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Abstract

Evaluating and Rethinking the current land-001
scape of Large Multimodal Models (LMMs),002
we observe that widely-used visual-language003
projection approaches (e.g., Q-former or MLP)004
focus on the alignment of image-text de-005
scriptions yet ignore the visual knowledge-006
dimension alignment, i.e., connecting visuals007
to their relevant knowledge. Visual knowl-008
edge plays a significant role in analyzing, in-009
ferring, and interpreting information from visu-010
als, helping improve the accuracy of answers011
to knowledge-based visual questions. In this012
paper, we mainly explore improving LMMs013
with visual-language knowledge alignment, es-014
pecially aimed at challenging knowledge-based015
visual question answering (VQA). To this end,016
we present a Cognitive Visual-Language Map-017
per (CVLM), which contains a pretrained Vi-018
sual Knowledge Aligner (VKA) and a Fine-019
grained Knowledge Adapter (FKA) used in the020
multimodal instruction tuning stage. Specifi-021
cally, we design the VKA based on the inter-022
action between a small language model and a023
visual encoder, training it on collected image-024
knowledge pairs to achieve visual knowledge025
acquisition and projection. FKA is employed026
to distill the fine-grained visual knowledge of027
an image and inject it into Large Language028
Models (LLMs). We conduct extensive experi-029
ments on knowledge-based VQA benchmarks030
and experimental results show that CVLM sig-031
nificantly improves the performance of LMMs032
on knowledge-based VQA (average gain by033
5.0%). Ablation studies also verify the effec-034
tiveness of VKA and FKA, respectively.035

1 Introduction036

Recent Large Multimodal Models (LMMs) such037

as GPT-4V (OpenAI, 2023), Gemini (Team et al.,038

2023), MiniGPT-4 (Zhu et al., 2023), Instruct-039

BLIP (Liu et al., 2023b), LLaVA (Liu et al., 2023a),040

and many others, have achieved impressive perfor-041

mance in a variety of visual understanding and042

Figure 1: It illustrates the performance of LMMs
on visual information-seeking questions. The bottom
part shows the widely-used architecture of open-source
LMMs, where the visual mapping network is usu-
ally pretrained on massive image-text captioning data.
All LMMs including GPT-4V (Date: 2023.11.17) and
Gemini-Pro make incorrect decisions.

reasoning tasks, especially on Visual Question An- 043

swering (VQA) (Li et al., 2023d,f). Current open- 044

source LMMs are usually constructed by com- 045

bining pertained visual encoders and Large Lan- 046

guage Models (LLMs), as depicted in the bottom 047

part of Figure 1, where a visual mapping network 048

(e.g., Q-former (Li et al., 2023c), Linear (Zhu 049

et al., 2023), or MLP (Liu et al., 2023a; Li et al., 050

2023e)) is employed to project visual representa- 051

tions into the language space of LLMs. Although 052

such LMMs have achieved powerful visual under- 053

standing capability similar to GPT-4V and Genimi 054

on some image understanding tasks such as Image 055

Captioning (Changpinyo et al., 2021), Visual Dia- 056

logue (Zhang et al., 2022; Chen et al., 2022), Visual 057

Entailment (Xie et al., 2019; Do et al., 2020), and 058

VQA (Antol et al., 2015), they often fall short of 059

knowledge-based VQA, which necessitates rele- 060

vant knowledge to answer these visual questions. 061

As the cases illustrated in Figure 1, these advanced 062

LMMs (including GPT-4V and Gemini-Pro) can 063

not give correct answers to simple visual informa- 064

tion seeking questions: Who is the manufacturer 065
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of this aircraft; What country does this building066

belong to?.067

In light of this, rethinking the construction pro-068

cess of LMMs (Wang et al., 2022; Li et al., 2023f;069

Zhu et al., 2023; Liu et al., 2023a; Koh et al., 2023)070

from the initial pretraining stages, we discover that071

these visual mapping networks trained on mas-072

sive image-text captioning pairs simply transfer073

visual features to their language descriptions. They074

overlook the visual language knowledge-dimension075

alignment. i.e., connecting visuals to their rel-076

evant knowledge. As we know, visual knowl-077

edge (Collins and Olson, 2014) plays a pivotal078

role in the way humans understand and interact079

with the world. It extends beyond the mere ability080

to recognize and interpret visuals, incorporating081

an understanding of spatial relationships, patterns,082

and symbols, which are essential components of083

human cognition (Pinker, 1984; Cavanagh, 2011).084

Additionally, previous works also demonstrated085

that introducing visual knowledge (Lu et al., 2022;086

Zhu et al., 2022; Li et al., 2023e,g) can improve the087

performance of pretrained language models on nat-088

ural language understanding (Lu et al., 2022) and089

open-ended text generation tasks (Zhu et al., 2022).090

Inspired by these insights, we focus on enhancing091

LMMs through the introduction of visual-language092

knowledge alignment, going beyond the conven-093

tional scope of visual-language integration.094

To this end, we present a Cognitive Visual-095

Language Mapper (CVLM), which contains a pre-096

trained Visual Knowledge Aligner (VKA) and a097

Fine-grained Knowledge Adapter (FKA). Specif-098

ically, we devise VKA based on a small lan-099

guage model that interacts with fine-grained im-100

age representation in each block. The output101

hidden states of VKA are fed into the LLM as102

the knowledge embedding tokens by a linear pro-103

jection layer. To make VKA effectively capture104

image-relevant knowledge, we first train it on105

image-knowledge pairs (Srinivasan et al., 2021)106

collected from Wikipedia 1 via the next tokens pre-107

diction. Like Q-former (Li et al., 2023c) and prefix-108

tuning (Li and Liang, 2021), we only fine-tune109

some learnable query tokens and the linear layer to110

acquire fixed-length visual knowledge representa-111

tion and convert it into the representation space of112

LLM. In addition, considering that visual objects113

contain fine-grained visual knowledge, we intro-114

duce FKA to gain comprehensive visual knowledge115

1https://en.wikipedia.org/wiki/Wikipedia:Images

of an image and distill valuable visual knowledge 116

from the whole knowledge representation sequence. 117

The output knowledge vectors of FKA are injected 118

into each layer of LLMs to realize in-depth interac- 119

tions between LLMs and detailed visual knowledge. 120

By doing so, CVLM is capable of connecting vi- 121

suals to relevant knowledge, enabling LMMs to 122

utilize them during multimodal understanding and 123

generation. 124

To verify the effectiveness of CVLM, we con- 125

duct extensive experiments on image-centered, 126

knowledge-based, and complex visual reasoning 127

question-answering scenarios: VQAv2 (Goyal 128

et al., 2017), OKVQA (Marino et al., 2019), A- 129

OKVQA (Schwenk et al., 2022), Infoseek (Chen 130

et al., 2023a), TextVQA (Singh et al., 2019), and 131

SeedBench (Li et al., 2023a). The experimental 132

results show that CVLM significantly outperforms 133

previous strong baselines such as LLaVA-v1.5. The 134

ablation and case studies indicate that CVLM is 135

capable of linking visual knowledge and improving 136

performance on knowledge-intensive tasks via the 137

introduced aligner and adapter. 138

Our contributions can be summarized as follows: 139

• We present a cognitive visual-language map- 140

per to achieve visual-language knowledge 141

alignment, which contains a pretrained visual 142

knowledge aligner and a fine-grained knowl- 143

edge adapter that is used to distill and inject 144

valuable visual knowledge into LLMs. 145

• To the best of our knowledge, we are the 146

first to explore the visual-language knowledge 147

alignment during the pretraining and finetun- 148

ing stages of LMMs, connecting visuals to 149

their knowledge via CVLM. 150

• Experimental results indicate that CVLM sig- 151

nificantly improves the performance of LMMs 152

on knowledge-intensive VQA. The ablation 153

studies also verify the effectiveness of VKA 154

and FKA on specific knowledge-based VQA. 155

2 Related Work 156

Knowledge-based Visual Question Answering. 157

Visual Question Answering (VQA) is a multidis- 158

ciplinary field that combines vision and language 159

processing to address queries about images. A 160

recent development in this domain is knowledge- 161

based VQA, which relies on external informa- 162

tion for open-domain visual questions. The initial 163
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Figure 2: An overview of Cognitive Visual Knowledge Mapper. From top to bottom, it shows 1) Pretraining visual
knowledge aligner, where we use a pretrained small language model to interact with image features via the cross
attention module; 2) Training visual knowledge aligner with LLM, in which we realize visual knowledge alignment
between vision encoder and LLM via the learnable query tokens and linear layer; 3) Overall architecture of CVLM,
where we present the fine-grained visual knowledge adapter beyond common visual projection (MLP) and VKA.

knowledge-based VQA datasets, KB-VQA (Wang164

et al., 2015) and FVQA (Wang et al., 2017) had165

limited knowledge requirements, referred to as166

"closed" knowledge. In contrast, S3VQA (Jain167

et al., 2021) and OK-VQA (Marino et al., 2019)168

datasets introduced questions demanding "open-169

domain" knowledge, incorporating widely rec-170

ognized facts from diverse domains. INFOS-171

EEK (Chen et al., 2023a), a recent Wikipedia-172

based VQA dataset, concentrated on fine-grained173

entity knowledge for open-domain information-174

seeking queries. As a result, datasets like OK-VQA175

and INFOSEEK, encompassing diverse knowl-176

edge categories, are ideal for assessing the per-177

formance of LMMs in open-domain VQA tasks.178

A-OKVQA (Schwenk et al., 2022) necessitates a179

broad foundation of common sense and worldly180

knowledge for answering questions.181

Large Visual-Language Models. Recent ad-182

vancements in foundational models for vision183

and language have led to the development of184

LMMs. In response to large model GPT-4 (Ope-185

nAI, 2023), several others have emerged, includ-186

ing GVT (Wang et al., 2023), MPlug (Ye et al.,187

2023), Macaw (Lyu et al., 2023), LMEye (Li188

et al., 2023f), and LLaVA (Liu et al., 2023a). 189

These models have demonstrated strong perfor- 190

mance across various visual-language tasks. Typ- 191

ically, these models utilize pretrained visual mod- 192

els to extract visual features, which are then inte- 193

grated into the linguistic space of LMMs through 194

a straightforward projection layer. This layer can 195

be a Linear Layer (Merullo et al., 2023; Liu et al., 196

2023b; Li et al., 2023e) or a Q-former (Li et al., 197

2023c). Following this integration, similar to the 198

supervised fine-tuning approach used for LLMs, 199

these systems undergo refinement using diverse 200

and high-quality multimodal instruction-following 201

datasets (Liu et al., 2023b; Zhu et al., 2023; Ye 202

et al., 2023). These datasets encompass both 203

human-labeled data for downstream tasks like Vi- 204

sual Question Answering (VQA) and VCR (Antol 205

et al., 2015; Zellers et al., 2019), as well as datasets 206

automatically generated by GPT-4. Meanwhile, 207

some multimodal benchmarks like MMBench (Liu 208

et al., 2023c) and SEED-Bench (Li et al., 2023a) 209

have been established to evaluate advanced LMMs, 210

and Li et al. (2023h) presents a comprehensive 211

assessment of their performance in knowledge- 212

intensive VQA scenarios. 213

3



3 Methodology214

3.1 Overview215

CVLM focuses on connecting visuals to relevant216

knowledge and injecting them into LLMs to per-217

form multimodal instruction-following generation.218

The overview of CVLM is illustrated in Figure 2.219

Specifically, given an image I and text instruc-220

tion T = (t1, t2, ..., tM ), where tM refers to the221

M th token of instruction, we initially utilize a222

visual encoder to generate representations of im-223

ages. These representations are then mapped into224

the language space of LMMs using a Multilayer225

Perceptron (MLP). We integrate a Visual Knowl-226

edge Aligner (VKA) between the frozen visual227

encoder and LLMs to transform the visual knowl-228

edge into the language space of LLMs. Further-229

more, acknowledging that image regions detailed230

visual knowledge, we introduce a Fine-Grained231

Visual Knowledge Adapter (FKA). This adapter232

is designed to extract valuable information from233

the intricate visual knowledge representations pro-234

duced by the VKA. This distilled knowledge is sub-235

sequently incorporated into the LLMs. Through236

this methodology, we enable the LLMs to not only237

associate with but also utilize visual knowledge238

effectively, thereby facilitating multimodal genera-239

tion in an end-to-end fashion.240

3.2 Visual Knowledge Aligner241

Firstly, we introduce a task-agnostic visual knowl-242

edge generator to realize associating relevant vi-243

sual knowledge given an image. Specifically, we244

employ a pretrained visual encoder CLIP ViT-245

L/14 with inputting image size of 336*336 to246

gain the image representation sequence hI =247

(hg, h
I
1, ...., h

I
576), where hg and hI576 refers to the248

global feature of the image and 576 th patch rep-249

resentations. Then, as shown in the top part of250

Figure 2, we utilize a pretrained small autoregres-251

sive language model (OPT-1.3B) as the generator252

of visual knowledge, which interacts with the vi-253

sual sequence hI via adding the cross attention254

layer in each block. We train it on an amount of255

image-knowledge pairs via the next token predic-256

tion. These pairs are meticulously curated from257

Wikidata, ensuring a rich and diverse source of258

world knowledge information. This pretrained259

knowledge generator is capable of associating rele-260

vant knowledge based on an input image.261

Afterward, as depicted in the middle part of262

Figure 2, we use the pretrained visual knowl-263

edge generator as the backbone to construct the 264

whole visual-knowledge aligner like Q-former. 265

Specifically, we add learnable tokens hKQ = 266

(h1KQ, ..., h
N
KQ), where N refers to the number of 267

query tokens, which is joined with the knowledge 268

prompt “<s> The associating knowledge of this im- 269

age”. We adopt a learnable linear projection layer 270

to project the obtained features into the language 271

space. The whole process could be presented in Eq. 272

1. 273
hAO = VKA([hKP,hKQ],hI),

hKO = WKhAO + b,
(1) 274

where hAO and hKP show the output of the pre- 275

trained visual knowledge generator and the word 276

embeddings of knowledge prompt, respectively. 277

[, ] refers to the sequence concatenation of two 278

vectors. WK ∈ RdK×dL and b ∈ RdL are the 279

learnable parameters, where dK and dL represent 280

the hidden state dimensions of visual knowledge 281

aligner and LLM, respectively. hKO will be fed 282

into the language models with the original image 283

representation hIO. It is gained by a learnable 284

MLP trained on image-text captioning pairs, i.e., 285

hIO = MLP([hI1, ...., h
I
576)]). 286

The supervision signal remains the sequence of 287

knowledge relevant to the image and the learning 288

objective is the cross-entropy generation loss. By 289

doing so, the designed knowledge aligner could 290

connect visuals to their knowledge and project 291

them into the LLMs. 292

3.3 Fine-grained Visual Knowledge Adapter 293

Considering that image regions (e.g., objects) also 294

link to useful knowledge, we present a fine-grained 295

visual knowledge adapter (FKA) to gain and dis- 296

till detailed and useful visual knowledge, which is 297

injected into each block in LLMs. Firstly, we ob- 298

tain the fine-grained visual knowledge representa- 299

tions by using widely used segment anything tools 300

named SAM (Kirillov et al., 2023) and VKA. Con- 301

cretely, as shown in the bottom-left part of Figure 2, 302

we use the SAM to obtain the image regions with 303

their confidence scores and adopt the top five im- 304

age objects, which could be denoted as I1, ..., I5. 305

Then, we utilize vision encoder and VKA to obtain 306

the fine-grained visual knowledge representations 307

hI1 ,hI2 , ...,hI5 , which are illustrated in Figure 3. 308

Subsequently, we employ a four-layer trans- 309

former decoder with learnable distillation vectors 310

hD = (hD
1 , ...,h

D
N ), where N is the number of dis- 311

till vectors. To gain useful knowledge, we splice 312
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Figure 3: The detailed calculation process of fine-
grained visual knowledge adapter, i.e., VKA shown
in Figure 2. “Visual + Knowledge” indicates the repre-
sentation concatenation of an image hIO and its relevant
knowledge projection hKO.

text instruction T after hD to distill instruction-313

relevant visual knowledge. The specific calculation314

progress of each FKA block is given in Eq. 2315

hl−1
S = Self-A(hD,hT ) + hl−1

FKA,

hcr = Cross-A(hl−1
S , [hI1 ,hI2 , ...,hI5 ]) + hl−1

S ,

hl
FKA = MLP(hcr),

(2)316

where hl−1
FKA and hT represent the output of the pre-317

vious block of FKA and textual instructions, respec-318

tively. Self-A and Cross-A refers to the self and319

cross attention calculation in Transformer. Through320

the whole calculation of the FKA module, we can321

obtain the distilled visual knowledge hFKA and will322

inject it into each block in LLMs to achieve in-323

depth interaction between LLMs and fine-grained324

visual knowledge.325

As the right part shown in Figure 3, the input of326

the first layer in LLMs is hIO,hKO, and hT . We327

splice the sequence hFKA according to the depth328

of LLMs and obtain the sequence of injected vec-329

tors: h1
FKA, ...,h

LN
FKA, where LN represents the total330

number of layers for LLMs. The length of injected331

vectors is equal to N/LN and it will be spliced to332

the front of the input sequence. In summary, the333

whole framework is capable of visual knowledge334

alignment via VKA at the pretraining stage and the335

efficient injection of fine-grained visual knowledge336

via FKA.337

3.4 Training338

We pre-train the backbone of VKA and train339

VKA with the LLM on the same image-knowledge340

pairs from Wikipedia-based image text dataset341

WIT (Srinivasan et al., 2021) via the cross-entropy342

loss. Suppose that the training target is Y = 343

(y1, ..., yKM), in which KM is the token length of 344

knowledge description, the training objects are pre- 345

sented as the following two equations: 346

LP
VKA = −

∑KM
i=1 logPi(ŷi = yi|hI , hKP;
y1, ..., yi−1),

LA
VKA = −

∑KM
i=1 logPi(ŷi = yi|hI , hKP, hKQ;

y1, ..., yi−1),
(3) 347

where LP
VKA and LA

VKA represents the loss of pre- 348

training and aligning stages, respectively. While 349

training CVLM on the multimodal instruction 350

dataset, the overall training object is shown in Eq. 4 351

LCVLM = −
NA∑
i=1

logPi(ŷi = yi|I, T ; t1, ..., ti−1),

(4) 352

where NA and ti refer to the total token count and 353

the i th token of an answer. 354

4 Experiments 355

4.1 Data sets 356

Knowledge-based VQA is a task that requires rea- 357

soning with joint visual information, textual instruc- 358

tions, and outside knowledge. We mainly evaluate 359

LMMs on the following relevant datasets. OK- 360

VQA (Marino et al., 2019) is a visual question- 361

answering dataset that requires methods that can 362

draw upon outside knowledge to answer ques- 363

tions. It contains 9,009 training samples and 364

5,046 validation samples. A-OKVQA (Schwenk 365

et al., 2022) is a knowledge-based visual multiple- 366

choice question-answering benchmark that con- 367

tains 17,056 training samples, 1,145 validation sam- 368

ples, and 6,702 testing samples. VQAv2 (Goyal 369

et al., 2017) is a visual open-ended question- 370

answering dataset where answering questions re- 371

quires an integrated understanding of vision, lan- 372

guage, and commonsense knowledge. It contains 373

443,757 training samples, 214,354 validation sam- 374

ples, and 447,793 test samples. TextVQA (Singh 375

et al., 2019) is a task concerning reading and rea- 376

soning about text within images to answer ques- 377

tions related to them. The dataset comprises 34,602 378

training samples, 5,000 validation samples, and 379

5,734 validation samples. We integrated the train- 380

ing sets of the datasets above to construct a total 381

of about 100K multi-turn instruction data. Addi- 382

tionally, we also introduce the comprehensive eval- 383

uation benchmark SEED-Bench (Li et al., 2023a) 384
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Method LLMs Avg. OK-VQA VQAv2 A-OKVQAM A-OKVQAO TextVQA InfoSeek SEED-BenchS

Flamingo-9B - - 44.7 51.8 - - - - -
BLIP2 Flan-T5-XXL - 45.9 65.2 - 53.71 - 10.67 -

MiniGPT4 Vicuna-7b - 32.16 44.31 - - - 10.03 47.4
InstructBLIP Flan-T5-XL 50.68 48.30 70.14 76.68 61.05 30.46 10.30 57.80
InstructBLIP Flan-T5-XXL 50.83 46.91 70.11 78.34 62.01 29.79 8.36 60.29
InstructBLIP Vicuna-7B 50.00 57.36 74.77 45.07 67.86 33.09 10.05 58.8
LLaVA-v1.5‡ Vicuna-7B 53.00 50.8 72.5 73.45 65.27 45.81 8.18 55.05

CVLM w/o ( FKA & VKA) Vicuna-7B 52.93 50.4 72.7 73.97 64.37 45.76 8.18 55.11
CVLM w/o FKA Vicuna-7B 55.03 52.8 73.7 77.12 65.59 47.46 9.33 59.63

CVLM Vicuna-7B 56.17 54.3 75.6 77.64 66.99 49.30 10.72 58.77
CVLM (3M IKPairs) w/o FKA Vicuna-7B 57.19 55.7 75.7 77.90 70.22 49.89 11.21 59.73

CVLM (3M IKPairs) Vicuna-7B 57.83 56.92 76.48 78.95 70.39 50.48 11.27 60.30

Table 1: Comparison between different LMMs on knowledge-based VQA benchmarks. With 7B parameters,
CVLM achieves the best performance with the same training data. “‡” shows that we fairly use the same instruction
tuning data to train the model. “IKPairs” represents the image-knowledge pairs used to train VKA and the initial
version is trained with 2M pairs. Benchmark names are abbreviated due to space limits. A-OKVQAM: Multi-Choice
A-OKVQA (Schwenk et al., 2022); A-OKVQAO: Open-ended A-OKVQA (Schwenk et al., 2022); TextVQA (Singh
et al., 2019); Infoseek (Chen et al., 2023b); SEED-BenchS: SEED-Bench (Spatial) (Li et al., 2023b);

and InfoSeek (Chen et al., 2023b) dataset to assess385

LMMs on comprehensive spatial understanding386

and fine-grained visual knowledge inferring.387

4.2 Baselines388

We mainly compare the proposed method to those389

current LMMs as follows: BLIP2 (Li et al., 2023c)390

is a Large Visual-Language Model that employs a391

Q-former to integrate visual features into the lin-392

guistic space. It provides detailed and accurate de-393

scriptions of visual content, effectively bridgiyng394

the gap between visual perception and linguistic un-395

derstanding. MiniGPT4 (Zhu et al., 2023) utilizes396

the same pretrained vision components as BLIP-397

2, comprising a vision encoder and a Q-Former398

network. It introduces a single projection layer399

to align the encoded visual features with the Vi-400

cuna (Chiang et al., 2023). InstructBLIP (Liu401

et al., 2023b) utilizes the same Q-former to map402

visual information into the language space. Its spe-403

cialization lies in understanding and responding to404

specific directives related to images, thereby en-405

abling context-aware interactions with visual data.406

LLaVA (Liu et al., 2023a) connects the visual en-407

coder with the Vicuna using a simple projection ma-408

trix. It could comprehend and generate multimodal409

content, seamlessly blending text and images for410

a holistic method of interpreting and generating411

varied forms of information.412

4.3 Implementation Details413

We utilize the AdamW (Kingma and Ba, 2014) opti-414

mizer with a cosine learning rate scheduler to train415

our model. During the pretraining stage of VKA,416

we first train it on 2 A100 GPUs using a dataset of 2 417

million image-knowledge pairs from Wikipedia 418

with a global batch size of 128 and a base learning 419

rate of 5e-5. In the alignment stage, the model is 420

trained on the same 2 million Wikipedia data using 421

2 A100 GPUs with a global batch size of 32 and 422

a maximum learning rate of 1e-4. For the final 423

stage, we employ LoRA to efficiently fine-tune the 424

language model. In our implementation, we set the 425

rank to 128 and alpha to 256, with a learning rate 426

of 1e-4 for LoRA parameters and the newly added 427

FKA. We use a smaller learning rate of 2e-5 for 428

MLP and VKA. 429

4.4 Main Results 430

Overall Performance. We present the compara- 431

tive performance of all models across seven bench- 432

marks tailored for knowledge-based VQA tasks, 433

as detailed in Table 1. Our method exhibits a sig- 434

nificant improvement over established baselines, 435

with performance gains of 4% and 4.5% on dataset 436

A-OKVQA and TextVQA, respectively. These ad- 437

vancements underscore the effectiveness of our 438

visual-knowledge alignment modules VKA and 439

FKA in bolstering the capabilities of LMMs, partic- 440

ularly evident in the enhancements to LLaVA-v1.5‡. 441

Despite these improvements, our model slightly 442

underperforms in comparison to InstructBLIP on 443

the SEED-Bench, which may be attributed to the 444

larger scale of multimodal instruction tuning data 445

and larger language models (FlanT5-XXL-11B) 446

used by InstructBLIP. 447

Performance on Different Knowledge Cate- 448

gories. We evaluated the performance of our mod- 449
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Model Avg. Building Animal Plant Location Food OC Facility Vehicle Objects Sport Other
MiniGPT-4 (Vicuna-7b) 10.03 7.33 6.66 5.33 10.0 24.67 4.0 7.33 18.67 6.67 14.0 8.67
BLIP-2 (FlanT5-xxl) 10.67 8.7 2.67 4.0 16.0 14.0 9.33 16.0 28.0 2.0 9.33 7.33
InstructBLIP♣ (Vicuna-13b) 8.50 3.3 2.0 1.33 10.0 10.67 6.0 4.67 26.67 2.67 20.67 5.33
InstructBLIP♣ (FlanT5-xxl) 8.37 4.0 5.33 2.0 8.67 8.0 8.0 8.0 28.0 5.34 8.67 6.0
LLaVA-v1.5-13b♣ 10.22 11.33 16.67 0.0 24.67 6.0 0.7 10.67 26.0 5.3 0.13 10.0
LLaVA-v1.5-7b‡♣ 8.18 5.33 6.67 3.33 10.00 11.33 6.67 3.33 28.67 2.67 5.33 6.67
CVLM (LD=0) 9.33 3.33 14.67 5.33 6.0 14.0 6.0 2.67 36.67 4.0 0.67 9.33
CVLM (LD=2) 10.72 5.33 10.0 2.67 10.67 14.0 6.0 2.0 36.0 1.34 21.33 8.67
CVLM (LD=4) 9.94 4.0 8.0 2.0 9.33 15.33 4.67 2.67 38.0 1.33 16.67 7.33
CVLM (LD=8) 10.55 4.0 8.67 2.67 9.33 14.67 4.67 2.0 36.0 2.67 24.0 7.33
CVLM (3M IKPairs, LD=0) 11.21 4.67 10.0 5.33 8.67 15.33 5.44 3.33 38.0 3.33 22.67 6.67
CVLM (3M IKPairs, LD=2) 11.27 4.67 10.67 4.67 8.67 15.33 5.33 3.33 38.0 3.33 22.67 7.33
CVLM-624K (LD=0) 12.12 4.0 11.33 2.0 10.0 16.67 6.0 3.33 37.33 6.0 28.0 8.67
CVLM-624K (LD=2) 12.30 4.67 11.33 2.67 9.33 16.67 6.0 4.0 38.67 6.67 27.33 8.0

Table 2: Held-out testing results on InfoSeek with fine-grained world knowledge. Baseline results and knowledge
categories are reported by Li et al. (2023h). “LD” represents the length of distillation vectors used in FKA. “LD=0”
is identical to “w/o FKA”. ‘OC” refers to Organization and Company. ♣ indicates that the corresponding LMM
baseline is trained using the training sets of knowledge-intensive datasets: OK-VQA and A-OKVQA.

els across 11 detailed categories within the InfoS-450

eek dataset, as outlined in Table 2. This fine-451

grained analysis reveals that our CVLM signifi-452

cantly outperforms existing models in specific cat-453

egories, notably Animal, Vehicle, and Sport, show-454

casing its enhanced understanding and processing455

capabilities in these knowledge categories. More-456

over, our comprehensive evaluation extends to the457

OK-VQA testing set, given in Table 3, further458

highlighting the impact of incorporating visual-459

knowledge alignment techniques. This strate-460

gic integration leads to notable improvements in461

knowledge-intensive VQA tasks, particularly in SR462

and PEL domains. All these results underscore the463

effectiveness of our approach in leveraging visual464

knowledge to enrich model performance across a465

spectrum of knowledge-driven categories.466

4.5 Ablation Study467

Effects of Visual Knowledge Aligner. To as-468

sess the impact of the Visual Knowledge Aligner469

on model performance, we trained LLaVA-v1.5470

using the identical 504K dataset mentioned ear-471

lier. As depicted in Table 1, when compared to472

the baseline LLaVA-v1.5‡, CVLM(len=0) incor-473

porating the Visual Knowledge Aligner yielded474

improved results across all benchmarks. Specifi-475

cally, CVLM(len=0) exhibited the most significant476

enhancement on SEED-Bench(Spatial), achieving477

a 4.5% increase.478

Effects of FKA. Then we study how the FKA479

influences the model performance. By compar-480

ing the experimental results of CVLM(len=0) and481

CVLM(len=2) on InfoSeek and OK-VQA bench- 482

marks, and CVLM vs. CVLM w/o FKA in Table 1, 483

we observe that the performance of the proposed 484

method is further improved when FKA is added 485

to the model. The reason for the improvement in 486

our method’s performance is that FKA enables the 487

model to perceive fine-grained knowledge informa- 488

tion, thereby further enhancing the understanding 489

ability for knowledge-based questions. 490

Impact of the Size of Visual Knowledge Pairs. 491

To validate the effectiveness of adding more knowl- 492

edge pre-training data, we increased the amount of 493

Wikipedia knowledge pre-training data from 2M to 494

3.3M during training VKA with LLM. The experi- 495

mental results of CVLM (3M IKPairs) are shown 496

in Tables 1, 2 and 3. We observed that the inclusion 497

of more pretraining knowledge data significantly 498

enhances the model’s ability to comprehend knowl- 499

edge, consequently resulting in higher performance 500

on various tasks. 501

Analysis of Distillation Vector Length. Our ex- 502

amination of the optimal distillation vector length, 503

as shown in Tables 2 and 3, indicates that increas- 504

ing distillation vector length does not significantly 505

improve model performance, rather results in per- 506

formance fluctuations. This suggests that expand- 507

ing distillation vectors could disturb the structural 508

integrity of large language models, potentially re- 509

ducing our model’s effectiveness, especially in 510

knowledge-dependent tasks. 511

Impact of introducing more instruction datasets. 512

As the bottom results shown in Tables 2 and 513
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Model Avg. VT BCP OMC SR CF GHLC PEL PA ST WC Other
MiniGPT-4 (Vicuna-7b) 29.31 28.67 31.03 26.0 28.0 25.33 38.21 22.67 29.33 29.23 31.25 34.0
BLIP-2 (FlanT5-xxl) 39.06 30.67 34.48 38.0 40.67 34.0 42.28 39.33 41.33 44.62 50.0 40.67
InstructBLIP♣ (Vicuna-13b) 41.02 34.00 52.41 37.33 51.33 33.33 46.34 31.33 38.67 32.30 49.11 43.33
InstructBLIP♣ (FlanT5-xxl) 47.96 44.66 51.03 48.67 48.0 43.33 51.22 47.33 42.0 55.38 58.04 45.33
LLaVA-v1.5-7b♣ 57.25 50.0 62.76 58.0 62.67 54.0 60.16 50.0 53.33 61.54 65.18 57.33
LLaVA-v1.5‡♣ 52.64 48.0 53.10 46.67 58.67 52.67 57.72 45.33 49.33 55.38 59.82 56.67
CVLM (LD=0) 55.92 49.33 62.07 53.33 61.33 49.33 62.60 47.33 50.67 60.0 68.75 57.33
CVLM (LD=2) 57.06 53.33 62.76 56.00 66.67 52.67 59.35 46.67 49.33 63.08 63.39 66.0
CVLM (LD=4) 56.25 50.67 61.38 53.33 60.0 52.67 58.54 47.33 50.0 63.08 64.29 64.0
CVLM (LD=8) 59.20 55.33 62.76 54.0 61.33 56.67 65.85 52.67 56.00 66.15 66.07 61.33
CVLM (3M IKPairs, LD=0) 58.79 59.33 65.52 50.67 63.33 54.67 65.04 52.67 50.67 61.54 65.18 62.67
CVLM (3M IKPairs, LD=2) 60.33 59.33 69.66 58.0 62.67 54.67 66.67 54.67 50.0 64.62 67.86 61.33
CVLM-624K (LD=0) 61.47 58.00 62.76 58.67 65.33 62.0 65.04 54.67 58.0 64.62 69.64 62.0
CVLM-624K (LD=2) 60.54 58.00 62.76 58.67 64.0 59.33 67.48 53.33 56.00 61.54 70.54 58.67

Table 3: Held-In testing results on OK-VQA with Commonsense Knowledge. Baseline results are reported by Li
et al. (2023h). Knowledge names are abbreviated due to space limits. and Transportation (VT); Brands, Companies
and Products (BCP); Objects, Material and Clothing (OMC); Sports and Recreation (SR); Cooking and Food (CF);
Geography, History, Language and Culture (GHLC); People and Everyday Life (PEL); Plants and Animals (PA);
Science and Technology (ST); Weather and Climate (WC); and Other.

Figure 4: Three cases illustrate the comparative per-
formances of CVLM and other models. Red words
represent the correct answer and the purple words show
the inaccurate response.

3, we can see that more instruction data (624k514

from LLaVA-v1.5) will bring improvement on two515

knowledge-based VQA datasets, yet it will degrade516

the performance on some knowledge categories517

such as Plant. It indicates that introducing more518

data may not necessarily bring about an overall im-519

provement in performance. Our cognitive mapper520

method leads to greater performance improvements521

with a small amount of instruction data, compared522

to adding more instruction data.523

4.6 Case Study524

We present three cases in Figure 4 to thoroughly525

examine the performance of the models. Previ-526

ous LMMs have been struggling with precise ob-527

ject identification in images and often providing528

generalized answers to knowledge-based questions. 529

For example, as the case shown in the middle part 530

of Figure 4, model InstructBLIP-vicuna-7B and 531

LLaVA-7B incorrectly responded with "Wright 532

Brothers" instead of naming the specific aircraft 533

manufacturers shown. Case 3 demonstrated a simi- 534

lar limitation, with LLaVA-7B-LoRA merely pre- 535

dicting "Desert." However, employing the VKA 536

and FKA mechanisms, CVLM displays superior 537

capability in discerning crucial elements within im- 538

ages, thus furnishing more precise and contextually 539

relevant responses based on pertinent knowledge. 540

5 Conclusion 541

In this work, we introduce the Cognitive Visual- 542

Language Mapper (CVLM), an innovative ap- 543

proach that goes beyond the conventional align- 544

ment of visual and textual descriptions by incor- 545

porating visual-knowledge alignment. Specifically, 546

we have developed a Visual Knowledge Aligner 547

(VKA) that facilitates the projection of visual 548

knowledge by acting as a bridge between the vi- 549

sion encoder and LLM. Additionally, we have inte- 550

grated a Fine-grained Visual Knowledge Adapter 551

(FKA) during the multimodal instruction tuning 552

stage, which is designed to distill more precise 553

knowledge pertinent to images and instructions. 554

Our experimental findings demonstrate that CVLM 555

outperforms several prominent LMMs that lack vi- 556

sual knowledge alignment. Our ablation studies 557

highlight the effectiveness of VKA and FKA. 558
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Limitations559

There are several limitations to our work: 1) The560

knowledge representations gained by VKA may561

be inaccurate due to the loss of visual information562

and errors of knowledge association. Although we563

introduce large-scale visual knowledge data and564

the FKA to enhance visual knowledge acquisition,565

there is still potential to improve the accuracy of566

visual knowledge alignment. 2) From the experi-567

mental results, we observed that the distillation vec-568

tor length impacts the stability of language models569

infused with visual knowledge information. Hence,570

we still need to explore an effective and stable vi-571

sual knowledge-enhanced version of CVLM, espe-572

cially for its FKA component. 3) The generated573

content may contain some factual errors or toxic574

statements due to the limitations of LLMs’ gener-575

ation capabilities. We also hope this work could576

spark further research on improving visual knowl-577

edge alignment during the construction of LMMs.578
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