RSP4J: Towards an unifying API for RDF
Stream Processing

Pieter Bonte', Riccardo Tommasini?, Emanuele Della Valle? and
Femke Ongenae!

1 Ghent University - imec, Ghent, Belgium
firstname.lastname@ugent.be
2 University of Tartu, Data System Group, Estonia
riccardo.tommasini@Qut.ee
3 Politecnico di Milano, DEIB, Milan, Italy
emanuele.dellavalle@polimi.it

Abstract. Within the RDF Stream Processing (RSP) community, sev-
eral languages and engines have been proposed for continuous querying
over RDF streams. However, they lack standardization and shared design
principles, making comparative research and benchmarking extremely
hard. This has led to the design of RSPQL, i.e., a unifying model for
RSP. However, an RSP API for the development under RSPQL seman-
tics was still missing. We propose RSP4J, a flexible API for the develop-
ment of RSP engines and applications under RSPQL semantics. RSP4J
will be presented at the ESWC 2021 Resources Track, while this paper
also identifies the future plans for RSP4J.

1 Introduction

Data-intensive domains, such as the Internet of Things and social media have
unveiled the streaming nature of information [6]. Stream Reasoning (SR) and
in particular RDF Stream Processing (RSP) is the research area that combines
Stream Processing and Semantic Web technologies in order to extract actionable
insights from heterogeneous data streams [9].

The SR community has proposed various RSP languages as extensions of
SPARQL that support some form of continuous semantics, e.g., C-SPARQL,
CQELS-QL, SPARQL;reqm, and Strider-QL. Each of the languages is typically
paired with a prototype engine to help prove the feasibility of the approach
and study the efficiency. However, the lack of standardization and shared design
principles of these RSP engines are obstructing the growth of the community. As
prototyping efforts remain isolated, the costs of development and maintenance
of prototypes remain on the shoulder of individuals researchers. Furthermore,
each of these engines apply different execution semantics, making comparative
research on and benchmarking of RSP engines extremely hard, as the semantics
of different RSP languages do not completely overlap and no clear winner can
be identified [7].

2 Bonte et al.

In order to solve this issue, the community proposed RSPQL [8], a refer-
ence model that unifies existing RSP dialects and the execution semantics of
existing RSP engines. RSPQL is a first step towards a community standard,
unfortunately, existing prototypes still do not follow shared design principles.
However, an API based on RSPQL would reduce the maintenance cost of exist-
ing engines, foster adoption of RSP engines, open new research opportunities in
Stream Reasoning.

We present RSP4J!, a configurable API for building RSP engines under
RSPQL semantics, presented at the ESWC 2021 Resources Track [11], and iden-
tify the future directions for RSP4J.

2 RSP4J

RSP4J aims to solve the following use cases:

— Fast prototyping: The effort of designing good prototypes is high, result-
ing in prototypes with a minimal set of requirements and shared design
principles. RSP4J aims at providing the necessary abstractions to speed-up
prototyping while providing the needed design principles. This allows to eas-
ily add new operators, define new types of data sources, or experiment with
new optimization techniques without huge amounts of manual efforts.

— Comparable research & benchmarking: as current RSP engines do not
share the same ezxecution semantics, it is hard to reproduce the behavior in
a comparable way. By building upon the semantics of RSPQL and provid-
ing the necessary abstractions, RSP4J aims at fair comparison, allowing to
thoroughly benchmark the various RSP approaches and fairly compare their
weaknesses and strengths.

— Education: existing prototypes do not allow to inspect the engine’s behavior
or investigate the various levels of abstractions. In order to simplify teach-
ing, RSP4J provides the necessary abstractions to isolate and learn about
the different components that make an RSP engine, while adhering to the
underlying theoretical framework proposed by RSPQL.

In order to so, RSP4J provides all the necessary abstractions to develop
RSP engines. RSP4J consists of five core modules, each providing the necessary
abstractions to simplify the definition of RSP engines under RSPQL semantics.
The various module are, as depicted in Figure 1:

a Querying: allows to write RSP programs in a declarative manner, based on
the RSPQL syntax.

b Streams: the stream abstraction allows to provide custom implementation
of a data stream. Two options are available, inspired by VoCaL$ [10], i.e.
the Web Stream represented as a Web resource and the Data Stream as a
data source.

! https://github.com/streamreasoning,/rsp4j

RSP4J: An API for RSP 3

¢ Operators: RSP4J includes abstractions for the following RSPQL opera-
tors:

— StreamToRelation: converts RDF Streams to finite RDF Data, e.g. through
Time-Based Sliding Windows.

— RelationToRelation: allows to perform SPARQL 1.1 algebraic expres-
sions over a converted finit RDF Dataset.

— RelationToStream: allows to go convert back from solutions mapping as
a result of the SPARQL evaluation, to RDF Streams.

d Streaming Data Set (SDS): as specified by RSPQL, the SDS is an exten-
sion of the SPARQL dataset to support continuous semantics. It collaborates
with the StreamToRelation operator to freeze and poll the active window
content.

e Engine & Execution semantics: this module provides the abstractions
to control and monitor the RSP engine its lifecycle.

. d) Engine &
(a) Querying (b) Streams EE)zecnmgi:: Semantics
| Data Streams | | Web Streams |
Syntax
[sen | [res |
Parse | RzR | Tirme
Continuous (d) SDS Engine
Query | sDS | | Time Varying Graph |
v Y

| Caontinuous Query Execution |

Fig. 1: RSP4J’s Modules: (a) Querying (b) Streams, (c) Operators, (d) the SDS,
and (e) Engine and Execution Semantics

3 The Future for RSP4J

In this section, we identify the planned initiatives for the future of RSP4J.

Engine support: Currently, two RSP engines are already building upon RSP4J:
(i) YASPER?, which is a strawman implementation based on Apache RDF
Commons?, and C-SPARQL 2.0% a new version of the C-SPARQL engine [1].
We plan to align even more engines with RSP4J, such as Morphgyream, CQELS
and Strider.

Modules Library: We will provide a library with different implementations of
the various RSP4J modules and components and documentation of their per-
formance trade-offs, e.g. memory can be sacrificed in order to obtain increased

2 https://github.com/streamreasoning/rspéj/tree/master/yasper
3 https://github.com/streamreasoning/csparql2

4 Bonte et al.

throughput. Due to the abstractions and the modularity of RSP4J’s design,
different implementations can easily be plugged-in. This allows to offer and eval-
uate performance trade-offs while fast prototyping. Similarly, we will provide
the necessary components to plug-in different levels of reasoning expressivity,
e.g. RDFS, the various OWL2 profiles, or ASP. Furthermore, we will provide
existing optimization algorithms for the various API modules, e.g. C-Sprite [4]
or LiteMat [5] as reasoning optimizations in the R2R operator.

RSP Builder Framework: In order to further speed-up prototyping, we will
further abstract RSP4J, providing a builder framework that allows to select the
needed modules from the Modules Library (or custom implementations) and
built it into a customizable RSP engine. This allows to further simplify the API
and improve comparable research.

Language support: At this point, RSP4J is fully Java-based, we aim to ab-
stract the RSP4J specification and provide access to other languages, such as
Python. This will further improve the adoption of RSP4J.

Alignment with other Stream Reasoning Frameworks: We will investi-
gate how RSP4J can align with other efforts within the SR community, besides
RSP, e.g. LARS [2] or Cascading Reasoning approaches [3].

Acknowledgments: Pieter Bonte is funded by a postdoctoral fellowship of
Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO) (1266521N).

References

1. Barbieri, D.F., et al.: C-SPARQL: a continuous query language for RDF data
streams. Int. J. Semantic Computing 4(1), 3-25 (2010)

2. Beck, H., et al.: LARS: A logic-based framework for analyzing reasoning over
streams. In: Bonet, B., Koenig, S. (eds.) Proceedings of AAAI pp. 1431-1438.
AAAI Press (2015)

3. Bonte, P., et al.: Streaming massif: cascading reasoning for efficient processing of
iot data streams. Sensors 18(11), 3832 (2018)

4. Bonte, P., et al.: C-sprite: efficient hierarchical reasoning for rapid rdf stream pro-
cessing. In: Proceedings of DEBS 2019. pp. 103-114 (2019)

5. Curé, O., et al.: Litemat, an encoding scheme with rdfs++ and multiple inheritance
support. In: European Semantic Web Conference. pp. 269-284. Springer (2019)

6. Della Valle, E., et al.: It’s a streaming world! reasoning upon rapidly changing
information. IEEE Intelligent Systems 24(6), 83-89 (2009)

7. Dell’Aglio, D., et al.:

8. Dell’Aglio, D., et al.: RSP-QL semantics: A unifying query model to explain het-
erogeneity of RDF stream processing systems. Int. J. Semantic Web Inf. Syst. 10(4)
(2014)

9. Dell’Aglio, D., et al.: Stream reasoning: A survey and outlook. Data Sci. 1(1-2),
59-83 (2017)

10. Tommasini, R., et al.: Vocals: Vocabulary and catalog of linked streams. In: ISWC.
vol. 11137, pp. 256-272. Springer (2018)

11. Tommasini, R., et al.: Rsp4j: An api for rdf stream processing. In: Extended Se-
mantic Web Conference. Springer (2021)

