
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BENCHMARKING PREDICTIVE CODING NETWORKS
– MADE SIMPLE

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we tackle the problems of efficiency and scalability for predictive
coding networks (PCNs) in machine learning. To do so, we propose a library
that focuses on performance and simplicity, and use it to implement a large set
of standard benchmarks for the community to use for their experiments. As most
works in the field propose their own tasks and architectures, do not compare
one against each other, and focus on small-scale tasks, a simple and fast open-
source library, and a comprehensive set of benchmarks, would address all of
these concerns. Then, we perform extensive tests on such benchmarks using both
existing algorithms for PCNs, as well as adaptations of other methods popular
in the bio-plausible deep learning community. All of this has allowed us to (i)
test architectures much larger than commonly used in the literature, on more
complex datasets; (ii) reach new state-of-the-art results in all of the tasks and dataset
provided; (iii) clearly highlight what the current limitations of PCNs are, allowing
us to state important future research directions. With the hope of galvanizing
community efforts towards one of the main open problems in the field, scalability,
we release the code, tests, and benchmarks.
Link to the library: https://anonymous.4open.science/r/pcx-E33A/README.md

1 INTRODUCTION

In 1999, (Rao & Ballard, 1999) proposed a hierarchical formulation of predictive coding (PC) to
model of visual processing. It was recently realized that this framework could be used to train neural
networks using a bio-plausible learning rule (Whittington & Bogacz, 2017). This has led to different
research directions, whose focus was either to explore interesting properties of PC networks (Song
et al., 2024; Alonso et al., 2022), or to propose variations that improve the performance on specific
tasks (Salvatori et al., 2024; Ororbia & Kifer, 2022). These lines of research, however, have the
tendency of not comparing their results against other works, and to focus on small-scale experiments.
The field is hence avoiding what we believe to be the most important open problem: scalability.

There are multiple reasons why the problem of scalability has been overlooked. First, it is a
hard problem, and it is still unclear why so far PC has been able to perform as well as classical
gradient descent with backpropagation (BP) only up to a certain scale, which is that of small
convolutional models trained to classify the CIFAR10 dataset (Salvatori et al., 2024). Understanding
this would allow us to develop regularization techniques that stabilize learning, and hence allow better
performance on more complex tasks. Second, the lack of specialized libraries makes PC models
extremely slow: a full hyperparameter search on a small convolutional network can take several
hours. Third, the lack of a common framework makes reproducibility and iterative contributions
hard, as implementation details or code are rarely provided. In this work, we make first steps toward
addressing these problems with three contributions, that we call tool, benchmarking, and analysis.

Tool. We release an open-source library for accelerated training for predictive coding called PCX.
This library runs in JAX (Bradbury et al., 2018), and offers a user-friendly interface with minimal
learning curve through familiar syntax inspired from Pytorch, and extensive tutorials. It is also
fully compatible with Equinox (Kidger & Garcia, 2021), a popular deep-learning-oriented extension
of JAX, ensuring reliability, extendability, and compatibility with ongoing research developments.
It also supports JAX’s Just-In-Time (JIT) compilation, making it efficient and allowing both easy
development and execution of PC networks, gaining efficiency with respect to existing libraries.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Benchmarking. We propose a uniform set of tasks, datasets, metrics, and architectures that should
be used as a skeleton to test the performance of future variations of PC. The tasks that we propose are
the standard ones in computer vision: image classification and generation. The models that we use,
as well as the datasets, are picked according to two criteria: First, to allow researchers to test their
algorithm from the easiest task (feedforward network on MNIST) to more complex ones; Second, to
favor the comparison against related fields in the literature, such as equilibrium and target propagation
(Scellier & Bengio, 2017; Bengio, 2014). To this end, we have picked some of the models that
are consistently used in their research papers. As learning algorithms, we consider standard PC,
incremental PC (Salvatori et al., 2024), PC with Langevin dynamics (Oliviers et al., 2024), and
nudged PC, as done in the Eqprop literature (Scellier & Bengio, 2017; Scellier et al., 2024). Note
that this is the first time nudging algorithms are applied in PC models.

Analysis. We get state-of-the-art (SOTA) results for PC on multiple benchmarks and show for
the first time that it is able to perform well on more complex datasets, such as CIFAR100 and Tiny
Imagenet, where we get results comparable to those of backprop. In image generation tasks, we
present experiments on datasets of colored images, going beyond MNIST and FashionMNIST as
performed in previous works. We thoroughly discuss the results and highlight areas of improvements,
the main one being generalizations to very deep models, and report analysis on the credit assignment
of PC in such cases, to better understand the reasons behind some failures. To conclude, in the
supplementary material we provide a detailed explanation of hyperparameters/techniques/tricks that
allowed us to reach SOTA results, to also provide a cookbook for researchers in the field.

2 RELATED WORKS

Rao and Ballard’s PC. The most related works are those that explore different properties or
optimization algorithms of standard PC in the deep learning regime, using formulations inspired
by Rao and Ballard’s original work (Rao & Ballard, 1999). Examples are works that study their
associative memory capabilities (Salvatori et al., 2021; Yoo & Wood, 2022; Tang et al., 2023; 2024),
their ability to train Bayesian networks (Salvatori et al., 2022; 2023b), and theoretical results that
explain, or improve, their optimization process (Millidge et al., 2022a;b; Alonso et al., 2022). Results
in this field have allowed to either improve the performance of such models in different tasks, or to
study different properties that could benefit from the use of PCNs.

Variations of PC. In the literature, there are multiple variations of PC algorithms. Important
examples are biased competition and divisive input modulation (Spratling, 2008), or the neural
generative coding framework (Ororbia & Kifer, 2022). The latter is already used in multiple
reinforcement learning and control tasks (Ororbia & Mali, 2023; Ororbia et al., 2023), and has its
own JAX-based open source library called NGCLearn. For a review on how different PC algorithms
evolved through time, from signal processing to neuroscience, we refer to (Spratling, 2017); for
a more recent review specific to machine learning applications, to (Salvatori et al., 2023a). It is
also worth mentioning the original literature on PC in the neurosciences has evolved from Rao and
Ballard’s work into a general theory that models information processing in the brain using probability
and variational inference, called the free energy principle (Friston, 2005; Friston & Kiebel, 2009;
Friston, 2010).

Neuroscience-inspired deep learning. Another line of related works is that of neuroscience
methods applied to machine learning, like equilibrium propagation (Scellier & Bengio, 2017), which
is the most similar to PC (Laborieux & Zenke, 2022; Millidge et al., 2022a). Other methods able
to train models of similar sizes are target propagation (Bengio, 2014; Ernoult et al., 2022; Millidge
et al., 2022b) and SoftHebb (Moraitis et al., 2022; Journé et al., 2022). The first two communities,
that of targetprop and eqprop, consistently use similar architectures in different research papers to test
the performance of their methods. In our benchmarking effort, some of the architectures proposed are
the same ones they use, to favor a more direct comparison. There are also methods that differ more
from PC, such as forward-only methods (Kohan et al., 2023; Nøkland, 2016; Hinton, 2022), methods
that back-propagate the errors using a designated set of weights (Lillicrap et al., 2014; Launay et al.,
2020), and other Hebbian methods (Moraitis et al., 2022; Journé et al., 2022).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 BACKGROUND AND NOTATION

Predictive coding networks (PCNs) are hierarchical Gaussian generative models that consist of
L levels. Each level models a multi-variate distribution, with parameters θ = θ0, θ1, θ2, ..., θL,
parameterized by the activation of the preceding level. Let hl be the realization of the vector of
random variables Hl of level l, then we have that the likelihood

Pθ(h0, h1, . . . , hL) = Pθ0(h0)Pθ1(h1|h0) · · ·PθL(hL|hL−1).

Where we write Pθl(hl) instead of Pθl(Hl = hl), that is the likelihood of Hl evaluated at hl. We
refer to each of the scalar random variables of Hl as a neuron. In PC both the prior on h0 and the
relationships between levels are governed by a normal distribution parameterized as follows:

Pθ0(h0) = N (h0, µ0,Σ0), µ0 = θ0,

Pθl(hl|hl−1) = N (hl;µl,Σl), µl = fl(hl−1, θl),

where θl are the learnable weights parametrizing the transformation fl, and Σl is a covariance matrix,
that will be fixed to the identity matrix throughout this work. If, for example, θl = (Wl, bl) and
fl(hl−1, θl) = σl(Wlhl−1+ bl), then the neurons in level l−1 are connected to neurons in level l via
a linear operation, followed by a non linear map, analogously to a fully connected layer. Intuitively,
θ is the set of learnable weights of the model, while h = {h0, h1, ..., hL} is data-point-dependent
latent state, containing the abstract representations for the given observations.

Training. In supervised settings, training consists of learning the relationship between given pairs
of input-output observations (x, y). In PC, this is performed by maximizing the joint likelihood
of our generative model with the latent vectors h0 and hL respectively fixed to the input and label
of the provided data-point: Pθ(h|h0=x,hL=y) = Pθ(hL = y, . . . , h1, h0 = x). This is achieved by
minimizing the so-called variational free energy F (Friston et al., 2007):

F(h, θ) = − lnPθ(h) = − ln

(
N (h0|µ0)

L∏
l=1

N (hl; fl(hl−1, θl))

)
=

L∑
l=0

1

2
(hl − µl)

2 + k. (1)

The quantity ϵl = (hl − µl) is often referred to as prediction error of layer l, being the difference
between the predicted activation µl and the current state hl. Refer to the appendix, for a full derivation
of Eq. equation 1. To minimize F , the Expectation-Maximization (EM) (Dempster et al., 1977)
algorithm is used by iteratively optimizing first the state h, and then the weights θ according to the
equations

h∗ = argminhF(h, θ), θ∗ = argminθF(h∗, θ). (2)
We refer to the first step described by Eq. equation 2 as inference and to the second as learning
phase. In practice, we do not train on a single pair (x, y) but on a dataset split into mini-batches that
are subsequently used to train the model parameters. Furthermore, both inference and learning are
approximated via gradient descent on the variational free energy. In the inference phase, firstly h is
initialized to an initial value h(0), and, then, it is optimized for T iterations. Then, during the learning
phase we use the newly computed values to perform a single update on the weights θ. The gradients
of the variational free energy with respect to both h and θ are as follows:

∇hl =
∂F
∂hl

=
1

2

(
∂ϵ2l
∂hl

+
∂ϵ2l+1

∂hl

)
, ∇θl =

∂F
∂θl

=
1

2

∂ϵ2l
∂θl

. (3)

Then, a new batch of data points is provided to the model and the process is repeated until convergence.
As highlighted by Eq. equation 3, each state and each parameter is updated using local information as
the gradients depend exclusively on the pre and post-synaptic errors ϵl and ϵl+1. This is the main
reason why, in contrast to BP, PC is a local algorithm and is considered more biologically plausible.
In Appendix A, we provide an algorithmic description of the concepts illustrated in these paragraphs,
highlighting how each equation is translated to code in PCX.

Evaluation. Given a test point x̄, we fix h0 = x̄ and compute the most likely value of the latent
states h∗|h0=x̄, again using the state gradients of Eq. equation 3. We refer to this as discriminative
mode. In practice, for discriminiative networks, the values of the latent states computed this way
are equivalent to those obtained via a forward pass, that is setting h

(0)
l = µ

(0)
l for every l ̸= 0, as it

corresponds to the global minimum of F (Frieder & Lukasiewicz, 2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In NN, the vector is fixed to
a target ,
instead of y, and the sign of the
weight update is inverted:

In PN, the vector is fixed to
a target ,
instead of y.

Generative Mode Discriminative Mode

0 0 0 1 0 0

Latent Space
Dirac Delta
Prior

Observations
Observations

Tasks:
● Image Classification;
● Image Generation;
● Associative Memory.

Algorithms:
● Predictive Coding;
● Incremental Predictive Coding;
● Positive Nudging;
● Negative Nudging;
● Centered Nudging;
● Monte Carlo Predictive Coding

Models:
● Feedforward Networks;
● Convolutional Networks;
● De-convolutional Networks.

Datasets:
● MNIST;
● FashionMNIST;
● CIFAR10/100;
● Tiny ImageNet;
● CelebA

1.
2. MCPC: Each latent variable is updates as
3. PN: is fixed to a target
4. NN: is fixed to a target

 and the update is inverted, i.e.,
5. CN: Let and be the updates of PN and

 NN. Then, the update performed by CN is

In iPC, each is updated at every
timestep t.

In MCPC, the update of every latent
variable is corrupted via the addition of
Gaussian noise .

(a) (b)

Figure 1: (a): Generative and discriminative modes; (b): Pseudocode of PC in supervised learning, where both
the latent variables hl and the weight parameters θl are updated to minimize the variational free energy F . In
the colored boxes, informal description of the different algorithms considered in this work.

Generative Mode. PCNs can also be used (and were initially developed to be used) to perform
unsupervised learning tasks. Given a datapoint x, the goal is to compress the information of x into a
latent representation, conceptually similar to how variational autoencoders work (Kingma & Welling,
2013). Such a compression, that should contain all the information needed to generate x, is computed
by fixing the state vector hL to the data-point, and run inference – that is, we maximize Pθ(h|hL=x)
via gradient descent on h. The compressed representation will then be the value of h0 at convergence
(or, in practice, after T steps). If we are training the model, we then perform a gradient update on the
parameters to minimize the variational free energy of Eq.equation 1, as we do in supervised learning.
A sketch of the discriminative and generative ways of training PCNs is represented in Fig. 1(a).

4 EXPERIMENTS AND BENCHMARKS

The benchmark that we propose is a standardized set of models, datasets, and training and testing
procedure that have been consistently used to evaluate predictive coding, but in a non-uniform
way. Here, for a comprehensive evaluation, we test models of increasing complexity on multiple
computer vision datasets, with both feedforward and convolutional/de-convolutional layers; and
multiple learning algorithms present in the literature. This section is divided in two areas, that
correspond to discriminative (supervised) and generative (unsupervised) inference tasks. For the
former mode, we focus on supervised classification, and unsupervised generation for the latter. A
sketch illustrating the two modes is provided in Fig. 1. For every class of experiments, we have
performed a large hyperparameter search over learning rates, optimizers, activation functions, and
algorithm-specific parameters. All the details needed to reproduce the experiments, as well as a
discussion about ‘lessons learned’ during such a large search, are in the Appendix B and C.

To provide a comprehensive evaluation, we have tested on multiple computer vision datasets, MNIST
(LeCun & Cortes, 2010), FashionMNIST (Xiao et al., 2017), CIFAR10/100 (Krizhevsky et al.,
2009), CelebA (Liu et al., 2018), and Tiny ImageNET (Le & Yang, 2015); on models of increasing
complexity, and multiple learning algorithms present in the literature. The results, averaged over 5
seeds are reported in Tab. 1 when we used discriminative models, and in Tab. 2 for generative models.
Note that, besides a very recent exception on CelebA (Sennesh et al., 2024), this is the first time that
PCNs with local message passing are tested on datasets like CelebA, CIFAR100, and Tiny ImageNet.

Algorithms. We consider various learning algorithms present in the literature: (1) Standard PC,
already discussed in the background section; (2) Incremental PC (iPC) Salvatori et al. (2024), a
simple and recently proposed modification where the weight parameters are updated alongside the
latent variables at every time step; (3) Monte Carlo PC (MCPC) Oliviers et al. (2024), obtained by
applying unadjusted Langevin dynamics to the inference process; (4) Positive nudging (PN), where
the target used is obtained by a small perturbation of the output towards the original, 1-hot label; (5)
Negative nudging (NN), where the target is obtained by a small perturbation away from the target,
and updating the weights in the opposite direction; (6) Centered nudging (CN), where we alternate
epochs of positive and negative nudging Scellier et al. (2024). Among these, PC, iPC, and MCPC
will be used for the generative mode, and PC, iPC, PN, and NN, and CN for the discriminative mode.
See Fig. 1, and the supplementary material, for a more detailed description.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Test accuracies of the different algorithms on different datasets.

% Accuracy PC-CE PC-SE PN NN CN iPC BP-CE BP-SE

MLP
MNIST 98.11±0.03 98.26±0.04 98.36±0.06 98.26±0.07 98.23±0.09 98.45±0.09 98.07±0.06 98.29±0.08

FashionMNIST 89.16±0.08 89.58±0.13 89.57±0.08 89.46±0.08 89.56±0.05 89.90±0.06 89.04±0.08 89.48±0.07

VGG-5
CIFAR-10 88.06±0.13 87.98±0.11 88.42±0.66 88.83±0.04 89.47±0.13 85.51±0.12 88.11±0.13 89.43±0.12

CIFAR-100 (Top-1) 60.00±0.19 54.08±1.66 64.70±0.25 65.46±0.05 67.19±0.24 56.07±0.16 60.82±0.10 66.28±0.23

CIFAR-100 (Top-5) 84.97±0.19 78.70±1.00 84.74±0.38 85.15±0.16 86.60±0.18 78.91±0.23 85.84±0.14 85.85±0.27

Tiny ImageNet (Top-1) 41.29±0.2 30.28±0.2 34.61±0.2 46.40±0.1 46.38±0.11 29.94±0.47 43.72±0.1 44.90±0.2

Tiny ImageNet (Top-5) 66.68±0.09 57.31±0.21 59.91±0.24 68.50±0.18 69.06±0.10 54.73±0.52 69.23±0.23 65.26±0.37

VGG-7
CIFAR-10 84.62±0.1 81.91±0.3 85.97±0.3 87.26±0.1 88.40±0.12 80.15±0.18 88.60±0.1 89.91±0.1

CIFAR-100 (Top-1) 56.80±0.14 37.52±2.60 56.56±0.13 59.97±0.41 64.76±0.17 43.99±0.30 59.96±0.10 65.36±0.15

CIFAR-100 (Top-5) 83.00±0.09 66.73±2.37 81.52±0.17 81.50±0.41 84.65±0.18 73.23±0.30 85.61±0.10 84.41±0.26

Tiny ImageNet (Top-1) 41.15±0.14 21.28±0.46 25.53±0.77 39.49±2.69 35.59±7.69 19.76±0.15 45.32±0.11 46.08±0.15

Tiny ImageNet (Top-5) 66.25±0.11 44.92±0.27 50.06±0.84 64.66±1.95 59.63±6.00 40.36±0.22 69.64±0.18 66.65±0.20

VGG-9
CIFAR-10 78.12±0.14 75.33±0.25 76.90±0.18 85.90±0.14 87.19±0.41 79.02±0.21 89.18±0.08 90.02±0.18

CIFAR-100 (Top-1) 58.25±0.13 39.57±0.18 43.21±0.21 60.74±0.75 58.92±1.61 44.76±0.40 60.63±0.28 65.51±0.23

CIFAR-100 (Top-5) 83.28±0.06 66.90±0.26 71.13±0.23 83.19±0.38 81.56±0.63 72.88±0.29 85.25±0.11 84.70±0.28

Tiny ImageNet (Top-1) 39.64±0.17 21.78±0.15 23.62±0.23 41.59±0.27 31.5±0.70 26.34±0.03 45.66±0.09 45.51±0.15

Tiny ImageNet (Top-5) 64.60±0.09 44.43±0.09 46.89±0.11 66.15±0.32 54.67±0.68 50.48±0.05 69.65±0.09 65.62±0.17

ResNet-18
CIFAR-10 43.19±0.61 53.74±0.43 62.45±0.52 62.33±0.93 55.29±1.65 70.44±0.81 92.83±0.18 93.21±0.07

CIFAR-100 (Top-1) 16.01±0.42 22.83±0.38 25.86±0.86 26.91±0.55 15.45±1.7 29.45±1.36 72.32±0.26 71.89±0.16

CIFAR-100 (Top-5) 40.67±0.70 50.18±0.52 53.80±1.13 55.57±0.80 39.42±2.8 56.70±1.73 92.14±0.12 87.80±0.18

Tiny ImageNet (Top-1) 09.52±0.32 14.19±0.25 15.79±1.10 15.95±0.27 04.40±0.49 06.19±1.09 58.00±0.23 55.30±0.16

Tiny ImageNet (Top-5) 26.21±0.50 34.55±0.20 37.36±1.57 37.76±0.52 14.30±1.92 16.51±3.09 79.94±0.06 74.98±0.36

Table 2: MSE loss for image reconstruction of BP, PC, and iPC on different datasets.

MSE (×10−3) PC iPC BP

MNIST 9.25±0.00 9.09±0.00 9.08±0.00

FashionMNIST 10.56±0.01 10.11±0.01 10.04±0.00

MSE (×10−3) PC iPC BP

CIFAR-10 6.67±0.10 5.50±0.01 6.17±0.46

CELEB-A 2.35±0.12 1.30±0.12 3.34±0.30

4.1 DISCRIMINATIVE MODE

Here, we test the performance of PCNs on image classification tasks. We compare PC against BP,
using both Squared Error (SE) and Cross Entropy (CE) loss, by adapting the energy function as
described in Pinchetti et al. (2022). For the experiments on MNIST and FashionMNIST, we use
feedforward models with 3 hidden layers of 128 hidden neurons, while for CIFAR10/100 and Tiny
ImageNET, we compare ResNets and VGG-like models He et al. (2016); Simonyan & Zisserman
(2014).

Results. Table 1 shows that the best performing algorithms, at least on the most complex tasks,
are the nudging ones (PN, NN, and CN). Among them, CN is almost always the best performing
one, a result that is in line with previous findings in the Eqprop literature Scellier et al. (2024). The
only case where nudging algorithms are outperformed is on Tiny Imagenet on VGG7, where PC-CE
performs better than them. However, the results obtained by PC-CE here, are still worse than the ones
obtained by CN on VGG5 The recently proposed iPC, on the other hand, performs well on small
architectures, as it is the best performing one on MNIST and FashionMNIST, but its performance
worsen when it comes to train on large architectures. More broadly, the performance up to models of
depth 7 are comparable to those of backprop, while those of deeper models lag behind.

Discussion on depth. An interesting observation, is that all the best results for PC have been
achieved using a VGG5, with the performance trend being VGG5 > VGG7 > VGG9 > ResNet, as
shown in Fig 2. Conversely, we observe the opposite for backprop-trained models, with deeper
models like VGG9 outperforming VGG5. A similar trend was observed in ResNet18 experiments,
where PCNs yielded significantly lower test accuracies, with none of the models coming close to the
performance of a VGG5. In contrast, backprop-trained ResNet18 models outperformed all previously
tested VGG models, further emphasizing the gap in scalability between the two. Future work should
investigate the reason of such a phenomenon, as scaling up to more complex datasets will require the
use of much deeper architectures. In Section 5, we analyze possible causes, as well as comparing the
wall-clock time of the different algorithms.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Test accuracies of different PC algorithms on the CIFAR10 dataset, using models of different depths.
Original Images

PC

iPC

BP

Figure 3: CIFAR10 image reconstruction via autoen-
coding convolutional networks. In order: original, PC,
iPC, and BP.

−2 0 2

sepal length

−2

−1

0

1

2

pe
ta

ll
en

gt
h

Figure 4: Generative samples obtained by MCPC. Left:
Contour plot of learned generative distribution compared
to Iris data samples (x). Right: Samples obtained for
a PCN. In order: unconditional generation, conditional
generation (odd), conditional generation (even).

4.2 GENERATIVE MODE

In this section, we test the performance of PCNs on image generation tasks. We perform three
different kinds of experiments: (1) generation from a posterior distribution; (2) generation via
sampling from the learned joint distribution; and (3) associative memory retrieval. In the first case,
we provide a test image y to a trained model, run inference to compute a compressed representation
x̄ (stored in the latent vector h0 at convergence), and produce a reconstructed ȳ = hL by performing
a forward pass with h0 = x̄). The model we consider are three layer networks, and compare
against autoencoders with three layer encoder/decoder structure (so, six layers in total). In the case
of MNIST and FashionMNSIT, we use feedforward layers, in the case of CIFAR10 and CelebA,
(de-)convolutional ones. The results in Tab. 2 and Fig. 3 report comparable performance, with a small
advantage for PC compared to BP on the more complex tasks. In this case, iPC is the best performing
algorithm, probably due to the small size of the considered models which allows for better stability.

Then, we tested the capability of PCNs to learn, and sample from, a complex probability distribution.
MCPC extends PC by incorporating Gaussian noise to the activity updates of each neuron. This
change enables a PCN to learn and generate samples analogous to a variational autoencoders (VAE).
This change shifts the inference of PCNs from a variational approximation to Monte Carlo sampling
of the posterior using Langevin dynamics. Data samples can be generated from the learned joint Pθ(h)
by leaving all states hl free and performing noisy inference updates. Figure 4 illustrates MCPC’s
ability to learn multimodal distributions using the iris dataset (Pedregosa et al., 2011) and shows
generative samples for MNIST. When comparing MCPC to a VAE, both models produced samples of
similar quality. MCPC achieved a lower FID score (MCPC: 2.53±0.17 vs. VAE: 4.19±0.38), whereas
the VAE attained a higher inception score (VAE: 7.91±0.03 vs. MCPC: 7.13±0.10).

+ Mask + Noise

Figure 5: Memory recalled images. Top: Original
images. Left: Noisy input (guassian noise, σ = 0.2)
and reconstruction. Right: Masked input (bottom half
removed) and reconstruction.

In the associative memory (AM) experiments,
we test how well the model is able to reconstruct
a training image, after it is provided with an in-
complete or corrupted version of it, as done in
a previous work (Salvatori et al., 2021). Fig. 5
show the results obtained by a PCN with 2 hid-
den layers of 512 neurons given noise or mask
corrupted images. In Tab. 3, we study the mem-
ory capacity as the number of hidden layers in-
creases. No visual difference between the recall
and original images can be observed for MSE up
to 0.005. To evaluate efficiency we then trained

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: MSE (×10−4) of associative memory tasks given noisy (left) or masked (right) inputs as keys. Columns
indicate the number of hidden neurons while rows shows the training images to memorize. Results over 5 seeds.

Noise 512 1024 2048

50 6.06±0.11 5.91±0.14 5.95±0.06

100 6.99±0.19 6.76±0.23 6.16±0.07

250 9.95±0.05 10.14±0.06 8.90±0.06

Mask 512 1024 2048

50 0.06±0.02 0.01±0.00 0.00±0.00

100 1.15±0.78 1.01±0.79 0.11±0.03

250 39.1±10.8 3.74±0.73 0.22±0.06

(a) (b) (c) (d)

Figure 6: (a): Highest test accuracy reported for different initialization methods and iteration steps T used
during training; (b): Energies per layer during inference of the best performing model (which has γ = 0.003);
(c) Decay in accuracy when increasing the learning rate of the states γ, tested using both SGD and Adam; (d)
Imbalance between energies in the layers. Figures are obtained using a three layer model on FashionMNIST.

a PCN with 5 hidden layers of 512 neurons on 500 TinyImagenet samples, with a batch size of 50
and 50 inference iterations during training. Training takes 0.40 ± 0.005 seconds per epoch on an
Nvidia V100 GPU.

Discussion. The results show that PC is able to perform generative tasks, as well as and associative
memory ones using decoder-only architectures. Via inference, PCNs are able to encode complex
probability distributions in their latent state which can be used to perform a variety of different tasks,
as we have shown. This highlights the flexibility of PCNs when used in the generative mode, that
however comes at a higher computational cost due to the number of inference steps to perform.

5 ANALYSIS AND METRICS

In this section, we report several metrics that we believe are important to understand the current state
and challenges of training networks with PC and compare them with standard models trained with
gradient-descent and backprop when suitable. More in detail, we discuss the energy landscape in
different layers, and how stable training is when changing parameters, initializations, and optimizers.
A better understanding of such phenomena would allow us to solve the current problems of PCNs
and, hence, scale up to the training of larger models on more complex datasets.

5.1 ENERGY AND STABILITY

The first study we perform regards the initialization of the network states h, and how this influences
the performance of the model. In the literature, they have been either initialized to be equal to
zero, randomly initialized via a Gaussian prior (Whittington & Bogacz, 2017), or initialized via a
forward pass. This last technique has been the preferred option in machine learning papers as it
sets the errors ϵl ̸=L = 0 at every internal layer of the model. This allows the prediction error to be
concentrated in the output layer only, and hence be equivalent to the SE. To provide a comparison
among the three methods, we have trained a 3-layer feedforward model on FashionMNIST. The
results, plotted in Fig. 6(a), show that forward initialization is indeed the better method, although the
gap in performance shrinks the more iterations T are performed.

Energy propagation. Concentrating the total error of the model to the last layer makes it hard
for the inference process to then propagate such an energy back to the first layers. As reported in
Fig. 6(b), we observe that the energy in the last layer is orders of magnitude larger than the one in
the input layer, even after performing several inference steps. An easy way of quickly propagating

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Comparison of the training times of BP against PC on different
architectures and datasets.

Epoch time (seconds) BP PC (ours) PC (Song)

MLP - FashionMNIST 1.82±0.01 1.94±0.07 5.94±0.55

AlexNet - CIFAR-10 1.04±0.08 3.86±0.06 17.93±0.37

VGG-5 - CIFAR-100 1.61±0.04 5.33±0.02 13.49±0.05

VGG-7 - Tiny ImageNet 7.59±0.63 54.60±0.10 137.58±0.08
×1 ×2 ×3 ×4 ×5 ×6

Multiplicative Factor

1
.0

2
.0

3
.0

4
.0

Seconds per epoch

Batch size
Network width
T
of layers
of layers (vmap)

Figure 8: Training time for different
network configurations.

the energy through the network would be to use learning rates equal to 1.0 for the updates of the
states, that does not produce any energy imbalance, as also shown in Fig. 6(d). However, both the
results reported in Fig. 6(b), as well as our large experimental analysis of Section 4 show that the
best performance was consistently achieved for state learning rates γ significantly smaller than 1.0.
This raises the question whether better initialization or optimization techniques could result in a more
balanced energy distribution and thus better weight updates.

To better understand how the energy propagation relates to the performance of the model, we have
analyzed both the test accuracy and the ratio of the energies of subsequent layers as a function of the
state learning rates γ. The results, reported in Fig 6(c,d), show that small learning rates lead to better
performance, but also to large energy imbalances among layers. On the one hand, the energy in the
first hidden layer is similar to that of the last layer for γ = 1, and about 6 orders of magnitude lower
for γ = 0.01. On the other hand, models trained with a learning rate of γ = 1 achieve much worse
performance. Such results show that the current training setup favors large energy imbalances among
different layers, a problem that leads to exponentially small gradients when the depth of the model
increases. We provide implementation details and results on other datasets in Appendix D.

10 5 10 4 10 3 10 2 10 1

 (State Learning Rate)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

rac
y

PC - SGD

Width
32
64
128
256

512
1024
2048
4096

10 5 10 4 10 3 10 2 10 1

 (State Learning Rate)

PC - AdamW BP

Figure 7: Updating weights with AdamW becomes unstable for
wide layers as the accuracy plummets to random guessing for pro-
gressively smaller state learning rates as the network’s width in-
creases. Contrarely to using SGD, the optimal state learning rate
depends on the width of the layers.

Training stability. We have ob-
served a link between the weight opti-
mizer and the influence of the hidden
dimension on the performance of the
model. To better study this, we trained
feedforward PCNs with different hid-
den dimensions, state learning rates
γ and optimizers, and reported the re-
sults in Fig. 7. The results show that,
when using Adam, the width strongly
affects the values of the learning rate
γ for which the training process is sta-
ble. Interestingly, this phenomenon
does not appear when using both the
SGD optimizer, nor on standard net-
works trained with backprop. This
behavioral difference with BP is unex-
pected and suggests the need for better
optimization strategies for PCNs, as AdamW was still the best choice in our experiments, but could
be a bottleneck for larger architectures.

6 LIBRARY, RESOURCES AND IMPLEMENTATIONS DETAILS

In this section, we discuss PCX, the tool that we have used to perform the experiments, and that we
release open source. PCX is developed on top of JAX, focusing on performance and versatility, and
is built upon the following concepts: compatibility, modularity, and efficiency.

Compatibility. PCX shares the same philosophy of equinox (Kidger & Garcia, 2021), according
to which models are just PyTrees. Consequently, it is fully compatible, using a complete functional

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

approach, with both libraries and many other tools developed for JAX, such as diffrax (Kidger,
2021) and optax (DeepMind et al., 2020). To this end, it will be straightforward to implement
novel development in deep learning into PCX. However, it also offers an imperative object-oriented
interface, which allows to build PCNs following a PyTorch-like style.

Modularity. Thanks to the object-oriented abstraction, we built the modular primitives that can be
combined to create a PCN, mainly: a module class, representing an abstract energy-based models; the
vectorised nodes storing the states h; the optimizers, to perform the inference and learning process in
a predictive coding network; and various standard Layers. Each benchmark we showcase in this work
can be obtained by combining and configuring different "blocks" as needed.

Efficiency. PCX extensively relies on just-in-time compilation. From our initial benchmarks, we
observed a speed-up of up to 50x when compiling a PCN. We believe that this stark difference is due
to the nature of PC, which relies on multiple smaller operations compared to backpropagation, i.e.,
the T inference step performed in each layer, and thus is more affected by the function calls overhead
present in eager execution mode.

PCX offers a unified interface to test multiple variations of PC on several tasks. Our modular code
base can easily be expanded in the future to support new variations of PC, as we show complete
compatibility with existing variations and training techniques. This is different from, for example, the
monolithic or low-level approaches used in (Song, 2024) and (Ororbia & Kifer, 2022), respectively.

6.1 COMPUTATIONAL RESOURCES AND LIMITATIONS.

We measured the wall-clock time of our PCNs implementation against another existing open-source
library (Song, 2024) used in many PC works (Song et al., 2024; Salvatori et al., 2021; 2022; Tang
et al., 2023), as well as comparing it with equivalent BP-trained networks (developed also with PCX
for a fair comparison). Tab. 4 reports the measured time per epoch, averaged over 5 trials, using a
A100 GPU. We also outperform alternative methods such as Eqprop: using the same architecture on
CIFAR100, the authors report that one epochs takes ≈ 110 seconds, while we take ≈ 5.5 on the same
hardware (Scellier et al., 2024). However, this is not an apple-to-apple comparison, as the authors are
more concerned with simulations on analog circuits, rather than achieving optimal GPU usage.

Limitations. The efficiency of PCX could be further increased by fully parallelizing all the opera-
tions. In fact, in its current state, JIT is unable to parallelize the execution of the layers; a problem
that can be addressed with the JAX primitive vmap, but only in the unpractical case where all the
layers have the same dimension. To test how different hyperparameters of the model influence the
training speed, we have taken a feedforward model, and trained it multiple times, each time increasing
a specific hyperparameter by a multiplicative factor. The results, reported in Fig. 8, show that the
two parameters that increase the training time are the number of layers L, and the number of steps T .
Ideally, only T should affect the training time as inference is an inherently sequential process that
cannot be parallelized, but this is not the case, as the time scales linearly with the amount of layers.
Details are reported in Appendix G.

7 DISCUSSION

In this work, we have laid new foundations for future research in applications of predictive coding
networks in machine learning. We did this by performing an extensive comparative study among
different models and training algorithms present in the literature, obtained by testing a large number
of parameter combinations and activation functions. To further help researchers, we open source the
library used to perform the experiments, as well as the architectures used to perform each task, that
should serve as a testing bed for novel training algorithms, or regularization methods.

In terms of results, we have shown that predictive coding networks perform comparably to standard
deep learning ones trained with BP, conditioned on the fact that small/medium size architectures are
used, such as VGG 7. When this condition is relaxed, the performance of predictive coding fail to
match these of BP, that are known to scale along with model size. In the supplementary material we
also add rigorous studies that provide more details about how the energy flows inside PCNs over
time, and their training stability, as well as show how PCNs classify out of distribution data, and
possible solutions for training extremely deep networks via the use of skip connections.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Nick Alonso, Beren Millidge, Jeffrey Krichmar, and Emre O Neftci. A theoretical framework for
inference learning. Advances in Neural Information Processing Systems, 35:37335–37348, 2022.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv:1407.7906, 2014.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider,
Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec,
Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/google-deepmind.

Arthur Dempster, Nan Laird, and Donald B Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22,
1977.

Maxence M Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky, Irina
Rish, Blake Richards, and Yoshua Bengio. Towards scaling difference target propagation by
learning backprop targets. In International Conference on Machine Learning, pp. 5968–5987.
PMLR, 2022.

Simon Frieder and Thomas Lukasiewicz. (non-) convergence results for predictive coding networks.
In International Conference on Machine Learning, pp. 6793–6810. PMLR, 2022.

K. Friston, J. Mattout, N. Trujillo-Barreto, J. Ashburner, and W. Penny. Variational free energy and
the Laplace approximation. Neuroimage, 2007.

Karl Friston. A theory of cortical responses. Philosophical Transactions of the Royal Society B:
Biological Sciences, 360(1456), 2005.

Karl Friston. The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11
(2):127–138, 2010.

Karl Friston and Stefan Kiebel. Predictive coding under the free-energy principle. Philosophical
transactions of the Royal Society B: Biological sciences, 364(1521):1211–1221, 2009.

Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
one. In International Conference on Learning Representations, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2017.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian deep
learning without feedback. arXiv preprint arXiv:2209.11883, 2022.

10

http://github.com/google/jax
http://github.com/google-deepmind

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and
filtered transformations. Differentiable Programming workshop at Neural Information Processing
Systems 2021, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Adam Kohan, Edward A Rietman, and Hava T Siegelmann. Signal propagation: The framework for
learning and inference in a forward pass. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Axel Laborieux and Friedemann Zenke. Holomorphic equilibrium propagation computes exact
gradients through finite size oscillations. Advances in Neural Information Processing Systems, 35:
12950–12963, 2022.

Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. Advances in neural information processing
systems, 33:9346–9360, 2020.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. The MNIST Database, 2010.
URL http://yann.lecun.com/exdb/mnist/.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random feedback
weights support learning in deep neural networks. arXiv preprint arXiv:1411.0247, 2014.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
Advances in neural information processing systems, 33:21464–21475, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
dataset. Retrieved August, 15(2018):11, 2018.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. Back-
propagation at the infinitesimal inference limit of energy-based models: unifying predictive coding,
equilibrium propagation, and contrastive hebbian learning. arXiv preprint arXiv:2206.02629,
2022a.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. A
theoretical framework for inference and learning in predictive coding networks. arXiv preprint
arXiv:2207.12316, 2022b.

Timoleon Moraitis, Dmitry Toichkin, Adrien Journé, Yansong Chua, and Qinghai Guo. Softhebb:
Bayesian inference in unsupervised hebbian soft winner-take-all networks. Neuromorphic Comput-
ing and Engineering, 2(4):044017, 2022.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In Advances in
Neural Information Processing Systems, 2016.

Gaspard Oliviers, Rafal Bogacz, and Alexander Meulemans. Learning probability distributions of
sensory inputs with monte carlo predictive coding. bioRxiv, pp. 2024–02, 2024.

Alexander Ororbia and Daniel Kifer. The neural coding framework for learning generative models.
Nature communications, 13(1):2064, 2022.

Alexander Ororbia and Ankur Mali. Active predictive coding: Brain-inspired reinforcement learning
for sparse reward robotic control problems. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3015–3021. IEEE, 2023.

11

http://yann.lecun.com/exdb/mnist/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexander G Ororbia, Ankur Mali, Daniel Kifer, and C Lee Giles. Backpropagation-free deep
learning with recursive local representation alignment. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 9327–9335, 2023.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

Luca Pinchetti, Tommaso Salvatori, Beren Millidge, Yuhang Song, Yordan Yordanov, and Thomas
Lukasiewicz. Predictive coding beyond Gaussian distributions. 36th Conference on Neural
Information Processing Systems, 2022.

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: A functional in-
terpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1):79–87,
1999.

Tommaso Salvatori, Yuhang Song, Yujian Hong, Lei Sha, Simon Frieder, Zhenghua Xu, Rafal Bogacz,
and Thomas Lukasiewicz. Associative memories via predictive coding. In Advances in Neural
Information Processing Systems, volume 34, 2021.

Tommaso Salvatori, Luca Pinchetti, Beren Millidge, Yuhang Song, Tianyi Bao, Rafal Bogacz,
and Thomas Lukasiewicz. Learning on arbitrary graph topologies via predictive coding.
arXiv:2201.13180, 2022.

Tommaso Salvatori, Ankur Mali, Christopher L Buckley, Thomas Lukasiewicz, Rajesh PN Rao, Karl
Friston, and Alexander Ororbia. Brain-inspired computational intelligence via predictive coding.
arXiv preprint arXiv:2308.07870, 2023a.

Tommaso Salvatori, Luca Pinchetti, Amine M’Charrak, Beren Millidge, and Thomas Lukasiewicz.
Causal inference via predictive coding. arXiv preprint arXiv:2306.15479, 2023b.

Tommaso Salvatori, Yuhang Song, Beren Millidge, Zhenghua Xu, Lei Sha, Cornelius Emde, Rafal
Bogacz, and Thomas Lukasiewicz. Incremental predictive coding: A parallel and fully automatic
learning algorithm. International Conference on Learning Representations 2024, 2024.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in Computational Neuroscience, 11:24, 2017.

Benjamin Scellier, Maxence Ernoult, Jack Kendall, and Suhas Kumar. Energy-based learning
algorithms for analog computing: a comparative study. Advances in Neural Information Processing
Systems, 36, 2024.

Eli Sennesh, Hao Wu, and Tommaso Salvatori. Divide-and-conquer predictive coding: a structured
bayesian inference algorithm. arXiv preprint arXiv:2408.05834, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yuhang Song. Prospective-configuration. https://github.com/YuhangSong/
Prospective-Configuration, 2024.

Yuhang Song, Beren Millidge, Tommaso Salvatori, Thomas Lukasiewicz, Zhenghua Xu, and Rafal
Bogacz. Inferring neural activity before plasticity as a foundation for learning beyond backpropa-
gation. Nature Neuroscience, pp. 1–11, 2024.

Michael W Spratling. Reconciling predictive coding and biased competition models of cortical
function. Frontiers in Computational Neuroscience, 2:4, 2008.

Michael W Spratling. A review of predictive coding algorithms. Brain and Cognition, 112:92–97,
2017.

12

https://github.com/YuhangSong/Prospective-Configuration
https://github.com/YuhangSong/Prospective-Configuration

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Mufeng Tang, Tommaso Salvatori, Beren Millidge, Yuhang Song, Thomas Lukasiewicz, and Rafal
Bogacz. Recurrent predictive coding models for associative memory employing covariance
learning. PLOS Computational Biology, 19(4):e1010719, 2023.

Mufeng Tang, Helen Barron, and Rafal Bogacz. Sequential memory with temporal predictive coding.
Advances in Neural Information Processing Systems, 36, 2024.

James C. R. Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
in a predictive coding network with local Hebbian synaptic plasticity. Neural Computation, 29(5),
2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for bench-
marking machine learning algorithms. arXiv:1708.07747, 2017.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. arXiv preprint arXiv:2110.11334, 2021.

Jinsoo Yoo and Frank Wood. Bayespcn: A continually learnable predictive coding associative
memory. Advances in Neural Information Processing Systems, 35:29903–29914, 2022.

Contents
1 Introduction 1

2 Related Works 2

3 Background and Notation 3

4 Experiments and Benchmarks 4
4.1 Discriminative Mode . 5
4.2 Generative Mode . 6

5 Analysis and metrics 7
5.1 Energy and stability . 7

6 Library, Resources and Implementations Details 8
6.1 Computational resources and limitations. 9

7 Discussion 9

Supplementary Material 13
Index . 13

A PCX – A Brief Introduction 15

B Discriminative experiments 17

C Generative experiments 19
C.1 Autoencoder . 19
C.2 MCPC . 21
C.3 Associative memories . 22

D Energy and Stability 23
D.1 Energy propagation . 24
D.2 Training Stability . 26

E Skip Connections into VGG19 27

F Properties of predictive coding networks 29
F.1 Free energy and out-of-distribution data. 29

G Computational Resources 33

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

SOCIETAL IMPACT

This work adheres to the established ethical standards prevalent in the field of AI and machine learning.
In the short term, it does not introduce specific ethical concerns, as the models and technology we
study are still in early-stage development, and do not perform as well as classic methods. However, we
acknowledge the implications and responsibilities that accompany advancements in these technologies.
We are committed to ongoing evaluation and responsible stewardship of our contributions to ensure
they align with the ethical landscape of this dynamic field.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

Here we provide the details on how experiments were conducted and results obtained. We opt for a
more descriptive approach to convey the fundamental concepts, and leave all details for reproducibility
in the provided code, as well as in the next sections. There, each section will link to the exact directory
corresponding to the described experiments.

A PCX – A BRIEF INTRODUCTION

In this section, we illustrate the core ideas of PCX by describing the main building blocks necessary
to train and evaluate a feedforward classifier in predictive coding. For more detailed and complete
explanations, please refer to the tutorial notebooks in the examples folder of the library.

In Section 3, we defined PCNs as models with parameters θ = {θ0, . . . , θL} and state h =
{h0, . . . , hL}. In PCX, we divide a model in components of two main categories: layers (i.e., the
traditional deep-learning transformations such as ’Linear’ or ’Conv2D’) and vodes (i.e., vectorized
nodes that store the array of neurons representing state hl). A PCN is defined as follows:

import jax.nn as jnn
import pcx.predictive_coding as pxc
import pcx.nn as pxnn

class MLP(pcx.EnergyModule):
def __init__(self, in_dim, h_dim, out_dim):

self.layers = [
pxnn.Linear(in_dim, h_dim),
pxnn.Linear(h_dim, h_dim),
pxnn.Linear(h_dim, out_dim)

]

self.vodes = [
pxc.Vode((dim,)) for dim in (h_dim, h_dim, out_dim)

]

def __call__(self, x, y = None):
for layer, vode in zip(self.layers, self.vodes):

u = jnn.leaky_relu(layer(x))
x = vode(u)

if y is not None:
self.vodes[-1].set("h", y)

return u

In the __call__ method, we forward the input x through the network. Note that every time we call a
vode, we are effectively storing in it the activation ul (so that we can later compute the energy ϵ2l
associated to the vode) and returning its state hl (i.e., x = vode(u) corresponds to vode.set("u", u); x
= vode.get("h")). During training, the label y is provided to the model and fixed to the last vode by
overwriting its state h. Note that, since both during training and evaluation the state of the first vode
would be fixed to the input x, we avoid defining it (i.e., we avoid computing Pθ0(h0) since it would
be constant), and directly forward x to the first layer transformation.

The class pxc.EnergyModule provides a .energy() function that computes the variational free energy
F as per Eq. equation 1. We can compute the state and parameters gradients as per Eqs. equation 3
by calling pxf.value_and_grad, a wrap around the homonymous JAX function. Having defined two
optimizers, optim_w and optim_h, for parameters and state respectively, we can define training on a
pair (x, y) as following:

import pcx.utils as pxu
import pcx.functional as pxf

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

def energy(x, y, *, model):
model(x, y)
return model.energy()

grad_h = pxf.value_and_grad(
pxu.Mask(pxc.VodeParam, [False, True])

)(energy)

grad_w = pxf.value_and_grad(
pxu.Mask(pxc.LayerParam, [False, True])

)(energy)

def train(T, x, y, *, model, optim_h, optim_w):
model.train()

Initialization
with pxu.step(model, pxc.STATUS.INIT, clear_params=pxc.VodeParam.Cache):

model(x)

Inference steps
for i in range(T):

with pxu.step(model, clear_params=pxc.VodeParam.Cache):
_, g_h = grad_h(x, y, model=model)
optim_h.step(model, g_h["model"], True)

Learning step
with pxu.step(model, clear_params=pxc.VodeParam.Cache):

_, g_w = grad_w(x, y, model=model)
optim_w.step(model, g_w["model"])

A few notes on the above code:

• JAX (Bradbury et al., 2018) is a functional library, PCX is not. Modules in PCX are PyTrees,
using the same philosophy as another popular JAX library, equinox (Kidger & Garcia, 2021),
with which PCX modules are fully compatible. However, their state is managed by PCX
so that each parameter transformation is automatically tracked. The user can opt in for
this behavior by passing arguments as keyword argmunets (such as in the above example).
Positional function parameters, instead are ignored by PCX and it is the user’s duty to track
their state as done in JAX or equinox.

• pxf.value_and_grad allows to specify a Mask object to identify which parameters to target
with the given transformation. In the case above, we first compute the gradient of F with
respect of the state (VodeParam) and, then, of the weights (LayerParam) of the model.

• In the train function, we use pxu.step to set the model status to pxc.STATUS.INIT to perform
the state initialization. In PCX, forward initialization is the default method, however other
ones can be easily specified. pxu.step is also used to clear the PCN’s cache which is used to
store intermediate values such as the activations ul.

• The actual examples in the library are on mini-batches of data, so all transformations above
are vmapped in the actual experiments.

For the evaluation function, being in discriminative mode, we simply perform a forward pass through
the PCN which sets ϵl = 0 for all layers.

def eval(x, *, model):
with pxu.step(model, pxc.STATUS.INIT, clear_params=pxc.VodeParam.Cache):

return model(x)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B DISCRIMINATIVE EXPERIMENTS

Model. We conducted experiments on three models: MLP, VGG-5, and VGG-7. The detailed
architectures of these models are presented in Table 5.

Table 5: Detailed Architectures of base models

MLP VGG-5 VGG-7
Channel Sizes [128, 128] [128, 256, 512, 512] [128, 128, 256, 256, 512, 512]
Kernel Sizes - [3, 3, 3, 3] [3, 3, 3, 3, 3, 3]

Strides - [1, 1, 1, 1] [1, 1, 1, 1, 1, 1]
Paddings - [1, 1, 1, 0] [1, 1, 1, 0, 1, 0]

Pool window - 2 × 2 2 × 2
Pool stride - 2 2

For each model, we conducted experiments with the following different algorithms:

1. Standard PC with Cross-Entropy Loss (PC-CE) / Mean Squared Error Loss (PC-SE):
already discussed in the background section.

2. PC with Positive Nudging (PC-PN):
Unlike standard Predictive Coding with Mean Squared Error Loss (PC-SE), where the output
is clamped to the target, we “nudge” the output towards the target in PC with nudging. This
is achieved by fixing the representation h of last layer hL to µL + β(y − µL), where µL

is the predicted activation of the last layer after forward initialisation, y is the target, and
β ∈ (0, 1) is a scalar parameter that controls the strength of nudging. Note that when β = 1,
PC with nudging is equivalent to the standard PC.
During training procedure, as the model output gradually approaches to the target, we
employ a strategy of increasing β. At the end of each epoch, the value of β is incremented
by a fixed rate βir. When β becomes greater than or equal to 1, we set it to 1. This strategy
allows the model more stable to learn and explore in the early stages of training, while
gradually transitioning to the standard PC in the later stages.

3. PC with Negative Nudging (PC-NN):
In this algorithm, we do the opposite of positive nudging: we push the output away from the
target. Therefore, we fix the representation h of the last layer to µL − β(y − µL). We use
the same strategy of dynamically increasing β. When β becomes greater than or equal to -1,
we set it to 1.
In the learning stage, to ensure that the direction of the weight update is consistent with
the target (since we fixed hL to the opposite direction), we invert the weight update: θl ←
θl −∆θl where ∆θl defined in the Eq. 3.

4. PC with Center Nudging (PC-CN):
Center Nudging (Scellier et al., 2024) is used in equilibrium propagation to improve and
stabilize performance compared to both positive and negative nudging, and it is obtained
as an average of the gradients produced by the two methods. Here, we approximate this
behavior by randomly alternating between epochs in which we train with either negative or
positive nudging. In this way, the training model can benefit from both methods without any
extra computational cost.

5. Incremental PC (iPC), a simple and recently proposed modification where the weight
parameters are updated alongside the latent variables at every time step (Salvatori et al.,
2024).

6. Standard Backpropagation with Cross-Entropy Loss (BP-CE) / Mean Squared Error Loss
(BP-SE): the most popular way to do the credit assignment in the neural networks. The
model is trained by computing the gradients of the loss function with the weights of the
network using the chain rule.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Experiments. The benchmark results of MLP are obtained with MNIST and Fashion-MNIST, the
results of VGG-5 are obtained with CIFAR-10, CIFAR-100 and Tiny ImageNet, the results of VGG-7
are obtained with CIFAR-100 and Tiny ImageNet. The data is normalized as in Table 6.

Table 6: Data normalization

Mean (µ) Std (σ)
MNIST 0.5 0.5

Fashion-MNIST 0.5 0.5
CIFAR-10 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]

CIFAR-100 [0.5071, 0.4867, 0.4408] [0.2675, 0.2565, 0.2761]
Tiny ImageNet [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

For data augmentation on the training sets of CIFAR-10, CIFAR-100, and Tiny ImageNet, we apply
random horizontal flipping with a probability of 50%. Additionally, we employ random cropping
with different settings for each dataset. For CIFAR-10 and CIFAR-100, images are randomly cropped
to 32×32 resolution with a padding of 4 pixels on each side. In the case of Tiny ImageNet, random
cropping is performed to obtain 56×56 resolution images without any padding. And on the testing set
of Tiny ImageNet, we use center cropping to extract 56×56 resolution images, also without padding,
since the original resolution of Tiny ImageNet is 64x64.

The model hyperparameters are determined using the search space shown in Table 7. The results
presented in Table 1 were obtained using 5 seeds with the optimal hyperparameters.

As for the optimizer and scheduler, we use mini-batch gradient descent (SGD) with momentum as the
optimizer for the h, and we utilize AdamW Loshchilov (2017) with weight decay as the optimizer for
the θ. Additionally, we apply a warmup-cosine-annealing scheduler without restart for the learning
rates of θ.

Table 7: Hyperparameters search configuration

Parameter PC iPC BP
Epoch (MLP) 25

Epoch (VGG and ResNet) 50
Batch Size 128
Activation [leaky relu, gelu, hard tanh] [leaky relu, gelu, hard tanh, relu]

β [0.0, 1.0], 0.051 - -
βir [0.02, 0.0] - -
lrh (1e-2, 5e-1)2 (1e-2, 1.0)2 -
lrθ (1e-5, 3e-4)2 (3e-5, 3e-4)2

momentumh [0.0, 1.0], 0.051 -
weightdecayθ (1e-5, 1e-2)2 (1e-5, 1e-1)2 (1e-5, 1e-2)2

T (MLP and VGG-5) [4,5,6,7,8] -
T (VGG-7) [8,9,10,11,12] -
T (VGG-9) [9,10,12,15,18] -

T (ResNet-18) [6,10,12,18,24] -
1: “[a, b], c” denotes a sequence of values from a to b with a step size of c.

2: “(a, b)” represents a log-uniform distribution between a and b.

Results. All the results presented in this study were obtained using forward initialization, a tech-
nique that initializes the model’s parameters by performing a forward pass on a zero tensor with
the same shape as the input data. Besides, in our experiments, we limited the range of T to ensure
a fair comparison with BP in terms of training times. Higher T correspond to a greater number
of optimization rounds of h, which can lead to improved model performance but also increased
computational costs and longer training durations. To maintain comparability with BP, we restricted
our searching space of T that resulted in training times similar to those observed in BP-based training.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Momentum helps significantly. In Figure 9, we present the accuracy of the VGG-7 model trained
on CIFAR-100 using different momentum values, both without nudging(Figure 9a) and with nudg-
ing(Figure 9b). It is evident from Figure 9 that selecting an appropriate momentum value can
substantially improve model accuracy. By comparing Figures 9a and 9b, we can observe that dif-
ferent training algorithms have different optimal momentum values. The optimal momentum for
training with nudging is generally higher than that for training without nudging. Furthermore, the
optimal momentum for negative nudging is larger than that for positive nudging. These differences
in optimal momentum values highlight the importance of carefully tuning the momentum hyperpa-
rameter based on the specific training algorithm and nudging method employed. For reference, the
optimal model parameters and momentum values for various tasks and models can be found in the
example/discriminative_experiments folder of the PCX library.

0.0 0.2 0.4 0.6 0.8 1.0

momentum

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

momentum vs. Accuracy (Without Nudging)
algorithm

PCN_SE

(a)

0.0 0.2 0.4 0.6 0.8 1.0

momentum

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

momentum vs. Accuracy (With Nudging)

algorithm
PCN_PN
PCN_NN

(b)

Figure 9: Comparison of the accuracy of the VGG-7 model trained on CIFAR-100 using different momentum
values

Activation function also plays a crucial role in improving model accuracy. For models using
Cross-Entropy Loss, the “HardTanh” activation function is a better choice. In the case of models
using Mean Squared Error Loss without nudging, the “LeakyReLU” activation function tends to
perform better. When using Positive Nudging, the optimal activation function varies depending on
the model architecture. For Negative Nudging, the “GeLU” activation function is the most suitable
choice.

Nudging improves performance. Fig. 10 illustrates the relationship between the learning rate of
h and accuracy with or without nudging. From the plot, we can observe that when nudging is not
used (red dots), the model achieves better results at lower learning rates. However, when nudging is
employed (purple and blue dots), regardless of whether it is positive nudging or negative nudging,
the model can attain better accuracy at higher learning rates compared to the case without nudging.
Additionally, Fig. 9b shows the relationship between momentum and accuracy. We can see that after
applying nudging, the model can achieve better results at higher momentum values. We believe this
is the reason why nudging can improve performance. The ability to use higher learning rates and
momentum values without sacrificing accuracy is a significant advantage of nudging, as it can lead to
faster convergence and improved generalization performance.

C GENERATIVE EXPERIMENTS

C.1 AUTOENCODER

An Autoencoder is a network that learns how to compress a high-dimensional input into a much
smaller dimensional space, called the bottleneck dimension or the hidden dimension, as accurately
as possible. Thus, a backpropagation-based Autoencoder consists of two parts: an encoder, that
compresses the input from the original high-dimensional space into the bottleneck dimension, and a
decoder, that reconstructs the original input from the bottleneck dimension. A mean-squared error

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5

lr_h

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

lr_h vs. Accuracy
algorithm

PCN_SE
PCN_PN
PCN_NN

(a) VGG-7

0.0 0.1 0.2 0.3 0.4 0.5

lr_h

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

lr_h vs. Accuracy
algorithm

PCN_SE
PCN_PN
PCN_NN

(b) VGG-5

Figure 10: Comparison of the accuracy of the VGG-7 and VGG-5 model trained on CIFAR-100 using different
learning rates for h.

Figure 11: Left. An Autoencoder implemented with backpropagation consists of both an encoder
and a decoder. The encoder compresses the input data into the bottleneck dimension, and the decoder
restores the original image. Right. An Autoencoder implemented with Predictive Coding. The state
of the first PC layer is the bottleneck dimension. The state of the last PC layer is the original input,
and the predicted state of the last PC layer is the predicted input. Inference steps update the bottleneck
dimension to make it a good compressed representation.

(MSE) between the original and the reconstructed input is used as a loss to train the Autoencoder
network in an unsupervised manner.

Predictive Coding (PC) alleviates the need in the encoder part of an Autoencoder. Specifically, only
the decoder part of an Autoencoder is used, with a PC layer acting as the bottleneck dimension and
as an input to the decoder. Moreover, PC layers are inserted after each layer of the decoder.

A PC-based Autoencoder works as follows:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters and search spaces for deconvolution-based autoencoders

Parameter PC iPC BP
Number of layers 3 conv layers: 3 deconv layers: 3

Internal state dimension 4x4
Internal state channels 8

Kernel size [3, 4, 5, 7]
Activation function [relu, leaky_relu, gelu, tanh, hard_tanh]

Batch size 200
Epochs 30

T 20 -
Optim h SGD+momentum -

lrh (1e-2, 5e-1)2 (1e-2, 1.0)2 -
momentumh [0.0, 0.95] -

Optim θ AdamW
lrθ 3e-5, 1e-32

weightdecayθ (1e-5, 1e-2)2 (1e-5, 1e-1)2 (1e-5, 1e-2)2

Table 9: Hyperparameters and search spaces for linear-based autoencoders

Parameter PC iPC BP
Number of layers 3 encoder: 3 decoder: 3

Internal state dimension 64
Activation function [relu, leaky_relu, gelu, tanh, hard_tanh]

Batch size 200
Epochs 30

T 20 -
Optim h SGD+momentum -

lrh (1e-2, 5e-1)2 (1e-2, 1.0)2 -
momentumh [0.0, 0.95] -

Optim θ AdamW
lrθ (3e-5, 1e-3)2

weightdecayθ (1e-5, 1e-2)2 (1e-5, 1e-1)2 (1e-5, 1e-2)2

1. The energy function of the last PC layer is set to MSE upon its creation. In PCX, the squared
error is the default energy function. The squared error is then summed across all dimensions
in the input and averaged over the batch, that approximates the MSE up to a multiplication
constant.

2. The current state of the last PC Layer L, hL, is fixed to the original input data, which means
that hL is not changed during inference steps.

3. Since the energy of the last layer L now encodes the MSE loss between the predicted image
µL and the original input stored as hL, the inference steps will update the current states hl

of all PC layers but the last one, including the one that represents the bottleneck dimension,
to minimize this MSE loss.

4. Once the inference steps are done, the state of the bottleneck dimension PC layer will
converge to the compressed representation of the original input.

C.2 MCPC

Model. Monte Carlo predictive coding (MCPC) is a version of predictive coding that can be used
for generative learning. MCPC differs from PC by its noisy neural dynamics. Unlike PC where the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

neural activity converges to a mode of the free-energy, the neural activity of MCPC performs noisy
gradient descent which is used for Monte Carlo sampling. When an input is provided, the noisy
neural activity samples the posterior distribution of the generative model given the sensory input.
When no input is provided the neural activity samples the generative model encoded in the model
parameters. Specifically, the neural dynamics of MCPC leverage the following Langevin dynamics:

∆hl = −γ∇hl
Fhl

(h, θ) +
√
2γN (4)

where N is a Gaussian random variable with variance σ2
mcpc. These neural dynamics can be extended

to 2nd-order Langevin dynamics for faster sampling:

∆hl = γrl (5)

∆rl = γ∇hl
F(h, θ)− γ(1−m)rl +

√
2(1−m)γN (6)

where m is a momentum constant.

An MCPC model is trained following a Monte Carlo expectation maximisation scheme which iterates
over the following two steps: (i) MCPC’s neural activity samples the model’s posterior distribution
for the given data, and (ii) the model parameters are updated to increase the model log-likelihood
under the samples of the posterior. In practice, we run MCPC inference for a limited number of steps
after which we update the model parameters with a single sample of the posterior similarly to how
model parameters are updated in variational auto encoders.

After training, samples of a trained model are generated by leaving all neurons unclamped and
recording the activity of input neurons (the neurons clamped to data during training). The activity
is recorded after a limited number of activity update steps. This process is repeated for each data
sample.

MCPC’s implementation in PCX utilizes a noisy SGD optimizer for the state h. Compared to PC
than uses an SGD or Adam optimizer, MCPC incorporates an optimizer that merges the addition
of noise to the model’s gradients with an SGD optimizer. The variance of the noise added to the
gradients needs to be carefully crafted to scale appropriately with the learning rate and the momentum
as shown in equations (4 - 6).

Experiments. All the MCPC experiments use feedforward models with Squared Error (SE) loss. The
SE loss of the state layer hL is also scaled by a variance parameter σ2

hL
. This additional parameter is

introduced to prevent the Gaussian layer hL from having a variance much larger than the variance of
the data which would prevent learning. Moreover, for unconditional learning and generation, the layer
h0 is left unclamped during both training and generation. In contrast, for the conditional learning
task on MNIST, the layer h0 is clamped to labels during training and generation.

For the iris dataset, we train a model with layer dimensions [2 x 64 x 2], tanh activation function and
default parameter values (state learning rate γ=0.01, state momentum = 0.9 , noise state variance
σ2
mcpc = 1, parameter learning rate lrθ, parameter decay = 0.0001, Adam parameter optimizer, layer

variance σ2
hL

= 0.01 and a batch size of 150). We use 500 state update steps during learning and
10000 for generation.

For the unconditional learning task on MNIST, we train models with layer dimensions [30 x 256
x 256 x 256 x 784]. The model hyperparameters for MCPC and VAE were determined using the
hyperparameter search shown in table 10 to optimize the FID and the inception score separately.
Refer to the code for exact optimal parameter values. We use 1000 state update steps during learning
and 10000 for generation.

For the conditional learning task on MNIST, we train models with layer dimensions [2 x 256 x 256 x
256 x 784]. The labels used in this task, clamped to h0, specify whether an image corresponds to an
even or odd number. The model hyperparameters are determined using the search space shown in
table 10. We use 1000 state update steps during learning and 10000 for generation.

Results. Figure 12 shows samples generated by the trained models for hyperparameters that maximize
the inception score.

C.3 ASSOCIATIVE MEMORIES

This section describes the experimental setup of associative memory tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 10: Bayes hyperparameter search configuration for MCPC and VAE (where applicable) on
MNIST.

Parameter Value
activation {ReLU, Silu, Tanh, Leaky-ReLU, Hard-Tanh}

γ log-uniform(0.0001, 0.05)
momentum {0.0, 0.9}

σ2
mcpc {1.0, 0.3, 0.01, 0.001}
lrθ log-uniform(0.0001, 0.1)

parameter decay {0.0, 0.1, 0.01, 0.001, 0.0001}
σ2
hL

log-uniform(0.03, 1.0)
batch size {150, 300, 600, 900}

Figure 12: Samples generated by trained models that optimize the inception score under the uncondi-
tional and conditional learning regimes.

Model. A generative PCN is first trained on n images sampled from the Tiny ImageNet dataset
until its parameters have converged. Then, a corrupted version of the training images is presented to
the sensory layer of the model (hL) and we run inference ∇hl on all layers, including the sensory
layer, until convergence. Note that in masked experiments, the intact top half of the images is kept
fixed during inference. Intuitively, suppose the model has minimized its free energy with its sensory
layer fixed at each of the n training examples during training. In that case, it has formed attractors
defined by these training examples and would thus tend to “refine" the corrupted images to fall back
into the energy attractors.

Experiments. Here, the benchmark results are obtained with Tiny ImageNet, corrupted with
either Gaussian noise with 0.2 standard deviation, or a mask on the bottom half of the images
(examples shown in Fig. 5). We vary the model size and number of training examples to memorize,
to study the capacity of the models. Specifically, we use a generative PCN with architecture
[512, d, d, 12288] where d = [512, 1024, 2048] (12288 being the flattened Tiny ImageNet images)
and varied n = [50, 100, 250]. We performed a hyperparameter search for each d and n on the
parameter learning rate lrθ ∈ {1× 10−4 + k · 5× 10−5 | k ∈ Z, 0 ≤ n ≤ 18}, the state learning rate
γ ∈ {0.1 + k · 0.05 | k ∈ Z, 0 ≤ n ≤ 18}, training inference steps Ttrain ∈ [20, 50, 100] and recall
inference steps Trecall ∈ [50000, 100000]. We fix the activation function of the model to Tanh, and
the number of training epochs to 500 and a batch size of 50. The results in Table 3 are obtained with
5 seeds with the searched optimal hyperparameters.

D ENERGY AND STABILITY

This section describes the experimental setup of Section 5.1, provides replications on other datasets
and ablations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

Ac
cu

rac
y

Hidden Width = 512 | f = LeakyReLU Hidden Width = 1024 | f = LeakyReLU Hidden Width = 2048 | f = LeakyReLU Hidden Width = 4096 | f = LeakyReLU

0.001 0.003 0.01 0.03 0.1 0.3 1.0
 (State Learning Rate)

0.0

0.2

0.4

0.6

0.8

Ac
cu

rac
y

Hidden Width = 512 | f = HardTanh

0.001 0.003 0.01 0.03 0.1 0.3 1.0
 (State Learning Rate)

Hidden Width = 1024 | f = HardTanh

0.001 0.003 0.01 0.03 0.1 0.3 1.0
 (State Learning Rate)

Hidden Width = 2048 | f = HardTanh

0.001 0.003 0.01 0.03 0.1 0.3 1.0
 (State Learning Rate)

Hidden Width = 4096 | f = HardTanh Optimizer
SGD
Adam

Figure 13: Model accuracies for a range of combinations of activation functions and model widths.
Adam perfers small learning rates and tends to be less stable than SGD. Obtained on FashionMNIST.

D.1 ENERGY PROPAGATION

We test a grid of models on multiple datasets to examine the energy propagation in the models. We test
on the FashionMNIST, Two Moons, and, Two Circles datasets. The Two Circles dataset is particularly
interesting, as poor energy distribution intuitively results in a linear inductive bias (we primarily learn
a one-layer network). This linear inductive bias harms the performance on Two Circles (linear model
accuracy ≈ 50%) more than FashionMNIST (≈ 83%) and Two Moons (≈ 86%).

Experimental Setup. We train a grid of feedforward PCNs with 2 hidden layers. We train on
three datasets: FahionMNIST (as reported in the main body) and additionally Two Moons and Two
Circles. For all models, we train for 8 epochs with T = 8 inference steps. States are optimized with
SGD and forward initialization. The grid is formed over weight learning rate lrθ ∈ {1× 10−5, 1×
10−4, . . . , 1}, state learning rate γ ∈ {1×10−3, 3×10−3, 1×10−2, 3×10−2, 1×10−1, 3×10−1, 1},
activation functions f ∈ {LeakyReLU,HardTanh} (the former is unbounded the latter is bounded),
optimization with AdamW or SGD with momentum m ∈ {0.0, 0.5, 0.9, 0.95} and hidden widths
of {512, 1024, 2048, 4096} for FashionMNIST and {128, 256, 512, 1024} for Two Moons and Two
Cricles. We replicate all experiments on 3 seeds for FashionMNIST and 10 seeds for the other
datasets.

Results. Fig. 6(left) in the main paper shows the average energy across the last batch at the end of
training for the best performing model on the grid. Fig. 6(center-left) compares SGD with momentum
0.9 and AdamW. It is obtained for activation function “HardTanh” and a width of 1024. We replicate
this figure for the other combinations of activation functions and widths below in Fig 13. We observe
that across all conditions, small to medium state learning rates are generally preferred by SGD, while
AdamW has a stronger preference to smaller state learning rates. Given the uneven distribution of
energies across layers, AdamW, in particular, may not scale to deeper architectures. We further,
observe a larger variance in performance for AdamW, especially for wider layers, which we discuss
in paragraph “Training Instability“ in Sec. 5.1 and below. Fig. 6(right) is based on all models trained
with AdamW. Many models with high state learning rates diverge, we only plot models achieving
accuracy > 0.5.

Below we present the results of experiments on the Two Moons and Two Circles datasets. Fig. 14b,
14a, and 14c replicateFig. 6 for Two Moons, and Fig. 15b, 15a, and 15c for Two Circles. Results are
very similar to FashionMNIST: The energy is concentrated in the last layer, even after T inference
steps. However, in the example for Two Circles, we actually observe a training effect for earlier layers:
While the energy increases first due to error propagation (still orders of magnitude below later layers),
the energy is reduced afterwards. Energy ratios are consistenly indicating poor energy propagation
for state learning rates γ, that perform well. As predicted the variance in results is significantly larger
for Two Circles, especially for small state learning rates.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8
T (Inference Step)

10
4

10
3

10
2

10
1

10
0

Energy Norm

Layer
1
2
3

(a)

0.001 0.003 0.01 0.03 0.1 0.3 1.0
 (State Learning Rate)

0.0
0.2

0.4
0.6

0.8
1.0

Accuracy

Optimizer
SGD
AdamW

(b)

0.001 0.003 0.01 0.03 0.1 0.3 1.0
 (State Learning Rate)

10
7

10
3

10
1

10
5

Energy Layer Ratio
Layer Ratio

2
1 / 2

2
2
2 / 2

3

(c)

Figure 14: Energy propagation on the Two Moons dataset. 14a shows the imbalance between layers
across T steps. 14b shows the model performance across state learning rates and 14c the energy
distribution across state learning rates.

1 2 3 4 5 6 7 8
T (Inference Step)

10
9

10
6

10
3

10
0

Energy Norm

Layer
1
2
3

(a)

0.001 0.003 0.01 0.03 0.1 0.3 1.0
 (State Learning Rate)

0.0
0.2

0.4
0.6

0.8
1.0

Accuracy

Optimizer
SGD
AdamW

(b)

0.001 0.003 0.01 0.03 0.1 0.3
 (State Learning Rate)

10
5

10
3

10
1

10
1

Energy Layer Ratio
Layer Ratio

2
1 / 2

2
2
2 / 2

3

(c)

Figure 15: Energy propagation on the Two Circles dataset. 15a shows the imbalance between layers
across T steps. 15b shows the model performance across state learning rates and 15c the energy
distribution across state learning rates.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

10 4 10 2

 (State Learning Rate)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

PC - SGD

Width
32
64
128
256

512
1024
2048
4096

10 4 10 2

 (State Learning Rate)

PC - Adam BP

Figure 16: The instability of optimization with
Adam given architectural choices can be ob-
served for Two Moons.

10 5 10 4 10 3 10 2 10 1

 (State Learning Rate)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

rac
y

PC - SGD

Width
196
324
529
784

1089
1444
1764
2304

10 5 10 4 10 3 10 2 10 1

 (State Learning Rate)

PC - Adam BP

Figure 17: The instability of optimization as
a result of an optimizer-architecture-interaction
can be (at least partially) be attributed to the
absolute size of layers.

D.2 TRAINING STABILITY

We test a grid of PCNs to analyze the interaction between model width, state learning rates and
weight optimizers.

Experimental Setup. We train models on FashionMNIST (as reported above) and Two Moons. We
train feedforward PCNs (2 hidden layers) with “LeakyReLU” activations over a grid of parameters.
All models are trained over 8 epochs. The widths of the hidden layers are {32, 64, . . . , 4096}. State
variables are trained for T = 8 steps with SGD and learning rates γ ∈ {1×10−5, 3×10−5, . . . , 0.3}.
The weights are updated through SGDor the Adam optimizer with a learning rate of 0.01 for
FashionMNIST and 0.03 for Two Moons. Both optimizers uses 0.9 momentum for weights. We
further train baseline BP models with the same hyperparameters. For FashionMNIST we replicate
each run over 3 random initializations, for Two Moons over 10.

Results. We replicate Fig. 7 (FashionMNIST) here for the Two Moons dataset, see Fig. 16. We
observe effects for Two Moons that are analog to FashionMNIST as presented above: The stability
of optimization strongly depends on the width of the hidden layers for Adam. This effect is not
observed for SGD on either dataset. This further supports the our conclusion in Sec. 5.1: While
Adam is the better optimizer, this interaction effect (width × γ) can hinder the scaling of PCNs with
Adam. Optimization methods for PCNs require further attention from the research community.

Ablation. We further provide an ablation on FashionMNIST. In the experiments above, the hidden
layer width is altered, introducing changes in the absolute size of the hidden layers (i.e. number
of neurons), but also changing the relative size of the hidden layers in the network, as input and
output layers remain the same size across all experiments. Hence, we provide another experiment on
FashionMNIST, where we increase the image size and augment the label vector with 0s, such that
the width of all layers is equal. All other experimental variables remain as described above. The
results are shown in Fig. 17 and follow the trend observed in Fig. 7 and 16: We find that there exists
an interaction between the optimization and the width of the network as described above. Hence,
accounting for relative changes in layer width does not sufficiently explain the problem and we
conclude that the absolute size of the layers plays a role in the stability of optimization with AdamW.

ResNets Here we discuss the findings on the energy propagation in light of the ResNets18 experi-
ments. In this section, we have shown that lower learning rate for the nodes harm energy propagation,
and that the AdamW optimizer displays poor performance for larger hidden dimensions. To this
end, we have trained ResNets18 using SGD and large learning rates for the nodes, and compared
the performance against those in the main body of the paper. The performance are, however, not
comparable to the ones reported in Table.1, as ResNets trained with SGD on the CIFAR10 dataset
reach accuracies of 39.9% and 43.2% when using PC and iPC, respectively. To better understand
the incidence of different hyperparameters on the final test accuracy of the models, in Fig. 18 we
show their importance plots. Such quantities are computed by fitting a random forest regressor with
hyperparameters as datapoints, accuracies as labels, and extracting the feature importance.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

PC-SE, AdamW

iPC, AdamW

PCSE - SGD

iPC, SGD

Top Accuracy:
55.7%

Top Accuracy:
70.1%

Top Accuracy:
43.2%

Top Accuracy:
39.9%

Figure 18: Importance plots that show the importance of each hyperparameter in the final test accuracy
of the model, computed by fitting a random forest regressor with hyperparameters as datapoints,
accuracies as labels, and extracting the feature importance.

E SKIP CONNECTIONS INTO VGG19

Skip connections. We investigate the integration of skip connections into the VGG19 architecture
to enhance its performance on the CIFAR10 image classification task, showing a significant increase
in test accuracy from 25.32% to 73.95%. The vanishing gradient problem, a notable challenge in
deep Predictive Coding (PC) models, becomes pronounced with increased network depth, hindering
error transmission to earlier layers and impacting learning efficacy. To address this, we introduce
skip connections that allow gradients to bypass multiple layers, enhancing gradient flow and overall
learning performance.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 11: Hyperparameter configuration and best accuracy for VGG19 with and without skip
connections on CIFAR10

Parameter Range Best Value
With Skip Connections

Epochs 30 30
Batch size 128 128

Activation functions {GELU, Leaky ReLU} Leaky ReLU
Optimizer for network parameters - Learning rate {5e-2, 1e-1, 5e-1} 0.5
Optimizer for network parameters - Momentum {0.0, 0.5, 0.9, 0.99} 0.5
Optimizer for weight parameters - Learning rate 1e-4 1e-4
Optimizer for weight parameters - Weight decay {5e-4, 1e-4, 5e-5} 5e-4

Number of inference steps (T) {24, 36} 24

Best Accuracy 73.95%
Without Skip Connections

Epochs 30 30
Batch size 128 128

Activation functions {GELU, Leaky ReLU} GELU (default)
Optimizer for network parameters - Learning rate {5e-2, 1e-1, 5e-1} 0.1
Optimizer for network parameters - Momentum {0.0, 0.5, 0.9, 0.99} 0.99
Optimizer for weight parameters - Learning rate 1e-4 1e-4
Optimizer for weight parameters - Weight decay {5e-4, 1e-4, 5e-5} 1e-4

Number of inference steps (T) {24, 36} 24

Best Accuracy 25.32%

0 5 10 15 20 25 30
Epoch

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)

Performance Comparison with and without skip connections
(Test Accuracy on CIFAR-10)

VGG 19 with skip connections (Mean)
VGG 19 without skip connections (Mean)

Figure 19: Performance comparison of VGG19 with and without skip connections on the CIFAR-10
dataset over 30 epochs. The plot shows the mean test accuracy along with the shaded area representing
the variability across three different seeds.

Results Our modified VGG19 model includes a skip connection from an early layer within the
feature extraction stage, with the output flattened and adjusted using a linear layer before being

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

ID Bef.
NLL:
244.1

ID Aft.
NLL:
35.3

OOD Bef.
NLL:

1721.4

OOD Aft.
NLL:
182.7

Data Type

17.5
15.0
12.5
10.0

7.5
5.0
2.5
0.0

Lo
g

E
ne

rg
y

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

E
ne

rg
y

ID After Inference
OOD After Inference

(b)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Softmax (AUC = 0.8215)
Energy (AUC = 0.8224)
Softmax (25th perc., AUC = 0.5752)
Energy ROC (25th perc., AUC = 0.5886)

(c)

Figure 20: (a) Energy and NLL of ID/OOD data before and after state optimization. (b) Nonlinearity between
energy and softmax post-convergence. (c) ROC curve of OOD detection at the 100th and 25th percentiles of
scores. In all plots, “ID” refers to MNIST and “OOD” to FashionMNIST.

reintegrated during the classification stage. The model underwent rigorous training and evaluation
on the CIFAR10 dataset, employing standard preprocessing techniques like normalization and data
augmentation (horizontal flips and rotations). Detailed hyperparameter tuning revealed optimal
configurations for both models, with and without skip connections, exploring various optimizers,
learning rates, momentum values, and weight decay settings, significantly enhancing the model
performance with skip connections as summarized in Table 11.Figure 19 shows the test accuracy
progression over 30 epochs for the VGG19 model with and without skip connections on the CIFAR10
dataset, using three different seed values and identical hyperparameters for both simulations.

F PROPERTIES OF PREDICTIVE CODING NETWORKS

This section describes the experimental setup of Section F.1 and displays the utility of using the free
energy of a PCN classifier to differentiate between in-distribution (ID) and out-of-distribution (OOD)
data (Liu et al., 2020). We show how one can compute the negative log-likelihood of various datasets
(Grathwohl et al., 2020) under the PCN. We further provide analyses on the relationship between
maximum softmax values and energy values before convergence and after convergence at the state
optimum. We compare results across multiple datasets to corroborate our results as well as to show
how PCNs can be used for OOD detection out of the box based on a single trained PCN classifier for
which we study the receiver operating characteristic (ROC) curve based on different percentiles of
the softmax and energy scores.

F.1 FREE ENERGY AND OUT-OF-DISTRIBUTION DATA.

With PCX, it is straightforward to inspect and analyze several properties of PCNs. Here, we use F to
differentiate between in-distribution (ID) and out-of-distribution (OOD) due to a semantic distribution
shift (Liu et al., 2020), as well as to compute the likelihood of a datasets (Grathwohl et al., 2020).
This can occur when samples are drawn from different, unseen classes, such as FashionMNIST
samples under an MNIST setup (Hendrycks & Gimpel, 2017).

Experimental Setup. We train a PCN classifier on MNIST using a feedforward PCNs with 3
hidden layers each of size H = 512 with “GELU” activation and cross entropy loss in the output
layer. We train the model until test error convergence using early stopping at epoch 75. During
training the state variables are optimized for T = 10 steps with SGD and state learning rate γ = 0.01
without momentum. The weights are optimized using the SGD optimizer with a momentum of
mθ = 0.9 and the weight learning rate is chosen as lrθ = 0.01. During test-time inference, we
optimize the state variables until convergence for T = 100. To understand the confidence of a PCN’s
predictions, we compare the distribution of energy for ID and OOD samples against the distribution
of the softmax scores that the classifier generates. We compute negative log-likelihoods for ID and
OOD samples under the PCN classifier via:

F = − ln p(x, y; θ) =⇒ p(x, y; θ) = e−F , (7)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

We conduct the experiments on MNIST as the in-distribution (ID) dataset and we compare it against
various out-of-distribution datasets such as notMNIST, KMNIST, EMNIST (letters) as well as
FashionMNIST.

Briefly, the results in Fig. 20a demonstrate that a trained PCN classifier can effectively (1) assess
OOD samples out-of-the-box, without requiring specific training for that purpose (Yang et al., 2021),
and (2) produce energy scores for ID and OOD samples that initially correlate with softmax values
prior to the optimization of the states variables, h. However, after optimizing the states for T inference
steps, the scores for ID and OOD samples become decorrelated, especially for samples with lower
softmax values as shown in Fig. 20b. To corroborate this observation, we also present ROC curves
for the most challenging samples, including only the lowest 25% of the scores. As shown in Fig.20c,
the probability (i.e., energy-based) scores provide a more reliable assessment of whether samples are
OOD. Experiment details and results on other datasets are provided in in Appendix F. Additional,
and more detailed results for the EMNIST (letters) and KMNIST datasets are provided below.

Results. In the following we briefly interpret the additional results on the basis of experiments
supported by various figures

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Energy

10
0

10
1

10
2

10
3

10
4

Lo
g

Fr
eq

ue
nc

y

Bef. Inf. MNIST (ID)

Before Inference

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Energy

10
1

10
2

10
3

10
4

Lo
g

Fr
eq

ue
nc

y

Aft. Inf. MNIST (ID)

After Inference

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Energy

10
0

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Bef. Inf. EMNIST (OOD)

Before Inference

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Energy

10
0

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Aft. Inf. EMNIST (OOD)

After Inference

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Energy

10
0

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Bef. Inf. notMNIST (OOD)

Before Inference

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Energy

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Aft. Inf. notMNIST (OOD)

After Inference

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Energy

10
0

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Bef. Inf. FMNIST (OOD)

Before Inference

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Energy

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Aft. Inf. FMNIST (OOD)

After Inference

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Energy

10
0

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Bef. Inf. KMNIST (OOD)

Before Inference

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Energy

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Aft. Inf. KMNIST (OOD)

After Inference

Figure 21: Energy distributions before and after state optimization.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

In Fig. 21 we see how the energy is distributed at test-time before and after state optimization. We can
see, that all OOD datasets have significantly larger initial energies as well as final energies compared
to the ID dataset (MNIST).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Energy

10
0

10
1

10
2

10
3

10
4

Lo
g

Fr
eq

ue
nc

y

Bef. Inf. EMNIST

MNIST - (ID)
EMNIST - (OOD)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Energy

10
0

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Aft. Inf. EMNIST

MNIST - (ID)
EMNIST - (OOD)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Energy

10
0

10
1

10
2

10
3

10
4

Lo
g

Fr
eq

ue
nc

y

Bef. Inf. NOTMNIST

MNIST - (ID)
NOTMNIST - (OOD)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Energy

10
0

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Aft. Inf. NOTMNIST

MNIST - (ID)
NOTMNIST - (OOD)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Energy

10
0

10
1

10
2

10
3

10
4

Lo
g

Fr
eq

ue
nc

y

Bef. Inf. FMNIST

MNIST - (ID)
FMNIST - (OOD)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Energy

10
0

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Aft. Inf. FMNIST

MNIST - (ID)
FMNIST - (OOD)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Energy

10
0

10
1

10
2

10
3

10
4

Lo
g

Fr
eq

ue
nc

y

Bef. Inf. KMNIST

MNIST - (ID)
KMNIST - (OOD)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Energy

10
0

10
1

10
2

10
3

Lo
g

Fr
eq

ue
nc

y

Aft. Inf. KMNIST

MNIST - (ID)
KMNIST - (OOD)

Figure 22: Energy histograms against ID data before and after state optimization.

In Fig. 22 we then show how each energy distribution for the OOD dataset compares against the
energy of the in-distribution dataset by overlaying the histograms of the energies before and after
state optimization. We can see that by plotting the histograms, a pattern emerges, namely, that a
majority of the OOD data samples do not overlap with ID data samples, which supports the idea that
energy can be used for OOD detection.

Next in Fig. 23 we show how this pattern might look like when comparing the softmax scores of ID
against OOD datasets. One can see, that the softmax scores are less informative for determining if
samples are OOD as can be seen by the bigger overlap in the range of softmax values that ID and
OOD samples have in common.

In Fig. 24 we further study the relationship between softmax scores and energy values before and after
state convergence. The plot shows that while the energy and softmax scores are strongly correlated
before inference, a non-linear relationship is evident after convergence, especially for smaller values
where the model is more uncertain. This indicates, that softmax scores and energy values do not fully
agree on which samples we should have less confidence in.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

10
0

10
1

10
2

10
3

10
4

Lo
g

Fr
eq

ue
nc

y

Softmax Scores Distribution - EMNIST

MNIST - (ID)
EMNIST - (OOD)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

10
0

10
1

10
2

10
3

10
4

Lo
g

Fr
eq

ue
nc

y

Softmax Scores Distribution - NOTMNIST

MNIST - (ID)
NOTMNIST - (OOD)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

10
0

10
1

10
2

10
3

10
4

Lo
g

Fr
eq

ue
nc

y

Softmax Scores Distribution - FMNIST

MNIST - (ID)
FMNIST - (OOD)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

10
0

10
1

10
2

10
3

10
4

Lo
g

Fr
eq

ue
nc

y

Softmax Scores Distribution - KMNIST

MNIST - (ID)
KMNIST - (OOD)

Figure 23: Softmax histograms overlapped with ID dataset.

In Fig. 25 we show how the energy distributions for all datasets look like before and after inference.
Each box plot represents a different scenario and a different dataset. In addition, we compute the NLL
of each dataset and display it as part of the box plot labels. We observe that across all OOD datasets,
the initial and final energy values are significantly higher than the MNIST (ID) dataset. Furthermore,
we can see that the variance of the energy scores is smaller for the in-distribution data as can be seen
by the fact, that there are no outlier samples for MNIST beyond the whiskers of the box plot. Finally,
the NLL values for each scenario confirm this observation, with the likelihood of the MNIST data
being significantly higher than that of the OOD distributions.

Finally, in Fig. 26 we show how the PCN can be used to classify samples as belonging to the ID or
some OOD data. We use the PCN classifier’s energy to perform OOD detection and we show that the
ROC curves for energy-based detection are superior to ROC curves created via softmax scores. This
observation becomes even clearer, when looking at the most challenging samples by picking the 25%
percentile of the scores and energies, in effect the samples, that the PCN model is least confident
about as reflected by small energy or softmax values.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

0.0

0.5

1.0

En
er

gy

Bef. Inf.

MNIST (ID)
EMNIST (OOD)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

0.000

0.025

0.050

0.075

0.100

0.125

En
er

gy

Aft. Inf.

MNIST (ID)
EMNIST (OOD)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

0.0

0.5

1.0

1.5

En
er

gy

Bef. Inf.

MNIST (ID)
NOTMNIST (OOD)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

0.00

0.05

0.10

0.15

En
er

gy

Aft. Inf.

MNIST (ID)
NOTMNIST (OOD)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

0.0

0.5

1.0

1.5

En
er

gy

Bef. Inf.

MNIST (ID)
FMNIST (OOD)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

0.00

0.05

0.10

0.15

En
er

gy

Aft. Inf.

MNIST (ID)
FMNIST (OOD)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

0.0

0.5

1.0

1.5

En
er

gy

Bef. Inf.

MNIST (ID)
KMNIST (OOD)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Softmax Scores

0.00

0.05

0.10

0.15

En
er

gy

Aft. Inf.

MNIST (ID)
KMNIST (OOD)

Figure 24: Non-linear relationship between energy and softmax scores.

MNIST (ID
)

Bef.
 N

LL
:

23
5.6 MNIST (ID

)

Aft.
NLL

:

33
.9 EMNIST

Bef.
 N

LL
:

15
11

.3 EMNIST

Aft.
NLL

:

17
9.6 no

tM
NIST

Bef.
 N

LL
:

23
44

.5 no
tM

NIST

Aft.
NLL

:

30
4.8 FMNIST

Bef.
 N

LL
:

15
17

.7 FMNIST

Aft.
NLL

:

16
7.3 KMNIST

Bef.
 N

LL
:

21
12

.7 KMNIST

Aft.
NLL

:

24
4.5

Data Type

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Lo
g

En
er

gy

Figure 25: Energy and NLL for various OOD datasets before and after inference.

G COMPUTATIONAL RESOURCES

Fig. 8 was obtained by taking a small feedforward PCN made by 2 layers of 64 neurons each and
training it on batches of 32 elements (generated as random noise so to avoid any overhead due to
loading training data to the GPU) for T = 8 steps. Then, each parameter was scaled independently
to measure its effect on the total training time. Each model obtained this way was trained for 5

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

EMNIST

Softmax (AUC = 0.8365)
Energy (AUC = 0.8408)
Softmax (25th perc., AUC = 0.5681)
Energy (25th perc., AUC = 0.6188)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NOTMNIST

Softmax (AUC = 0.9128)
Energy (AUC = 0.9245)
Softmax (25th perc., AUC = 0.5922)
Energy (25th perc., AUC = 0.7419)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

FMNIST

Softmax (AUC = 0.8255)
Energy (AUC = 0.8262)
Softmax (25th perc., AUC = 0.5626)
Energy (25th perc., AUC = 0.5722)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

KMNIST

Softmax (AUC = 0.8967)
Energy (AUC = 0.9033)
Softmax (25th perc., AUC = 0.5877)
Energy (25th perc., AUC = 0.6456)

Figure 26: Performing OOD detection with PCN energy and classifier softmax scores.

epochs and the mean time was reported. In all our timing measurements, we skip the first epoch to
avoid including the JIT compilation time. Results were obtained on a GTX TITAN X, showing that
parallelization is potentially achievable also on consumer GPUs.

34

	Introduction
	Related Works
	Background and Notation
	Experiments and Benchmarks
	Discriminative Mode
	Generative Mode

	Analysis and metrics
	Energy and stability

	Library, Resources and Implementations Details
	Computational resources and limitations.

	Discussion
	Supplementary Material
	Index

	PCX – A Brief Introduction
	Discriminative experiments
	Generative experiments
	Autoencoder
	MCPC
	Associative memories

	Energy and Stability
	Energy propagation
	Training Stability

	Skip Connections into VGG19
	Properties of predictive coding networks
	Free energy and out-of-distribution data.

	Computational Resources

