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Abstract001

Proteins are central to biological systems, par-002
ticipating as building blocks across all forms003
of life. Despite advancements in understand-004
ing protein functions through protein sequence005
analysis, there remains potential for further ex-006
ploration in integrating protein structural in-007
formation. We argue that the structural in-008
formation of proteins is not only limited to009
their 3D information but also encompasses010
information from amino acid molecules (lo-011
cal information) to protein-protein structure012
similarity (global information). To address013
this, we propose GLProtein, the first frame-014
work in protein pre-training that incorporates015
both global structural similarity and local016
amino acid details to enhance prediction ac-017
curacy and functional insights. GLProtein in-018
novatively combines protein-masked modelling019
with triplet structure similarity scoring, protein020
3D distance encoding and substructure-based021
amino acid molecule encoding. Experimen-022
tal results demonstrate that GLProtein outper-023
forms previous methods in several bioinformat-024
ics tasks, including predicting protein-protein025
interactions, contact prediction, and so on.026
The code is available at https://anonymous.027
4open.science/r/GLProtein-9F2C/.028

1 Introduction029

Proteins are fundamental to virtually every biologi-030

cal process, serving as the building blocks for cells031

and organs and acting as catalysts, messengers, and032

structural elements in all life forms. Understanding033

the structure and function of proteins is crucial for034

advances in health, agriculture, and environmen-035

tal science, making protein research a cornerstone036

of biotechnology and medicinal science (Li et al.,037

2022; Davis et al., 2024; Zhao et al., 2024). Recog-038

nizing the critical role of proteins in various scien-039

tific fields, many efforts have been made to design040

computational methods to further understand these041

crucial molecules (Sliwoski et al., 2014; Zhao et al.,042

Figure 1: An illustration on protein representation learning
flow. Protein information from local information (inside pro-
teins) to global information (between proteins) can be used as
input. This input undergoes encoding by a protein encoder to
generate a protein representation across various downstream
tasks.

2020). Particularly, protein representation learning, 043

as one significant part, involves capturing the com- 044

plex features and relationships within proteins in 045

a condensed form that can be utilized for various 046

computational tasks and analyses. It is crucial for 047

enhancing the understanding of protein structures 048

and functions, improving predictive modelling in 049

bioinformatics, facilitating the drug discovery pro- 050

cess, and advancing our knowledge of biological 051

systems through interpretable and efficient repre- 052

sentations of proteins (Somnath et al., 2021; Liu 053

et al., 2023; Gao et al., 2024). 054

In recent years, the success of language models 055

in natural language processing (NLP) has paved 056

the way for innovative approaches in bioinformat- 057

ics areas, such as protein modeling (Xiao et al., 058

2021; Chowdhury et al., 2022), protein genera- 059

tion (Madani et al., 2020; Ferruz et al., 2022), and 060

protein-protein interaction prediction (Wang et al., 061

2019; Ofer et al., 2021). To be specific, by treat- 062

ing protein sequences as linguistic strings, these 063

models have demonstrated remarkable effective- 064

ness in predicting protein function based on se- 065

quence data alone. Technically, as shown in Figure 066

1, protein sequences (e.g., the amino acid sequence 067

‘MLTAHV...’) are treated as sentences in natural 068

1

https://anonymous.4open.science/r/GLProtein-9F2C/
https://anonymous.4open.science/r/GLProtein-9F2C/
https://anonymous.4open.science/r/GLProtein-9F2C/


language and amino acids (e.g., ‘M’, ‘L’, and ‘T’)069

resemble words. Thus, Leveraging the powerful070

BERT architecture originally developed for natural071

language, ProtBert (Elnaggar et al., 2021) adeptly072

adapts the BERT (Devlin et al., 2018) masked lan-073

guage modelling framework to the field of bioin-074

formatics. This analogy allows ProtBert to employ075

the technique of predicting randomly masked el-076

ements in sequences, thereby learning to identify077

complex patterns and dependencies among amino078

acids. Similar to ProtBert, ESM (Rives et al.,079

2021; Verkuil et al., 2022; Hie et al., 2022) ex-080

tends this paradigm by employing a more refined081

Transformer-based architecture, focusing on cap-082

turing the evolutionary relationships and functional083

dynamics within protein sequences. In other words,084

most existing protein modelling methods aim to085

perform protein representation learning by encod-086

ing the protein’s sequence information for various087

downstream applications, such as amino acid con-088

tact prediction (Singh et al., 2022), protein homol-089

ogy detection (Kaminski et al., 2023), protein sta-090

bility prediction (Chu et al., 2024), protein-protein091

interaction identification (Wang et al., 2019; Ofer092

et al., 2021), etc.093

Despite the aforementioned successes, most ex-094

isting protein language modelling methods suffer095

from intrinsic limitations. Specifically, most of096

their focuses have primarily been on the amino097

acid sequence, often neglecting the crucial aspects098

of protein structure. Proteins possess the ability099

to fold into diverse 3D shapes, interacting with100

various proteins and small molecules in biologi-101

cally significant ways (Jumper et al., 2021; Mirdita102

et al., 2022; Tsaban et al., 2022). Since protein’s103

structure determines function (Greslehner, 2018),104

utilizing protein 3D structure information effec-105

tively is crucial for protein language modelling, in106

which many studies have demonstrated the poten-107

tial of pre-training on experimentally determined108

protein structures (Hermosilla and Ropinski, 2022;109

Su et al., 2023; Wang et al., 2022; Zhang et al.,110

2022). Nevertheless, these methods focus only on111

the structure within proteins and ignore the global112

similarities between proteins. We emphasize that113

the information on protein structure is not only lim-114

ited to its structure (i.e., conformation) in 3D space115

but also includes information ranging from local116

amino acid molecules to the global structural simi-117

larity between proteins, as shown in Figure 1. Lo-118

cal information involves the detailed properties and119

orientations of individual amino acids, which can120

(a) FfIBP (b) CaTrailin_4 (c) Alignment
Figure 2: An example of protein structure similarity. Given
the predictive structures of a protein pair: (a) the bacterial
ice-binding protein FfIBP and (b) the diatom adhesion protein
CaTrailin_4 (Zackova Suchanova et al., 2023; Al-Fatlawi et al.,
2023), (c) is FfIBP (blue) and CaTrailin_4 (green) structure
alignment.

affect protein stability and biochemical activity (Re- 121

naud et al., 2021). These specifics are vital as 122

they demonstrate how modifications or mutations 123

at the amino acid level can alter the overall struc- 124

ture and functionality of the protein (Jumper et al., 125

2021). Furthermore, protein structure similarities 126

provide information on evolutionary relationships 127

and functional classes, which are crucial for under- 128

standing how structurally similar proteins of dif- 129

ferent species can perform similar or complemen- 130

tary functions within biological systems (Hamamsy 131

et al., 2023). For example, as shown in Figure 2, the 132

bacterial ice-binding protein FfIBP and the diatom 133

adhesion protein CaTrailin_4 exhibit no detectable 134

sequence similarity despite their functional similar- 135

ities (Zackova Suchanova et al., 2023; Al-Fatlawi 136

et al., 2023). Their predicted structures exhibit a 137

remarkable similarity (TM-Score = 0.6), with both 138

proteins adopting a beta-helical fold comprised of 139

two units linked by an alpha helix. This structural 140

topology is characteristic of ice-binding proteins. 141

Such comparisons are key to predicting the func- 142

tions of newly discovered proteins based on known 143

structures, thereby enhancing our grasp of complex 144

biological processes and interactions (Lipman and 145

Pearson, 1985; Hamamsy et al., 2022, 2023). How- 146

ever, most existing approaches have ineffectively 147

incorporated amino acid molecule information and 148

protein structural similarities into protein represen- 149

tation learning. 150

To eliminate these limitations, we propose a 151

novel protein pre-training framework GLProtein 152

with Global-and-Local Protein structure informa- 153

tion for protein representation learning. Our major 154

contributions are summarized as follows: 155

• We introduce a principled approach for captur- 156

ing protein structural characteristics in a thor- 157

ough and detailed manner. This approach in- 158

corporates a holistic view of protein structure 159

data, encompassing global structural informa- 160
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tion, protein structure similarities, as well as161

local structure information such as protein162

3D distance encoding and substructure-based163

molecular encoding. To the best of our knowl-164

edge, we are the first to investigate global and165

local protein structure information in protein166

language modelling.167

• We propose a novel protein pre-training frame-168

work (GLProtein), where protein structure169

information is incorporated into protein lan-170

guage models for enhancing protein represen-171

tation learning.172

• The comprehensive experiments demonstrate173

the effectiveness of the proposed method on a174

wide range of downstream tasks, which verify175

the performance superiority of GLProtein.176

2 Related Work177

Protein Langauge Modeling. As an approach to178

protein representation learning, protein language179

modelling is a burgeoning field at the intersection180

of computational biology and natural language pro-181

cessing (NLP). Inspired by the success of language182

models in NLP, researchers have adapted these183

techniques to analyse and predict the properties184

of protein sequences (Fan et al., 2025). Recent185

advancements have been dominated by the appli-186

cation of transformer-based models, which utilise187

self-attention mechanisms to capture relationships188

between amino acids in a sequence. ProtTrans (El-189

naggar et al., 2021) and ESM (Beal, 2015; Verkuil190

et al., 2022; Hie et al., 2022), trained on large-scale191

protein databases, have shown remarkable ability192

in tasks such as protein classification and interac-193

tion prediction. Moreover, OntoProtein (Zhang194

et al.) and KeAP (Zhou et al., 2023) incorporated195

external biological knowledge to enrich protein rep-196

resentations and enhance performance on various197

downstream tasks. However, most of these protein198

language models do not explicitly consider the spa-199

tial structure of proteins and structural similarities200

between proteins, like our proposed approach.201

Protein Structure Modelling. The structure of202

a protein determines its functions. Thus, pro-203

tein structure modelling has been treated as a reli-204

able way to improve protein representation learn-205

ing (Huang et al., 2024; AlQuraishi, 2021; Torrisi206

et al., 2020; Cheng et al., 2008). Some methods207

use Graph Neural Networks (GNNs) to handle the208

complex, non-linear relationships inherent in pro-209

tein structure (Jha et al., 2022; Réau et al., 2023; 210

Xu and Bonvin, 2024). Moreover, RGN2 (Chowd- 211

hury et al., 2022) utilized a protein language model 212

to learn structural information from unaligned pro- 213

tein sequences. GearNet (Zhang et al., 2022) fo- 214

cused on geometric pertaining and learned protein 215

features by utilizing spatial relationships between 216

amino acids. SaProt (Su et al., 2023) introduced 217

the concept of a "structure-aware vocabulary" to 218

integrate residue tokens with structure tokens. Sim- 219

ilar to the knowledge hancing method, PST (Chen 220

et al., 2024) enhances protein language models by 221

integrating structural information through graph 222

transformers to incorporate structural data. Unlike 223

these models, we propose global structure learning 224

and local structure learning methods, which could 225

not only integrate protein structure information and 226

amino acid information but also learn the struc- 227

ture similarity between different proteins by using 228

TM-Score (Hamamsy et al., 2023). 229

3 Methodology 230

In this section, we aim to introduce our proposed 231

framework (GLProtein) as a novel solution to learn 232

global and local protein structure information for 233

protein representation learning. We develop GLPro- 234

tein that incorporates both global and local protein 235

structure information into protein representation 236

learning. The framework of GLProtein, shown in 237

Figure 3, consists of three components: protein 238

language modelling (Section 3.1), global struc- 239

ture information modelling (Section 3.2), and local 240

structure information modelling (Section 3.3). 241

3.1 Protein Language Modelling 242

As shown in the center part of Figure 3, protein 243

language modelling forms the backbone of our pro- 244

posed framework, which aims to learn protein rep- 245

resentation. We adopt a masking strategy that each 246

masked amino acid has an 80% probability of be- 247

ing masked for prediction, a 10% chance of being 248

replaced with a random amino acid, and a 10% 249

chance of remaining unchanged. We then integrate 250

protein 3D distance encoding and substructure- 251

based molecular encoding into a protein decoder, in 252

which we will detail in the local structure informa- 253

tion modelling component. Suppose that the num- 254

ber of masked amino acids is M and xi denotes the 255

i-th amino acid. x∼i denotes the sequence of amino 256

acids excluding the masked amino acid at position 257

i. We leverage a cross-entropy loss LMLM to esti- 258
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Figure 3: Overview of our proposed model, which jointly optimises global protein similarities and masked protein model with
local structure information.

mate masked amino acids. Formally, the masked259

protein modelling objective can be defined as:260

LMLM = − log
∑
i∈M

P (xi|x∼i; θE , θD), (1)261

where θE and θD denote the parameters of the262

protein sequence encoder and decoder, respectively.263

We initialise with a pre-trained BERT-like encoder:264

ProtBert (Elnaggar et al., 2021).265

3.2 Global Structure Information Modelling266

Protein structures encompass more than mere 3D267

spatial configurations; they also include global268

structural information that reflects similarities269

among proteins. To address this, we introduce the270

concept of global structure information, which con-271

tains the structure similarities between proteins, by272

leveraging the huge amount of self-supervised sig-273

nals in protein sequences, as shown at the top of274

Figure 3. To be specific, given each input protein275

sequence, positive and negative protein sampling is276

designed to get the triplet (P, Ppos, Pneg) for cap-277

turing protein structure similarity features. Then,278

the protein triplets are encoded to protein represen-279

tation for the calculation of the contrastive learning280

loss. This optimises the protein sequence encoder281

by bringing the representation of the input protein282

P and its positive samples Ppos closer together283

while pushing the representation of P and its nega-284

tive samples Pneg further apart in the representation285

space.286

Positive and Negative Protein Sampling. TM-287

score (Template Modeling Score) (Zhang and Skol-288

nick, 2004; Xu and Zhang, 2010) is a widely used289

metric in structural biology for assessing the struc- 290

tural similarity between two protein structures. We 291

utilize the TM-score to measure structural simi- 292

larity between proteins, focusing on their overall 293

global structure rather than mere sequence identity. 294

Mathematically, the TM-score can be expressed as: 295

TM-score = max[
1

LN

Lr∑
i=1

1

1 + ( di
d0
)2
], (2) 296

where LN is the length of the native structure, Lr 297

is the length of the aligned residues to the template 298

structures, di is the distance between the i-th pair 299

of residues, and d0 is a scaling factor. 300

We employ a two-pronged approach that utilizes 301

the TM-Vec model (Hamamsy et al., 2023) to con- 302

struct a robust set of positive and negative samples 303

for our protein structure similarity analysis. For 304

positive sample selection, we utilize the TM-Vec 305

model to identify the top-K protein sequences that 306

exhibit the highest TM-score values in relation to 307

the template proteins. 308

In contrast, our negative sampling strategy em- 309

ploys a stochastic selection process followed by 310

structural dissimilarity confirmation. Initially, we 311

randomly select n proteins from our dataset. Subse- 312

quently, we employ the TM-Vec model to compute 313

the TM-score between each selected protein and 314

the template protein. Proteins with a TM-score 315

< 0.2 are classified as negative samples, as this 316

threshold indicates a high degree of structural dis- 317

similarity (Xu and Zhang, 2010). 318

Protein Triplet Modelling. After positive and 319

negative protein sampling, we obtain the triplet 320

(P, Ppos, Pneg). Each protein in the triplet is passed 321
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to the protein sequence encoder, resulting in the322

protein representation, i.e., Ep ∈ RLp×D, Epos
p ∈323

RLp×D and Eneg
p ∈ RLp×D. Lp denotes the length324

of amino acid sequence and D stands for the feature325

dimension.326

Since the task we focus on in this part is con-327

trastive learning, the protein triplet loss is designed.328

This loss function operates by comparing three en-329

tities: anchor protein P , positive protein Ppos and330

negative protein Pneg. Thus, given protein repre-331

sentation triplet (P, Ppos, Pneg), the protein triplet332

loss LPTL can be defined as:333

LPTL(P, Ppos, Pneg) =

max(||Ep −Epos
p ||2 − ||Ep −Eneg

p ||2 + ϵ, 0),
(3)334

where Ep, Epos
p , Eneg

p ∈ RLp×D are protein335

representation of the triplet (P, Ppos, Pneg). ϵ is a336

margin between positive and negative pairs.337

3.3 Local Structure Information Modelling338

While the global structure information modelling339

component is designed to identify structural simi-340

larities across different proteins, the local structure341

information modelling component zooms in on the342

specific, intricate features of a protein’s internal343

structure, providing a more nuanced understanding.344

More specifically, in this part, we leverage the local345

structural details of proteins, including protein 3D346

distance encoding and substructure-based molecu-347

lar encoding, to enhance the model’s ability to learn348

and interpret this local configuration effectively, as349

shown at the bottom of Figure 3.350

Protein 3D Distance Encoding. The 3D coor-351

dinates provide critical insights into how proteins352

fold and interact in three-dimensional space, influ-353

encing their stability, activity, and specificity (Liu354

et al., 2022; Peng et al., 2022; Su et al., 2023). We355

use AlphaFoldDB1 as the 3D protein database and356

integrate the protein 3D distance encoding (Ying357

et al., 2021) to represent protein 3D structural infor-358

mation to ensure rotational and translational invari-359

ance. We propose to take advantage of the alpha-360

carbon (α-C) coordinates rather than the entire361

protein coordinates in protein representation learn-362

ing. By capturing the backbone conformation, α-C363

coordinates effectively convey the protein’s overall364

shape and folding pattern, which are critical for365

understanding its function. Moreover, leveraging366

α-C coordinates balances capturing essential struc-367

tural information and maintaining computational368

efficiency.369

1https://alphafold.ebi.ac.uk/

Specifically, the coordinates of each α-C are 370

processed to represent the current position of 371

the amino acid in 3D space. Then, we encode 372

the Euclidean distance metric to reflect the spa- 373

tial relation between any pair of amino acids 374

in the 3D space. Mathematically, given each 375

amino acid pair (i, j), we first process their Eu- 376

clidean distance with the Gaussian Basis Ker- 377

nel function (Scholkopf et al., 1997), ϕk
(i,j) = 378

− 1√
2π|σk| exp(−

1
2(

γ(i,j)||ri−rj||+β(i,j)−µk

|σk| )2), 379

where k = 1, . . . ,K. K is the number of Gaus- 380

sian Basis kernels. Then, the 3D distance encoding 381

can be calculated as follows: 382

Φdistance
(i,j) = GELU(ϕ(i,j)W

1
D)W 2

D, (4) 383

where ϕ(i,j) = [ϕ1
(i,j); . . . ;ϕ

K
(i,j)]

⊤. W 1
D ∈ 384

RK×K , W 2
D ∈ RK×1 are learnable parameters. 385

γ(i,j), β(i,j) are learnable scalars indexed by the 386

pair of amino acid types, and µk, σk are learnable 387

kernel center and learnable scaling factor of the k- 388

th Gaussian Basis Kernel. Denote Φdistance as the 389

matrix form of the 3D distance encoding, whose 390

shape is n× n. 391

Substructure-based Molecular Encoding. As 392

more detailed information about protein localisa- 393

tion, amino acid molecules play a crucial role in 394

protein representation learning, as they form the 395

essential building blocks of proteins and provide 396

the foundational data for understanding protein 397

structure and function (Lieu et al., 2020; Lopez 398

and Mohiuddin, 2024). To learn the fine-grained 399

amino acid structure information, we introduce 400

substructure-based molecular encoding to leverage 401

the inherent relationships between molecule motifs 402

and substructural features in amino acid molecules. 403

In practice, we utilize the mol2vec (Jaeger et al., 404

2018) to process and derive representations for all 405

amino acid molecules to obtain fine-grained molec- 406

ular structure information. For protein P , we have 407
Ea(P ) = Concat(ex1 , ex2 , . . . , exi , . . . , exL), 408

where exi ∈ R1×d, L is the length of the protein 409

sequence, exi is the i-th amino acid molecule em- 410

bedding, and d stands for the feature dimension of 411

the amino acid molecule. 412

3.4 Model Training 413

In this part, we will first detail the protein decoder 414

process, which combines protein language mod- 415

elling and local structure information modelling 416

components. Finally, the pre-training objective of 417

the whole framework will be stated. 418
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Protein Decoder. As shown in Figure 3, the de-419

coder treats protein representation Ep as a query,420

while the substructure-based molecular encodings421

Ea are attended to as keys and values and protein422

3D distance encoding Φdistance is attended to as423

attention bias. Taking the i-th layer as an exam-424

ple, the inputs to the protein decoder include Ei
p,425

Φdistance and Ea. The substructure-based molecu-426

lar encoding Ea is firstly queries by Ei
p as the key427

and value:428
Qi

p = Norm(Ei
p)W

i
Q,

Ki
a = Norm(Ea)W

i
K ,

V i
a = Norm(Ea)W

i
V ,

429

where W i
Q,W i

K ,W i
V are learnable matrices.430

Norm stands for the layer normalization (Ba et al.,431

2016).432

Then, Attention (Vaswani et al., 2017) is applied433

to {Qi
p,K

i
a, V

i
a}, where the representation of pro-434

tein sequence extracts helpful, relevant information435

from the substructure-based molecular encoding.436

The obtained representation oip stores the helpful437

structure information for restoring missing amino438

aids. We then add up oip and Ei
p to integrate in-439

formation, resulting in the representation Êi
p as440

follows:441

oip = Attention(Qi
p,K

i
a, V

i
a ,Φ

distance),

Êi
p = Norm(Ei

p) + oip.
442

The resulting representation Êi
p integrates the443

helpful, relevant structure information that bene-444

fits the restoration of missing amino acids. We445

finally forward Êi
p through a residual multi-layer446

perceptron to obtain the output representation of447

the i-th block, which also serves as the input to the448

(i+ 1)-th block.449

Pre-training Objective. To estimate the model450

parameters of GLProtein, we adopt the masked451

protein modelling object and global protein triplet452

objective to construct the overall model. We jointly453

optimize the overall objective as follows:454

L = LMLM + αLPTL, (5)455

where α is the hyper-parameter.456

4 Experiments457

In this section, we evaluate the generalization abil-458

ity of the learned protein representation by fine-459

tuning the pre-trained model across a diverse ar-460

ray of downstream applications, including amino461

acid contact prediction, protein homology detec-462

tion, protein stability prediction, protein-protein463

interaction identification, protein-protein binding 464

affinity prediction and semantic similarity infer- 465

ence. 466

Pretraining Datasets. Swiss-Prot (Boeckmann 467

et al., 2003) offers a comprehensive and manually 468

curated protein sequence database that includes 469

nearly 600k protein sequences. We use it as per- 470

taining dataset. Additionally, we use AlphaFoldDB 471

to obtain the protein 3D coordinate datasets. 472

Implementation Details. We conducted some 473

experiments and compared GLProtein with base- 474

lines regarding pre-training and inference time in 475

contact prediction tasks, as shown in Appendix Ta- 476

ble 5. GLProtein outperforms baselines in multiple 477

downstream tasks with similar parameters. During 478

pre-training, GLProtein is trained for 300k steps 479

using a learning rate of 1e-5, weight decay of 0.01 480

over four GPUs (NVIDIA A6000, 48G Memory 481

each). For the amino acid contact prediction and 482

protein-protein interaction task, we randomly se- 483

lected five random seeds to fine-tune our model 484

and the baseline model separately and report the 485

results. For full implementation details, refer to the 486

provided code. 487

4.1 Downstream Tasks 488

4.1.1 Amino Acid Contact Prediction 489

Overview. Amino acid contact prediction is a criti- 490

cal task in computational biology, aiming to iden- 491

tify pairs of amino acids within a protein that are in 492

close spatial proximity. Given an input protein se- 493

quence, our model predicts whether pairs of amino 494

acids from the same sequence are in contact. The 495

model accomplishes this by generating a probabil- 496

ity contact matrix for each input protein. We tested 497

the model on the dataset collected and organized 498

by ProteinNet (AlQuraishi, 2019) and TAPE (Rao 499

et al., 2019). 500

Baselines. We evaluate our model compared 501

with ten baselines. Specifically, we employed 502

variations of LSTM (Hochreiter and Schmidhu- 503

ber, 1997), ResNet (He et al., 2016) and Trans- 504

former (Vaswani et al., 2017) proposed by the 505

TAPE benchmark (Rao et al., 2019). ProtBert (El- 506

naggar et al., 2021) is a BERT-like model pre- 507

trained on UniRef100 (Suzek et al., 2007, 2015). 508

ESM-2 (Rives et al., 2021; Verkuil et al., 2022; 509

Hie et al., 2022) feature a transformer architec- 510

ture pre-trained on the representative sequences 511

from UniRef50 (Suzek et al., 2007, 2015). On- 512

toProtein (Zhang et al.) and KeAP (Zhou et al., 513
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6 ≤ seq < 12 12 ≤ seq < 24 24 ≤ seq

P@L P@L/2 P@L/5 P@L P@L/2 P@L/5 P@L P@L/2 P@L/5

LSTM 0.26(±0.02) 0.36(±0.01) 0.49(±0.03) 0.20(±0.02) 0.26(±0.02) 0.34(±0.03) 0.20(±0.01) 0.23(±0.02) 0.27(±0.02)

ResNet 0.25(±0.02) 0.34(±0.02) 0.46(±0.02) 0.28(±0.01) 0.25(±0.01) 0.35(±0.03) 0.10(±0.03) 0.13(±0.02) 0.17(±0.03)

Transformer 0.28(±0.03) 0.35(±0.01) 0.46(±0.02) 0.19(±0.02) 0.25(±0.02) 0.33(±0.01) 0.17(±0.02) 0.20(±0.02) 0.24(±0.02)

ProtBert 0.30(±0.03) 0.40(±0.02) 0.52(±0.02) 0.27(±0.03) 0.35(±0.02) 0.47(±0.01) 0.20(±0.01) 0.26(±0.02) 0.34(±0.01)

OntoProtein 0.37(±0.02) 0.46(±0.01) 0.57(±0.03) 0.32(±0.01) 0.40(±0.02) 0.50(±0.02) 0.24(±0.03) 0.31(±0.01) 0.39(±0.03)

LM-GVP 0.35(±0.02) 0.42(±0.02) 0.49(±0.02) 0.33(±0.03) 0.43(±0.02) 0.51(±0.03) 0.26(±0.02) 0.37(±0.02) 0.43(±0.03)

GearNet 0.39(±0.02) 0.46(±0.02) 0.57(±0.02) 0.36(±0.03) 0.44(±0.02) 0.55(±0.03) 0.29(±0.02) 0.37(±0.01) 0.45(±0.02)

SaProt 0.41(±0.02) 0.39(±0.03) 0.42(±0.02) 0.38(±0.01) 0.37(±0.01) 0.41(±0.01) 0.24(±0.02) 0.27(±0.03) 0.37(±0.02)

KeAP 0.41(±0.04) 0.52(±0.02) 0.62(±0.03) 0.36(±0.01) 0.45(±0.01) 0.57(±0.01) 0.29(±0.02) 0.37(±0.03) 0.46(±0.02)

ESM-2 0.42(±0.02) 0.49(±0.03) 0.63(±0.01) 0.37(±0.01) 0.43(±0.01) 0.57(±0.02) 0.30(±0.02) 0.38(±0.03) 0.46(±0.02)

GLProtein 0.45(±0.02) 0.55(±0.02) 0.66(±0.01) 0.39(±0.03) 0.48(±0.01) 0.58(±0.02) 0.31(±0.02) 0.40(±0.01) 0.47(±0.02)

Table 1: Comparisons on amino acid contact prediction. seq signifies the distance, measured in terms of amino acid units,
between two selected amino acids. P@L, P@L/2, P@L/5 denote the precision scores calculated upon top L (i.e., L most likely
contacts), top L/2, and top L/5 predictions, respectively. The best results are bolded, and the second-best results are underlined.
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Figure 4: An example of amino acid contacts (top-L predictions for ProteinNet (AlQuraishi, 2019) test example
TBM-hard#T0912). Raw contact probabilities are shown below the diagonal, top L contacts are shown above the diagonal (blue:
true positives, red: false positives, grey: ground-truth contacts).

2023) are the most recent knowledge-based pre-514

training methodologies. SaProt (Su et al., 2023) is515

the most recent structure-based protein language516

model. LM-GVP (Wang et al., 2022) and Gear-517

Net (Zhang et al., 2022) are famous geometric518

methods for protein representation learning.519

Results. Table 1 shows the experimental results520

of amino acid contact prediction. Specifically, we521

notice that our model GLProtein consistently out-522

performs other models in short- (6 ≤ seq < 12),523

medium- (12 ≤ seq < 24) and long-range (seq >524

24) contact predictions. Notably, our model demon-525

strates better performance compared to SaProt,526

which is also a structure-based language model.527

We also randomly selected a protein from the con-528

tact test dataset for visual analysis. As shown in529

Figure 4, the left is our GLProtein’s result of amino530

acid contacts. The right three are the contact maps531

of three baseline models, including KeAP, ESM-2532

and ProtBERT. Figure 4 shows more visually that533

GLProtein’s prediction on the task of contact pre-534

diction is closer to labels, i.e., better performance535

on long-range contact prediction. We attribute the536

enhancements in performance achieved by GLPro- 537

tein to its innovative integration of global and local 538

structural information, which allows the pre-trained 539

model to gain a deeper understanding of protein 540

structure. More results can be found in the Ap- 541

pendix A.1. 542

4.1.2 Protein-Protein Interaction 543

Overview. Protein-protein interaction (PPI) is fun- 544

damental to virtually all biological processes and 545

pathways in living organisms. It refers to the physi- 546

cal contact between two or more amino acid se- 547

quences. In this paper, we only focus on two- 548

protein cases where a pair of protein sequences 549

serve as the inputs. The objective is to accurately 550

predict the specific types of interactions that occur 551

between each pair of proteins. 552

In our experiments, we focus on predicting 7 553

interaction types between protein pairs, namely re- 554

action, binding, post-translational modifications, 555

activation, inhibition, catalysis, and expression. 556

The challenge of PPI prediction is approached 557

as a multi-label classification problem. We 558

conducted our experiments using three datasets: 559
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Accuracy on SS-Q3 Accuracy on SS-Q8 P@L/2 on Contact 

Accuracy on Homology Speraman's  on Fluorescence Speraman's  on Stability

Figure 5: Results on TAPE Benchmark encompass various evaluations. SS is a secondary structure task that is evaluated in
CB315. We report medium- and long-range results using P@L/2 metrics in contact prediction task. In fluorescence and stability
prediction tasks, we use Spearman’s ρ metric for evaluation. We also provide a related table in Appendix A.1.

SHS27K (Chen et al., 2019), SHS148K (Chen560

et al., 2019) and STRING (Lv et al., 2021). Both561

SHS27K and SHS148K are considered subsets of562

STRING, with proteins excluded if they have fewer563

than 50 amino acids or exhibit 40% or higher se-564

quence identity. We followed OntoProtein’s setting565

to generate test sets and employed Breadth-First566

Search (BFS) and Depth-First Search (DFS) tech-567

niques across these datasets. The F1 score is uti-568

lized as the primary metric for evaluating perfor-569

mance.570

Baselines. Following OntoProtein (Zhang et al.)571

and KeAP(Zhou et al., 2023), we have expanded572

our baseline models to include four additional meth-573

ods: DPPI (Hashemifar et al., 2018), DNN-PPI (Li574

et al., 2018), PIPR (Chen et al., 2019) and GNN-575

PPI (Lv et al., 2021). These are incorporated along-576

side existing baselines such as ProtBert, ESM-2,577

OntoProtein, KeAP, SaProt, LM-GVP and Gear-578

Net, providing a comprehensive set of comparisons579

in our analysis.580

Results. As shown in Table 2, the results clearly581

indicate that our method consistently outperforms582

all other methods, including the structure-based583

protein language model SaProt, across all datasets584

and both BFS and DFS evaluation metrics. The585

observed decline in performance can be linked to586

the growing amount of fine-tuning data, transition-587

ing from SHS27k to STRING, which diminished588

the influence of pre-training. We believe that the589

structural similarities between proteins identified590

SHS27k SHS148k STRING

Methods BFS DFS BFS DFS BFS DFS

DPPI 40.27(±0.74) 44.86(±0.87) 51.26(±0.66) 51.43(±0.94) 55.79(±0.81) 64.72(±0.94)

DNN-PPI 47.97(±0.94) 52.85(±0.91) 55.90(±0.67) 57.82(±0.78) 52.74(±0.89) 62.99(±0.93)

PIPR 43.67(±0.99) 56.76(±0.82) 60.10(±0.85) 61.83(±0.94) 53.65(±0.88) 66.46(±0.92)

GNN-PPI 62.47(±0.65) 73.19(±0.89) 71.01(±0.92) 81.54(±0.87) 75.34(±0.82) 90.01(±0.78)

ProtBert 68.44(±0.78) 72.36(±0.85) 70.06(±0.88) 77.46(±0.62) 66.08(±0.91) 86.45(±0.82)

OntoProtein 71.37(±0.84) 76.28(±0.77) 74.60(±0.56) 76.33(±0.69) 75.64(±0.91) 90.23(±0.79)

KeAP 78.51(±0.95) 78.84(±0.85) 74.26(±0.89) 81.99(±0.92) 80.08(±0.79) 88.47(±0.71)

LM-GVP 80.25(±1.24) 79.42(±0.83) 77.6(±0.76) 80.36(±0.97) 81.17(±0.58) 85.67(±0.74)

GearNet 85.46(±0.61) 82.73(±0.69) 80.02(±1.26) 82.28(±0.93) 85.55(±0.74) 88.03(±0.51)

ESM-2 94.01(±0.77) 87.32(±0.97) 91.46(±0.63) 85.24(±0.46) 88.13(±0.71) 85.53(±0.55)

SaProt 91.18(±0.73) 88.85(±1.04) 90.75(±0.91) 80.67(±0.90) 88.23(±0.81) 88.90(±0.74)

GLProtein 96.32(±0.86) 91.23(±0.92) 93.78(±0.77) 86.14(±0.69) 89.41(±0.66) 91.35(±0.89)

Table 2: Protein-Protein Interaction Prediction Results.
Breath-First Search (BFS) and Depth-First Search (DFS) are
strategies that split the training and testing PPI datasets. The
best results are bolded, and the second-best results are under-
lined.

during the pre-training step enable GLProtein to 591

excel in the PPI task, resulting in its outstanding 592

performance. 593

5 Conclusion and Future Work 594

In this work, we propose GLProtein, a general pro- 595

tein language model with global and local protein 596

structure information. GLProtien outperforms the 597

previous protein representation learning model on 598

most downstream applications, demonstrating the 599

performance superiority of GLProtein. In the fu- 600

ture, we aim to further enhance GLProtein’s capa- 601

bilities by exploring novel avenues for incorporat- 602

ing multi-modal data sources, refining the model’s 603

interpretability, and extending its applicability to a 604

wider array of biological contexts. 605
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6 Limitations606

We have observed that GLProtein underperforms607

on certain individual tasks. For instance, in the608

protein-protein binding affinity prediction task,609

ESM-2 surpasses GLProtein. This task focuses610

on predicting changes in binding affinity resulting611

from protein mutations. We believe that GLPro-612

tein’s limited performance is attributed to its lack613

of mutation information, whereas ESM-2 incorpo-614

rates multiple sequence alignment (MSA) data dur-615

ing training, which includes mutation insights. Sim-616

ilarly, in the Fluorescence task, GLProtein does not617

demonstrate significant improvement when tasked618

with distinguishing closely related proteins. We hy-619

pothesize that while GLProtein effectively learns620

structural similarities among different proteins dur-621

ing pre-training, it excels at identifying differences622

between dissimilar structures but struggles to dif-623

ferentiate between similar ones. We plan to further624

investigate these issues in our future research.625
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A.1 Results on TAPE Benchmark1000

In addition to the Figure version, we also provide1001

results on TAPE benchmark in a tabular version. As1002

shown in Table 6, our model GLProtein performs1003

competitive performance on many tasks, especially1004

on the contact prediction and stability prediction1005

tasks.1006

A.2 Secondary structure prediction1007

Overview. Secondary structure is a fundamen-1008

tal aspect of computational biology, aiming to de-1009

termine the local structures of protein segments.1010

this task is a sequence-to-sequence task where1011

each input protein is mapped to a type of local1012

structure. We report accuracy on a per-amino1013

acid basis on the CB513 dataset (Cuff and Bar-1014

ton, 1999). Baselines. We evaluate our model1015

compared with ten baselines. Specifically, we1016

employed variations of LSTM (Hochreiter and1017

Schmidhuber, 1997), ResNet (He et al., 2016) and1018

Transformer (Vaswani et al., 2017) proposed by the1019

TAPE benchmark (Rao et al., 2019). ProtBert (El-1020

naggar et al., 2021) is a BERT-like model pre-1021

trained on UniRef100 (Suzek et al., 2007, 2015).1022

ESM-2 (Rives et al., 2021; Verkuil et al., 2022;1023

Hie et al., 2022) feature a transformer architec-1024

ture pre-trained on the representative sequences1025

from UniRef50 (Suzek et al., 2007, 2015). On-1026

toProtein (Zhang et al.) and KeAP (Zhou et al.,1027

2023) are the most recent knowledge-based pre-1028

training methodologies. SaProt (Su et al., 2023) is1029

the most recent structure-based protein language 1030

model. LM-GVP (Wang et al., 2022) and Gear- 1031

Net (Zhang et al., 2022) are famous geometric 1032

methods for protein representation learning. 1033

Results. For the secondary structure (SS-Q3 and 1034

SS-Q8), as shown in Figure 5, GLProtein outper- 1035

forms other baselines in SS-Q8 task and shows 1036

competitive performance with ProtBERT, OntoPro- 1037

tein and KeAP in SS-Q3 task. Considering the ap- 1038

proaches taken by Saprot, LM-GVP, and GearNet, 1039

which also incorporate protein structural informa- 1040

tion, the evident performance superiority of GL- 1041

Protein over these methods indicates that it offers 1042

a more effective option for structure-based protein 1043

representation learning. We attribute the enhance- 1044

ments in performance achieved by GLProtein to its 1045

innovative integration of global and local structural 1046

information, which allows the pre-trained model to 1047

gain a deeper understanding of protein structure. 1048

A.3 Homology Detection, Fluorescence and 1049

Stability Prediction 1050

Overview of homology detection. The task of pre- 1051

dicting remote homology in proteins can be viewed 1052

as a classification problem at the molecular level. 1053

The objective is to input a protein sequence into the 1054

homology detection model, which then identifies 1055

the correct types of protein fold. In our paper, this 1056

presents a significant challenge with 1,195 distinct 1057

protein folds to classify. We utilize data sources 1058

from (Hou et al., 2018) and present the average 1059

accuracy achieved on the fold-level heldout set. 1060

Overview of fluorescence prediction. In the realm 1061

of protein science, fluorescence prediction is a vi- 1062

tal task that involves estimating the fluorescence 1063

properties of proteins. This is a regression task 1064

where each input protein is mapped to a label mea- 1065

suring the most extreme circumstances in which 1066

the protein maintains its fold above a concentra- 1067

tion threshold. We use the data from (Rocklin 1068

et al., 2017) and use Spearman’s rank correlation 1069

coefficient as the metric. 1070

Overview of stability prediction. Stability predic- 1071

tion involves estimating the resilience of a protein’s 1072

structure under various environmental conditions, 1073

a critical factor in understanding its functional ef- 1074

ficacy and therapeutic potential. This regression 1075

task focuses on predicting the intrinsic stability 1076

of proteins, which is essential for assessing their 1077

capacity to preserve their structural integrity un- 1078

der severe conditions. To assess the effectiveness 1079

of our model, we measure its performance using 1080
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Spearman’s rank correlation coefficient across the1081

entire test set (Rocklin et al., 2017).1082

Baselines. As shown in Figure 5, we included ten1083

protein model as baselines.1084

Results. As for fluorescence prediction, Figure1085

5 shows our model has the most competitive per-1086

formance compared to Transformer and KeAP. In1087

the domain of stability prediction, our model again1088

shows the highest performance with a score of 0.81.1089

This is significantly higher compared to other mod-1090

els, indicating its potential utility in applications1091

like drug design and protein engineering, where1092

stability is paramount.1093

A.4 Protein Function Prediction1094

1095

Overview. Protein function prediction aims to as-1096

sign biological or biochemical roles to proteins, and1097

we also regard this task as a sequence classification1098

task. Following KeAP (Zhou et al., 2023), we di-1099

vide protein attributes into three groups: molecular1100

function (MF), biological process (BP) and cellular1101

component (CC), and report the Spearman’s rank1102

correlation scores for each group.1103

Baselines. We evaluate our model compared with1104

five baselines, including ESM-2, ProtBERT, Onto-1105

Protein, SaProt and KeAP.1106

Methods MF BP CC Avg

ESM-2 0.31 0.42 0.28 0.34
ProtBert 0.41 0.35 0.36 0.37
OntoProtien 0.41 0.36 0.36 0.38
SaProt 0.40 0.40 0.39 0.40
KeAP 0.40 0.40 0.40 0.40
GLProtein 0.41 0.40 0.39 0.40

Table 3: Comparisons on semantic similarity inference. The
best results are bolded, and the second-best results are under-
lined.

Results. Table 3 assesses the performance of var-1107

ious computational models in prediction protein1108

functions in three categories: MF, BP and CC. Ad-1109

ditionally, an average score (Avg) is calculated for1110

each method to provide a holistic view of perfor-1111

mance across all categories. These models all show1112

a balanced performance in three groups. It is worth1113

noting that our model does not use any protein1114

attribute-related knowledge and is comparable to1115

OntoProtein and KeAP, which do. It also demon-1116

strates the superiority of our approach.1117

A.5 Protein-Protein Binding Affinity 1118

Estimation 1119

Overview. In this task, we focus on assessing how 1120

well protein representations can predict changes 1121

in binding affinity caused by protein mutations. 1122

This regression task involves associating each pro- 1123

tein pair with a numerical value. Following the 1124

methodology described in (Unsal et al., 2022), 1125

we employ Bayesian ridge regression on the out- 1126

comes of element-wise multiplication of representa- 1127

tions derived from pre-trained protein models. This 1128

approach is designed to enhance the accuracy of 1129

binding affinity predictions. We used the SKEMPI 1130

dataset from (Moal and Fernández-Recio, 2012) 1131

and reported the mean square error of 10-fold cross- 1132

validation. 1133

Baselines. We evaluate our model compared 1134

with six baselines. Specifically, we employed 1135

PIPR (Chen et al., 2019), ProtBert (Elnaggar et al., 1136

2021), ESM-2 (Rives et al., 2021; Verkuil et al., 1137

2022; Hie et al., 2022), SaProt (Su et al., 2023), 1138

OntoProtein (Zhang et al.) and KeAP (Zhou et al., 1139

2023). PIPR is a siamese-residual-RCNN-based 1140

model for multifaceted protein–protein interac- 1141

tion prediction. ProtBert is a BERT-like model 1142

pre-trained on UniRef100 (Suzek et al., 2007, 1143

2015). ESM-2 feature a transformer architecture 1144

pre-trained on the representative sequences from 1145

UniRef50 (Suzek et al., 2007, 2015). SaProt is 1146

the most recent structure-based protein language 1147

model. OntoProtein and KeAP are the most recent 1148

knowledge-based pre-training methodologies. 1149

Methods Affinity(↓)

PIPR 0.63
ProtBert 0.58
ESM-2 0.48
SaProt 0.58
OntoProtien 0.59
KeAP 0.52
GLProtein 0.52

Table 4: Comparisons on protein-protein binding affinity pre-
diction, with the best result bolded and the second best un-
derlined. The notion ↓ signifies a preference for lower values,
reflecting a superior predictive performance in this context.

Results. Table 4 compares several methods of pre- 1150

dicting the binding affinity of protein interactions, 1151

where a lower score indicates superior performance. 1152

GLProtein outperforms PIPR, ProtBert, SaProt and 1153

OntoProtein. It also shows the competitive perfor- 1154
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Parameters Resouces Pre-training Inference
(40 examples)

ProtBert 400M A single TPU Pod V3-512 400k steps 2.02s
OntoProtein 400M 4 NVIDIA 48G A6000 GPUs 3 Days (continue pertaining on ProtBert) 1.91s
KeAP 400M 4 NVIDIA 48G A6000 GPUs 3 Days (continue pertaining on ProtBert) 1.94s
SaProt 650M 64 NVIDIA 80G A100 GPUs 3 Months 3.02s
ESM-2 650M - - 2.45s
GLProtein 400M 4 NVIDIA 48G A6000 GPUs 3 Days (continue pertaining on ProtBert) 1.93s

Table 5: Comparison of the number of parameters, resources, pre-training time, and inference time for GLProtein and baselines.

mance of KeAP and ESM-2.1155

A.6 Ablation Study1156

Figure 6: Left: Ablations of three proposed approaches. Long-
range P@L/2 results are reported for contact prediction. Right:
Ablations of three proposed approaches. F1 scores are re-
ported for protein-protein interaction tasks.

We investigated the effects of employing di-1157

verse protein structure information fusion strate-1158

gies. First of all, the exclusion of the global struc-1159

ture information modelling component (representa-1160

tion as "w/o triplet" in Figure 6) resulted in vary-1161

ing degrees of performance deterioration across1162

contact prediction and protein-protein interaction1163

prediction tasks. This observation suggests that1164

our global structure similarities through protein1165

triplet contrastive learning stand out as a more effi-1166

cacious choice. Subsequently, upon removing the1167

proposed substructure-based molecular encoding1168

from the local protein structure information compo-1169

nent (denoted as "w/o aa" in Figure 6), we noted a1170

decline in performance by approximately 2.5% and1171

8% for contact prediction and protein-protein in-1172

teraction tasks, respectively. This underscores the1173

essential role of substructure-based molecular en-1174

coding within our proposed methodologies. Finally1175

when the protein 3D distance encoding was omit-1176

ted from the local structure information modelling1177

component (indicated as "w/o coord" in Figure 6),1178

a similar trend of performance degradation was ob-1179

served, further emphasizing the indispensability of1180

this strategy within our architectural framework.1181

A.7 Parameter Sensitivity Study1182

In this section, we explore the impact of the param-1183

eters in the model on the final performance of our1184

protein model. We experimented with the number 1185

of protein samples in the protein local structure in- 1186

formation modelling component and the coefficient 1187

of contrastive learning loss for the protein triplet, 1188

respectively. 1189

As shown in Figure 7, we test the number of 1190

protein samples from 1 to 4 on the contact predic- 1191

tion task. We observe that as the number of protein 1192

samples increases, the performance of our model 1193

improves to varying degrees in short-, medium- 1194

and long-range contact prediction. This also shows 1195

that our proposed protein triplet approach indeed 1196

enables the protein language model to capture the 1197

structural similarity features among proteins. Due 1198

to computational and memory cost considerations, 1199

we ended up constructing 4 protein positive sam- 1200

ples and 4 protein negative samples for each pro- 1201

tein. 1202

As shown in Figure 8, we test the value of 1203

the coefficient α of contrastive learning loss for 1204

the protein triplet. We divided the experiment 1205

into 6 groups and set the values of α to 0.1, 0.3, 1206

0.5, 1, 3, and 5. Then, we evaluated them using 1207

the protein-protein interaction prediction task on 1208

SHS27k, SHS148k, and STRING datasets, respec- 1209

tively. We observe that the model achieves the best 1210

performance when the value of α is set to 1. Thus, 1211

we choose α = 1 in this paper as our model’s 1212

setting. 1213

A.8 Visualization of Protein Representations 1214

To facilitate a more intuitive comparison, we uti- 1215

lize t-SNE to visualize the protein representations 1216

produced by GLProtein, ESM2, KeAP, and Prot- 1217

Bert. The visualization results, based on the non- 1218

redundant subset (PIDE ≤ 40%) of the SCOPe 1219

database (Chandonia et al., 2019), are illustrated 1220

in Figure 9. As depicted in this figure, the repre- 1221

sentations for alpha and beta proteins generated by 1222

GLProtein are distinctly separated, whereas those 1223

produced by ESM-2, KeAP, and ProtBert are more 1224

closely intertwined. 1225
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Structure Evolutionary Engineering
SS-Q3 SS-Q8 Contact Homology Fluorescence Stability

SaProt 0.51 0.45 0.37 0.12 0.25 0.46
LSTM 0.75 0.59 0.26 0.26 0.67 0.69
Transformer 0.73 0.59 0.25 0.21 0.68 0.73
ResNet 0.75 0.58 0.25 0.17 0.21 0.73
ESM-2 0.70 0.54 0.43 0.10 0.30 0.65
LM-GVP 0.69 0.50 0.43 0.20 0.64 0.69
GearNet 0.71 0.55 0.44 0.25 0.67 0.78
ProtBert 0.82 0.67 0.35 0.29 0.61 0.73
OntoProtein 0.82 0.67 0.40 0.24 0.65 0.74
KeAP 0.82 0.67 0.45 0.29 0.67 0.75
GLProtein 0.82 0.68 0.48 0.28 0.67 0.81

Table 6: Results on TAPE Benchmark. SS is a secondary structure task that is evaluated in CB315. In contact prediction, we test
medium- and long-range using P@L/2 metrics. In protein engineering tasks, we test fluorescence and stability prediction using
Spearman’s ρ metric.

Figure 7: Parameter sensitivity study on the number of protein samples in the local structure information component.

Figure 8: Parameter sensitivity study on the value of the coefficient α of contrastive learning loss for the protein triplet in the
local structure information component.

16



All alpha proteins All beta proteins

Our Proposed GLProtein

All alpha proteins All beta proteins

ESM-2

All alpha proteins All beta proteins

KeAP

All alpha proteins All beta proteins

ProtBert

Figure 9: Embedding visualizations of GLProtein, ESM-2, KeAP and ProtBert on SCOPe database.

A.9 Time Complexity Analysis1226

We provide a more specific complexity analysis1227

as follows: protein encoder operates at approx-1228

imately O(L2d), where L is the length of pro-1229

tein sequence and d is the embedding dimen-1230

sion. Triplet protein sampling operates at ap-1231

proximately O(L3), reducing the complexity to1232

O(L2) by TM-Vec. Triplet loss operates at approx-1233

imately O(3Ld) → O(Ld). Protein 3D distance1234

encoding operated at approximately O(KL2d),1235

where K is the number of Gaussian Basis kernels.1236

Substructure-based molecular encoding operates1237

at approximately O(Ld). Protein decoder oper-1238

ates at approximately O(L2d). Total computation1239

cost operated at Ototal = Oencoder + Oglobal +1240

Olocal +Odecoder = O(L2d) +O(L2) +O(Ld) +1241

O(KL2d) +O(L2d) = O((K + 1)L2d).1242
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