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Abstract

Neural language models (LMs) such as GPT-001
2 estimate the probability distribution over the002
next word by a softmax over the vocabulary.003
The softmax layer produces the distribution004
based on the dot products of a single hidden005
state and the embeddings of words in the vo-006
cabulary. However, we discover that this sin-007
gle hidden state cannot produce all probabil-008
ity distributions regardless of the LM size or009
training data size because the single hidden010
state embedding cannot be close to the embed-011
dings of all the possible next words simulta-012
neously when there are other interfering word013
embeddings between them. In this work, we014
demonstrate the importance of this limitation015
both theoretically and practically. Our work016
not only deepens our understanding of soft-017
max bottleneck and mixture of softmax (MoS)018
but also inspires us to propose multi-facet soft-019
max (MFS) to address the limitations of MoS.020
Extensive empirical analyses confirm our find-021
ings and show that against MoS, the proposed022
MFS achieves two-fold improvements in the023
perplexity of GPT-2 and BERT.024

“The greater the ambiguity, the greater the plea-025

sure.” — Milan Kundera026

1 Introduction027

Recently, researchers have found that transformer-028

based language models (LMs), such as GPT-2, can029

learn to generate better as their sizes grow (Rad-030

ford et al., 2019; Brown et al., 2020; Kaplan et al.,031

2020). One natural question arises: Do modern032

language modeling architectures still have restric-033

tions in their ability to represent the appropriate034

distribution over next words or masked words?035

In this paper, we discover that, when predicting036

the probabilities of becoming the next word given037

an ambiguous context, GPT-2 is often incapable of038

assigning the highest probabilities to the appropri-039

ate non-synonym candidates. For example, given040

the input prompt “After debating whether to bow 041

to the woman or the king first, the jester decided 042

on the [MASK]”, we would expect the distribution 043

over the [MASK] fillers to put high probabilities 044

on “woman” or “king” or their synonyms. How- 045

ever, GPT-2 might incorrectly output the king and 046

“queen” as the top two candidates as in Figure 1. 047

In the final softmax layer of GPT-2, the log prob- 048

abilities of the woman and king are computed based 049

on the dot product between a single hidden state 050

embedding and the global word embeddings of 051

the woman and king, respectively. To have the 052

highest but similar dot products for the two op- 053

tions, the transformer encoder in GPT-2 wants to 054

output the hidden state that is close to the aver- 055

age of the woman embedding and the king embed- 056

ding. However, the words queen, king, woman, and 057

man tend to form a parallelogram in the embed- 058

ding space (Mikolov et al., 2013; Ethayarajh et al., 059

2019; Wang et al., 2019), which means the man 060

and queen also have a similar average. Therefore, 061

GPT-2 are forced to also output the man or queen 062

when it wants to output the woman or king. 063

The problem not only happens to GPT-2 or the 064

words whose embeddings form a parallelogram 065

shape. Even though the hidden state embedding 066

of LMs are contextualized, the embedding of each 067

word in the softmax layer is global and static dur- 068

ing the inference time. Globally dissimilar words 069

could all become the suitable next word in a con- 070

text while other interfering words might be between 071

them, which makes the ideal next word embedding 072

distribution to have multiple modes and cannot be 073

modeled by the single embedding representation. 074

In this work, we propose theorems showing that 075

given any LM using the output softmax layer, when 076

there are more thanN word embeddings in aN−1 077

dimensional subspace/hyperplane (e.g., 4 embed- 078

dings in a two dimensional plane), we can always 079

find a set of possible next words (e.g., woman and 080

king) such that there are some other interfering 081
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Figure 1: Comparison between the softmax layers using a single embedding and multiple embeddings when the
next word should be either woman or king. In GPT-2 and multi-embedding GPT-2, the hidden states of the context
are visualized by the single facet and multiple facets , respectively. The word embeddings are visualized using
•••••••••••. GPT-2 cannot output woman and king as the top two words because queen and man are close to the middle of
woman and king. The improvement in this type of ambiguous context will be quantified in section 5.

words between them (e.g., man or queen).082

Recently, mixture of softmax (MoS) (Yang et al.,083

2018) regains attention as one of the few effec-084

tive architecture modifications for transformer LM085

(Narang et al., 2021; Anonymous, 2021). In the086

meanwhile, Parthiban et al. (2021) show that the087

softmax bottleneck (Yang et al., 2018) theory is not088

sufficient to explain the improvement of MoS. Our089

theorems not only provide geometrical intuitions of090

why and when the multiple embedding representa-091

tion such as MoS would do better but also suggest092

that the softmax bottleneck might not be completely093

solved even if we adopt a very large hidden state094

size. For example, no matter how large the hidden095

state size is, as long as queen - king = woman -096

man in the embedding space, the LMs cannot out-097

put a pair of words in the longer diagonal of the098

parallelogram as the top two output words.099

After better understanding why mixture of soft-100

max (MoS) works well, we propose two enhance-101

ments over MoS. The first enhancement considers102

the hidden states of multiple positions and multiple103

transformer layers when determining the probabil-104

ity in each softmax; the second enhancement uses105

different contextualized embeddings to compute106

the probabilities of different subsets of words.107

The resulting method, multi-facet softmax108

(MFS), significantly outperforms the MoS and the109

GPT-2 with the softmax layer on the perplexity110

for predicting the next word, especially in am-111

biguous context and non-English text in OpenWeb-112

Text (Radford et al., 2019). Finally, we also show 113

that MFS could improve the performance of GPT-2 114

on ProtoQA (Boratko et al., 2020), a commonsense 115

question answering dataset where each question 116

has multiple acceptable answers. 117

We summarize our theoretical, methodological, 118

and empirical contributions as follows. 119

• Theory: We show the softmax layer using a sin- 120

gle embedding is sometimes not be able to output 121

an appropriate rank of probabilities on a set of 122

words with linearly dependent embeddings. 123

• Method: Addressing two weaknesses in 124

MoS (Yang et al., 2018), we propose multi-facet 125

softmax (MFS), a new alternative to the output 126

softmax layer. MFS can replace the softmax in 127

pre-trained LMs to better handle ambiguous con- 128

texts without re-training the LMs from scratch. 129

• Analysis: Our comprehensive empirical analyses 130

discover and explain several phenomena, such 131

as a) why using multiple embeddings is usually 132

better than the single embedding with the non– 133

linearity, b) why the improvement is larger in 134

ambiguous contexts, less common languages, or 135

GPT-2 compared to BERT, and c) why increasing 136

hidden state size boosts the capability of distin- 137

guishing similar words. 138

2 Theoretical Limitations of the Single 139

Embedding in the Softmax Layer 140

In this section, we first review the softmax layer of 141

GPT-2 formally and explain why queen - king = 142
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woman - man still tends to hold in contextualized143

LMs. Next, we present our theoretical analyses,144

which generalize the woman and king example by145

showing that the candidate words in a low dimen-146

sional subspace would induce the impossibility of147

ranking some candidates on top of other candidates.148

2.1 Background149

The LMs typically use a softmax layer to predict150

PS(x|ct), the probability of the next word x given151

the context at the tth position ct:152

PS(x|ct) =
exp(hTctwx)∑
x′ exp(h

T
ctwx′)

, (1)153

where hct is the tth hidden state in the context154

c, and wx is the output word embedding for155

the word x (i.e., the linear weights that project156

the hidden state to the logit of the word x).157

Yang et al. (2018) point out that the log proba-158

bility distribution over all the words in the vo-159

cabulary V is log (PS(x|ct)) |x∈V = hTctwx −160

log
(∑

x′ exp(h
T
ctwx′)

)
|x∈V . The distribution is161

a linear projection from the hidden state hct with162

dimension D, so the degree of freedom in the dis-163

tribution is only D (i.e., there cannot be more than164

D linearly independent log distributions). We call165

this restriction softmax bottleneck thoery.166

During training, the ideal output word embed-167

ding wx should be close to the hidden states of168

the contexts hct that co-occur with the word x169

while far away from the other hidden states. This170

objective is similar to the objective function of171

Word2Vec (Mikolov et al., 2013) except that the172

context embeddings are contextualized (Kong et al.,173

2020; Li et al., 2020).174

If a context ct has a higher chance to co-occur175

with queen compared to king, the context also176

has a higher chance to co-occur with woman com-177

pared to man to a similar degree. This is the main178

reason that makes queen - king = woman - man179

in the Word2Vec space (Ethayarajh et al., 2019).180

Therefore, the same linear relations tend to hold181

in the output word embedding space of GPT-2 as182

well (Wang et al., 2019).183

2.2 Structural Weakness Theorems from184

Linear Dependency185

In addition to words satisfying the analogy rela-186

tions, the following theorems imply that any linear187

dependency among the words causes the difficulties188

of LM in ranking the words in an arbitrary order.189

For example, woman + king = queen + man makes 190

a LM unable to output woman and king as the top 191

two words in Figure 1. 192

Theorem 1. If the nonzero output embeddings of 193

N words are linearly dependent and on one side 194

of a plane through the origin, the output softmax 195

layer cannot rank the N words with an arbitrary 196

order according to their probabilities. 197

Here, we provide an intuitive justification: if N 198

embeddings are in a subspace whose dimension is 199

smaller thanN−1, theN embeddings are going to 200

be linearly dependent and some set of words cannot 201

have the top dot products due to the limited degree 202

of freedom in the subspace. In Appendix D, we 203

formally prove the theorem by identifying the sets 204

of words that cannot be ranked top by the single 205

embedding representation. 206

In practice, linear dependency holds approxi- 207

mately instead of exactly. For example, woman = 208

queen + man - king + ε. In this practical condi- 209

tion, the following theorem states that the logits of 210

the bottom words (i.e., man and queen) cannot be 211

much smaller than the logits of the top words (i.e., 212

woman and king). 213

Theorem 2. Let the output word embeddings in 214

the set W = {wi 6= 0|i = 1...N} satisfy 215

w1 = a2w2 + ... + aNwN + ε, where the con- 216

stant a2, ..., aN are neither all zero nor all neg- 217

ative and ||ε|| < ε. Then, there must be a non- 218

trivial partition P = {G,S} of W such that 219

there is no hidden state ||h|| ≤ r and a threshold 220

τ ≥ rε that make minwg∈G hTwg ≥ (1+ δ)τ and 221

maxws∈S h
Tws < τ , where δ = 2

1+
∑
i=2...N |ai|

. 222

Its proof can be found in Appendix D and Ap- 223

pendix B.1 estimates ε in GPT-2. 224

Even though, theoretically-speaking, outputting 225

woman and king as the top two words is possible 226

due to the appearance of ε, GPT-2 may not success- 227

fully learn to output the optimal h and the optimal 228

hidden state for these four words could lead to the 229

wrong probabilities of the other words. Conse- 230

quently, GPT-2 sometimes still ranks queen or man 231

higher than woman or king in practice. 232

3 Multi-facet Softmax 233

Using multiple embeddings is a natural solution of 234

modeling a multi-mode distribution. For instance, 235

we can use three embeddings to capture the high 236

probability on the woman and king but low proba- 237

bility on the man and queen in Figure 1. 238
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Figure 2: Comparison between different architectures. The #S , #I , and #P are the number of softmaxes, input
hidden states, and partitions, respectively. The green boxes refer to embeddings/vectors. The vocab means the
embeddings of all words in the vocabulary. ⊕ refers to concatenation. Lh, Lf , and Lπ are linear projection layers.

Inspired by our geometric analysis on the lim-239

itation of the single embedding, we improve the240

state-of-the-art multiple embedding solution, mix-241

ture of softmax (MoS) (Yang et al., 2018) by two242

enhancements: multiple input hidden states and243

multiple partitions on the vocabulary.244

3.1 Mixture of Softmax245

Yang et al. (2018) propose mixture of softmax246

(MoS) to allow a LSTM-based (Hochreiter and247

Schmidhuber, 1997) LM to produce more linearly248

independent log probability distributions of the out-249

put words given different contexts. As in Figure 2250

(c), the MoS first uses multiple linear layers Lfk to251

project a hidden state hct into multiple facet em-252

beddings fct,k = Lfk(hct).
1 The multiple facets253

fct,k and softmaxes would lead to multiple prob-254

ability distributions, and output probability is the255

weighted average of the distributions:256

PMoS(x|ct) =
K∑
k=1

πct,k
exp(fTct,kwx)∑
x′ exp(f

T
ct,k

wx′)
. (2)257

The prior weights πct,k =
exp(Lπk (hct ))∑
k′ exp(L

π
k′ (hct ))

, where258

Lπk is another linear projection for dynamically gen-259

erating the weights and the projection goes through260

a softmax to ensure
∑K

k=1 πct,k = 1.261

1We remove the tanh layer in the original MoS to improve
its performance on GPT-2. See Appendix F.1 for details.

3.2 Multiple Input Hidden States 262

To model the multi-mode distribution, the facets 263

(i.e., the embeddings for different softmaxes) 264

should be able to move freely. For example, in 265

Figure 1, we have three facets but only have two 266

modes, so the two embeddings are very close to 267

the word king. However, when we want to output 268

three dissimilar top words such as the king, woman, 269

and knight, one of the facets should be moved to 270

be near to the embedding of the knight. 271

Therefore, we want our solution to satisfy two 272

properties: a) the linear transformation matrix in 273

Lfk should have a full rank to avoid limiting the 274

degree of freedom in each facet, and b) the relative 275

location of the facets should be context-dependent. 276

MoS cannot satisfy both properties. If the first one 277

is satisfied, the input hidden state is uniquely de- 278

termined by a facet (e.g., hct = (Lf1)
−1(fct,1)). 279

Then, there exist a global transformation between 280

two facets (e.g., fct,2 = Lf2

(
(Lf1)

−1(fct,1)
)

), 281

which violates the second property. In other words, 282

since the facet embeddings are the projection of a 283

single hidden state, the total degree of freedom in 284

all facet embeddings cannot exceed the dimension 285

of the hidden state. 286

Our solution to this issue is using more input hid- 287

den states to construct the facets. As the orange box 288

in Figure 2, we first concatenate a W ×H block of 289

input hidden states into⊕i=0...W−1,m=1...Hh
M−m
ct−i , 290

where M −m is the Transformer layer index and 291

t− i is the index of the ith to the last word in the 292
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context. The W ×H is fixed as 3×3 in this paper.293

We make its dimension the same as the original hid-294

den state hMct using a linear layer Lh plus a GELU295

activation function (Hendrycks and Gimpel, 2016).296

Then, we concatenate it with the original hidden297

state to form a new input hidden state298

qct = hMct ⊕GELU
(
Lh(⊕i,mhM−mct−i )

)
. (3)299

The new input hidden state is passed through the300

linear transformation Lfk to compute the facets301

fct,k = Lfk(qct) and our prior weights πct,k =302
exp(Lπk (qct ))∑
k′ exp(L

π
k′ (qct ))

. Since the dimension of qct is303

larger than the dimension of fct,k, the inverse func-304

tion (Lfk)
−1 no longer exists.305

3.3 Multiple Partitions306

The next word distribution could have many modes.307

However, using many softmaxes significantly in-308

creases our computational burden because we need309

to compute the dot product between each facet and310

all the word embeddings in our vocabulary.311

Inspired by our analysis, we propose to split all312

the words in the vocabulary into multiple partitions313

and use different facets for different partitions. For314

example, if we can put any word from {queen, man,315

woman, king} into one partition and the rest of the316

words into another partition, we no longer have317

queen - king = woman - man in either of the par-318

titions. In this method, each word only belongs319

to one partition, so we only need to compute one320

dot product for each word. Thus, the extra com-321

putational cost only comes from the extra linear322

projections for preparing the facets.323

In many contexts ct, the distribution of the next324

word has only a single mode and the global sim-325

ilarity between words may be useful. Using the326

multiple partitions alone might lose the similar-327

ity information between words in different parti-328

tions. Therefore, we propose to only replace the329

first softmax layer in MoS with the multiple parti-330

tion method to learn the global similarity of words331

in different partitions using the other softmaxes.332

The architecture is illustrated in Figure 2 (d). For-333

mally, we compute the probability using334

PMP (x|ct) = πct,1
exp((f jxct,1)

Twx)∑
x′ exp((f

jx′
ct,1

)Twx′)
335

+
K∑
k=2

πct,k
exp(fTct,kwx)∑
x′ exp(f

T
ct,k

wx′)
, (4)336

where jx is the partition index that the word x be- 337

longs to and f jxct,1 is the facet for the jxth partition. 338

Multi-facet softmax (MFS) is equipped with multi- 339

ple input hidden states and multiple partitions. 340

4 Language Modeling Experiments 341

We evaluate different LM architectures by compar- 342

ing their capability of predicting the next word 343

in Wikipedia 2021 and a subset of OpenWeb- 344

Text (Radford et al., 2019). In addition to perplex- 345

ity, we also compare their mean reciprocal ranks 346

(MRR) in Appendix C.1. The size of the training, 347

validation, and testing set are 96%, 2%, and 2% 348

of the whole corpus. After loading the pre-trained 349

GPT-2 models, we train the GPT-2 Small for 1 350

epoch and GPT-2 Medium for 0.4 epochs. We also 351

test our methods on BERT in Appendix B.2. 352

4.1 Baselines 353

We set different numbers of softmaxes, input hid- 354

den states, and partitions in our MFS framework 355

to construct our baselines. The configuration of 356

different baselines could be seen in Table 1. 357

Softmax (GPT-2): Using a single softmax, in- 358

put hidden state, and partition as in Figure 2 (a) 359

and Equation 1. The baseline is the same as the 360

original GPT-2 except that we add one more linear 361

layer that converts the hidden state hMct to the facet 362

embedding fct,1 as in other methods. 363

SigSoftmax (Kanai et al., 2018): The same as 364

Softmax except when predicting the next word, 365

Kanai et al. (2018) add some non-linearity into 366

the softmax layer by multiplying the exponent and 367

sigmoid of the logits. 368

Softmax + Multi-input: Letting Softmax access 369

multiple input hidden states as in Figure 2 (b) and 370

Equation 3. The method is similar to Tenney et al. 371

(2019); Fan et al. (2020), and Tay et al. (2021). 372

MoS (Yang et al., 2018): MoS (3) is the mixture 373

of softmax with 3 facets/softmaxes, whose prob- 374

ability comes from Equation 2. We also run the 375

MoS with 4 softmaxes in GPT-2 Small and call the 376

model MoS (4). 377

DOC (Takase et al., 2018): Similar to our en- 378

hancement using multiple input hidden states, di- 379

rect output connection (DOC) makes each of their 380

facets coming from a different input hidden state. 381

Other configurations include Softmax + Multi- 382

partition, which adds four partitions into the soft- 383

max, MFS – Multi-partition, which uses only one 384

partition in MFS and could also be viewed as MoS 385
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Table 1: Perplexity comparison between MFS (Ours) and baselines. #S, #I, #P are the number of softmaxes (i.e.,
K), input hidden states, and partitions, respectively. The top four baselines use a single softmax. OWT and Wiki
are the test set perplexity of OpenWebText and Wikipedia 2021, respectively. The standard errors of all models are
smaller than 0.02 perplexity. We also compare the number of parameters and the inference time on one batch.

Configuration GPT-2 Small GPT-2 Medium
Models ↓ #S #I #P Size Time OWT Wiki Size Time OWT Wiki

Softmax (GPT-2) 1 1 1 125.0M 84ms 18.72 24.06 355.9M 212ms 15.89 20.34
SigSoftmax (Kanai et al., 2018) 1 1 1 125.0M 91ms 18.63 24.06 355.9M 221ms 16.07 20.65

Softmax + Multi-input 1 9 1 130.9M 87ms 18.50 23.89 366.4M 219ms 15.76 20.29
Softmax + Multi-partition 1 1 4 126.8M 88ms 18.77 24.08 359.0M 218ms 15.89 20.30

MoS (Yang et al., 2018) (4) 4 1 1 126.2M 152ms 18.61 23.77 359.0M 299ms 15.75 20.08
MoS (Yang et al., 2018) (3) 3 1 1 126.2M 130ms 18.63 23.81 358.0M 270ms 15.79 20.11
DOC (Takase et al., 2018) 3 3 1 126.2M 130ms 18.69 24.02 358.0M 270ms 15.88 20.34

MFS – Multi-partition 3 9 1 133.4M 133ms 18.37 23.56 370.6M 276ms 15.65 20.06
MFS – Multi-input 3 1 4 128.0M 134ms 18.60 23.72 361.1M 275ms 15.71 20.08

MFS (Ours) 3 9 4 136.8M 138ms 18.29 23.45 376.9M 283ms 15.64 20.02

Table 2: Perplexity of the GPT-2 Small in OpenWeb-
Text. The percentages of the perplexity reduction com-
pared to Softmax are presented in the parentheses.

Non-English English
Ratio in Corpus→ 14% 86%

Softmax 13.50 (0.0%) 19.23 (0.0%)
MoS (Yang et al., 2018) (3) 13.19 (2.3%) 19.16 (0.4%)

MFS – Multi-partition 12.98 (3.8%) 18.91 (1.7%)
MFS (Ours) 12.83 (5.0%) 18.83 (2.1%)

+ Multi-input, and MFS – Multi-input, which uses386

only one input hidden state to generate all facets.387

4.2 Results388

Table 1 shows that applying MFS to GPT-2 Small389

achieves more than 15% of the perplexity improve-390

ment between GPT-2 Small and GPT-2 Medium,391

while only increases 5% of their size differences.392

Except Softmax + Multi-partition, adding mul-393

tiple input hidden states or partitions in different394

configurations significantly boost the performances.395

In Appendix B.3, we further show that the improve-396

ment of MFS over Softmax could even become397

3-5 times larger in top 5-10% the most ambiguous398

contexts compared to the rest of the contexts, which399

suggest that some improvements indeed come from400

successfully modeling multi-mode distribution.401

MFS usually doubles the perplexity improve-402

ments between MoS (3) and Softmax but the run-403

ning time of MFS remains similar to MoS (3) be-404

cause MFS only needs a few more linear layers,405

which is more efficient than adding one more soft-406

max as in MoS (4). DOC is worse than MoS (3).407

This may be due to a starvation problem: the facet408

from the last hidden state hMct has the prior proba-409

bility close to 1 and receives most of the gradients.410

Finally, compared with Softmax, the mixed results411

in SigSoftmax suggest that adding non-linearity 412

into the softmax layer without modeling the multi- 413

mode distribution might not always improve the 414

models (Parthiban et al., 2021). 415

In Table 3, we present three contexts from the 416

validation set of different datasets and compare the 417

top three predictions of MFS and Softmax on GPT- 418

2 Small. In OpenWebText and Wikipedia 2021, we 419

can see that Softmax misses the correct answer in 420

its top three predictions. 421

OpenWebText is mostly composed of English 422

text, but some non-English text in the corpus al- 423

lows us to compare the capability of different mod- 424

els in a multi-lingual setting. Table 2 shows that 425

multiple embeddings improve the perplexity of the 426

non-English text more than the perplexity of the 427

English text. We hypothesize that the distribution 428

of the next non-English word is more likely to be 429

multi-mode because GPT-2 learns the global token 430

embeddings mostly in the English contexts, which 431

could make the embeddings of similar tokens in 432

non-English contexts far away. 433

5 Evaluation on Ambiguous Templates 434

We synthesize a dataset using templates (Ribeiro 435

et al., 2020) to verify whether the softmax layer in 436

the original GPT-2 really has difficulty in learning 437

to output the bimodal distribution in Figure 1 and 438

whether the multiple embedding methods could 439

overcome the problem. First, we collect the four 440

words with semantic analogy relations in Google 441

analogy dataset (Mikolov et al., 2013). Next, we 442

insert two out of the four words into our manually 443

written templates to form the contexts such as the 444

ones in the last column of Table 3. The templates 445

we used could be found in Appendix F.3. The 446
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Table 3: Prediction visualization using a context in each dataset. We show the top three words with the highest
prediction probabilities of each method. In the last three rows, we visualize the outputs of the softmax grey boxes
in Figure 2 (d), which model different modes of the next word distribution. The prediction target is boldfaced in
the context and the predictions. ## indicates there is no space before the word.

Corpus→ OpenWebText Wikipedia 2021 Analogy in Templates (section 5)

Input Context
... The Elastic Endpoint Security and
Elastic SIEM solutions mentioned in

this post are now referred to as Elastic

... law and chance working together
cannot generate CSI, either. Moreover,

he claims that CSI

I went to Paris and Germany before, and I
love one of the places more, which is

Germany
Softmax (GPT-2) the 0.087, E 0.043, End 0.039 the 0.174, this 0.054, if 0.038 Paris 0.893, France 0.045, Germany 0.033

MFS (Ours) Elastic 0.220, the 0.089, EC 0.033 CSI 0.186, the 0.140, there 0.033 Paris 0.544, Germany 0.389, France 0.064
MFS Softmax 1 end 0.051, the 0.043, security 0.023 the 0.191, law 0.127, if 0.053 Paris 0.979, France 0.013, Germany 0.007
MFS Softmax 2 Elastic 0.652, EC 0.080, ES 0.046 the 0.191, there 0.049, this 0.047 Paris 1.000 Berlin 0.000 ##Paris 0.000
MFS Softmax 3 the 0.193, E 0.040, a 0.014 CSI 0.677, law 0.029, laws 0.019 Germany 0.852, France 0.139, China 0.004

Table 4: Perplexity comparison of different GPT-2 Small models on the words with different types of analogy
relations. The validation set (valid) includes all four types of relations.

Diagonal (e.g., king or woman) Edge (e.g., king or queen)
Analogy Relation Types→ capital- capital- city-in-

family
capital- capital- city-in-

family
Models ↓ valid common world state valid common world state

Softmax (GPT-2) 2.30 3.30 2.00 2.25 2.95 2.11 2.42 1.91 2.26 2.38
MoS (Yang et al., 2018) (3) 1.75 2.18 1.60 1.85 2.82 1.87 2.26 1.70 2.04 2.27

MFS – Multi-partition 1.72 2.13 1.59 1.82 2.52 1.84 2.23 1.72 1.96 2.16
MFS (Ours) 1.74 2.15 1.59 1.82 2.63 1.92 2.28 1.78 2.00 2.24

two words can be either the diagonal words (e.g.,447

king and woman) or the edge word (e.g., king and448

queen) in the parallelogram. Finally, we create a449

dataset with 122k training contexts, 250k validation450

contexts, and 122k testing contexts, where the word451

pairs in the testing set are unseen in the training set452

to see whether the model could learn to output the453

bimodal distribution in a general way.2454

We load the models pre-trained on OpenWeb-455

Text and continue fine-tuning the models on the456

last word of each sentence for 10 epochs. We re-457

port the testing performances of the best model458

selected by the validation loss. Since the sets of the459

word pairs in the training and testing set are disjoint,460

updating the output word embedding would make461

GPT-2 solve the task by memorizing/overfitting the462

training set quickly and lead to much worse testing463

performances. Thus, we freeze the output word464

embedding during the training.465

Table 4 indicates that when the possible next466

words are the diagonal words, the Softmax model467

performs much worse compared to other multiple468

embedding alternatives. In the edge word dataset,469

the multiple embedding solutions are still better but470

have a much smaller gap. MFS – Multi-partition471

slightly improves MoS. We hypothesize the reason472

2The setting is realistic because any related words could
become the next word in some ambiguous contexts and all
the words are related in a certain way (Sigman and Cecchi,
2002). We cannot expect the training corpora to contain the
ambiguous contexts with so many possible next words.

is that multiple input hidden states could help the 473

facets to be moved more freely. Finally, multiple 474

partitions seem to cause slight overfitting in this 475

bimodal distribution prediction task. 476

We visualize the predictions in the last column 477

of Table 3. We can see two of the softmaxes are 478

close to Pairs and the remaining one is close to Ger- 479

man, while Softmax overestimates the probability 480

of Paris and ranks France higher than the German. 481

The result verifies that the correct probability dis- 482

tribution of the words in some ambiguous context 483

is hard to learn using Softmax. 484

6 Answering Ambiguous Questions 485

ProtoQA (Boratko et al., 2020) is a question an- 486

swering dataset built for evaluating the common- 487

sense reasoning ability of language models. Each 488

question in ProtoQA is ambiguous and leads to a 489

distribution of possible answers. For instance, the 490

answer of “Name something that people usually 491

do before they leave for work?” is “Shower 0.43, 492

Breakfast 0.30, ...”. The paper discovers that by 493

reformulating the question answering task as a con- 494

text (e.g., “One thing people usually do before they 495

leave for work is ...”), GPT-2 could generate the 496

possible answers by sampling the next words from 497

its word prediction distribution. 498

The dataset gives us a chance to directly com- 499

pare the quality of the distributions generated by 500

different LMs in Table 5. After pretraining GPT-2 501

Medium on the OpenWebText, we fine-tune them 502
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Table 5: ProtoQA performances. All the numbers except perplexity are the percentages of the predictions that
match the ground truth exactly on the crowdsourced development set. Max answers top k implies only evaluating
the top k answers. Max incorrect top k indicates only evaluating the top answers that contain k errors. The best
average performances are highlighted and the standard errors are reported as the confidence interval.

Perplexity on Scraped Max Answers Max Incorrect
Models ↓ Development Set Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5

Softmax (GPT-2) 1.5432 ± 0.0003 34.1 ± 0.8 35.2 ± 0.5 37.8 ± 0.4 45.0 ± 0.5 18.3 ± 0.4 30.7 ± 0.5 38.5 ± 0.6
MoS (Yang et al., 2018) (3) 1.5407 ± 0.0004 33.9 ± 0.8 36.0 ± 0.6 37.7 ± 0.6 44.9 ± 0.4 18.3 ± 0.4 31.7 ± 0.6 38.2 ± 0.6

MFS – Multi-partition 1.5411 ± 0.0003 34.3 ± 0.7 36.7 ± 0.7 38.1 ± 0.5 45.2 ± 0.4 19.4 ± 0.4 32.0 ± 0.5 38.6 ± 0.3
MFS (Ours) 1.5402 ± 0.0005 34.1 ± 0.6 36.7 ± 0.5 38.6 ± 0.4 45.4 ± 0.5 19.7 ± 0.4 32.1 ± 0.4 39.7 ± 0.4

using the training data in ProtoQA for 2 epochs.503

We repeat the fine-tuning 5 times and compare their504

average perplexity in our validation set. Next, we505

generate 150 sentences starting from each context506

and compare the generated answers with the ground507

truth distribution. For each fine-tuned model, we508

repeat the generation evaluation 3 times and report509

the average accuracy of the resulting 15 trials.510

We can see that the multiple softmaxes, input511

hidden states, and partitions usually improve the512

quality of prediction distribution, and the proposed513

MFS, which combines all modifications, achieves514

the best performances.515

7 Related Work516

Yang et al. (2018) propose the concept of softmax517

bottleneck, which points out that the dot product in518

the softmax layer restricts the representation power519

of outputting arbitrary conditional probabilities. It520

also proposes MoS to break the softmax bottle-521

neck in an RNN-based LM. Kanai et al. (2018)522

and Ganea et al. (2019) add nonlinearities into the523

softmax layer to break the bottleneck more effi-524

ciently, but the approaches gain less improvement525

compared to MoS.526

A limitation of the aforementioned previous527

work is that they do not tell us which kinds of sen-528

tences would be affected by the bottleneck more529

and whether the order of the top few next words530

would be affected, which are the main research531

questions of our work. Contrary to the previous532

belief that a large hidden state dimension would533

eliminate the softmax bottleneck, our theorems sug-534

gest that some words in a low dimensional sub-535

space could still make the single embedding in the536

softmax layer become a bottleneck of arbitrarily537

ranking the output words. Furthermore, our geo-538

metric analyses provide an intuitive explanation539

about why breaking the bottleneck using multiple540

embeddings leads to better performances compared541

to only adding the non-linearity.542

Demeter et al. (2020) also analyze the structural 543

weakness of the softmax layer from a geometric 544

perspective. They discover that the words with 545

high prior frequencies could stop the LMs from 546

assigning the high probabilities to rare words. The 547

weakness is different from the softmax bottleneck 548

investigated in this paper. Our work shows that 549

the softmax layer could still prevent the LMs from 550

outputting some top words even if all the possible 551

next words have the same prior frequency. 552

An alternative to model the multi-mode distri- 553

bution is to use multiple embeddings to represent 554

each output word (Miao et al., 2019). Compared 555

to MoS or our approach that use multiple embed- 556

dings to represent each hidden state of the context, 557

their method requires many extra parameters to 558

store different senses of each output word. An- 559

other type of related model (Shazeer et al., 2017; 560

Fedus et al., 2021) dynamically routes the signals 561

to different experts (i.e., feed-forward networks) 562

and aggregates their outputs. The methodology is 563

similar to MoS and our approach, but they add the 564

mixture-of-experts layer inside each layer of the 565

Transformer encoder while the proposed MFS is 566

an alternative to the output softmax layer. 567

8 Conclusion 568

When the ideal distribution in the output word em- 569

bedding space has multiple modes, GPT-2 cannot 570

learn to correctly rank the words in all the modes as 571

the top next words. This shows that the single em- 572

bedding in the softmax layer, which is used nearly 573

universally by current LMs, constitutes a perfor- 574

mance upper bound of predicting the next/masked 575

word. To address the systematic failure caused 576

by these structural weaknesses, we propose multi- 577

facet softmax (MFS). In our experiments, we con- 578

firm that the MFS significantly outperforms the 579

standard softmax layer and alleviates the softmax 580

bottleneck in the transformer-based LMs such as 581

GPT-2 better than mixture of softmax (MoS). 582
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9 Ethical and Broader Impact583

This work studies a general limitation of LMs and584

proposes solutions. The proposed theory can help585

us to understand that some types of hallucinations,586

mistakes, or biases of LMs could come from soft-587

max bottleneck and their incapability of modeling588

the correct distribution. For example, there are 60%589

of male characters and 40% of female characters590

in our training corpus. The language generation591

model might be forced to assign more than 60%592

probability to male characters as being much more593

likely to output king than woman in Figure 1.594

Recently, Narang et al. (2021); Anonymous595

(2021) show that MoS is one of the few architecture596

modifications of transformer-based LM that can597

provide consistent improvements in downstream598

applications. Our work provides a fundamental599

reason why the multiple embedding representation600

is better, which could inspire more future studies601

that propose a better multiple-embedding architec-602

ture to improve LMs (e.g., multi-lingual BERT)603

or downstream applications. As examples, we list604

several possible future directions in Appendix G.605

Finally, a better LM could lead to both positive606

and negative societal impacts, but they are not the607

focus of this paper. Generally speaking, this paper608

deepens our understanding of the weaknesses of609

modern LMs and we believe the knowledge can610

help us to design a better LM that increases the611

positive impacts and reduces the negative impacts612

in the future.613
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A Appendix Overview864

To demonstrate the wide applicability of our ap-865

proaches, we conduct more experiments such as866

applying MFS to BERT in Appendix B. We also867

show more results and conduct more analyses in868

Appendix C to further support our conclusions.869

Next, we provide technical details including the870

proof of our theorems in Appendix D, the method871

details in Appendix E, and the experiment details872

in Appendix F. Finally, in Appendix G, we list873

several directions that could be further studied in874

the future.875

B More Experiments876

We conduct the following five extra experiments to877

measure the linear dependency among word embed-878

dings in LMs, extend our multi-facet approaches879

to BERT, confirm the source of the improvement880

comes from modeling multi-mode distribution, and881

extend our synthetic experiments to include the882

output candidate words that have various types of883

relations and to include the template that favors the884

single embedding representation.885

B.1 Linear Dependency among Words886

As we demonstrate in our theorems, the linear de-887

pendency in the word embedding imposes a perfor-888

mance upper bound on LMs. In this experiment,889

we would like to explore whether the word embed-890

dings are still linearly dependent in a larger LM.891

Besides, Theorem 2 shows that when N words892

are linearly dependent after moving one of the em-893

beddings with ε distance, the LM with the output894

softmax layer cannot output a large logit margin895

between two subsets of the N words. We also want896

to know how small ε typically are in the pretrained897

word embedding and compare the ε from different898

subsets or different LMs.899

We randomly select N words in GPT-2 Small900

and GPT-2 XL and use the minimal eigenvalue of901

the matrix formed by their N word embeddings to902

estimate the ε value.3 The top 2 curves in Figure 3903

depict the average of minimal eigenvalues from904

1,000 sampled N word sets. As we expect, the905

eigenvalues decrease as N increases (i.e., easier906

to become linear dependent in a bigger subset of907

words). As the hidden state size grows from 768908

3We normalize all the word embeddings by the average
of their magnitudes to fairly compare the distances in GPT-2
Small and GPT-2 XL.
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Figure 3: Minimal eigenvalues to indicate the linear
dependency among different groups of N word embed-
dings in GPT-2 Small and GPT-2 XL.

in GPT-2 Small to 1,600 in GPT-2 XL, the minimal 909

eigenvalues increase. 910

As in section 5, we select the 4 words with anal- 911

ogy relation from Google analogy dataset and plot 912

the minimal eigenvalue (averaged over all 4 word 913

sets with an analogy relation) in Figure 3. We can 914

see that the values become much lower and the 915

value of GPT-2 XL is only slightly higher than the 916

value of GPT-2 Small, which shows that the anal- 917

ogous words still tend to have linearly dependent 918

embeddings in a large LM. 919

Finally, we select theN similar words by finding 920

the nearest N − 1 words of each query word. We 921

exclude the query word pieces whose first character 922

is not a space, and let the query word pieces be 923

either all the rest of the word pieces or only stop 924

words. Figure 3 shows that the minimal eigenvalues 925

are close to the values of analogous words. 926

Intuitively speaking, the similarly low minimal 927

eigenvalues mean that globally similar words tend 928

to have similar probabilities in every context. Our 929

Theorem 2 formally describes a structural weak- 930

ness of the output softmax layer in terms of dis- 931

tinguishing the similar words. The low minimal 932

eigenvalues and our theory support the recent em- 933

pirical finds that LM models tend to be confused 934

by the similar words (Zagoury et al., 2021) and 935

further suggest that the problem is more obvious 936

especially when the size of LM is small, the num- 937

ber of possible next word N is large, or the next 938

word candidates include stop words. This provides 939

a potential explanation why the candidates often 940

include stop words when multiple embeddings out- 941

perform the single embedding in Table 3 and Ta- 942
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Table 6: Perplexity of models building on BERT in Wikipedia 2021.

BERT base after training on 100k batches
Softmax (S1I1P1) SigSoftmax (S1I1P1)

5.8699 5.8749
Softmax + Multi-input (S1I9P1) Softmax + Multi-partition (S1I1P4)

5.8520 5.8656
MoS (Yang et al., 2018) (4) (S4I1P1) MoS (Yang et al., 2018) (3) (S3I1P1) DOC (Takase et al., 2018) (S3I3P1)

5.8523 5.8535 5.8547
MFS – Multi-partition (S3I9P1) MFS – Multi-input (S3I1P4) MFS (S3I9P4)

5.8231 5.8536 5.8231

BERT large after training on 30k batches
Softmax (S1I1P1) SigSoftmax (S1I1P1)

4.8355 4.8354
Softmax + Multi-input (S1I9P1) Softmax + Multi-partition (S1I1P4)

4.8305 4.8363
MoS (Yang et al., 2018) (4) (S4I1P1) MoS (Yang et al., 2018) (3) (S3I1P1) DOC (Takase et al., 2018) (S3I3P1)

4.8268 4.8291 4.8231
MFS – Multi-partition (S3I9P1) MFS – Multi-input (S3I1P4) MFS (S3I9P4)

4.8111 4.8287 4.8109

Table 7: Prediction visualization using a context in each dataset. Each row visualizes a model as in Table 3. The
models are built on GPT-2 Medium in OpenWebText and Wikipedia and on GPT-2 Small in the synthesized dataset.
MFS Avg shows the words that are closest to the average facet embedding in MFS. See the details in subsection B.3.
We underline the words that appear in the top predictions of both MFS and MFS Avg.

Corpus→ OpenWebText Wikipedia 2021 Similar Nouns in Templates

Input Context

... "Part of the Clinton inevitability
strategy was to lock down the usual
suspects in left-liberal policy," said

Dan Nexon, a Georgetown professor
who served as one of those informal

Sanders advisers. Nex

... The projective line over the dual
numbers was described by Josef

Grünwald in 1906. This ring includes a
nonzero nilpotent "n" satisfying. The
plane of dual numbers has a project

There are the militia and the enemy in front of
a woman, and she decides to pursue the

militia

Softmax (GPT-2) He 0.014, But 0.011, The 0.007 finite 0.062, hom 0.059, project 0.034 enemy 0.860, militia 0.111, Militia 0.005
MFS (Ours) Nex 0.013, He 0.012, But 0.011 project 0.096, hom 0.049, dual 0.046 enemy 0.535, militia 0.433, enemies 0.029
MFS Avg ", He, But, The, In, And, (, It hom, dual, finite, non, ", complex, unit militia, enemy, Militia, enemies, militias

MFS Softmax 1 But 0.005, He 0.004, The 0.002 project 0.201, dual 0.075, finite 0.030 enemy 0.772, militia 0.189, Militia 0.017
MFS Softmax 2 Nex 0.260, " 0.028, He 0.023 hom 0.093, unit 0.040, non 0.037 militia 0.938, Militia 0.062, militias 0.000
MFS Softmax 3 He 0.025, But 0.022, The 0.014 finite 0.065, map 0.041, plane 0.030 enemy 1.000, enemies 0.000, foe 0.003

ble 7. Notice that although GPT-2 XL has a better943

ability to distinguish similar words, it would have944

difficulty in arbitrarily ranking 20 similar words as945

having the difficulty in ranking 4 analogous words.946

Similarly, we expect that the GPT-3 (Brown et al.,947

2020) would still suffer from the softmax bottleneck948

as long as the N is large enough.949

B.2 Language Modeling using BERT950

To demonstrate that our proposed method could951

improve the LMs other than GPT-2, we apply multi-952

facet softmax, MFS, to BERT. We test the model on953

Wikipedia 2021 and the validation size is 0.25% of954

the whole corpus. After loading pretrained model,955

we train bert_base_cased for 100k batches and956

bert_large_cased for 30k batches.957

The results are presented in Table 6. First, MoS958

outperforms Softmax on BERT. The results sup-959

port the finding of Narang et al. (2021) that the960

softmax bottleneck not only exists in the next word961

prediction tasks but also in the masked word predic-962

tion tasks. Similar to GPT-2, MFS at least doubles 963

the improvement of MoS. The most improvement 964

over MoS comes from using multiple input hidden 965

states while adding multiple partitions yield a small 966

or no improvement. Finally, the improvement be- 967

tween MFS and Softmax is around 4.5%, which is 968

much smaller than 15% in GPT-2. 969

The smaller improvement supports the conclu- 970

sion of our geometric analyses that the multi-mode 971

ambiguity intensifies softmax bottleneck. We only 972

observe the one-directional context before the next 973

target word in GPT-2, but we can observe the bi- 974

directional context surrounding the masked target 975

word in BERT. Thus, compared to next word predic- 976

tion, the multi-mode ambiguity of the masked word 977

prediction occurs less frequently when the masking 978

probability is small (e.g., 15% in BERT). Since the 979

masked word distribution only has a single mode 980

most of the time but we sometimes still want the 981

distribution to have multiple modes, multiple input 982

hidden states can improve the performance by help- 983
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Table 8: The loss improvement comparison between the Improvement Models and Reference Models. The models
are named using their number of softmaxes, input hidden states, and partitions. Thus, S3I9P4 is MFS, S3I9P1
is MFS – Multi-partition, S1I9P1 is Softmax + Multi-input, S3I1P1 is MoS (3), and S1I1P1 is Softmax. Multi-
mode Percentage is the percentage of the contexts where the Improvement Models output multi-mode distribution.
Multi-mode Loss Improvement refers to the average improvement when Improvement Models outputs multi-mode
distribution and Other Loss Improvement refers to the improvement of the contexts where the facets of Improve-
ment Models are close to each other. Improvement Ratio divides Multi-mode Loss Improvement by Other Loss
Improvement.

Corpus→ OpenWebText Wikipedia 2021
Improvement Model S3I9P4 S3I9P4 S3I9P4 S3I9P1 S3I1P1 S3I9P4 S3I9P4 S3I9P4 S3I9P1 S3I1P1

Reference Model S3I9P1 S3I1P1 S1I1P1 S1I9P1 S1I1P1 S3I9P1 S3I1P1 S1I1P1 S1I9P1 S1I1P1
Multi-mode Percentage (%) 10.03 10.03 10.03 4.81 3.24 5.85 5.85 5.85 2.66 3.05

Multi-mode Loss Improvement 0.0248 0.0474 0.0649 0.0203 0.0110 0.0282 0.0644 0.1000 0.0472 0.0295
Other Loss Improvement 0.0035 0.0158 0.0211 0.0086 0.0064 0.0033 0.0128 0.0219 0.0136 0.0100

Improvement Ratio 7.01 3.00 3.08 2.34 1.71 8.63 5.04 4.57 3.47 2.94

project
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non unit

plane

favgctfct,1
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Softmax 1
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Softmax 2
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f1ct,1
f2ct,1
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Figure 4: Illustration of the MFS predictions given
the Wikipedia context in the second column of Ta-
ble 7. The green circles mean the facet embeddings
from MFS. The orange circle is the average of the facet
embeddings (MFS Avg). The blue circles are the word
embeddings that are close to the facet embeddings and
MFS Avg. The word project is highlighted because it
is the next word in our ground truth.

ing the facets to move more freely. On the other984

hand, multiple partitions are less useful because the985

distribution rarely has more than three modes.986

B.3 Analysis of Improvement on Multi-mode987

Distribution988

To confirm that the perplexity improvements ac-989

tually come from modeling the multi-mode distri-990

bution, we define a metric to measure how multi-991

mode a distribution is, and then we can compare the992

perplexity improvement from multi-mode distribu-993

tions and the improvement from the distributions994

that are close to a single-mode distribution.995

For the method with multiple embeddings, we996

first compute the weighted average of all the facets997

favgct =
∑K

k=1 πct,kfct,k, where we lower the in- 998

fluence of kth facet embedding fct,k with lower 999

prior weight πct,k and fct,1 = 1
J

∑J
j=1 f

j
ct,1

if J 1000

partitions are used. Figure 4 illustrates favgct and 1001

fct,k using the example in the second column of 1002

Table 7. 1003

We visualize the new average facet using the 1004

words that are closest to the favgct in the MFS Avg 1005

row of Table 7. We can see that the prediction 1006

of MFS Avg is different from MFS but similar to 1007

Softmax. This means there are indeed some other 1008

words between the actual next word and the other 1009

possibilities, which makes the prediction of MFS 1010

multi-mode. 1011

Next, to quantify the difference between MFS 1012

and MFS Avg, we define multi-mode ratio 1013

as
∑T
b=1 PM (yb|ct)∑T
b=1 PM (xb|ct)

, where PM could be either 1014

PMoS from equation 2 or PMP from equation 4. 1015

{y1, ..., yT } is the set of words with embed- 1016

dings closest to favgct and {x1, ..., xT } is the set 1017

of words with highest PM (xb|ct). Using the 1018

Wikipedia context in Table 7 as an example, the 1019

word project is retrieved by MFS but not by 1020

MFS Avg, so its multi-mode ratio for T = 2 1021

is PMFS(hom|ct)+PMFS(dual|ct)
PMFS(project|ct)+PMFS(hom|ct) = 0.049+0.046

0.096+0.049 ≈ 1022

0.66. Figure 4 illustrates the relation between the 1023

MFS Softmax k and MFS Avg. 1024

When the ratio is closer to 1, the context is less 1025

ambiguous and the prediction is closer to a single- 1026

mode distribution. We set T = 20 and call the 1027

prediction with multi-mode ratio smaller than 0.9 1028

multi-mode distribution and in Table 8,4 we com- 1029

pare the loss (i.e., log of the perplexity) improve- 1030

4We also tried T=5 or 10 and the trends are similar. If
we set the threshold smaller than 0.9, the improvement ratios
(e.g., MFS over MoS) would increase but the multi-mode
percentages would decrease.
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Table 9: Perplexity comparison of different models on the similar words or dissimilar words. The models are based
on GPT-2 Small and trained in OpenWebText.

Dissimilar Words Similar Words
Models ↓ Testing Validation Training Testing Validation Training
Softmax 1.97 1.98 1.95 2.16 2.16 2.17
MoS (3) 1.81 1.80 1.69 2.05 2.05 1.87

MFS – Multi-partition 1.78 1.79 1.70 2.04 2.06 1.88
MFS 1.79 1.79 1.69 2.02 2.05 1.89

Table 10: MRR (mean reciprocal rank) of different models in OpenWebText. Larger is better.

GPT-2 Small after 1 epoch
Softmax (S1I1P1) SigSoftmax (S1I1P1)

0.5494 0.5489
Softmax + Multi-input (S1I9P1) Softmax + Multi-partition (S1I1P4)

0.5508 0.5492
MoS (Yang et al., 2018) (4) (S4I1P1) MoS (Yang et al., 2018) (3) (S3I1P1) DOC (Takase et al., 2018) (S3I3P1)

0.5501 0.5499 0.5494
MFS – Multi-partition (S3I9P1) MFS – Multi-input (S3I1P4) MFS (S3I9P4)

0.5515 0.5502 0.5519

GPT-2 Medium after 0.4 epoch
Softmax (S1I1P1) SigSoftmax (S1I1P1)

0.5665 0.5650
Softmax + Multi-input (S1I9P1) Softmax + Multi-partition (S1I1P4)

0.5677 0.5665
MoS (Yang et al., 2018) (4) (S4I1P1) MoS (Yang et al., 2018) (3) (S3I1P1) DOC (Takase et al., 2018) (S3I3P1)

0.5674 0.5672 0.5665
MFS – Multi-partition (S3I9P1) MFS – Multi-input (S3I1P4) MFS (S3I9P4)

0.5685 0.5677 0.5685

ments in the multi-mode distributions and the im-1031

provements in the nearly single-mode distributions.1032

Table 8 shows that all the multiple embedding ap-1033

proaches have larger loss improvements when out-1034

putting multi-mode distributions. The table shows1035

the results based on GPT-2 Small and the same1036

analysis using GPT-2 Medium also show the same1037

trend. As we use multiple input hidden states and1038

partitions, the differences would be enlarged. Espe-1039

cially when we compare MFS and MFS – Multi-1040

partition, the loss improvements of highly ambigu-1041

ous context is 7 or 8 times larger than the other1042

loss improvements, which means a large portion1043

of the overall improvement lies on a small percent-1044

age of ambiguous contexts. For the multi-mode1045

distribution in Wikipedia, the loss improvement be-1046

tween MFS and Softmax could reach 0.10, which1047

is close to the improvement between GPT-2 Small1048

and Medium (0.16). Thus, we expect that if the1049

corpus has more ambiguous contexts, MFS could1050

achieve larger overall loss improvement.1051

B.4 Template-based Analysis on Similar or1052

Dissimilar Nouns1053

To know whether the single embedding also has1054

trouble modeling the distribution over nouns with-1055

out the analogy relation, we let the different models1056

learn to assign similarly high probabilities to two 1057

related nouns in our templates. One example in 1058

our synthesized dataset is “I love the banana and 1059

the lemon, and my favorite is the [MASK]”. The 1060

nouns come from a hypernymy detection bench- 1061

mark (Shwartz et al., 2017) containing 25,498 1062

noun pairs. The relations between nouns in the 1063

benchmark include synonym, antonym, attribute, 1064

meronym, hypernym, coordination, event, or ran- 1065

dom. We further split the noun pairs into two 1066

datasets based on their cosine similarity in the out- 1067

put word embedding space of our Softmax base- 1068

line. The pairs with the cosine similarity higher 1069

than the medium of all cosine similarities are put 1070

into the similar word set and the other pairs are put 1071

into the dissimilar word set. 1072

The results are presented in Table 9. In terms 1073

of the training, validation, and testing perplexity, 1074

multi-embedding approaches consistently outper- 1075

form the single-embedding baselines, though the 1076

margins are smaller than those from the analogous 1077

words. Moreover, the improvement gap is larger 1078

when the nouns are dissimilar. We hypothesize that 1079

as the word embeddings of nouns become further 1080

away from each other, the next word distribution 1081

is more likely to be multi-mode and thus could be 1082
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better captured by multiple embeddings.1083

B.5 Adversarial Template Analysis1084

To test whether the proposed methods still can ef-1085

fectively utilize the information from the global1086

word embeddings, we design an adversarial tem-1087

plate to create the contexts that can only be com-1088

pleted by averaging the global word embeddings.1089

For example, “Miami is not in Wisconsin but is in1090

[MASK]=Florida”.1091

In this task, the validation perplexity of Softmax,1092

MoS, MFS – Multi-partition, and MFS are 2.50,1093

2.59, 2.54, and 2.88, respectively. Since multiple1094

embeddings are not required, it is not surprising1095

that Softmax performs the best. Nevertheless, the1096

differences are smaller than the differences in Ta-1097

ble 4. We believe that the similar losses are due1098

to the fact that multiple embeddings are a general-1099

ization of the single embedding, so GPT-2 could1100

learn to generate the same embedding for all facets1101

to mimic the behavior of single embedding if re-1102

quired.1103

The significantly worse performance of MFS1104

here is caused by the multiple partition technique.1105

This result supports our motivation of combining1106

multiple partitions with multiple softmaxes and1107

shows that multiple partitions handle ambiguous1108

contexts better (as shown in Table 8) by sacrificing1109

some global word embedding structures. Never-1110

theless, a corpus usually has more ambiguous con-1111

texts than the adversarial context tested here, so1112

using multiple embeddings and multiple partitions1113

performs better in Wikipedia and OpenWebText1114

overall.1115

C More Results1116

We provide more numbers and analyses of the am-1117

biguous template experiments and language mod-1118

eling experiments.1119

C.1 Ranking Metric in Language Modeling1120

Experiments1121

We would like to verify that our perplexity improve-1122

ments come from not only the slight probability1123

differences of each candidate but also the better1124

ranks of the candidates. Thus, in Table 10, we eval-1125

uate different models using mean reciprocal rank1126

(MRR). Similar to the perplexity, the MRR im-1127

provement from Softmax to MFS is around 15%1128

of the MRR improvement from GPT-2 Small to1129

GPT-2 Medium, which is similar to the percent-1130

age of perplexity improvement. This suggests that 1131

MFS could lead to not only a better probability pre- 1132

diction but also a better candidate rank prediction. 1133

C.2 Perplexity Curves in Language Modeling 1134

Experiments 1135

In Table 1, we only show the testing perplexity at 1136

the end of our training. In Figure 6, we plot the val- 1137

idation perplexity decay curves during the training 1138

on OpenWebText. We can see that the performance 1139

ranking of each model is stable during the training, 1140

while the improvement of each enhancement may 1141

vary. For example, in GPT-2 Medium, the improve- 1142

ment of MFS over MFS – Multi-partition is more 1143

obvious in epoch 0.25 compared to epoch 0.4. 1144

C.3 Perplexity Curves in Template Analysis 1145

In Table 4, we only show the lowest validation 1146

perplexity after each of the ten epochs. In Figure 5, 1147

we plot the training and validation perplexity decay 1148

curves. 1149

The curves tell us that the multi-embedding 1150

models perform better in both training and valida- 1151

tion perplexity. As we train the single-embedding 1152

models longer, the validation perplexity increases 1153

quickly, which implies that using a single embed- 1154

ding to model multi-mode distribution could cause 1155

severe overfitting when we predict the next word 1156

given an ambiguous context. 1157

C.4 Stability in Language Modeling 1158

Experiments 1159

In our case, training our model requires a huge 1160

amount of GPU resources for us, so it is not very 1161

feasible to train multiple times using multiple ran- 1162

dom seeds. We indeed try to use different random 1163

seeds for a few models and we confirm that the val- 1164

idation loss difference is at least ten times smaller 1165

than the improvement of different models. 1166

To verify that our testing dataset is large enough 1167

to provide stable perplexity, we randomly split the 1168

testing dataset into 10 subsets and compute the 1169

standard error of the average testing perplexity of 1170

the 10 subsets. We find that the standard error is 1171

less than 0.02 perplexity in all models and datasets 1172

in Table 1. The standard error is much smaller than 1173

most of the improvements, which means our testing 1174

dataset is large enough to make the reported per- 1175

plexity stable. The consistent improvements during 1176

the whole training process in Figure 5 further sup- 1177

port the stability of our experiments. 1178
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Figure 5: The perplexity curves for the language modeling tasks using the validation set of OpenWebText.
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Figure 6: The perplexity curves from different models for the ambiguous template analysis

Table 11: ProtoQA performances on the crowdsourced development sets. The matching between prediction and
ground truth is done by WordNet. All the numbers are percentages. Max answers top k implies only evaluating
the top k answers from different LMs. Max incorrect top k indicates only evaluating the top answers that contain
k errors. The highest average performances are highlighted and the standard errors are reported as the confidence
interval.

Max Answers Max Incorrect
Models ↓ Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5

Softmax (GPT-2) 36.5 ± 0.7 39.7 ± 0.5 43.5 ± 0.4 52.2 ± 0.6 20.9 ± 0.4 37.7 ± 0.6 46.7 ± 0.6
MoS (Yang et al., 2018) (3) 36.6 ± 0.8 40.2 ± 0.6 43.2 ± 0.6 52.1 ± 0.4 21.3 ± 0.6 38.4 ± 0.5 45.9 ± 0.6

MFS – Multi-partition 37.7 ± 0.7 42.0 ± 0.6 44.6 ± 0.5 52.6 ± 0.3 22.9 ± 0.4 39.5 ± 0.5 47.4 ± 0.4
MFS 36.9 ± 0.7 41.6 ± 0.7 44.4 ± 0.6 52.3 ± 0.6 23.1 ± 0.5 39.7 ± 0.6 46.9 ± 0.6

C.5 ProtoQA Results using WordNet1179

In Table 5, we report the metrics using exact match-1180

ing. In Table 11, we report the metrics that match1181

the prediction with the ground truth using Word-1182

Net (Miller, 1995) and find the scores show a simi-1183

lar trend.1184

C.6 Perplexity Improvement versus Model 1185

Size 1186

Kaplan et al. (2020) empirically demonstrate that 1187

increasing the model size would decrease the loss 1188

and their relation follows a scaling law. That is, 1189

we can plot the log of model size (i.e., parameter 1190

number) versus its loss as in Figure 7, and if a new 1191
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Figure 7: The log of model size versus the log of per-
plexity in the text set of OpenWebText. The group of
points on the left comes from the models based on GPT-
2 Small. The group of points on the right comes from
the models based on GPT-2 Medium. The models are
trained for 0.4 epoch.

LM model could result in lines that are closer to the1192

origin than the baselines, the new model is better1193

in terms of the loss than only increasing the model1194

size of the baselines.1195

From Figure 7, we can see that the approaches1196

using multiple embedding are better than the Soft-1197

max baseline using single embedding. Although1198

the lines formed by MFS – Multi-partition and1199

MFS are not always closer to the origin than MoS,1200

our perplexity improvement from adding multiple1201

input hidden states or multiple partitions cannot1202

be solely explained by their extra parameters for1203

several reasons:1204

• Compared to MoS, the line formed by MFS1205

– Multi-partition becomes slightly closer to1206

origin when the model size is close to GPT-21207

Medium.1208

• The improvement of MFS – Multi-partitions1209

(S3I9P1) is larger than the improvement of1210

Softmax + Multi-input (S1I9P1) plus the im-1211

provement of MoS (S3I1P1) in BERT and GPT-1212

2. For example, in BERT base, the perplexity1213

improvement of Softmax + Multi-input, MoS1214

(3), and MFS – Multi-partitions are 0.018,1215

0.016, and 0.047, respectively.1216

• Our multi-mode analyses in subsection B.3 in-1217

dicate that our enhancements, especially using1218

multiple partitions, capture the multi-mode dis-1219

tribution better. We expect that the overall per-1220

plexity improvement would be larger if the cor-1221

pus contains more ambiguous contexts. We1222

also conduct a preliminary experiment to con- 1223

firm the claim. We add more ambiguous con- 1224

texts into Wikipedia 2016 by mapping all the 1225

uppercased words into the [UNK] token. That 1226

is, we add another mode corresponding to the 1227

[UNK] token in many context positions. Then, 1228

we train and test the uncased BERT in this syn- 1229

thesized dataset. We found that the improve- 1230

ment of MFS – Multi-partition in this case 1231

can do significantly better than simply increas- 1232

ing the model size. 1233

• Our enhancements only require some extra lin- 1234

ear layers, which are usually more efficient than 1235

increasing the model size (e.g., by adding an- 1236

other transformer layer). 1237

• Unlike increasing the model size, keep increas- 1238

ing the number of input hidden states or the 1239

number of partitions would lead to a smaller 1240

improvement. This suggests that MFS cannot 1241

keep storing more and more knowledge into its 1242

extra linear layers as in the architecture using a 1243

larger hidden state size or a deeper transformer 1244

encoder. 1245

C.7 More Visualization 1246

In Table 3, we compare the prediction of MFS and 1247

Softmax on GPT-2 Small. In the first two columns 1248

of Table 7, we present the examples from the mod- 1249

els built on GPT-2 Medium in OpenWebText and 1250

Wikipedia 2021. We can see a similar pattern. The 1251

embedding of the correct answer is different from 1252

the embeddings of other possibilities, so Softmax 1253

assigns lower probabilities to the correct answer, 1254

while MFS does much better. This suggests that a 1255

larger model such as GPT-2 Medium suffers from 1256

the softmax bottleneck in a similar way. 1257

In the last column of Table 7, we visualize an 1258

example in another synthetic experiment described 1259

in subsection B.4. We can see that although there 1260

may not be any words between the appropriate 1261

candidates, the prediction of Softmax may still be 1262

biased toward one option much more than the other, 1263

while the prediction of MFS is much closer to the 1264

equally likely bimodal distribution we created in 1265

the training data. 1266

D Proof of Theorems 1267

To prove Theorem 1, we first introduce a lemma. 1268

Assuming in the word embedding of GPT-2, 1269

woman + king = queen + man, we want to show 1270

that the GPT-2 cannot output woman and king as 1271
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the top two words in this lemma. This means1272

we cannot find a hidden state h and a threshold1273

τ such that hTwoman≥ τ and hT king≥ τ but1274

hT queen< τ and hTman< τ . This example1275

could be generalized into the following Lemma1276

and Theorems. We can generalize the example as1277

follows:1278

Lemma 1. Let the output word embeddings in1279

the set W = {wlj 6= 0|j = 1...L} ∪ {wrj 6=1280

0|j = 1...R} satisfy −al1wl1 − ... − alLwlL =1281

ar1wr1 + ... + arRwrR , where their coefficient1282

−al1 , ...,−alL , ar1 , ..., arR are all positive con-1283

stants and −al1 − ... − alL ≥ ar1 + ... + arR .1284

Then, there is no hidden state h and a threshold τ1285

that make min
wg∈G

hTwg ≥ τ and max
ws∈S

hTws < τ ,1286

where G = {wlj |j = 1...L} and S = {wrj |j =1287

1...R}.1288

Proof. To prove by contradiction, we assume there1289

is a h such that ∀wlj ∈ G,hTwlj ≥ τ and ∀wrj ∈1290

S,hTwrj < τ . Thus, we can get −al1hTwl1 −1291

... − alLhTwlL ≥ −al1τ − ... − alLτ ≥ (ar1 +1292

...+arR)τ > ar1h
Twr1 + ...+arRh

TwrR , which1293

contradicts to −al1wl1 − ...− alLwlL = ar1wr1 +1294

...+ arRwrR .1295

We can rephrase the condition and the conclu-1296

sion to have our Theorem 1.1297

Theorem 1. If the nonzero output embeddings of1298

N words are linearly dependent and on one side1299

of a plane through the origin, the output softmax1300

layer cannot rank the N words with an arbitrary1301

order according to their probabilities.1302

Proof. Let the set W = {wi 6= 0|i = 1...N}1303

contain the embeddings of the N words. Based1304

on the premise, we can write 0 = a1w1 + ... +1305

aNwN and minwi∈W hT0 wi > 0, where h0 is a1306

normal vector of the plane. At least one of the ai is1307

negative. Otherwise, we will get the contradiction1308

0 = hT0 0 = a1h
T
0 w1 + ... + aNh

T
0 wN ≥ (a1 +1309

...+ aN )minwi∈W hT0 wi > 0. Similarly, at least1310

one of ai is positive. We can move all the terms in1311

0 = a1w1+...+aNwN with negative ai to the left1312

as−al1wl1−...−alLwlL = ar1wr1+...+arRwrR .1313

If −al1 − ... − alL ≥ ar1 + ... + arR , we choose1314

G = {wlj |j = 1...L}. Otherwise, we choose1315

G = {wrj |j = 1...R}1316

Based on Lemma 1, we know that there is a1317

partition P = {G,S} such that we cannot have the1318

logits of the words in G be always larger than the1319

logits of the other words in S, so all the words in1320

G cannot have the probabilities larger than every 1321

probability of the words in S. 1322

Next, we would like to generalize our Theorem 1 1323

by using a more practical condition where the word 1324

embeddings are almost linearly dependent. Notice 1325

that the theorem needs to assume the magnitude of 1326

the hidden state is limited. Otherwise, the margin 1327

could be arbitrarily magnified. In practice, the 1328

magnitude is not arbitrarily large in GPT-2 and 1329

BERT because a too large magnitude of hidden 1330

state could magnify the gradients too much to have 1331

a stable training process. 1332

Theorem 2. Let the output word embeddings in 1333

the set W = {wi 6= 0|i = 1...N} satisfy 1334

w1 = a2w2 + ... + aNwN + ε, where the con- 1335

stant a2, ..., aN are neither all zero nor all neg- 1336

ative and ||ε|| < ε. Then, there must be a non- 1337

trivial partition P = {G,S} of W such that 1338

there is no hidden state ||h|| ≤ r and a threshold 1339

τ ≥ rε that make minwg∈G hTwg ≥ (1+ δ)τ and 1340

maxws∈S h
Tws < τ , where δ = 2

1+
∑
i=2...N |ai|

. 1341

Proof. We can first move all the terms with nega- 1342

tive ai to the left as w1− al1wl1 − ...− alLwlL = 1343

ar1wr1 + ...+ arRwrR + ε. We perform proof by 1344

contradiction, so we assume the logits of the words 1345

in G can always be larger than (1 + δ)τ and the 1346

logits of the words in S can always be smaller than 1347

τ . 1348

Case 1: 1− al1 − ...− alL ≥ ar1 + ...+ arR , so 1349

1 − al1 − ... − alL ≥
1+

∑
i=2...N |ai|
2 . We choose 1350

G = {w1,wl1 , ...,wlL} and S = {wr1 , ...,wrR}. 1351

Thus, we can get hTε ≤ ||h||||ε|| ≤ rε ≤ τ and 1352

hTw1 − al1hTwl1 − ...− alLh
TwlL (5) 1353

≥(1− al1 − ...− alL)(1 + δ)τ (6) 1354

=(1− al1 − ...− alL)(1 +
2

1 +
∑

i=2...N |ai|
)τ

(7)

1355

≥(1− al1 − ...− alL)(1 +
1

1− al1 − ...− alL
)τ

(8)

1356

=(1− al1 − ...− alL + 1)τ (9) 1357

≥(ar1 + ...+ arR + 1)τ (10) 1358

>ar1h
Twr1 + ...+ arRh

TwrR + hTε, (11) 1359

which contradict with w1−al1wl1−...−alLwlL = 1360

ar1wr1 + ...+ arRwrR + ε. 1361

Case 2: 1 − al1 − ... − alL < ar1 + ... + 1362

arR . We choose G = {wr1 , ...,wrR} and S = 1363
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{w1,wl1 , ...,wlL}. Therefore,1364

ar1h
Twr1 + ...+ arRh

TwrR (12)1365

≥(ar1 + ...+ arR)(1 +
2

1 +
∑

i=2...N |ai|
)τ

(13)

1366

>(ar1 + ...+ arR)(1 +
1

ar1 + ...+ arR
)τ (14)1367

=(ar1 + ...+ arR + 1)τ (15)1368

>(1− al1 − ...− alL + 1)τ (16)1369

>hTw1 − al1hTwl1 − ...− alLh
TwlL − hTε.

(17)
1370

1371

E Method Details1372

When replacing the softmax layer in the pretrained1373

LMs, we found that the initialization of the extra1374

linear layers should make the initial prediction of1375

LMs close to the prediction using a softmax layer,1376

which is the architecture used in the pretraining.1377

The initialization is especially important for BERT.1378

To achieve the goal, we initialize the weights of1379

linear layer such that different facets are almost1380

identical at the beginning and let the LMs gradually1381

learn to output diverse facets during the training.1382

Specifically, we can write the linear layer on the1383

new hidden state Lfk(qct) as1384

fct,k = Lfk(qct)1385

= LI
kh

M
ct + LB

kGELU
(
Lh(⊕i,mhM−mct−i )

)
+ b.

(18)

1386

We initialize LI
k as an identity matrix, b← 0, and1387

LB
k ← U(−ε, ε), where U is the uniform distri-1388

bution and ε = 0.00005 if k 6= K. Otherwise,1389

ε = 0. Consequently, all the facets fct,k are ini-1390

tially close to the last hidden state of the origianl1391

GPT-2 hMct . Our baselines (e.g., Softmax, MoS,1392

and DOC) also adopt the same way to initialize1393

their weights.1394

When partitioning the vocabulary, we simply let1395

the jth facet handle the word with index J × n+ j1396

(e.g., the first partition includes the words with1397

indexes 0, 4, 8, ... when the number of partitions1398

J = 4). The partition way is easy to be imple-1399

mented in PyTorch and it won’t significantly in-1400

crease computational time because PyTorch sup-1401

ports the dilated variable access without needing to1402

copy the whole output word embedding matrix.1403

We implement our models based on hugging- 1404

face5 (Wolf et al., 2020) and we will release our 1405

code to provide more details in our methods. 1406

E.1 Architecture Differences in BERT 1407

The architecture of MFS for BERT is mostly the 1408

same as the one for GPT-2 and the differences are 1409

described in this subsection. 1410

In GPT-2 the block of input hidden state is right- 1411

aligned with the last word to prevent seeing the 1412

ground truth. On the other hand, the block in BERT 1413

is centered at the masked word. 1414

The softmax layer of BERT is slightly different 1415

from that of GPT-2. For example, BERT adds a 1416

bias term after the dot product between the hidden 1417

state and the output word embedding. We keep 1418

the bias term in our experiments. Besides, the 1419

pretrained BERT has a language modeling head 1420

including a linear layer, a GELU (Gaussian Error 1421

Linear Unit) layer (Hendrycks and Gimpel, 2016), 1422

and a layernorm layer (Ba et al., 2016), so instead 1423

of adding an extra linear layer as in GPT-2, we just 1424

use different language modeling heads to create dif- 1425

ferent facets in BERT. All the heads are initialized 1426

using the weights in the pretrained BERT except 1427

that the linear layer is initialized as in Equation 18 1428

when the multiple input hidden states are used and 1429

the corresponding linear weights LB
k ← U(−ε, ε), 1430

where ε = 0.05 if k 6= K. Otherwise, ε = 0. 1431

F Experimental Details 1432

In this section, we describe some details of our 1433

experimental setup. We will release our codes to 1434

reproduce our results once the paper is accepted. 1435

F.1 Baselines 1436

The MoS (Yang et al., 2018) and DOC (Takase 1437

et al., 2018) are originally designed for RNN- 1438

based LM. To improve their methods on pretrained 1439

Transformer-based LM and make their results more 1440

comparable to MFS, we change some of their im- 1441

plementation details. 1442

MoS originally has a tanh layer before the soft- 1443

max layers. However, we found that adding tanh 1444

hurts the performances of all methods we tested, 1445

especially the Softmax and MoS baselines. For ex- 1446

ample, after adding tanh and training GPT-2 Small 1447

for 0.4 epoch on Wikipedia, the validation perplex- 1448

ity degradation of Softmax is from 25.70 to 26.15, 1449

the degradation of MoS is from 25.42 to 25.83, and 1450

5https://huggingface.co/
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the degeneration of MFS is from 25.06 to 25.12.1451

We suspect this is because GPT-2 is pretrained with-1452

out the tanh layer and the tanh removes the magni-1453

tude of facets, which could be viewed as the inverse1454

of the temperature in the softmax layer. Therefore,1455

we remove the tanh layer in all of our experiments.1456

From the theoretical perspective, adding tanh does1457

not invalidate our motivation because tanh is invert-1458

ible. It would just make the global transformation1459

nonlinear. Therefore, our motivation of making1460

the facets move freely by inputting multiple hidden1461

states still holds even after adding tanh.1462

In DOC, we use the hidden states of the last1463

three transformer layers to compute the three facets1464

and we set λβ = 0. Each facet is only determined1465

by one layer of hidden state, so the first two facets1466

cannot access the last hidden state. We found that1467

the model quickly learns to only use the last facet1468

because only the last hidden state is trained to per-1469

form the LM task in the pretrained models. This1470

prevents the first two facets from getting any gradi-1471

ents and causes a starvation problem.1472

We tried an aggressive dropout trick to solve the1473

starvation problem in DOC. If one of the softmaxes1474

does not assign the highest probability to any of the1475

correct next words in a batch, we consider that the1476

corresponding facet starves, so we drop the other1477

facets with some probability to ensure this starved1478

facet receives some gradients and gradually gets1479

back on track. However, our preliminary experi-1480

ment suggests that the dropout trick cannot improve1481

the perplexity of DOC. The dropout probability is1482

either too low to solve the starvation problem or1483

too high to preserve the knowledge learnt from pre-1484

training. Thus, we do not adopt this trick in our1485

final experiment.1486

F.2 Language Modeling1487

We download Wikipedia using http:1488

//medialab.di.unipi.it/wiki/1489

Wikipedia_Extractor and OpenWebText us-1490

ing https://github.com/jcpeterson/1491

openwebtext. For Wikipedia, we prepro-1492

cess the text using https://github.com/1493

attardi/wikiextractor. For OpenWeb-1494

Text, we download the pre-filtered URLs in 20171495

and 2018 and scrape the text on April 2021. When1496

splitting the corpus into training, validation, and1497

testing sets, we do not shuffle the data. Instead,1498

we use the text near the end of the corpus as the1499

validation and test set to reduce the information1500

leakage. To ensure every model is trained on 1501

the same data and accelerate the training in 1502

our machines, we split the training data into 20 1503

consecutive partitions and load only one partition 1504

at a time during training. For BERT, we perform 1505

the sentence segmentation using SpaCy6 and input 1506

one sentence into BERT at a time. 1507

We set our hyperparameters (e.g., W × H = 1508

3 × 3 when using multiple input hidden states) 1509

based on the validation performance in Wikipedia 1510

2016, the resulting model size, and the memory 1511

constraint in GPUs. We use AdamW (Loshchilov 1512

and Hutter, 2019) optimizer and set the learning 1513

rate as 1e-5 and do not use the warm-up because 1514

the training starts from the pretrained models. The 1515

sequence length (i.e., bptt) is set as 200 for GPT-2 1516

and 256 for BERT. The batch size are set as 4 for 1517

GPT-2 Small, 16 for GPT-2 Large, 120 for BERT 1518

base, and 128 for BERT large. 1519

The analyses in Table 2 and Table 8 use the first 1520

4000 sequences in the validation dataset and all 1521

the methods are based on GPT-2 Small. We use 1522

PYCLD27 to distinguish between English and non- 1523

English text. 1524

We use NVIDIA GeForce RTX 2080 for training 1525

GPT-2 Small and BERT base, GeForce RTX 8000 1526

for training GPT-2 Medium, Tesla M40 for training 1527

BERT large. Since we start from the pretrained LM, 1528

we can finish training each LM within 2 weeks 1529

using 1 GPU for GPT-2 Small, BERT base, and 1530

GPT-2 Medium, and using 4 GPUs for training 1531

BERT large. 1532

When testing the inference time in Table 1, we 1533

average the time of running NVIDIA TITAN X 1534

on 10,000 batches, where each batch contains 4 1535

sequences with length 200. 1536

When visualizing the prediction in Table 3, we 1537

exclude the non-ASCII symbol prediction from the 1538

top word list of all models. 1539

F.3 Ambiguous Templates Analysis 1540

Among the semantic relations in Google anal- 1541

ogy dataset, we choose three different relations 1542

between locations: capital-common-countries, 1543

capital-world, city-in-state, and one relation be- 1544

tween people: family. We exclude the currency 1545

category because their instance often does not form 1546

a parallelogram in the word embedding space (Etha- 1547

yarajh et al., 2019). The templates we use are listed 1548

6https://spacy.io/
7https://github.com/aboSamoor/pycld2)
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Table 12: The templates used in the analysis. The first four templates are for the analogy relations from the
capital-common-countries, capital-world, and city-in-state categories. The next four templates are for the analogy
relations from the family category. The final four templates are for similar or dissimilar nouns.

Dataset ↓ Templates
Anology Between the $ARG1 and the $ARG2, I decided to first talk to the [MASK]
(Person The $ARG1 and the $ARG2 are my favorites, and I especially love the [MASK]

or The $ARG1 and the $ARG2 happily live together. One day, bad luck happens to the [MASK]
Person) The $ARG1 and the $ARG2 stay at my house, and I need to take care of the [MASK]
Anology I went to $ARG1 and $ARG2 before, and I love one of the places more, which is [MASK]
(Location $ARG1 and $ARG2 are my favorites, and I especially love [MASK]

or My uncle used to live in $ARG1 and $ARG2 but now, he is selling his house in [MASK]
Location) The traveler plans to visit $ARG1 and $ARG2, and the traveler first arrives in [MASK]
Similarity I love the $ARG1 and the $ARG2, and my favorite is the [MASK]

(Noun Yesterday, a man encountered the $ARG1 and the $ARG2. Today, he again saw the [MASK]
or There are the $ARG1 and the $ARG2 in front of a woman, and she decides to pursue the [MASK]

Noun) If you can choose the $ARG1 or the $ARG2, would you choose the [MASK]

in Table 12. For the family category, our templates1549

assume the words are not pronouns, so we exclude1550

the set of four words that include he or she.1551

For each of the four words in an analogy instance1552

(e.g., queen : king = woman : man), we would cre-1553

ate 32 training or testing sequences8 based on the1554

diagonal words such as king or woman. Similarly,1555

we would create 64 sequences in the edge datasets.1556

Some words contain multiple word pieces and we1557

average the losses of all word pieces during training1558

and testing.1559

We split the synthesized sequences based on1560

their word pair overlapping. First, we randomly1561

sample half of the word pairs (e.g., king and queen)1562

in each category as our training pairs. If both of1563

the word pairs in an analogy instance are training1564

pairs, the instance is put into our training set. If1565

only one of the word pairs is a training pair, the1566

instance would belong to our validation set. The1567

rest of the instances form our testing set. During1568

the fine-tuning, we evaluate a model using the val-1569

idation set after each epoch and select the model1570

based on its best validation perplexity.1571

F.4 ProtoQA Evaluation1572

In our experiments, we use the scraped develop-1573

ment set as our validation set and the crowdsourced1574

development set as our test set. We do not test our1575

methods on the test set of ProtoQA because the1576

result of every submission would show up in their1577

leaderboard and we do not want to overwhelm the1578

leaderboard with our 15 trials.1579

82 (diagonal words) × 4 (templates) × 2 (word orders in
the template) × 2 (possible next words)

Due to our limited GPU resources, we com- 1580

pare the methods built on GPT-2 medium rather 1581

than GPT-2 large. To maximize the perplexity of 1582

the GPT-2 medium model using Softmax on the 1583

scraped development set, we fine-tune our models 1584

using learning rate 3e-5 and warmup step 500. 1585

The original paper (Boratko et al., 2020) does 1586

not consider the frequency of the answer during the 1587

fine-tuning (i.e., the most possible answer and the 1588

least possible answer of each question appear in 1589

the training data with the same chance). In terms 1590

of the performance of the scraped development set, 1591

we find that weighting each answer based on the 1592

square root of its frequency is better than weighting 1593

each answer uniformly as in the original paper or 1594

weighting each answer based on its frequency, so 1595

we use the square root weighting to finetuning all 1596

our models. 1597

During testing time, each model generates the 1598

answers using Nucleus Sampling (Holtzman et al., 1599

2020) with p = 0.9 and temperature = 1. Then, we 1600

collect all the words before the first period as an 1601

answer and drop the generated sentences without a 1602

period. 1603

G Future Work 1604

Capturing the next word distribution well given 1605

an ambiguous context could be important in some 1606

downstream applications. A next step could be 1607

investigating whether multiple facets lead to a bet- 1608

ter language generation model for the applications. 1609

For example, we would like to know whether break- 1610

ing the softmax bottleneck could reduce the hallu- 1611

cination of LMs (e.g., outputting queen when the 1612

reasonable next words should be king or woman) 1613
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and increase the coherence of the generated text.1614

We also want to more systematically investigate1615

whether modeling multi-mode distribution could1616

help LMs to reduce the undesired bias and to better1617

distinguish similar words (Zagoury et al., 2021) as1618

in subsection B.4.1619

Narang et al. (2021); Anonymous (2021) find1620

that MoS can significantly improve the BERT-like1621

LMs on natural language understanding (NLU)1622

tasks when the LMs are trained from scratch. Al-1623

though we find that the perplexity improvement of1624

multi-embedding BERT is not as large as multi-1625

embedding GPT-2, pretraining using multiple em-1626

beddings does not decrease the inference speed of1627

the BERT encoder on NLU tasks. This motivates1628

the future studies of seeing if MFS also provides a1629

larger improvement than MoS in NLU tasks.1630

Table 2 suggests that multiple embeddings im-1631

prove more in a non-English context. We wonder1632

whether multiple embeddings are more beneficial1633

to the LMs that are trained on a non-English dom-1634

inating corpus. Chung et al. (2021) discover that1635

using a larger output embedding dimension im-1636

proves the multilingual BERT. An interesting re-1637

search question is whether the improvement comes1638

from alleviating the softmax bottleneck and whether1639

MFS could also lead to similar improvements in1640

multilingual benchmarks.1641

The hidden state size of GPT-3 175B (Brown1642

et al., 2020) is huge (12,288). An interesting ques-1643

tion is whether some sets of output word embed-1644

dings in GPT-3 are still in a low-dimensional sub-1645

space and whether the softmax bottleneck is still1646

a prominent problem on the road of pursuing gen-1647

eral intelligence when such a large hidden state1648

dimension is used. We also would like to know if1649

models using multiple facets could reach a similar1650

performance by a smaller hidden state size.1651

Recently, Gao et al. (2019); Rajaee and Pilehvar1652

(2021); Cai et al. (2021) point out the structure in1653

the contextual embedding space prevents it from1654

having an isotropic property. Our study and Deme-1655

ter et al. (2020) show that the structure in the word1656

embedding space only models the global similar-1657

ity between words and prevents the LM from out-1658

putting arbitrary context-dependent word distribu-1659

tions. We would like to know if we can discover a1660

new LM architecture with a better contextual/word1661

embedding space that could better model context-1662

dependent word similarities and balance it with the1663

global word similarities.1664

Mixtape (Yang et al., 2019) is another efficient 1665

solution to the softmax bottleneck, whose hidden 1666

state for each word is the weighted average of the 1667

facets where the weights are dynamically predicted. 1668

If only using one softmax (i.e., K = 1), our mul- 1669

tiple partition method could be viewed as a spe- 1670

cial case of Mixtape that uses a global and bina- 1671

rized weight to prevent complications of predicting 1672

weights of each word. Our results indicate that mul- 1673

tiple partitions need to be combined with multiple 1674

softmax layers in order to gain consistent perfor- 1675

mance improvement. A potential future direction 1676

is to compare MFS and Mixtape on the transformer- 1677

based LMs or combine the ideas from MFS and 1678

Mixtape to gain further improvements. 1679

The results in Kong et al. (2020) suggest that 1680

predicting n-gram could be better than predicting 1681

individual words in BERT in some applications. 1682

The total number of possible n-gram is several or- 1683

ders of magnitude higher than the number of indi- 1684

vidual tokens in the vocabulary. In addition, the lin- 1685

ear dependency among n-gram might be common. 1686

For example, the embedding of the brown color 1687

+ a dog may be similar to the embedding of the 1688

brown dog. The problem would be more serious as 1689

the length of the prediction sequence (n) increases, 1690

so predicting the next sentence using a single em- 1691

bedding might suffer from the softmax bottleneck 1692

even more. Therefore, our solutions to softmax 1693

bottleneck may lead to a better phrase represen- 1694

tation or sentence representation in this type of 1695

self-supervised pretraining. 1696

Finally, language modeling is only an example of 1697

extreme classification. The nearly ubiquitous usage 1698

of single embedding representation in the classi- 1699

fication, self-supervised models (e.g., contrastive 1700

learning models), or recommendation problems 1701

provides many research opportunities. We believe 1702

that our theoretical results could guide researchers 1703

to identify the potential applications where the soft- 1704

max bottleneck is serious and multi-embedding rep- 1705

resentation is accordingly helpful. 1706
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