population-level variation patterns by compar-084

ing DNA sequences from a whole population and085

organizing DNA segments into nodes and connec-086

tions that capture how genetic diversity manifests087

among individuals (detailed in §2.2). This graph088

structure naturally identifies biologically meaning-089

ful segmentation boundaries within the DNA se-090

quences, offering a principled alternative to tok-091

enizations that treat DNA as undifferentiated char-092

acter strings. This opportunity has been largely093

overlooked in current DNA modeling approaches.094

Therefore, we propose three novel pangenome095

graph-based tokenization schemes for LM-based096

synthetic data generation that leverage the struc-097

tural information embedded in pangenome graphs098

to create biologically-informed segmentation.099

This work presents the first comparative analy-100

sis of classical and pangenome-based tokenization101

schemes for LMs, specifically GPT-2 and Llama,102

in learning DNA sequence patterns and generating103

long synthetic sequences. Our findings reveal that104

the pangenome graph structure embeds significant105

information that enhances neural networks’ com-106

prehension of DNA sequences, and can in cases107

reduce training time and improve scalability. Our108

contributions are as follows.109

• First, we introduce three novel pangenome110

graph-based tokenization schemes that lever-111

age genomic structure to provide biologically-112

informed segmentation, fundamentally differ-113

ent from frequency-based NLP tokenization ap-114

proaches that ignore structural relationships.115

• Second, we demonstrate through comprehensive116

experiments that our tokenization schemes sig-117

nificantly outperform three classical methods in118

training efficiency, predictive accuracy, and gen-119

eration quality for both GPT-2 and Llama archi-120

tectures, establishing clear computational and121

performance advantages.122

• Finally, we establish the first systematic evalu-123

ation framework for pangenome-informed tok-124

enization in synthetic DNA generation, providing125

evidence that structural graph information trans-126

lates into improved biological utility through se-127

quence alignment quality metrics.128

The following paper is structured as follows:129

Section 2 covers background on synthetic genome130

generation, Section 3 details tokenization schemes,131

Section 4 outlines evaluation metrics, Section 5132

presents experiments, Section 6 discusses related133

work, and Section 7 concludes with limitations. A 134

glossary is provided in Table 4 in §B.1. 135

2 Background 136

2.1 Language Models 137

Large language models are advanced artificial in- 138

telligence systems designed to understand and gen- 139

erate language text based on the data on which they 140

have been trained. These models, such as Mis- 141

tral (Jiang et al., 2023), Anthropic’s Claude (An- 142

thropic, 2023), OpenAI’s GPT series (Radford 143

et al., 2019; OpenAI, 2023), Google’s T5 (Raffel 144

et al., 2020), Lamda (Thoppilan et al., 2022) and 145

Gemini (Team et al., 2023), Meta’s OPT (Zhang 146

et al., 2022), BLOOM (Le Scao et al., 2023) and 147

LLama (Touvron et al., 2023a,b), etc., take advan- 148

tage of vast amounts of textual information to learn 149

patterns, nuances, and complexities of language. 150

LMs can perform a variety of language-related 151

tasks, including answering questions, translating 152

languages, and even participating in casual con- 153

versations. Their ability to process and generate 154

coherent and contextually appropriate responses 155

makes them invaluable tools across multiple fields, 156

from customer service and education to creative 157

writing and technical support. 158

Model Choice with Computational Con- 159

straints. Due to computational limitations and the 160

need for systematic tokenization comparison, we 161

focus on accessible baseline models (90M parame- 162

ter GPT-2 and Llama) trained from scratch rather 163

than larger domain-specific DNA models. We se- 164

lected these architectures for several key reasons: 165

(1)Tokenization control: Tokenization flexibility to 166

isolate the effects of different schemes by training 167

from scratch; (2)Generative capability: We need 168

autoregressive generation for synthetic sequence 169

generation, whereas many smaller DNA-specific 170

models (e.g., DNABERT-2 (Zhou et al., 2023), 171

GENA (Fishman et al., 2023)) emphasize classi- 172

fications; (3)Feasibility: Changing vocabularies 173

alters the embedding matrix, requiring full retrain- 174

ing to isolate tokenization effects; DNA-specific 175

models capable of generating long sequences exists 176

(Nguyen et al., 2024a), but the billion-parameter 177

structure makes it computationally too expensive 178

for our academic research. 179

2.2 DNA Sequences and Pangenome Graphs 180

DNA basics. DNA carries genetic information and 181

has four nucleotides: A, C, G, and T. A genome 182
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Figure 1: The whole pipeline of synthetic data generation and utilization.

is the complete DNA sequence of an organism,183

billions long in humans. Individuals of the same184

species share > 99% of this string, but small ed-185

its (single-base substitutions, insertions/deletions,186

structural rearrangements) occur throughout. Un-187

like natural language, DNA has no whitespace or188

punctuation; any segmentation is our modeling189

choice.190

Pangenome graph. A “pangenome” aggre-191

gates the genomic content of many individuals of a192

species, where “pan” means “all”. A pangenome193

graph (Eizenga et al., 2020) encodes many194

genomes as a sequence graph, which is built by195

(whole-genome) multiple alignment: shared sub-196

strings in DNA are collapsed into nodes, substrings’197

breakpoints become node boundaries, edges recon-198

nect segments to preserve each genome’s order, and199

paths trace each individual (haplotype) through200

the graph. Figure 2 shows a toy graph of three201

sequences. Details of alignments are given in §4.2.202

Why it is useful. The graph structure captures203

population-level variation while avoiding single-204

reference bias. Many downstream analyses operate205

on this structure, caring more about which branch206

an individual takes rather than on raw nucleotide207

counts. Importantly, this graph-based representa-208

tion provides a more principled first-level segmen-209

tation that mimics natural language structure: just210

as words and phrases have meaningful boundaries211

in text, pangenome nodes represent biologically co-212

herent segments where genetic variation naturally213

occurs, reflecting the underlying biological ‘gram-214

mar”. This natural segmentation provides an ideal215

foundation for tokenization. More details can be216

found in Appendix A.217

2.3 Synthetic Genome Sequence Generation218

using LMs219

We generate synthetic genomes with LMs through220

a five-step pipeline (See Figure 1): 1 Raw data221

(§5.1) are collected; 2 Tokenization (§3) converts222

sequences into model-ready tokens; 3 LM train-223

ing fits a generative model with next-token predic-224

tion; 4 Generation (§5.1) samples synthetic se-225

quences from the trained model; 5 Downstream226

tasks (§4) assess the quality of the generation and 227

how these sequences can be used. 228

3 Tokenization of a genome sequence 229

In this section, we describe the widely used to- 230

kenization schemes and our novel schemes. All 231

tokenization schemes are illustrated in Figure 2. 232

3.1 Classical tokenizations 233

3.1.1 Genome-based Single Nucleotide 234

Tokenization (GSNT) 235

GSNT is a straightforward method to tokenize 236

genome sequences, previously applied in (Nguyen 237

et al., 2024b; Schiff et al., 2024). Each nucleotide 238

(A, C, G, T) is treated as an individual token. For 239

example, the genome sequence “ACGTA” would 240

be tokenized as “A”, “C”, “G”, “T”, and “A”. 241

3.1.2 Genome-based k-mer Tokenization 242

(GKMT) 243

An alternative is GKMT, where k-mers, i.e. sub- 244

strings of DNA of length k, are used as tokens. De- 245

pending on the stride, the k-mers may overlap or 246

not overlap, and we focus on the non-overlapping k- 247

mers in this work. Compared to GSNT, GKMT pro- 248

vides a longer effective context length, but is also 249

highly sensitive to sequence mutations or errors: a 250

single nucleotide insertion or deletion can change 251

all subsequent tokens. For example, in Figure 2 252

GKMT, if the first A is missing, the segmentation 253

will be “GCATGC TAGGCT...”, completely chang- 254

ing all tokens. A more detailed figure is shown in 255

Figure 6 in §B.2. 256

3.1.3 Genome-based Byte Pair Encoding 257

Tokenization (GBPET) 258

GBPET, also used in recent studies (Zhou et al., 259

2023), applies the BPE algorithm (Sennrich et al., 260

2016) to genome sequences. BPE begins with sin- 261

gle nucleotide tokens and iteratively merges the 262

most frequent pairs of adjacent tokens to create a 263

vocabulary of longer subword-like tokens. How- 264

ever, BPE training requires too large computational 265

resources if very long DNA sequences are given as 266

inputs. Manual splitting of DNA text is needed in 267

GBPET, which can harm the performance. 268
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AGCATG C|TAGGCT AGAT|TATAT

Seq1: AGCATGCTAGGCTAGATTATAT
Seq2: AGCATGCCGCCTATAT
Seq3: AGCATGCCGCGCTACTATAT

Seq1

Seq1

AGCATG CTAGGC TAGATT ATAT...

AGCA TGCTAGG CTAG A TTATAT...

A G C A T G C T A G G C T...

AG CATGC|TAGGCT AG AT|TAT AT

TATAT
GGCC

GCTA

TAGGCTAGAT198200+

6-mers segmentation inside nodes

199301-

198202+
 AGCATGC

199203-

199304-

198 200+|199 301- |199 304- 

6-mers - split each 6 nucleotides

Node
Edge

Path

BPE-based subword

BPE segmentation inside nodes

PNT 

GSNT 

GKMT

GBPET

DNA sequences

Non-graph based tokenization

Pangenome graph

Pangenome graph-based tokenization

PKMT

PBPET

Figure 2: Three DNA sequences and a slice of a
pangenome graph with nodes as bubbles (marked with
ids), edges as lines. A valid path like the colored routes
shows a single individual’s genome. Nodes can be inter-
preted as forward or reverse orientation, recorded this
with +/–. The tokenization schemes output different
segmented sequences of the red path.

3.2 Pangenome graph based tokenization269

We introduce three novel pangenome graph-based270

tokenization schemes to overcome these limits:271

3.2.1 Pangenome-based Node Tokenization272

(PNT)273

Node IDs are assigned based on the pangenome274

graph construction process, which encodes both275

sequence content and its structural context to ab-276

stract numbers. PNT treats each graph node as a277

token. Because nodes encode both the DNA string278

and its position, identical strings at different lo-279

cations receive different tokens, producing a very280

large vocabulary (∼450k in our experiments vs.281

50k in common NLP), which presents challenges282

for model training. We shrink the vocabulary size283

by splitting the node IDs into two parts (with an284

additional indicator for reversion, a common vari-285

ation that causes the sequence to be replaced by286

its reverse complement). A drawback of PNT is287

its poor extensibility: adding new sequences re-288

quires rebuilding the graph and regenerating IDs,289

potentially changing the representations largely.290

We therefore propose the next two schemes not291

using IDs, and new sequences can be segmented 292

using the original graph without a complete rebuild. 293

3.2.2 Pangenome-based k-mer Tokenization 294

(PKMT) 295

PKMT first splits sequences at pangenome-graph 296

node boundaries and then cuts each node string into 297

non-overlapping k-mers as in GKMT (still k=6). 298

Because the graph localizes insertions/deletions to 299

specific nodes, PKMT is more tolerant to variations 300

than GKMT. A main drawback compared with PNT 301

is the loss of explicit positional/structural informa- 302

tion from the graph, but using nucleotide strings 303

rather than node IDs provides extensibility. 304

3.2.3 Pangenome-based BPE Tokenization 305

(PBPET) 306

PBPET first splits sequences at pangenome-graph 307

node boundaries as in PKMT, then runs Byte-Pair 308

Encoding (BPE) that iteratively merges the most 309

frequent adjacent symbol pairs and records the re- 310

sulting merge rules (the “BPE merges”). We then 311

apply the learned BPE merges to each node se- 312

quence, producing variable-length, high-frequency 313

subwords while staying graph-aware via the node 314

pre-segmentation. Unlike GBPET, this initial cut 315

at node boundaries uses and preserves population- 316

level structure from the graph. 317

4 Evaluating synthetic DNA generation 318

quality 319

A main challenge in proving the utility of our 320

schemes is evaluating the quality of the synthetic 321

genome sequence generation. In our study, we use 322

the prediction accuracy of the model to measure the 323

quality of the generative model. Furthermore, we 324

compare the similarity between synthetic and real 325

genome sequences through sequence alignment. 326

4.1 Model Prediction Accuracy 327

• Next token prediction accuracy: measures how 328

often the model correctly predicts the next token 329

given the correct previous tokens, making it the 330

primary metric for generative models. However, 331

this does not fully reflect sequence accuracy when 332

tokenization is not single nucleotide-based. Predict- 333

ing “AAAAAC” or “GCTGCT” for the true k -mer 334

token “AAAAAA” count both as simply incorrect. 335

• Character-level prediction accuracy: mea- 336

sures the percentage of nucleotides predicted cor- 337

rectly for each token. For example, predicting 338

“AAAAAC” for the true token “AAAAAA” yields 339
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an accuracy of 0.83, while predicting “GCTGCT”340

results in an accuracy of 0. Character-level accu-341

racy measures how well each nucleotide is pre-342

dicted instead of tokens, making it more consistent343

and fair across tokenization schemes.344

4.2 Sequence Alignment Scores345

The measurement of similarity between two346

genome sequences is done using sequence align-347

ment, which is an essential process in many bioin-348

formatic and computational biology tasks. Se-349

quence alignment of DNA involves arranging the350

DNA sequences to identify regions of similarity. In351

our case, we use wfmash (Guarracino et al., 2025)352

where the wavefront algorithm (Marco-Sola et al.,353

2021) is primarily used for pairwise alignment be-354

tween real and generated DNA sequences. Visu-355

alized results (introduced and shown in §5) and356

multiple scores can be used to evaluate the quality357

of the alignment.358

An example of alignment between a reference se-359

quence and a query sequence is shown in Figure 3.360

Reference Sequence

Sequence Alignment
Graph Construction

Query Sequence

TA
AG

C  AGCTA

…AGCTAAGTA…

…AGCTAag 

…AGCTACTA…

…AGCTA - -

-TA…

TA…c

Figure 3: An alignment between two sequence and
how it suggests graph nodes. Capitalized nucleotide
and green links indicate matches; lowercase nucleotide
and red crosses indicate no match; the dashes in the
sequences represent the gaps during matching.

361

An alignment score of 0 indicates no similar-362

ity, while a score of 1 represents a perfect match.363

Alignment scores can be defined and computed in364

two primary ways (Figure 3 as an example):365

• BLAST identity (BI): 7/10 = 0.7. Defined as366

the number of matching bases in relation to367

the number of alignment columns.368

• Gap-Compressed Identity (GI): 7/9 = 0.78.369

Counting consecutive gaps as one difference.370

Alignment scores reflect how well the aligned re-371

gions match, and we use alignment percentage to372

measure how much of a generated sequence aligns373

with references. Together, these metrics assess bio-374

logical plausibility and generative quality.375

Why alignment? We use alignment scores376

as the primary evaluation metric for synthetic se- 377

quences, rather than short-sequence classifica- 378

tion tasks, for three fundamental reasons: 379

(i) Dataset mismatch for classification tasks: 380

Most datasets of classification tasks, such as those 381

used in DNABERT-2 (Zhou et al., 2023) and 382

GENA (Fishman et al., 2023), evaluate the perfor- 383

mance on short sequences (typically 10k or less), 384

focusing on relatively more local characteristics. 385

This length (with possible offset) is too short to 386

build informative pangenome graphs that require 387

long genomic regions of the same species. 388

(ii) Methodological mismatch: Classification 389

tasks emphasize local motifs and short-range pat- 390

terns, while pangenome graphs capture structural 391

variants and long-range dependencies that are the 392

core advantage of our approach. 393

(iii) Alignment as metric: Alignment scores 394

quantify biological plausibility and consistently 395

track downstream accuracy. Better alignment 396

quality improves SNP/indel calling (Kosugi et al., 397

2013), and increases conserved gene detection, and 398

aids comparative annotation (Sharma and Hiller, 399

2017). Alignment-based metrics better match prac- 400

tical genomic goals than generic divergence mea- 401

sures (Pillutla et al., 2021). Earlier discussions 402

in computational biology also treated alignment 403

score as a robust proxy for sequence similarity and 404

usefulness (Frith, 2020; Durbin et al., 1998). In 405

standard pipelines (e.g., reads → reference → vari- 406

ants), higher alignment of generated sequences to 407

real genomes indicates they can stand in for real 408

data ( 5 in §2.3; see Appendix E). 409

5 Experiments 410

5.1 Datasets and LM Choices 411

In our experiments, we used the human Ma- 412

jor Histocompatibility Complex (MHC) region 413

of chromosome 6 as our dataset, extracted from 414

the PanGenome Graph Builder (PGGB) (Garrison 415

et al., 2024) graph of Human Pangenome Refer- 416

ence Consortium (HPRC) year 1 assemblies (Liao 417

et al., 2023). The MHC region was specifically 418

chosen for its (1) high variation density with com- 419

plex structural variants essential for pangenome 420

graph construction; (2) long contiguous sequences 421

necessary to capture the structural context that 422

pangenome graphs encode, unlike typical classi- 423

fication datasets using short sequences (∼10 kbp); 424

and (3) population-level diversity across 126 sam- 425

ples with 447 million nucleotides total, providing 426

5



sufficient variation while maintaining biological re-427

alism. The dataset comprises 80% training samples428

and 20% test samples, with the reference genome429

temporarily used for hyperparameter tuning before430

final training.431

We used 1024/2048 token context lengths for432

GPT-2/Llama respectively with Hugging Face433

4.24.0 transformers library (Wolf, 2019). For BPE434

methods, we segment long genomes into 10k base435

pair (bp) sequences and set vocabulary size to 4096,436

following DNABERT2 (Zhou et al., 2023) speci-437

fications due to the computational limits of BPE438

tokenizer training on very long sequences. To miti-439

gate memorization, we sample with sufficient ran-440

domness in generation (see Appendix C), and non-441

perfect alignment scores (<1) indicates that the442

model is not simply remembering and copying.443

Table 1: Training time (hours) of each tokenization
scheme on 90M models for 90 epochs.

Model GSNT GKMT PKMT GBPET PBPET PNT
GPT-2 56 11 15 17 24 7
LLaMA 20 5 6 9 12 3

5.2 Experiment Results444

We trained the GPT-2 and Llama models on the445

dataset using four tokenization schemes: GSNT,446

GKMT, PNT and PKMT. Training was carried447

out for 90 epochs (§C.1 shows results with more448

epochs) with a batch size of 16/8 and 1024/2048-449

token sequences for GPT-2/Llama. The dataset450

comprises 124 DNA samples totaling 447 million451

nucleotides. Training times are shown in Table 1,452

obtained on 8 NVIDIA A5500 GPUs. Figure 4453

displays token and character-level prediction accu-454

racies. The final accuracies are shown in Table 2.455

PNT not included in the character-level accuracy456

figures due to the vague definition on predictions457

and targets with too varied lengths.458

PNT demonstrated the fastest training time,459

while GSNT is generally the slowest due to its460

larger token set. BPE based method is slower than461

the k-mer based method but faster than GSNT. PNT462

reaches the best peak accuracy the fastest, while463

GKMT has the worst performance. GSNT initially464

trains much faster than PKMT for token prediction,465

but converges to a similar final accuracy. We will466

see how they perform differently in alignment. De-467

spite having almost the same token tables, we can468

clearly tell that PKMT’s pangenome graph-aided469

segmentation helps the model to outperform the470

one trained by GSNT. The training of the PBPET471

tokenizer takes around 20 seconds, while the train- 472

ing of GBPET tokenizer takes about 10 minutes, 473

largely due to the larger sequence chunks, and they 474

both have moderate training time. 475

Table 2: Final accuracy of each tokenization scheme on
90M models trained for 90 epochs.

Model GSNT GKMT PKMT GBPET PBPET PNT
Token Prediction Accuracy

GPT-2 97.1% 65.9% 96.9% 97.9% 98.0% 98.6%
LLaMA 98.7% 81.8% 97.7% 98.5% 98.6% 98.8%

Character-Level Accuracy
GPT-2 97.1% 78.3% 97.9% 98.6% 99.0% –
LLaMA 98.7% 85.3% 98.6% 99.0% 99.3% –

We report alignment results for GPT–2 genera- 476

tions across all tokenization schemes in Figure 5 477

(GKMT produces virtually no alignable sequence). 478

The plot shows reference coordinates on the x-axis 479

and individual generated sequences on the y-axis; 480

each dot/segment marks a position in the gener- 481

ated sequence that aligns to the reference. After 482

90 epochs, only PNT yields long, contiguous align- 483

ments for GPT–2. Some sequences show no align- 484

ment at all, probably due to stochastic sampling 485

for diversity and occasional misaligned patterns 486

learned during training. LLaMA (see Appendix C) 487

achieves similar token-level accuracy but exhibits 488

sparser dots/dashes, indicating fewer matches over- 489

all. With PNT, LLaMA can initiate long runs, yet 490

alignments tend to break off early, especially in 491

high-variation regions (visible as dense dot clusters 492

along the paths). With PKMT or PBPET, LLaMA 493

cannot sustain long aligned sequences. 494

To quantify generation quality, we show the 495

alignment scores of the generated sequences 496

against the entire dataset (the best match of a query 497

against the entire dataset) in Table 3, with the re- 498

sults for real data as a comparison. A variant-level 499

check is given in §C.2. In addition to GI / BI 500

scores, we show the alignment percentage, indicat- 501

ing the proportion of well-aligned sequences. The 502

segment length refers to the size of the minimizer 503

window during alignment. PNT achieves the high- 504

est alignment scores across all segment lengths, 505

while GSNT performs the worst. 506

PNT demonstrates superior token-level predic- 507

tion accuracy, while GKMT achieves the highest 508

character-level accuracy in GPT-2 and closely ri- 509

vals PNT in Llama. Traditional methods under- 510

perform, with GKMT achieving less than 70% 511

accuracy and GSNT training significantly slower. 512

The accuracy gap is more pronounced in alignment 513

scores (Table 3), where PNT consistently excels 514
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(a) Token prediction accuracy (b) Character level prediction accuracy

Figure 4: Model prediction accuracies of all tokenization schemes during GPT-2 training.

(a) GSNT (b) PKMT (c) GBPET (d) PBPET (e) PNT

Figure 5: Alignment of a batch of GPT-2 generated sequences against the reference sequence. The X-axis represents
the reference sequence; the Y-axis shows generated sequences. Longer lines indicate consistent alignment, and
denser dots represent frequent short matches. Alignment results from Llama are presented in Appendix C.

Table 3: Alignment percentages and weighted GI/BI scores of the 20 generated sequences per scheme for different
segment lengths, aligned against the original dataset. Real data metrics are computed using 80% of samples as
references and 20% as queries.

Segment 1k 20k 50k 200k
GPT-2 Align % GI BI Align % GI BI Align % GI BI Align % GI BI
GSNT 81.66 0.8712 0.9955 21.55 0.8834 0.9893 1.42 0.8323 0.9849 0.00 0.0000 0.0000
PKMT 52.96 0.9443 0.9856 50.34 0.9036 0.9932 47.87 0.8977 0.9936 8.82 0.8656 0.9919
GBPET 71.81 0.9873 0.9981 53.19 0.9105 0.9931 36.93 0.9041 0.9921 0.00 0.0000 0.0000
PBPET 44.75 0.9081 0.9914 42.03 0.9044 0.9943 42.29 0.9007 0.9935 9.39 0.9029 0.9955
PNT 89.34 0.9977 0.9999 31.01 0.9961 0.9990 33.27 0.9920 0.9985 36.96 0.9873 0.9982
LLaMA Align % GI BI Align % GI BI Align % GI BI Align % GI BI
GSNT 7.17 0.7927 0.9906 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000
PKMT 34.45 0.9666 0.9960 21.19 0.8323 0.9907 6.85 0.8232 0.9876 0.00 0.0000 0.0000
GBPET 12.90 0.9543 0.9870 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000
PBPET 33.00 0.9817 0.9969 6.41 0.8533 0.9861 5.86 0.8356 0.9878 0.00 0.0000 0.0000
PNT 28.80 0.9796 0.9958 5.97 0.9970 0.9984 8.49 0.9958 0.9987 15.02 0.9938 0.9977
Real data 99.97 0.9994 0.9999 69.23 0.9996 0.9999 61.37 0.9991 0.9997 50.67 0.9981 0.9993

with GI and BI scores of around 0.99 in segment515

lengths of 1k to 200k, closely mirroring the per-516

formance of real data. Although PKMT produces517

fewer high-quality sequences than GSNT that align518

with the reference, it achieves slightly higher align-519

ment scores than GSNT in more settings and has a520

chance for relatively good generation for large seg-521

ments. The newer non-pengenome-based method,522

GBPET, performs better in alignment score specifi-523

cally under smaller segment length, but still lacks524

stable long-sequence generation compared with525

pangenome powered PBPET. PNT-generated se-526

quences hold greater potential for applications re-527

sembling real data, while others may require further 528

refinement or model optimization. Llama overall 529

shows the same trend, but lags behind GPT-2 in se- 530

quence generation, despite higher prediction accu- 531

racy and longer prompt length, likely due to greater 532

performance degradation in very limited parameter 533

numbers for continuous predictions. Llama specifi- 534

cally underperforms in non-pangenome based tok- 535

enization methods. Overall, PKMT performs better 536

than GSNT (and GKMT), and PBPET performs 537

better than GBPET, directly indicating the useful- 538

ness of involving pangenome graph structure in 539

tokenization. One limitation we observe is that 540
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pangenome-based models occasionally generate al-541

most entire no match. Classical methods, although542

they generate fragmented pieces, do not completely543

miss. For PNT specifically, adding a small 20 token544

prompt will completely fix this issue.545

Discussion. To our knowledge, this work is the546

first to compare the effectiveness of pangenome-547

based tokenization schemes with classical tokeniza-548

tion schemes for ML learning the pattern of DNA549

sequences; and also the one of the first to demon-550

strate the efficacy of LM in generating long DNA.551

Our findings reveal that the pangenome graph552

structure embeds significant and meaningful infor-553

mation, improving neural networks’ understanding554

of DNA sequences. Our experiments demonstrate555

how this information can be effectively exploited556

by graph-based tokenization. The graph-aided seg-557

mentation of PKMT/PBPET provides more stable558

and learnable structural information compared to559

their classical counterpart, resulting in better over-560

all generation quality. Our results underscore the561

trade-offs between computational cost and model562

performance, with pangenome graph-based tok-563

enization schemes showing higher accuracy across564

tasks. Previous work (Liao et al., 2023) demon-565

strates how improved matching is the key point of566

the pangenome, which “aligns” with our use of the567

pangenome graph here.568

6 Related work569

In this section, we introduce two common genome570

tasks with the machine learning application. Ta-571

ble 8 in Appendix D summarizes this section.572

6.1 Classification Tasks573

Classification tasks are common in genomics, in-574

cluding (more details in Appendix E):575

Variant Calling: ML models identify genetic576

variants such as SNPs and indels in genomes, link-577

ing them to diseases or traits. DeepVariant (Poplin578

et al., 2018), a CNN-based variant caller, outper-579

forms traditional methods, influencing many oth-580

ers (Yun et al., 2020; Kolesnikov et al., 2021). Clair-581

voyante (Luo et al., 2019) excels in single-molecule582

sequencing (SMS), while Clair (Luo et al., 2020)583

offers faster RNN-based inference with fewer pa-584

rameters, without sacrificing accuracy.585

Gene Expression Analysis: ML models analyze586

gene expression data to reveal gene-disease rela-587

tionships. Classical methods like KNN (Kim and588

Kim, 2018), linear/logistic regression (Han et al.,589

2019), and SVMs (Wan et al., 2019) are used to 590

predict driver genes or cancer risk. CNNs (Lyu and 591

Haque, 2018; Elbashir et al., 2019) are also applied 592

for cancer classification with RNA-seq data. 593

Beyond these, CNNs model protein binding (Ali- 594

panahi et al., 2015), cell type identification (Yao 595

et al., 2019), and non-coding variants (Zhou and 596

Troyanskaya, 2015). RNNs predict non-coding 597

DNA functions (Quang and Xie, 2016) and RNA- 598

protein binding preferences (Shen et al., 2020). 599

Transformer models like DNA-BERT (Ji et al., 600

2021; Zhou et al., 2023; Dalla-Torre et al., 2023, 601

2025) provide strong contextual embeddings for 602

molecular phenotype prediction but face context 603

size limitations due to quadratic scaling. Recent 604

models like Hyena (Nguyen et al., 2024b) and 605

MambaDNA (Schiff et al., 2024) address these 606

limitations with sub-quadratic scaling for longer 607

contexts. More recent applications of DNA LM 608

like MoDNA (An et al., 2022) for promoter predic- 609

tion, and GENA (Fishman et al., 2023) for multiple 610

tasks, both use traditional GKMT. Some papers like 611

GPN-MSA (Benegas et al., 2024) for genome-wide 612

variant effect prediction uses GSNT. DNABERT- 613

2 (Zhou et al., 2023) and following work (Karollus 614

et al., 2024) for evolutionary conservation and func- 615

tional annotation prediction use BPE. 616

A recent paper (Zhang et al., 2024) presents a 617

similar tokenization approach using pangenome 618

graphs. Although both works independently de- 619

velop this idea, ours differs by incorporating PNT 620

and PBPET, and focusing on long-sequence gen- 621

eration. In contrast, their work handles shorter 622

sequences (max 5000bp) with node-aided k-mer 623

tokenization and focuses on classification tasks. 624

6.2 Generation Tasks 625

Synthetic Data Generation: Synthetic data mim- 626

ics real data for privacy concerns. GANs have been 627

used for synthetic medical data (Bae et al., 2019) 628

and DNA sequences coding for proteins (Gupta and 629

Zou, 2018), though limited by fixed output sizes. 630

Some work (Avdeyev et al., 2023) utilizes trans- 631

formers but with limited generation length, and a 632

more recent large model (Nguyen et al., 2024a) 633

shows generation of submillions in length with a 634

certain level of genomic organization. 635

De Novo Genome Assembly: This involves re- 636

constructing a genome from short DNA fragments 637

without a reference. Deep learning has been ap- 638

plied to de novo peptide sequencing (Tran et al., 639

2017, 2019; Yang et al., 2019). 640
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7 Limitations641

PNT is the best performed scheme we proposed.642

However, it cannot tokenize sequences outside the643

nodes of the training pangenome graph, which644

makes it less general-purpose. We do have other645

two schemes that has no similar issue.646

While our study focused on smaller models to647

establish a proof-of-concept for our tokenization648

scheme, we acknowledge that larger models may649

improve results but raise practical concerns around650

efficiency and resource use. Furthermore, emerging651

architectures designed for long-context processing652

(e.g., (Gu et al., 2021; Nguyen et al., 2024b,a;653

Gu and Dao, 2023; Peng et al., 2023a)) could po-654

tentially further enhance the performance of all655

tokenization schemes. These models, by enabling656

longer effective context windows, could improve657

both the understanding of long-range dependencies658

in DNA and the consistency of sequence genera-659

tion. Although we believe that pangenome-based660

tokenization retains advantages in effective segmen-661

tation, such models may help close the performance662

gap for other tokenization methods. We agree that663

this is a valuable direction and suggest that future664

work explores scaling to larger models and incor-665

porating long-context architectures to more fully666

assess their potential impact.667
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A Detailed Explanation of Pangenomes 1039

and Pangenome Graphs 1040

A.1 Definition of Pangenome 1041

The term “pangenome” combines “pan” (meaning 1042

“all” or “every”) with the “genome,” referring to 1043

the complete collection of genetic material across 1044

all individuals in a species or closely related group. 1045

Unlike traditional genomics, which relies on a sin- 1046

gle representative genome sequence, pangenomics 1047

embraces the full spectrum of genetic diversity. 1048

A.2 How Pangenome Graphs are Built 1049

The construction of a pangenome graph involves 1050

several computational steps: 1051

Step 1: Sequence Collection Multiple high- 1052

quality genome assemblies are collected from di- 1053

verse individuals within a species. These DNA 1054

sequences often undergo quality control to ensure 1055

accuracy and completeness(e.g., ensure that the 1056

DNA sequences collected are from the same re- 1057

gions of different individuals). 1058

Step 2: Multiple Sequence Alignment All col- 1059

lected sequences are aligned using sophisticated 1060

algorithms that can handle large-scale structural 1061

variations. This alignment would compare each 1062

sequence with each other, and find the best over- 1063

all matching to determine the “shared” common 1064

subsequences and find variable regions where indi- 1065

viduals differ. The overall goal of the alignment is 1066

to establish a single, internally consistent multiple- 1067

genome homology map. A successful alignment 1068

therefore maximises (i) the amount of sequence 1069

that can be confidently placed as shared columns 1070

and (ii) the biological plausibility of any gaps or 1071
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rearrangements it introduces. In practice, this pro-1072

cess is done by optimizing the alignment score as1073

match rewards and mismatch penalties.1074

Step 3: Graph Construction1075

Once the multiple-sequence alignment is fixed,1076

each homologous column (or contiguous run of1077

columns) becomes a node containing that sequence,1078

and edges connect nodes in the orders observed in1079

the input genomes; where the graph branches, alter-1080

native paths capture the variant sequences. Some-1081

times the graph structure can then be optimized to1082

minimize redundancy while preserving all genomic1083

information.1084

A.3 Graph Components in Details1085

(1) Nodes. Each node contains:1086

• A DNA sequence (typically 100-10,000 base1087

pairs)1088

• A unique identifier (node ID)1089

• Metadata about which genomes contain this se-1090

quence1091

Example: Node 123456 might contain the se-1092

quence “ATCGATCGAAGTC” and appear in 85%1093

of the individuals in the pangenome. In the ac-1094

tual map they can be marked as either forward or1095

reversed orientation.1096

(2) Edges. Edges represent adjacency relation-1097

ships between nodes. Multiple incoming/outgoing1098

edges indicates for alternative paths representing1099

different variants1100

Example: Node A connects to both Node B and1101

Node C, meaning some individuals have sequence1102

A followed by B, while others have A followed by1103

C.1104

(3) Paths. Each path represents one individual’s1105

genome:1106

• A sequence of connected nodes1107

• Preserves the linear order of sequences in the1108

original genome1109

A.4 Benefits of Pangenome Graphs1110

Pangenome graphs offer several advantages:1111

Comprehensive representation: All genetic1112

variations in a population are captured in a single1113

data structure. Further analysis results are less de-1114

pendent on the choice of a single reference genome.1115

Context preservation: The graph maintains the1116

genomic context around variations, which is crucial1117

for understanding their functional impact.1118

Algorithmic efficiency: Many genomic analy-1119

ses can be performed more efficiently in graph rep-1120

resentation than on multiple individual genomes.1121

Scalability: New genomes can be incrementally 1122

extended to existing graphs without starting from 1123

scratch. 1124

This comprehensive representation makes 1125

pangenome graphs particularly valuable for appli- 1126

cations in domains such as population genomics or 1127

evolutionary biology, where understanding the full 1128

spectrum of genetic diversity is crucial. 1129

B More on tokenization schemes 1130

B.1 Glossary of Frequent Terms/Acronyms 1131

Table 4: Glossary of Frequent Terms/Acronyms

Terms Explanation
nucleotide Units/Letters (A, G, C, T) of DNA
indel Insertion and deletion
bp Base pairs, A-T, C-G pair in DNA
GSNT Genome-based Single Nucleotide Tokenization
GKMT Genome-based k-mer Tokenization
GBPET Genome-based BPE Tokenization
PNT Pangenome-based Node Tokenization
PKMT Pangenome-based k-mer Tokenization
PBPET Pangenome-based BPE Tokenization

B.2 PKMT tokenization 1132

We show how inserting and deletion can affect the 1133

GKMT in Figure 6.

Figure 6: Insertion or Deletion of a sigle nucleotide
change all following GKMT (stride equal to k = 4)
tokens.

1134

C More experiment details and results 1135

The GPT-2 model uses the gelu_new activation 1136

function, consists of 12 transformer layers, each 1137

with 12 attention heads, and an embedding dimen- 1138

sion of 768 with maximum prompt being 1024. 1139

The LLaMA model uses the SiLU activation func- 1140

tion and consists of 6 transformer layers, each with 1141

8 attention heads, and an embedding dimension 1142

of 768. It has an intermediate size of 4096, and 1143

supports sequences up to a maximum of 2048 po- 1144

sitions. We used a grid search for the best hyper- 1145

parameters. We use 3e-4 (except 5e-4 for GSNT - 1146

GPT-2 and 1e-4 for 1e-4 for GSNT Llama) leaning 1147

13



(a) Token prediction accuracy of the model across different
training epochs

(b) Character-level prediction accuracy of the model
across different training epochs

Figure 7: Model prediction accuracy of the four tokenization schemes during LLaMA training. PNT is excluded
from the character-level accuracy plot due to the ambiguity in defining accuracy when predicted and target sequences
differ in length.

Table 5: Alignment percentages and weighted GI/BI scores for segment lengths 5k and 100k.

Segment 5k 100k
Model Align % GI BI Align % GI BI
GPT-2
GSNT 59.49 0.8919 0.9910 0.00 0.0000 0.0000
PKMT 53.76 0.9015 0.9960 38.43 0.8928 0.9939
GBPET 63.20 0.9082 0.9961 14.62 0.9035 0.9884
PBPET 46.22 0.9019 0.9966 38.04 0.8927 0.9920
PNT 73.27 0.9970 0.9997 33.17 0.9945 0.9988
LLaMA
GSNT 0.41 0.7414 0.9784 0.00 0.0000 0.0000
PKMT 30.82 0.8362 0.9917 0.00 0.0000 0.0000
GBPET 0.10 0.3070 0.9479 0.00 0.0000 0.0000
PBPET 24.75 0.8609 0.9916 0.00 0.0000 0.0000
PNT 25.79 0.9977 0.9997 10.96 0.9964 0.9990
Real data 97.97 0.9994 0.9999 60.44 0.9989 0.9997

rate, batch size 8/16 for GPT-2/Llama training; and1148

topk=10, topp=0.92, topk_decend_min=5 for gen-1149

eration, which is also determined by grid search.1150

Held-out accuracy is our proxy for interpolation:1151

high token/character scores show generalization1152

within the pangenome’s observed variation. Ex-1153

trapolation is outweighed by interpolation due to1154

species-level DNA homogeneity. We show addi-1155

tional alignment scores in Table 5 and the Llama1156

accuracy in Figure 7. A clearer single query view1157

of alignment is shown in Figure 8 for a single1158

generated sequence, and the alignment figures for1159

Llama are in Figure 10. Figure 9 shows a simple il-1160

lustration of a small pangenome graph of the MHC1161

data we use.1162

C.1 Effects of extensive training1163

During our experiment, we found that PNT,1164

GBPET and PBPET did not benefit from more1165

training epochs but GSNT and PKMT had the1166

potential for further improvement. We trained 1167

the better-performing GPT-2 model on half of the 1168

training dataset for an extra 200 epochs, keeping 1169

other parameters the same to further investigate the 1170

best possible performance these two tokenization 1171

schemes can provide. The token prediction accu- 1172

racy increased by about 0.4% for PKMT and 0.3% 1173

for GSNT, which is marginal, but we observed 1174

significant improvements in generation quality for 1175

both methods in alignment score. While predic- 1176

tion accuracy gains may appear small, they have a 1177

compounding effect during generation, where er- 1178

rors accumulate across long sequences. Accuracy 1179

reflects only top-1 correctness for the next token, 1180

whereas generation samples probabilistically from 1181

the top candidates, making it more sensitive to dis- 1182

tributional improvements. The results are shown 1183

in Figure 11 and Table 6. Both methods achieved 1184

slightly higher alignment scores and aligned length, 1185

especially with larger segments. Both tokenization 1186
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(a) GSNT (b) PKMT (c) PNT

(d) GBPET (e) PBPET

Figure 8: Alignment of a single generated sequence against the reference. Longer lines represent continuous
alignment regions, while scattered dots show shorter matching fragments.

Figure 9: The pangenome graph of the human MHC
region of chromosome 6 of the PGGB graph of HPRC
year 1 assemblies, with 2D graph visualization (above)
and matrix view (below). The circled in the 2D graph
and the gaps in the matrix view indicate mutations.

schemes still underperformed compared to PNT,1187

even after extensive training. Figure 11 addition-1188

ally clearly shows that GKMT generates relatively1189

longer sequences with more longer lines.1190

The higher utility of the extensively trained1191

model indicates that substantial investment in com-1192

putational power has its potential.1193

C.2 Downstream task: Variant calling 1194

Variant calling evaluates whether the model cap- 1195

tures heterogeneity (population-level variation) 1196

rather than merely memorizing conserved, homoge- 1197

neous regions. More details are described in §E.1; 1198

here we summarize the experiment setup. 1199

For each tokenization scheme, we sampled 20 1200

sequences generated by the GPT-2 model (chosen 1201

because it achieved the best alignment-based per- 1202

formance). We then combined these synthetic se- 1203

quences with the single training reference path and 1204

built a pangenome graph using PGGB (Garrison 1205

et al., 2024). Variants were called for each synthetic 1206

sequence against the reference path and compared 1207

to the “truth” set obtained by calling variants for 1208

all real (non-reference) genomes in the original 1209

pangenome graph. 1210

Let T be the set of variants from real genomes 1211

(ground truth) and G the set from generated 1212

sequences. After standard normalization (left- 1213

normalization, multiallelic splitting, etc.), a match 1214

is defined when a variant in G is equivalent to 1215

one in T (e.g., same chromosome, position, and 1216

REF/ALT, or an accepted equivalence rule). 1217

• True positives (TP): variants in G that match a 1218

variant in T . 1219

• False positives (FP): variants in G with no match 1220

in T . 1221

• False negatives (FN): variants in T with no 1222

match in G. 1223
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(a) GSNT (b) PKMT (c) GBPET (d) PBPET (e) PNT

Figure 10: Alignment of a batch of LLaMA-generated sequences against the reference. The X-axis is the reference,
and the Y-axis shows the generated sequences. Longer lines indicate consistent alignment, and denser dots indicate
frequent short matches.
Table 6: Alignment percentages and weighted GI/BI scores of the 20 generated sequences each scheme for different
segment lengths of the generated sequences with extensively trained GPT-2 model, against the test set as reference.

Segment 1k 5k 20k
Align % GI BI Align % GI BI Align % GI BI

GSNT 90.67 0.8818 0.9972 75.52 0.8922 0.9926 42.17 0.8916 0.9920
PKMT 81.42 0.9842 0.9978 81.87 0.9027 0.9969 79.74 0.9044 0.9956
Segment 50k 100k 200k

Align % GI BI Align % GI BI Align % GI BI
GSNT 9.76 0.8801 0.9916 0.00 0.0000 0.0000 0.00 0.0000 0.0000
PKMT 72.52 0.9011 0.9940 65.51 0.8936 0.9943 16.19 0.8883 0.9935

(a) GSNT (b) PKMT

Figure 11: Alignment of a batch of generated sequences
(after extensive GPT-2 training) against training se-
quences. The X-axis is the reference; the Y-axis con-
tains generated sequences. Longer lines indicate consis-
tent alignments, while denser dots reflect frequent short
matches.

Precision (of what we predicted, how much was1224

correct?):1225

Precision =
|TP |

|TP |+ |FP |
.1226

Recall (of what was true, how much did we re-1227

cover?):1228

Recall =
|TP |

|TP |+ |FN |
.1229

The F1 score balances both:1230

F1 =
2 · Prec · Rec
Prec + Rec

=
2|TP |

2|TP |+ |FP |+ |FN |
.1231

All scores are reported as percentages in Table 7.1232

Recall values are modest because only 20 synthetic1233

sequences are contrasted against a truth set derived1234

from 126 real genomes; consequently, many true1235

variants simply never appear in the generated sub-1236

set. Nonetheless, all pangenome-based tokenizers1237

outperform classical baselines in all metrics, indi- 1238

cating they help the model generate biologically 1239

plausible variants (true positives). They more effi- 1240

ciently capture population diversity rather than just 1241

conserved sequence. 1242

Method Precision (%) Recall (%) F1-score (%)
GSNT 29.5 16.4 21.0
PKMT 65.7 28.2 39.4
GBPET 58.1 22.9 32.8
PBPET 74.6 29.7 42.4
PNT 69.3 23.3 34.8

Table 7: Variant-calling performance (precision, recall,
and F1) for each tokenization method.

D Summarizing related work 1243

Here we provide a table to summarize our discus- 1244

sion in §6, with a detailed list of the related work 1245

of ML/DL doing genomic tasks. 1246

E Alignment scores and downstream 1247

tasks 1248

Alignment-based evaluations provide a more direct 1249

assessment of how well synthetic data supports real- 1250

world genomic applications. For example, datasets 1251

like those from the Human Pangenome Project de- 1252

pend heavily on alignment-based metrics to assess 1253

data quality and interpret genetic variation. Read 1254

alignment to a reference genome followed by vari- 1255

ant calling is a widely adopted pipeline, and here 1256

alignment consistency and accuracy are critical. In 1257

this context, alignment scores are not only practi- 1258

cal but also well-recognized within the genomics 1259

community as meaningful indicators of quality. 1260
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In this section, we introduce two essential tasks1261

to show how alignment scores can determine the1262

utility of sequences, and how synthetic sequences1263

can play a role.1264

E.1 Variant calling1265

Read alignment and variant calling are founda-1266

tional tasks in bioinformatics pipelines, especially1267

in genome resequencing studies. In this process,1268

DNA reads generated by sequencing technologies1269

are aligned to a reference genome to reconstruct1270

the original genetic material and identify variants1271

(e.g., calling the inserting and deletion in the bot-1272

tom two sequences when compared with the top1273

reference in Figure 6). Determining an accurate1274

alignment is critical because downstream variant1275

calling algorithms rely on these mappings to com-1276

pare the sample DNA against the reference. Numer-1277

ous tools have been developed to perform this task1278

efficiently and accurately, including Minimap2 (Li,1279

2018) and wfmash (Guarracino et al., 2025). Most1280

work in §6.1 measure the alignment in their experi-1281

ment.1282

A high alignment score indicates a strong match1283

between the sequenced read and a region in the ref-1284

erence genome, minimizing mismatches, gaps, or1285

ambiguous placements. This is essential to identify1286

true variants confidently, ruling out sequencing er-1287

rors or misalignments. An incorrect alignment may1288

map a query DNA sequence to the wrong location1289

in the reference genome, leading to wrong variant1290

calls. An example is given in Figure 12. Synthetic1291

sequences can serve as references in variant calls1292

or generate potential variant combinations that are1293

not observed in natural samples.1294

Reference Sequence
…GGGAGCT AGCT AGCT AGCTGGG…

Alignment 1
…GGGAGCT AGCT AGCT AGCTGGG…

Alignment 2
…GGGAGCT AGCT      AGCTGGG…

A

AAGCT

Figure 12: Two possible alignment of a sequence to a
reference sequence. Alignment 1 calls for one insertion
while Alignment 2 calls for 4 deletion then 5 insertion.
Alignment 1 will have higher alignment scores with
more matched nucleotides, and is considered a better
alignment. Therefore the variant calling based on Align-
ment 1 is considered better than Alignment 2.

E.2 De novo assembly1295

De novo assembly reconstructs a genome from1296

short sequencing reads without relying on a ref-1297

erence genome. This process stitches overlapping 1298

reads into contiguous sequences (contigs) or scaf- 1299

folds, aiming to rebuild the original genome as 1300

accurately as possible. Since there is no reference 1301

during assembly, evaluation is typically performed 1302

by aligning the assembled contigs back to a trusted 1303

reference genome, or comparing them to known 1304

markers or conserved genes. 1305

A high alignment score here indicates that the 1306

assembler has likely reconstructed a biologically 1307

accurate sequence. This suggests high contiguity, 1308

low error rates, and minimal misassemblies. Low 1309

alignment scores often signal fragmented or mis- 1310

assembled regions. Synthetic sequences can act as 1311

trussted reference, improving the assembly. 1312

Many utility metrics used in existing genome 1313

modeling studies are fundamentally rooted in 1314

sequence alignment. For example, in recent 1315

work such as (Nguyen et al., 2024a), tools like 1316

CheckM (Parks et al., 2015) are used to report qual- 1317

ity metrics, including gene density and stop codon 1318

frequencies. These tools rely on foundational com- 1319

ponents like profile Hidden Markov Models (pH- 1320

MMs) that are directly constructed from multiple 1321

sequence alignments, with alignment quality and 1322

consistency playing a central role in shaping their 1323

parameters and performance. In this context, a 1324

high alignment score indicates strong homology 1325

or functional similarity between the generated se- 1326

quence and known sequences, providing evidence 1327

of biological plausibility. 1328
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Table 8: DL models used in genome tasks.

Job Type Paper Task Architecture Input
Classification (Poplin et al., 2018;

Yun et al., 2020;
Kolesnikov et al., 2021)

Variant Calling CNN hundreds of base pairs

(Luo et al., 2019) Variant Calling CNN hundreds of base pairs
(Lyu and Haque, 2018;
Elbashir et al., 2019)

Cancer Prediction CNN RNA-seq gene expression data

(Alipanahi et al., 2015) Protein Binding CNN 10-100 nucleotides & binding
specificities

(Zeng et al., 2016) Protein Binding CNN 10-100 base pairs & binding
specificities

(Yao et al., 2019) Cell Type Identification CNN cell images
(Zhou and Troyanskaya,
2015)

Non-coding DNA function
prediction

CNN 1k base pairs

(Luo et al., 2020) Variant Calling RNN binary alignment map (BAM)
(Shen et al., 2020) RNA-protein binding

preference
LSTM embedded k-mers

(Quang and Xie, 2016) Non-coding DNA function
prediction

CNN/BLSTM one hot encoded nucleotides

(Kim and Kim, 2018) Cancer Prediction KNN SNP genotype syntaxes
(8-mers)

(Han et al., 2019) Cancer Prediction Rao score Mutation Annotation Format
(MAF)

(Wan et al., 2019) Cancer Prediction SVM Human EDTA plasma samples
(Ji et al., 2021; Zhou
et al., 2023)

Molecular Phenotype
Prediction

Transformer tokenized k-mers

(Dalla-Torre et al.,
2023)

Molecular Phenotype
Prediction

Transformer tokenized k-mers

(Nguyen et al., 2024b) 5-way Species
Classification

Transformer single nucleotide tokens

(Schiff et al., 2024) Genome Tasks Mamba single nucleotide tokens
(Luo et al., 2019) Variant Calling CNN Hundreds of base pairs
(An et al., 2022) Promoter Prediction Transformer 6-mers of up to 512bp
(Karollus et al., 2024) Evolutionary Conservation

/ Functional Annotations
Transformer 6-mers for 128bp sequences

(Fishman et al., 2023) Multiple Tasks Transformer BPE tokens, up to 36000bp
sequence

(Benegas et al., 2024) Genome-wide Variant
Effect Prediction

Transformer GSNT for 128bp sequences

(Dalla-Torre et al.,
2025)

Multiple Prediction Tasks Transformer Thousands of k-mer tokens

Generation (Tran et al., 2017) De novo peptide
sequencing

LSTM/CNN tandem mass spectrometry
(MS/MS) Spectrum

(Tran et al., 2019) De novo peptide
sequencing

LSTM/CNN data-independent acquisition
(DIA) mass spectrometry data

(Yang et al., 2019) De novo peptide
sequencing

learning-to-
rank

tandem mass spectrometry data

(Bae et al., 2019) Synthetic Medical Data GAN medical data
(Gupta and Zou, 2018) Synthetic DNA Sequences GAN DNA sequences
(Avdeyev et al., 2023) Synthetic DNA Sequences Transformer Up to 1024 base-pairs
(Nguyen et al., 2024a) Synthetic DNA Sequences Transformer Up to 131072 base-pairs
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