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ABSTRACT

Self-supervised learning (SSL) has emerged as a promising paradigm that presents
supervisory signals to real-world problems, bypassing the extensive cost of man-
ual labeling. Consequently, self-supervised anomaly detection (SSAD) has seen a
recent surge of interest, since SSL is especially attractive for unsupervised tasks.
However, recent works have reported that the choice of a data augmentation func-
tion has significant impact on the accuracy of SSAD, posing augmentation search
as an essential but nontrivial problem with the lack of labeled validation data. In
this paper, we introduce ST-SSAD (Self-Tuning Self-Supervised Anomaly Detec-
tion), the first systematic approach for rigorous augmentation tuning on SSAD. To
this end, our work presents two key contributions. The first is a new unsupervised
validation loss that quantifies the alignment between the augmented training data
and the (unlabeled) test data. Second, we present new differentiable augmentation
functions, allowing data augmentation hyperparameter(s) to be tuned end-to-end
via our proposed validation loss. Experiments on two testbeds with semantic class
anomalies and subtle industrial defects show that a systematic tuning of augmen-
tation gives significant performance gains over current practices. All our code and
testbeds are available at https://anonymous.4open.science/r/ST-SSAD.

1 INTRODUCTION

Anomaly detection (AD) finds many applications in security, finance, and manufacturing, to name a
few. Thanks to its popularity, the literature is abound with numerous detection techniques (Aggar-
wal, 2016), while deep neural network-based models have attracted the most attention recently (Pang
et al., 2021). Especially for adversarial or dynamically-changing settings in which the anomalies are
to be identified, it is important to design unsupervised techniques. While supervised detection can be
employed for label-rich settings, unsupervised detection becomes critical to remain alert to emerging
phenomena or the so-called “unknown unknowns”.

Recently, self-supervised learning (SSL) has emerged as a promising paradigm that offers supervi-
sory signals to real-world problems while avoiding the extensive cost of manual labeling, leading
to great success in advancing NLP (Conneau et al., 2020; Brown et al., 2020) as well as computer
vision tasks (Goyal et al., 2021; He et al., 2022). SSL has become particularly attractive for unsu-
pervised tasks such as AD, where labeled data is either nonexistent, costly to obtain, or nontrivial to
simulate in the face of unknown anomalies. For this reason, the literature has seen a recent surge of
SSL-based AD (SSAD) techniques (Golan & El-Yaniv, 2018; Hendrycks et al., 2019; Bergman &
Hoshen, 2020; Li et al., 2021; Sehwag et al., 2021; Qiu et al., 2021). The typical approach to SSAD
involves incorporating self-generated pseudo anomalies into training, and then learning to separate
those from the inliers. The pseudo anomalies are most often synthesized artificially by transforming
inliers through a data augmentation function, such as masking, blurring, or rotation.

In this paper, we address a fundamental challenge with SSAD, to which recent works seem to have
turned a blind eye: recognizing and tuning augmentation as a hyperparameter. As shown recently
by Yoo et al. (2023), the choice of a data augmentation function, as well as its associated arguments
such as the masking amount, blurring level, etc., have tremendous impact on detection performance.
This may come across as no surprise, since the supervised learning community has integrated “data
augmentation hyperparameters” into model selection (Cubuk et al., 2019; Ottoni et al., 2023). Mean-
while, there exists no such attempt in the literature on SSAD (!). Although model selection without
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Figure 1: (left) Training and (right) validation (i.e. augmentation tuning) stages of ST-SSAD, which
alternates between: (left) Given aug. function ϕaug(·;a), estimate the parameters θ of detector fθ on
inliersDtrn and pseudo anomaliesDaug via the training loss; (right) Given fθ and unlabeled test data
Dtest, gradient-update the aug. hyperparameters a via our differentiable unsupervised validation loss
that measures the agreement between Dtrn ∪ Daug and Dtest in the embedding space.

ground-truth labels is admittedly a much harder problem, turning a blind eye to the challenge may
mislead by overstating the (unreasonable) effectiveness of SSL for unsupervised AD.

Our work introduces the first systematic approach for rigorous augmentation tuning on SSAD. Intu-
itively, SSAD works well if the augmentation-generated pseudo anomalies resemble the true anoma-
lies. Put differently, this is when the augmentation function well mimics the true anomaly-generating
mechanism. Based on this insight, (1) we first design a novel, unsupervised validation loss for SSAD
toward quantifying the alignment between the augmented training data and unsupervised test data.
Then, we propose to tune augmentation through our differentiable validation loss end-to-end (see
Fig. 1). This necessitates the augmentation function to be differentiable as well. To this end, (2) we
propose new differentiable formulations for popular augmentations such as CutOut (local) (Devries
& Taylor, 2017) and rotation (global) (Golan & El-Yaniv, 2018) as proof of concept.

We argue that the use of unlabeled test data, containing the anomalies to be identified, during model
tuning transductively1 is exceedingly important for the success of SSAD. This is fundamentally dif-
ferent from existing SSAD approaches that “imagine” how the actual anomalies would look like or
otherwise haphazardly choose augmentation that corresponds to some arbitrary notion of anomalies,
which may not well align with what is to be detected. One can incorporate expert or prior knowl-
edge of anomalies in choosing augmentation, but in the absence thereof (recall unknown-unknowns),
SSAD would likely fail as the recent study by Yoo et al. (2023) documents.

Our extensive experiments on 41 anomaly detection tasks including both local and global anoma-
lies show that ST-SSAD significantly outperforms both unsupervised and self-supervised baselines
which rely on manual hyperparameter search without labels. Our qualitative analysis visually sup-
ports that ST-SSAD is capable of learning appropriate augmentation hyperparameters for different
anomaly types, even when they share the same normal data, by leveraging the anomalies in unla-
beled test data. While we focus on image anomaly detection in this paper, our ST-SSAD framework
is generally applicable to other data modalities given differentiable augmentation functions.

2 PRELIMINARIES

Notation Let Dtrn denote a set of training normal (i.e. inlier) data, and Dtest be a set of test data
containing both normal and anomalous samples. Let x ∈ Rd denote a data sample in Dtrn ∪ Dtest,
where d is its size. Let ϕaug ∈ Rd × A 7→ Rd depict a data augmentation function conditioned on
hyperparameters a ∈ A, where A is the set of possible values. For example, if ϕaug is the rotation
of an image, A = [0, 360) is the domain of rotation angles, and ϕaug(x; a) is the image rotated by
angle a. Let fθ ∈ Rd 7→ Rh be a detector parameterized by θ, and s ∈ Rh 7→ R+ be an anomaly
score function. Specifically, fθ returns a low-dimensional embedding z ∈ Rh for each x, which is
then fed into s to compute its anomaly score of x. We assume that fθ is trained in a self-supervised
fashion by creating a set Daug = {ϕaug(x;a) | x ∈ Dtrn} of pseudo anomalies using ϕaug.

1Vapnik (2006) advocated transductive learning over inductive learning, stating that one should not solve a
more general, harder problem, but rather solve the specific problem at hand directly. We argue that transduction
is especially relevant for operationalizing SSL for AD.
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Problem definition Given Dtrn and Dtest, how can we find a∗ (along with the model parameters
θ) that maximizes the accuracy of the detector fθ with score function s?

There is no trivial solution to the problem, since the labeled anomalies are not given at training time.
However, the problem is crucial for the success of SSAD in real-world tasks where the labels are
hard to obtain or even nonexistent. To the best of our knowledge, this problem has not been studied
in the literature, and our work is the first to propose a systematic solution to the problem.

3 PROPOSED FRAMEWORK FOR END-TO-END AUGMENTATION TUNING

We propose ST-SSAD (Self-Tuning Self-Supervised Anomaly Detection), a framework for augmen-
tation hyperparameter tuning in SSAD. Given test data Dtest which contains unlabeled anomalies,
ST-SSAD automatically finds the best augmentation hyperparameter a∗ that maximizes the semantic
alignment between the augmentation function and the underlying anomaly-generating mechanism
hidden in Dtest. The search process is performed in an end-to-end fashion thanks to two core novel
engines of ST-SSAD: (1) an unsupervised validation loss Lval and (2) a differentiable augmentation
function ϕaug, which we describe in detail in Sec. 3.1 and 3.2, respectively.

Fig. 1 shows an overall structure of ST-SSAD, which updates the parameters θ of the detector fθ
and the augmentation hyperparameters a through alternating stages for training and validation. Let
Ztrn = {fθ(x) | x ∈ Dtrn} be the embeddings of Dtrn, Zaug = {fθ(ϕaug(x;a)) | x ∈ Dtrn}
be the embeddings of augmented data, and Ztest = {fθ(x) | x ∈ Dtest} be the embeddings of
Dtest. In the training stage, ST-SSAD updates θ to minimize the training loss based on the pretext
task of SSAD as determined by ϕaug with given a. In the validation stage, ST-SSAD updates a to
reduce the unsupervised validation loss based on the embeddings generated by the updated fθ. The
framework halts when a reaches a local optimum, typically after a few iterations.

The detailed process of ST-SSAD is shown as Algo. 2 in Appendix A. Line 3 denotes the training
stage, and Lines 4 to 8 represent the validation stage. θ is updated in Line 9 after the validation stage
because of the second-order optimization (Sec. 3.3). Due to its gradient-based solution to the bilevel
optimization problem, Algo. 2 is executed for multiple random initializations of a (Sec. 3.3).

3.1 UNSUPERVISED VALIDATION LOSS

Figure 2: Illustration of Lval.

The unsupervised validation loss Lval is one of the core compo-
nents of ST-SSAD, which guides the direction of hyperparameter
optimization. The goal is to quantify the agreement between ϕaug

and the anomaly-generating mechanism. Our idea is to measure
the set distance betweenDtrn∪Daug andDtest in the embedding
space, based on the intuition that the two sets will become simi-
lar, the more Daug resembles the true anomalies in Dtest. Fig. 2
depicts the intuition: we aim to find ϕaug that creates Zaug similar to the set Z(a)

test of true anomalies
(in red), while matching Ztrn with the set Z(n)

test of normal data (in green). By using the embeddings,
we can avoid the high dimensionality of raw data and focus on their semantic representation.

Based on the idea, we present the basic form of our validation loss as follows:

L(b)
val(Ztrn,Zaug,Ztest) = dist(Ztrn ∪ Zaug,Ztest), (1)

where dist(·, ·) is a distance function between sets of vectors. The effectiveness ofL(b)
val is determined

by how dist is defined, which we carefully design to address two notable challenges:

• Scale invariance: During optimization, the scale of distances between embeddings can arbitrarily
change as a is updated, which makes the value of Lval inconsistent. Thus, Lval should be robust
to the scale of distances as long as the (relative) distribution of embeddings is preserved.

• Ratio robustness: Let γ = |Daug|/|Dtrn| denote the relative size of augmented data, which means
the number of times we apply ϕaug to Dtrn. Since the exact anomaly ratio in Dtest is not known,
Lval should be robust to the value of γ which we manually set prior to training.

Total distance normalization For scale invariance, we propose total distance normalization to
unify the total pairwise squared distance (TPSD) (Zhao & Akoglu, 2020) of embeddings. Let Z be
an embedding matrix that stacks all embedding vectors in Ztrn, Zaug, and Ztest as its rows. Then,
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TPSD is defined as TPSD(Z) =
∑

ij ∥zi − zj∥22, where zi is the i-th row of Z. We can transform
any Z to have the unit TPSD in linear time (Zhao & Akoglu, 2020) via

z′i =

√
N

∥Zc∥F
zci where zci = zi −

1

N

N∑
j=1

zj , (2)

where ∥ · ∥F is the Frobenius norm of a matrix, and N is the number of rows in Z.

By using Z′ instead of Z for computing the distances, we can focus on the relative distances between
embeddings while maintaining the overall variance. It is noteworthy that the vector normalization,
i.e., zi ← zi/∥zi∥2 ∀i, does not solve the scale invariance problem since the scale of distances can
still be arbitrary even on unit vectors. Another advantage that total distance normalization offers is
that it steers away from the trivial solution, which is to set all embeddings to the zero vector.

Mean distance loss For ratio robustness, we use the asymmetric mean distance as the dist function
to separate dist(Ztrn ∪ Zaug,Ztest) into (dist(Ztrn,Ztest) + dist(Zaug,Ztest))/2 as follows.

Lval(Ztrn,Zaug,Ztest) =
1

2

∑
z′∈Z′

test

∥z′ −mean(Z ′
trn)∥2 + ∥z′ −mean(Z ′

aug)∥2 , (3)

where Z ′
trn, Z ′

aug, and Z ′
test are the embeddings after the total distance normalization, and mean(·)

is the (elementwise) mean of a set of vectors. The mean operation allows Lval to be invariant to the
individual (or internal) distributions of Ztrn and Zaug, including their sizes, while focusing on their
global relative positions with respect to Ztest. This is another desired property for Lval, since we
want to avoid minimizing Lval only by decreasing the variance of Zaug.

Figure 3: Lval (as color) for dif-
ferent values of u1 and u2, and the
negative gradients of Lval with re-
spect to u1 and u2 (as arrows).

Theoretical properties We study Lval theoretically on sin-
gleton scenarios, where the sets Ztrn, Zaug, Z(n)

test, and Z(a)

test
are all of size one. We claim in Lemma 1 that Lval is one with
the perfect alignment, and in Lemma 2 that we can reach the
perfect alignment by minimizing Lval via gradient-based op-
timization. Fig. 3 provides empirical evidence on Lemma 2,
where we assume that every embedding is a vector of length
one. All the negative gradients point to the perfect alignment
achieved when u1 = u2 = 0. Proofs are in Appendix B.
Lemma 1 (Perfect alignment). Lval(Ztrn,Zaug,Ztest) = 1
if |Ztrn| = |Zaug| = 1, Ztrn = Z(n)

test, and Zaug = Z(a)

test.
Lemma 2 (Existence of local optima). Let Ztrn = {z1},
Zaug = {z2}, Z(n)

test = {z1 + u1}, and Z(a)

test = {z2 + u2}.
There exists δ > 0 such that if ∥u1∥2 ≤ δ and ∥u2∥2 ≤ δ,
Lval(Ztrn,Zaug,Ztest) = 1 if and only if u1 = u2 = 0.

3.2 DIFFERENTIABLE AUGMENTATION

The second driving engine is a differentiable augmentation function that enables ST-SSAD to con-
duct end-to-end optimization. Some functions are inherently differentiable if implemented in a cor-
rect way, while others require differentiable surrogate functions that provide a similar functionality.
As proof of concept, we take this approach to introduce two differentiable augmentation functions;
one representative of local and another representative of global augmentation. Specifically, we pro-
pose CutDiff (§3.2.1) as a differentiable variant of CutOut (Devries & Taylor, 2017) that is originally
designed for localized anomalies. We also utilize a differentiable formulation of Rotation (§3.2.2),
which is a popular augmentation function which transforms the input globally and has been widely
used for semantic anomaly detection (Bergman & Hoshen, 2020; Sehwag et al., 2021).

3.2.1 CUTDIFF FOR LOCAL AUGMENTATION

Local augmentation such as CutOut (Devries & Taylor, 2017) and CutPaste (Li et al., 2021) mimics
subtle local anomalies by modifying a partial region in an image. CutOut removes a small patch from
an image and fills in it with a black patch, while CutPaste copies a small patch and pastes it into a
different random location of the same image. However, all of these functions are not differentiable,
and thus cannot be directly used for our end-to-end ST-SSAD framework.

We propose CutDiff in Algo. 1, which creates a smooth round patch and extracts it from the given
image in a differentiable way. The idea is to model the patch shape as a function of hyperparameters
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Algorithm 1 Proposed CutDiff Augmentation

Input: Image x and augmentation hyperparameters a ∈ R3

Output: Augmented image x̃
1: X← Reshape x as a tensor of size m×m× 3, assuming an RGB image
2: L← Reshape a as a lower triangular matrix of size 2× 2
3: G← Create a grid tensor of size m×m× 2 such that gij = (i/m, j/m) ∀i, j ∈ [1,m]
4: µ← Sample a position vector of size 2 such that µ1, µ2 ∼ uniform(0, 1)
5: P← Create a patch matrix such that pij = exp(−(gij − µ)⊤(LL⊤)−1(gij − µ))
6: x̃← Reshape X̃ where x̃ijk = min(max(xijk − pij , 0), 1) ∀i, j, k

a ∈ R3 by computing the strength of the patch based on the distance between the patch center and
each image pixel. By reshaping a as a lower triangular matrix L and changing it, we in effect tune
the rotated angle, size, and ratio of the patch. In Appendix C, we provide visualizations of CutDiff
compared with CutOut and CutPaste, as well as its implementation details.

3.2.2 ROTATION FOR GLOBAL AUGMENTATION

Geometric augmentation such as rotation, translation, and flipping has been widely used for image
anomaly detection (Golan & El-Yaniv, 2018; Bergman & Hoshen, 2020). Unlike local augmentation
such as CutOut, many geometric transformations are differentiable if they are represented as matrix-
vector operations. We adopt the differentiable image rotation function proposed by Jaderberg et al.
(2015), which consists of two main steps. First step is the creation of a 2×3 rotation matrix. Second
step is to create a sampling function that selects a proper pixel position of the given image for each
position of the target image based on the rotation matrix and the affine grid. The resulting operation
is differentiable, since it is a parameterized sampling between pixels of the two images.

3.3 TECHNIQUES FOR PRACTICAL USABILITY

We introduce two additional techniques for improving the practical usability and generalizability of
ST-SSAD toward real-world data: second-order optimization and multiple initialization.

Second-order optimization At each training iteration, ST-SSAD updates augmentation hyperpa-
rameters a and the parameters θ of the detection network fθ through alternating stages. We expect
the following inequality to hold:

Lval(a
(t+1), θ′) < Lval(a

(t), θ) , (4)
where t is the current iteration, and θ′ denotes the updated parameters of the detector fθ derived by
using a(t) to generate pseudo anomalies for its training.

However, the first-order optimization of a cannot take into account that the parameters θ′ and θ are
different between both sides of Eq. 4, as it treats θ′ as a constant. As a solution, ST-SSAD considers
θ′ as a function of a(t) and conducts second-order optimization as follows:

a(t+1) = a(t) − β∇a(t)Lval(a
(t), θ − α∇θLtrn(θ,a

(t))) . (5)

In this way, the optimization process can accurately track the change in θ caused by the update of a,
resulting in a stable minimization of Lval. Note that Eq. 5 is the same as in Line 8 of Algorithm 2,
except we assume that Lval takes (a, θ) as its inputs in Eq. 4 and 5.

Multiple initialization The result of ST-SSAD is affected by how we initialize the augmentation
hyperparameters a, since it conducts gradient-based updates toward local optima. A natural way to
address initialization is to pick a few random starting points and select the best one. However, it is
difficult to fairly select the best from multiple points, since Lval is designed to locally improve the
current a, rather than to compare different models; e.g., it is possible that a less-aligned model can
produce lower Lval if the augmented data are distributed more sparsely in the embedding space.

As a solution, we propose a simple yet effective measure to enable the comparison between models
from different initialization choices. Let s be the anomaly score function as presented in the problem
definition in Sec. 2. Then, we define the score variance of the test data as

S(θ) =
∑

s∈C(s−mean(C))2

|Dtest| − 1
where C = {s(fθ(x)) | x ∈ Dtest}. (6)

We use S (the larger, the better) to select the best initialization point after training completes. The
idea is that the variance of test anomaly scores is likely to be large under a good augmentation, as it
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generally reflects a better separability between inliers and anomalies in the test data, and it offers a
fair evaluation since ST-SSAD does not observe the score function s at all during optimization.

4 EXPERIMENTS

Datasets We run experiments on 41 different anomaly detection tasks, which include 23 subtle (lo-
cal) anomalies in MVTec AD (Bergmann et al., 2019) and 18 semantic (gross) anomalies in SVHN
(Netzer et al., 2011). MVTec AD is an image dataset of industrial objects, where the anomalies are
local defects such as scratches. We include four types of objects in our experiments: Cable, Carpet,
Grid, and Tile, each of which contains five to eight anomaly types. SVHN is a digits image dataset
from house numbers in Google Street View. We use digits 2 and 6 as normal classes and treat the
remaining digits as anomalies, generating 18 different tasks for all pairs of digits (2 vs. others and 6
vs. others). Note that our experimental setup is different from previous works (Li et al., 2021), since
we focus on the performance on each anomaly type rather than overall accuracy.

Model settings We use a detector network fθ with the same ResNet-based architecture (He et al.,
2016) as in a previous work (Li et al., 2021). We use binary cross entropy as the training loss Ltrn

for classification between normal and augmented data, applying an MLP head to the embeddings to
produce prediction outputs. As the anomaly score function s, we use the negative log likelihood of a
Gaussian density estimator learned on the embeddings of training data as in previous works (Rippel
et al., 2020; Li et al., 2021). For ST-SSAD, we use four initialization points for each augmentation
function: {0.0001, 0.001, 0.01, 0.1} for the CutDiff patch size, and {45◦, 135◦, 225◦, 315◦} for the
Rotation angle. We set both the initial patch angle and ratio to zero. We employ CutDiff and Rotation
for defect and semantic anomaly detection tasks, respectively. The sum of training and validation
losses is used as the stopping criterion for the updates to hyperparameters a.

Evaluation metrics The accuracy of each model is measured by the area under the ROC curve
(AUC) on the anomaly scores computed for Dtest. We run all experiments five times and report the
average and standard deviation. For statistical comparison between different models on all tasks and
random seeds, we also run the paired Wilcoxon signed-rank test (Groggel, 2000). The one-sided test
with p-values smaller than 0.05 represents that our ST-SSAD is statistically better than the other.

Baselines To the best of our knowledge, there are no direct competitors on end-to-end augmenta-
tion hyperparameter tuning for SSAD. Thus, we compare ST-SSAD with various types of baselines:
SSL without hyperparameter tuning—(1) random dynamic selection (RD) that selects a randomly at
each training epoch, and (2) random static selection (RS) that selects a once before the training be-
gins. Unsupervised learning—(3) autoencoder (AE) (Golan & El-Yaniv, 2018) and (4) DeepSVDD
(Ruff et al., 2018). Variants of our ST-SSAD with naı̈ve choices—(5) using maximum mean discrep-
ancy (MMD) (Gretton et al., 2006) as Lval, (6) MMD without the total distance normalization, and
(7) using first-order optimization. RD and RS are used with either of CutOut, CutPaste, CutDiff, or
Rotation, which we denote CO, CP, CD, and RO, respectively, for brevity. We also denote baselines
(5)–(7) as MMD1, MMD2, and FO, respectively. Additional details are in Appendix D.

4.1 DEMONSTRATIVE EXAMPLES

We first present experimental results on demonstrative datasets, where we create synthetic anomalies
through CutDiff. Given normal images of the Carpet object in the MVTec AD dataset, we generate
25 types of anomalies with the patch size in {0.01, 0.02, 0.04, 0.08, 0.16} and the aspect ratio in
{0.25, 0.5, 1.0, 2.0, 4.0}, where the angle is fixed to 0. Our goal is to demonstrate that ST-SSAD is
able to learn different a for different anomaly types in these controlled settings.

Fig. 4 shows the experimental results. In Fig. 4a, ST-SSAD learns different values of a depending
on the properties of anomalies, patch size and patch ratio, demonstrating the ability of ST-SSAD to
adapt to varying anomalies. Nevertheless, there exists a slight difference between the learned a and
the true values in some cases, since embedding distributions can be matched as in Fig. 4b even with
a small difference. This difference is typically larger for patch ratio than for patch size, suggesting
that patch size impacts the embeddings more than the ratio does. Fig. 4c depicts the training process
of ST-SSAD for five anomaly types generated with different patch sizes, where the patch ratio is set
to 1.0. We visualize the average and standard deviation from five runs with different random seeds.
ST-SSAD accurately adapts to different patch sizes even from the same initialization point, updating
a through iterations to minimize the validation loss.
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(a) Learned values of patch size (left) & ratio (right) (b) t-SNE embeddings (c) Patch size during training

Figure 4: Experimental results on demonstrative examples, where we create 25 types of anomalies
using CutDiff with five different patch size and patch ratio values, respectively. (a) Each cell’s value
represents what ST-SSAD has learned through end-to-end optimization for the (left) patch size and
(right) ratio, respectively. ST-SSAD successfully mimics the true values of the patch ratio and size
shown in the x- and y-axes, respectively, until (b) the embedding distributions are matched between
Ztrn ∪ Zaug and Ztest, showing a learning trajectory like (c). AUC is 1.00 in all 25 tasks.

4.2 TESTBED EVALUATION

Next, we perform quantitative evaluation of ST-SSAD on both industrial-defect anomalies and se-
mantic class anomalies, covering 41 different anomaly detection tasks. Table 1 provides the results
on 23 tasks for industrial-defect anomalies. ST-SSAD (1) achieves the best AUC in 9 different tasks,
and (2) outperforms 7 of the 8 baselines with p-values smaller than 0.01, showing strong statistical
significance throughout all 23 tasks. The p-value is still small for the remaining case (0.07) when
compared to RD-CD, which means that ST-SSAD outperforms RD-CD in most tasks in the testbed.
Table 2 shows the experimental results on 18 tasks for semantic class anomalies, where ST-SSAD
significantly outperforms all baselines with all p-values smaller than 0.0001.

The ablation studies between ST-SSAD and its three variants in Tables 1 and 2 show the effectiveness
of our ideas that compose ST-SSAD: total distance normalization, mean distance loss, and second-
order optimization. Especially, the two MMD-based methods are significantly worse than our ST-
SSAD, showing that MMD is not suitable for augmentation tuning even though it is widely used as
a set distance measure, due to the challenges we aim to address with Lval. The difference between
ST-SSAD and the first-order baseline is smaller, meaning that the first-order optimization can still
be used for ST-SSAD when the computational efficiency needs to be prioritized.

4.3 QUALITATIVE ANALYSIS

We also perform qualitative analysis as shown in Fig. 6 and 7, visualizing the augmentation func-
tions learned by ST-SSAD for different types of anomalies. Fig. 6 illustrates three types of anomalies
in the Cable object and one type of anomaly in the Carpet object. The four anomaly types have their
own sizes and aspect ratios of defected regions, which are accurately learned by ST-SSAD. Note that
the three types of Cable anomalies share the training data Dtrn; ST-SSAD captures their difference
only from the alignment. The locations of patches created by CutDiff are chosen randomly at each
run, since the locations of local defects are different for each anomalous image.

Fig. 7 illustrates images in the SVHN dataset and the embedding distributions after the training of
ST-SSAD is completed. Fig. 7a and 7c show that ST-SSAD learns 180◦ as the angle of Rotation as
ϕaug, since the anomalies in both tasks can be resembled by the 180◦-rotated normal images. After
the training, the embedding distributions between Ztrn ∪ Zaug and Ztest are matched as shown in
Fig. 7b and 7d, achieving high average AUC of 0.944 and 0.887, respectively (see Table 2).

4.4 DISCUSSION

Table 1 shows the success of ST-SSAD throughout different tasks, but it also implies that ST-SSAD
cannot always improve detection accuracy in all tasks. In some tasks like Rough anomalies in Tile,
a simple baseline like random CutOut shows higher AUC than other models. This is because some
anomaly types are difficult to mimic with CutDiff due to the inherent mismatch of the augmentation
function. Fig. 5 shows two example anomaly types, Tile-Oil and Carpet-Thread, where ST-SSAD
cannot improve over the baselines. Local defects of Oil are brighter than the background, whereas
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Table 1: Test AUC on 23 different tasks for subtle anomaly detection. Each number is the average
from five runs, and the best in each row is in bold. ST-SSAD outperforms most baselines, which is
supported by the p-values in the last row derived from the Wilcoxon signed rank test.

Main Result Ablation Study

Object Anomaly Type AE D-SVDD RS-CO RD-CO RS-CP RD-CP RS-CD RD-CD ST-SSAD MMD1 MMD2 FO

Cable Bent wire 0.515 0.432 0.556 0.560 0.703 0.756 0.527 0.580 0.490 0.581 0.643 0.579
Cable Cable swap 0.639 0.295 0.483 0.625 0.618 0.683 0.574 0.696 0.532 0.510 0.562 0.545
Cable Combined 0.584 0.587 0.879 0.857 0.880 0.949 0.901 0.879 0.925 0.939 0.962 0.882
Cable Cut inner insulation 0.758 0.591 0.630 0.737 0.766 0.833 0.623 0.732 0.667 0.633 0.649 0.689
Cable Cut outer insulation 0.989 0.343 0.695 0.815 0.787 0.871 0.703 0.790 0.516 0.428 0.461 0.527
Cable Missing cable 0.920 0.466 0.953 0.961 0.755 0.801 0.935 0.945 0.998 0.855 0.772 0.999
Cable Missing wire 0.433 0.494 0.781 0.655 0.501 0.546 0.708 0.620 0.863 0.547 0.477 0.699
Cable Poke insulation 0.287 0.471 0.469 0.527 0.645 0.672 0.489 0.503 0.630 0.692 0.816 0.676

Carpet Color 0.578 0.716 0.669 0.508 0.412 0.287 0.643 0.639 0.938 0.761 0.741 0.918
Carpet Cut 0.198 0.758 0.439 0.608 0.403 0.411 0.490 0.767 0.790 0.353 0.401 0.595
Carpet Hole 0.626 0.676 0.379 0.613 0.404 0.389 0.470 0.765 0.590 0.438 0.229 0.630
Carpet Metal contamination 0.056 0.739 0.198 0.304 0.240 0.167 0.255 0.474 0.076 0.392 0.134 0.392
Carpet Thread 0.394 0.742 0.494 0.585 0.469 0.517 0.508 0.679 0.483 0.492 0.541 0.642

Grid Bent 0.849 0.168 0.456 0.322 0.421 0.433 0.337 0.354 0.771 0.780 0.650 0.602
Grid Broken 0.806 0.183 0.397 0.312 0.487 0.502 0.340 0.392 0.869 0.845 0.887 0.884
Grid Glue 0.704 0.143 0.634 0.568 0.674 0.732 0.681 0.578 0.906 0.966 0.974 0.721
Grid Metal contamination 0.851 0.229 0.421 0.380 0.499 0.514 0.425 0.613 0.858 0.861 0.665 0.732
Grid Thread 0.583 0.209 0.612 0.494 0.500 0.549 0.654 0.611 0.973 0.962 0.969 0.964

Tile Crack 0.770 0.728 0.872 0.993 0.743 0.636 0.837 0.999 0.749 0.740 0.820 0.595
Tile Glue strip 0.697 0.509 0.693 0.836 0.665 0.700 0.675 0.831 0.767 0.585 0.649 0.561
Tile Gray stroke 0.637 0.785 0.845 0.642 0.583 0.657 0.856 0.802 0.974 0.653 0.706 0.973
Tile Oil 0.414 0.690 0.708 0.745 0.464 0.576 0.683 0.837 0.554 0.548 0.614 0.555
Tile Rough 0.724 0.387 0.606 0.725 0.631 0.661 0.568 0.657 0.690 0.700 0.549 0.605

p-value .0000 .0000 .0000 .0012 .0000 .0000 .0000 .0728 Ours .0268 .0073 .1332

Table 2: Test AUC on 18 different tasks for semantic anomaly de-
tection. The format is the same as in Table 1. ST-SSAD outperforms
all baselines with the p-values smaller than 0.0001 in all cases.

Main Result Ablation Study

Object Anomaly AE D-SVDD RS-RO RD-RO ST-SSAD MMD1 MMD2 FO

Digit 2 Digit 0 0.602 0.472 0.672 0.734 0.816 0.519 0.518 0.506
Digit 2 Digit 1 0.544 0.499 0.601 0.609 0.743 0.499 0.501 0.498
Digit 2 Digit 3 0.604 0.503 0.664 0.730 0.832 0.508 0.510 0.511
Digit 2 Digit 4 0.561 0.511 0.679 0.746 0.790 0.531 0.530 0.530
Digit 2 Digit 5 0.625 0.502 0.709 0.824 0.877 0.512 0.514 0.517
Digit 2 Digit 6 0.616 0.496 0.726 0.826 0.887 0.511 0.507 0.510
Digit 2 Digit 7 0.541 0.496 0.584 0.639 0.823 0.521 0.520 0.518
Digit 2 Digit 8 0.616 0.498 0.673 0.738 0.805 0.524 0.524 0.522
Digit 2 Digit 9 0.588 0.485 0.625 0.687 0.659 0.516 0.523 0.518

Digit 6 Digit 0 0.531 0.480 0.586 0.606 0.777 0.503 0.514 0.504
Digit 6 Digit 1 0.517 0.498 0.621 0.610 0.854 0.516 0.528 0.511
Digit 6 Digit 2 0.594 0.503 0.735 0.807 0.916 0.525 0.531 0.529
Digit 6 Digit 3 0.570 0.507 0.686 0.750 0.823 0.518 0.520 0.521
Digit 6 Digit 4 0.525 0.508 0.659 0.703 0.709 0.527 0.521 0.530
Digit 6 Digit 5 0.544 0.502 0.615 0.661 0.658 0.516 0.513 0.509
Digit 6 Digit 7 0.567 0.505 0.699 0.729 0.861 0.540 0.551 0.541
Digit 6 Digit 8 0.546 0.500 0.575 0.641 0.732 0.512 0.523 0.512
Digit 6 Digit 9 0.579 0.495 0.708 0.817 0.944 0.527 0.519 0.524

p-value .0000 .0000 .0000 .0000 Ours .0000 .0000 .0000

(a) Can be found by CutDiff

(b) Difficult with CutDiff

Figure 5: Some anomalies are
hard to detect by CutDiff due
to the inherent mismatch. See
Sec. 4.4 for discussion.

CutDiff rather darkens the chosen patch. Anomalies of Thread type contain long thin threads, which
are also hard to represent with CutDiff regardless of hyperparameter values.

ST-SSAD is a general framework, rather than a specific method, and its performance is affected by
the detector model and augmentation function used. As the first systematic study for unsupervised
augmentation tuning, we propose two differentiable augmentation functions for local and semantic
anomalies, respectively, and demonstrate the success of ST-SSAD on two types of testbeds as proof
of concept. We leave it as a future work to design a broader family of differentiable augmentations
which can deal with more diverse types of anomalies, that also apply to other data modalities.

5 RELATED WORK

Self-supervised learning (SSL) has seen a surge of attention especially for pre-training foundation
models (Bommasani et al., 2021), like LLMs which can generate remarkable human-like text (Zhou
et al., 2023). Self-supervised representation learning has also offered astonishing boost to a variety
of tasks in NLP, vision, and recommender systems (Liu et al., 2021). In fact, SSL has been argued
as the key toward “unlocking the dark matter of intelligence” (LeCun & Misra, 2021).

Self-supervised anomaly detection (SSAD): In terms of the pretext task and the associated loss on
which they are trained, most SSL methods can be categorized as generative or contrastive. Genera-
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Figure 6: Illustrations of four anomaly types for the Cable and Carpet objects and the corresponding
augmentations learned by ST-SSAD. Different hyperparameters of CutDiff are learned to resemble
the true anomalies, including both the size and the aspect ratio of a patch.

Figure 7: Illustrations of learned augmentations on the SVHN dataset and the corresponding distri-
butions of embeddings. The three rows in (a, c) represent normal images, augmented images, and
anomalies, respectively. ST-SSAD successfully learns the rotation of 180◦ for both tasks, achieving
a match also visually between the distributions of Ztrn ∪ Zaug and Ztest as shown in (b, d).

tive SSAD can further be organized based on (denoising) autoencoders (Zhou & Paffenroth, 2017;
Zong et al., 2018; Cheng et al., 2021; Ye et al., 2022), adversarial approaches (Akcay et al., 2018;
Zenati et al., 2018), and flow-based models (Rudolph et al., 2022; Gudovskiy et al., 2022). On the
other hand, contrastive SSAD relies on data augmentation that generates pseudo anomalies by trans-
forming inliers, and a supervised loss for distinguishing between inliers and the pseudo anomalies
(Hojjati et al., 2022). Augmentation strategies for contrastive SSAD include geometric (Golan &
El-Yaniv, 2018; Bergman & Hoshen, 2020), localized cut-paste (Li et al., 2021), patch-wise cloning
Schlüter et al. (2021), masking (Cho et al., 2021), distribution-shifting transformation (Tack et al.,
2020), and learnable neural network-based transformation (Qiu et al., 2021).

Automating augmentation: Recent work in computer vision (CV) has shown that the success of
SSL relies on well-designed data augmentation functions (Steiner et al., 2022; Touvron et al., 2022).
Sensitivity to the choice of augmentation has also been shown for SSAD recently (Yoo et al., 2023).
While data augmentation in CV aims at improving generalization by accounting for invariances (e.g.
mirror reflection of a dog is still a dog), augmentation in SSAD plays the key role of presenting the
classifier with specific kinds of pseudo anomalies. While the supervised CV community proposed
methods toward automating augmentation (Cubuk et al., 2019; 2020), our proposed work is the first
attempt toward rigorously tuning data augmentation for SSAD. The key difference is that the former
sets aside a labeled validation set to measure generalization, whereas we address the arguably more
challenging setting for fully unsupervised anomaly detection without any labels.

6 CONCLUSION

Our work presented ST-SSAD, the first framework for self-tuning self-supervised anomaly detec-
tion, which automatically tunes the augmentation hyperparameters in an end-to-end fashion. To this
end, we addressed two key challenges: unsupervised validation and differentiable augmentation. We
proposed a smooth validation loss that quantifies the agreement between augmented and test data in
a tranductive fashion. We also introduced two differentiable formulations for both local and global
augmentation, while ST-SSAD can flexibly accommodate any other differentiable augmentation.
Our experiments on two large testbeds validated the superiority of ST-SSAD over existing practices.
Future work will design differentiable formulations for other augmentation families and then also
incorporate the discrete selection of augmentation as part of self-tuning for SSAD.
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Algorithm 2 ST-SSAD: Self-Tuning Self-Supervised Anomaly Detection
Input: Training dataDtrn, test dataDtest, augmentation function ϕaug, training lossLtrn, validation lossLval,

detector fθ with parameters θ, number of epochs T , and step sizes α and β

Output: Optimized augmentation hyperparameters a(T )

1: a(0) ← Initialize augmentation hyperparameters
2: for t ∈ {0, 1, · · · , T − 1} do
3: Let θ′ = θ − α∇θLtrn(θ,a

(t)) ▷ Get new parameters as a function of a(t)

4: Ztrn ← {fθ′(x) | x ∈ Dtrn} ▷ Generate training embeddings
5: Zaug ← {fθ′(ϕaug(x;a

(t))) | x ∈ Dtrn} ▷ Generate augmented embeddings
6: Ztest ← {fθ′(x) | x ∈ Dtest} ▷ Generate test embeddings
7: Ztrn,Zaug,Ztest ← normalize(Ztrn,Zaug,Ztest) ▷ Normalize embeddings as in Eq. 2
8: a(t+1) ← a(t) − β∇aLval(Ztrn,Zaug,Ztest) ▷ Update the augmentation hyperparameters
9: θ ← θ′ ▷ Update the detector network parameters

10: end for

A ST-SSAD ALGORITHM

The detailed process of ST-SSAD is shown as Algo. 2. Line 3 denotes the training stage, and Lines
4 to 8 represent the validation stage. θ is updated in Line 9 after the validation stage because of the
second-order optimization (Sec. 3.3). Due to its gradient-based solution to the bilevel optimization
problem, Algo. 2 is executed for multiple random initializations of a (Sec. 3.3).

B PROOFS OF LEMMAS ON THE VALIDATION LOSS

B.1 PROOF OF LEMMA 1

Proof. LetZtrn = Z(n)

test = {z1} andZaug = Z(a)

test = {z2}. Then, the embedding matrix Z ∈ Rh×4

before the total distance normalization is given as

Z = [z1 z1 z2 z2] .

Let z̄ = (z1+z2)/2 be the center of the two vectors, and Z̄ ∈ R4×h be a matrix where each column
is z̄. Then, Z is transformed into Z̃ as a result of the normalization:

Z̃ =
2√

2
∑

i(z1i − z̄i)2 + 2
∑

i(z2i − z̄i)2
(Z− Z̄)

=
2√

2
∑

i((z1i − z̄i)2 + (z2i − z̄i)2)
(Z− Z̄)

=
2√

2
∑

i((z1i − z2i)2/4 + (z2i − z1i)2/4)
(Z− Z̄)

=
2√∑

i(z1i − z2i)2
(Z− Z̄)

=
2

∥z1 − z2∥2
(Z− Z̄).

The validation loss Lval is computed on Z̃ as follows:

Lval(Ztrn,Zaug,Ztest) =
1

4
(∥z̃1 − z̃1∥2 + ∥z̃1 − z̃2∥2 + ∥z̃2 − z̃1∥2 + ∥z̃2 − z̃2∥2)

=
1

2
∥z̃1 − z̃2∥2

=
1

2

∥∥∥∥ 2

∥z1 − z2∥2
((z1 − z̄)− (z2 − z̄))

∥∥∥∥
2

= 1.

As a result, the lemma is proved.
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B.2 PROOF OF LEMMA 2

Proof. Without loss of generality, we assume the simplest scalar embeddings of size one as Ztrn =
{0}, Z(n)

test = {u1}, Zaug = {2}, Z(a)

test = {u2+2}. Then, we show that Lval(Ztrn,Zaug,Ztest) = 1
if and only if u1 = u2 = 0 when δ = 1. First, we represent the embedding vector (which is used to
be a matrix) z ∈ R4 before the total distance normalization as

z = (0, u1, 2, u2 + 2).

Let z̄ = (u1 + u2 + 4)/4 be the center, and z̄ ∈ R4 be a vector where each element is z̄. Then, z is
transformed into z̃ as a result of the normalization:

z̃ =
2√

z̄2 + (u1 − z̄)2 + (2− z̄)2 + (u2 + 2− z̄)2
(z− z̄)

=
2√

4z̄2 − 2(u1 + u2 + 4)z̄ + u2
1 + u2

2 + 4u2 + 8
(z− z̄)

=
2√

u2
1 + u2

2 + 4u2 + 8− 4z̄2
(z− z̄)

=
4√

3u2
1 + 3u2

2 − 8u1 + 8u2 − 2u1u2 + 16
(z− z̄).

The validation loss Lval is computed on z̃ as follows:

Lval(Ztrn,Zaug,Ztest) =
|u1|+ |u1 − 2|+ |u2|+ |u2 + 2|√

3u2
1 + 3u2

2 − 8u1 + 8u2 − 2u1u2 + 16
.

Then, we can consider four cases based on whether u1 ≥ 0 and u2 ≥ 0. To show that the inequality
Lval(Ztrn,Zaug,Ztest) ≥ 1 holds, we represent L2

val(Ztrn,Zaug,Ztest)− 1 as follows:

L2
val(Ztrn,Zaug,Ztest)− 1 =


−3u2

1 + u2
2 + 8u1 + 8u2 + 2u1u2 if u1 ≥ 0 and u2 ≥ 0

−3u2
1 − 3u2

2 + 8u1 − 8u2 + 2u1u2 if u1 ≥ 0 and u2 ≤ 0

u2
1 + u2

2 − 8u1 + 8u2 − 6u1u2 if u1 ≤ 0 and u2 ≥ 0

u2
1 − 3u2

2 − 8u1 − 8u2 + 2u1u2 if u1 ≤ 0 and u2 ≤ 0

It is straightforward to see that L2
val(Ztrn,Zaug,Ztest)−1 ≥ 0 in all four cases if−1 ≤ u1 ≤ 1 and

−1 ≤ u2 ≤ 1, and the equality holds if and only if u1 = u2 = 0. Since Lval(Ztrn,Zaug,Ztest) ≥ 0
by its definition, we prove the lemma for the scalar case. The extension to multi-dimensional cases
is trivial, since all operations in Lval can be generalized to arbitrary dimensions.

C DETAILED INFORMATION OF CUTDIFF

C.1 VISUALIZATION WITH DIFFERENT HYPERPARAMETERS

Fig. 8 shows the images generated from CutPaste, CutOut, and CutDiff, respectively, with different
hyperparameter choices. CutDiff is similar to CutOut, except that it creates a smooth circular patch
which supports gradient-based updates of its hyperparameters. It is clear from the figure that the two
other augmentations, CutPaste and CutOut, are not differentiable as they replace the original pixels
with new ones (either black for CutOut or a copied patch for CutPaste).

C.2 DETAILED EXPLANATION ON THE CUTDIFF ALGORITHM

We provide more details of CutDiff in Alg. 1 and discuss what makes it differentiable unlike existing
augmentation functions like CutOut. Recall that image augmentation is a function of pixel positions,
rather than pixel values; although the output is determined also by the input image, the pixel values
do not change how the augmentation performs. The main idea of CutDiff is to introduce a grid G
of pixel locations as in Line 3 of Alg. 1 and design a differentiable function that takes G as an input
and determines how to augment each pixel location based on the augmentation hyperparameters a.

The process contains three steps. First, we sample the center position µ as in Line 4 of Alg. 1, which
is a constant with respect to a. Then, for each position (i, j), we determine the amount of change to
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None

(a) CutPaste

(b) CutOut

(c) CutDiff
(1.0, 0∘)

0.01 0.02 0.04 0.08 0.16 0.32 0.64

(d) CutDiff
(2.0, 0∘)

(e) CutDiff
(2.0, 45∘)

Figure 8: Comparison between three local augmentation functions: (a) CutPaste, (b) CutOut, and (c
- e) CutDiff with different hyperparameter choices. Each column represents a different patch size in
[0.01, 0.64], and the two numbers in (c - e) represent the aspect ratio and the rotated angle of a patch,
respectively. CutDiff creates a smooth differentiable boundary unlike the other two functions.

make with augmentation based on the distance from µ scaled by a (in Line 5). In other words, the
amount of change is small if (i, j) is far from µ, where the exact value is affected also by a. Lastly,
we replace the assignment (or replacement) operation in CutOut (and CutPaste) with the subtract
operation (in Line 6). The min and max operations are used to ensure that the output pixels are in
[0, 1]. Thanks to the subtraction, the information of the original pixels, not only the pixel locations,
is passed to the output image, allowing the gradient to flow to both the given image x and a.

It is noteworthy that we can also model the patch location µ as a hyperparameter in a. The problem
is that it makes a too strong assumption that a defect is located similarly in all images, which may
not be true in many cases. The randomness of µ does not harm the gradient-based optimization of
ST-SSAD, because the validation loss Lval is computed on a set of embeddings at once, rather than
on each individual sample, which may cause the instability of optimization process.

D DETAILED EXPERIMENTAL SETUP

D.1 IMPLEMENTATION DETAILS

ST-SSAD has two techniques in its implementation which are not introduced in the main paper due
to the lack of space. The first is a warm start, which means that we train the detector fθ for a fixed
number of epochs before starting the alternating updates of θ and the augmentation hyperparameters
a. The warm start is required since the gradient-based update of a is ineffective if the detector fθ
does not perform well on the current a; in such a case, the validation loss Lval can have an arbitrary
value which is not related to the true alignment of a. The number of training epochs for warm start
is chosen to sufficiently minimize the training loss Ltrn for the initial a.

The second technique is to update θ multiple times for each update of a. This is based on the same
motivation as in the first technique; we need to ensure the reasonable performance of fθ during the
iterative updates. The default choice is only one update of θ, but when the training loss Ltrn does
not decrease enough at each iteration, one needs to consider increasing the number of updates.
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Table 3: Ablation studies of our ST-SSAD on 8 different tasks: (left) varying sizes of augmentation
data, (middle) disjoint validation and test data, and (right) varying ratios of anomalies in the training
data. ST-SSAD shows consistent results in terms of both average accuracy and average rank.

Object Anomaly Type 64 128 256 512 Shared Disjoint 0% 1% 2%
(Original) (Original) (Original)

Cable Bent wire 0.521 (3) 0.596 (1) 0.490 (4) 0.575 (2) 0.490 (2) 0.577 (1) 0.490 (3) 0.711 (1) 0.581 (2)
Cable Cable swap 0.573 (2) 0.579 (1) 0.532 (4) 0.573 (2) 0.532 (2) 0.648 (1) 0.532 (3) 0.642 (1) 0.626 (2)
Cable Combined 0.913 (2) 0.878 (4) 0.925 (1) 0.887 (3) 0.925 (1) 0.879 (2) 0.925 (1) 0.880 (2) 0.868 (3)
Cable Cut inner insulation 0.717 (1) 0.631 (4) 0.667 (2) 0.641 (3) 0.667 (2) 0.723 (1) 0.667 (2) 0.753 (1) 0.585 (3)
Cable Cut outer insulation 0.457 (4) 0.525 (1) 0.516 (3) 0.525 (1) 0.516 (2) 0.639 (1) 0.516 (3) 0.603 (2) 0.607 (1)
Cable Missing cable 0.909 (4) 0.973 (2) 0.998 (1) 0.967 (3) 0.998 (1) 0.946 (2) 0.998 (1) 0.905 (2) 0.789 (3)
Cable Missing wire 0.507 (4) 0.706 (3) 0.863 (1) 0.723 (2) 0.863 (1) 0.736 (2) 0.863 (1) 0.686 (3) 0.826 (2)
Cable Poke insulation 0.722 (1) 0.683 (2) 0.630 (4) 0.631 (3) 0.630 (2) 0.681 (1) 0.630 (3) 0.649 (2) 0.674 (1)

Average AUC 0.665 0.696 0.703 0.690 0.703 0.729 0.703 0.729 0.695

Average Rank 2.6 2.3 2.5 2.4 1.6 1.4 2.1 1.8 2.1

D.2 HYPERPARAMETER CHOICES

We choose the model and training hyperparameters of ST-SSAD mostly based on a previous work
(Li et al., 2021), including the detector network fθ and the score function s, and use them across all
tasks in our experiments. On the other hand, we tune some of the hyperparameters that affect the
effectiveness of training and need to be controlled based on the property of each dataset:

• Batch size: 32 (in MVTecAD) and 256 (in SVHN)
• Number of epochs for warm start: 20 (in MVTecAD) and 40 (in SVHN)
• Number of updates for detector parameters θ: 1 (in MVTec) and 5 (in SVHN)
• Number of maximum iterations: 500 (in MVTecAD) and 100 (in SVHN)

Batch size is set to a small number in MVTecAD, since the images in the dataset have high resolution
256×256, causing high memory cost, while the number of samples is small in both training and test
data. The number of epochs for warm start and the number of updates for θ are set large in SVHN,
since it has more diverse images than in MVTecAD and requires more updates of θ to decrease the
training loss Ltrn sufficiently. The number of maximum iterations is set differently so that the total
number of updates for θ is the same in both datasets. Please find more details on our implementation
from our anonymized code repository: https://anonymous.4open.science/r/ST-SSAD.

It is noteworthy that the choice of those hyperparameters is done by observing the training process,
especially the speed that the training loss Ltrn is minimized before and during the iterations, rather
than the actual performance of ST-SSAD, which is not accessible in unsupervised AD tasks.

D.3 COMPUTATIONAL ENVIRONMENT

All our experiments were done in a shared computing center containing NVIDIA Tesla V100 GPUs,
Intel Xeon Gold 6248 CPUs, and 512GB DDR4-2933 memory.

E MORE EXPERIMENTAL RESULTS

We give in Table 3 the results of three additional experiments on ST-SSAD: 1) varying augmentation
data sizes, 2) validation-test split, and 3) contaminated training data. All experiments were done in
the MVTec dataset, specifically the Cable object and the eight anomaly types associated with it.

E.1 VARYING AUGMENTATION DATA SIZES

Our validation loss Lval is designed to be robust to |Daug|/|Dtrn|, since the ratio of true anomalies
in test data is unknown at training time. Consequently, we simply set |Daug| = |Dtrn| in all exper-
iments, such that we perform one augmentation per training example. Specifically, instead of using
all training data in every computation of Lval, we randomly sample 256 training samples (and 256
augmentation samples) at each computation for efficiency. The number 256 is chosen large enough
to estimate the true distribution of training data.

In this experiment, we vary the number of augmentation samples that are used in the computation
of Lval in {64, 128, 256, 512}, where 256 is the choice in the original experiments. The first four
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columns in Table 3 show the result. The performance is not sensitive to the size of augmented data,
and we obtain similar results across eight different tasks.

E.2 VALIDATION-TEST SPLIT

Although we focus on transductive anomaly detection tasks, where unlabeled test data are given at
training time, we perform an additional experiment where we split the original test data into two
disjoint sets of validation and (new) test data, with the size ratio 1:1, and use only the validation data
in the computation of our alignment loss. This is to create an evaluation setting where the evaluation
data (i.e., new test data) are completely separated from the data observed in training time.

The middle two columns in Table 3 show the result. We find a negligible difference between the two
settings, demonstrating that our approach succeeds with the separated test data.

E.3 CONTAMINATED TRAINING DATA

In the main experiments, we assume a problem setting where training data consist of only normal
samples, as done in many previous works on self-supervised anomaly detection. However, one may
consider this setting unrealistic, since acquiring pure clean data is often hard in real-world scenar-
ios. We thus perform experiments with contaminated training data by including a small number of
anomalies in it. We increase the ratio of contamination up to 2%, since the number of anomalies in
the MVTec dataset is not large enough to increase more.

The right three columns in Table 3 show the result. The overall performance is similar in the three
settings, showing that ST-SSAD is robust to the small fraction of anomalies in training data.
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