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Abstract

Cell and immunotherapy offer transformative potential for treating diseases like
cancer and autoimmune disorders by modulating the immune system. The develop-
ment of these therapies is resource-intensive, with the majority of drug candidates
failing to progress beyond laboratory testing. While recent advances in machine
learning have revolutionised areas such as protein engineering, applications in im-
munotherapy remain limited due to the scarcity of large-scale, standardised datasets
and the complexity of cellular systems. In this work, we address these challenges
by leveraging a high-throughput experimental platform to generate data suitable
for fine-tuning protein language models. We demonstrate how models fine-tuned
using a preference task show surprising correlations to biological assays, and how
they can be leveraged for few-shot hit maturation in CARs. This proof-of-concept
presents a novel pathway for applying ML to immunotherapy and could generalise
to other therapeutic modalities.

1 Introduction

Cell and immunotherapy hold tremendous promise for treating traditionally incurable diseases,
with applications ranging from oncology and autoimmune disorders to age-related conditions. The
overarching goal is to modulate the patient’s immune response, either by directly engineering immune
cells or by introducing engineered proteins to enhance or suppress immune function. The main
modality we will explore in this work are Chimeric Antigen Receptors (CARs) - engineered proteins
that are expressed on the surface of T-cells. CARs act as artificial receptors designed to bind to a
specific antigen (target), for instance on the cell surface of a tumor, and trigger an immune response.

The development of immunotherapies, and drug development in general, is a resource-intensive
process. Despite extensive efforts to evaluate candidates in the lab, the great majority of identified
drug compounds will fail to progress through clinical trials to become viable treatments for patients
[Mullard, 2016]. To improve the performance of candidate drug compounds, the field of drug
discovery has increasingly turned to computational approaches to make better use of experimental
data and facilitate exploration of the vast design space for such molecules.

Over recent years, the modelling of discrete time-series such as natural text has seen tremendous
progress, where the capabilities of transformer-based language models [Vaswani, 2017] far exceeded
the expectations by domain experts. Naturally, these methods have been applied to protein engineering,
aiming to construct biologically relevant representations of amino-acid (or tokenised DNA-) sequences
via masking [Lin et al., 2023, Hayes et al., 2024] or auto-regressive Protein Language Models (PLMs)
[Nijkamp et al., 2023]. Areas such as structure prediction Abramson et al. [2024], structure generation
[Watson et al., 2023], and protein-protein interactions such as docking [Corso et al., 2022] have
seen significant progress via large and sophisticated ML models based on transformers or diffusion
generative models, among other approaches. This progress is largely spurred by the availability of
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Figure 1: CAR structure with scFV and VHH binding domains (see text for details).

relevant data at scale [Suzek et al., 2015, Steinegger and Söding, 2018] and clearly defined research
questions, which has led to a rich and mature ecosystem of academic and commercial interest around
ML applications in protein engineering.

Another area of focus has been around in-silico design and optimisation of antibodies [Joubbi
et al., 2024], with large datasets available for academic and commercial use [Olsen et al., 2022].
Applications include the virtual screening of potential binders [Bachas et al., 2022], affinity maturation
[Ruffolo et al., 2021, Clark et al., 2023, Hie et al., 2024] or the optimisation of enzymes [He et al.,
2024]. Much of the work in this space is driven by the availability of language models trained on
antibody data, including masking [Ruffolo et al., 2021, Tobias H. Olsen and Deane, 2022, Prihoda
et al., 2022] as well as auto-regressive models [Shuai et al., 2021, Nijkamp et al., 2023].

In contrast, ML applications in immunotherapy are relatively scarce, and have predominantly relied
on basic ML such as motif-based optimisation of CARs [Castellanos-Rueda et al., 2022, Daniels
et al., 2022], with more sophisticated modelling only being explored recently for bispecific antibodies
[Mullin et al., 2024]. This is partly due to the lack of publicly accessible, standardized datasets, as
well as the inherent complexity of the problem compared to small molecule drug design. The data
in this field are influenced by a multitude of factors related to living cells, making it challenging to
generate datasets at a scale sufficient for effective training or fine-tuning of large models. The field
thus continues to rely on manual, predominantly low-throughput approaches to drug discovery.

In this work we attempt to bridge this gap, demonstrating how large-scale, low-precision yet high
throughput testing of thousands of drug compounds in cells can be harnessed to generate data suitable
for fine-tuning PLMs for the task of hit maturation in CARs. We show, perhaps surprisingly, that
model loss of an auto-regressive PLM, fine-tuned using a preference task, is highly correlated to the
results of standard biological assays, and that we can reliably find improved mutants via few-shot
exploration of the design space. This provides a proof-of-concept that such models can effectively
guide the design of CARs, which could generalise to other modalities in immunotherapy.

2 Chimeric Antigen Receptors (CARs)

Briefly, immunotherapies use a variety of mechanisms to harness the immune system to recognise
and eliminate diseases. These immunotherapies include monoclonal antibodies (mAb), checkpoint
inhibitors, T cell engagers and CAR-T cell therapy. CAR-T cell therapy has predominantly been used
to treat haematological malignancies such as multiple myeloma and leukemia, where it may lead to
complete remission in a significant fraction of patients [Cappell and Kochenderfer, 2023]. It also
shows potential in other malignant diseases and autoimmune diseases [Blache et al., 2023].

Typically, a CAR consists of a binding domain which binds to antigens on tumour cells, a hinge
domain that gives the binder flexibility, a transmembrane domain that anchors the CAR to the T cell
membrane, and a signalling domain which facilitates T cell activation (Figure 1).

Various types of binding domains can be presented on the CAR, but most common are those based on
single-chain fragment variable (scFv) of mAb. In contrast, here we explore the use and optimisation
of variable heavy domain of heavy chain (VHH) fragments, which are antibody fragments naturally
derived from the Camelidae family. scFvs and VHH fragments are comparable in terms of affinity
[Muyldermans, 2013] yet the reduced size of VHHs promotes advantageous stability, solubility and
immunogenicity characteristics [Gorovits and Koren, 2019].
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Figure 2: Simplified candidate generation pipeline. Using phage display based on a highly diverse
starting library we screen for binders to the target of interest using phage display. Resulting candidates
are evaluated in cells in scalable proprietary assays.

VHHs consist of three hypervariable complementary determining regions (CDRs) interspersed with
framework regions (FRs), as depicted in Figure 1. CDRs play a critical role in antigen binding, with
their flexible structures adapting to fit the binding site. In contrast, FRs serve as a scaffold to support
the CDRs for effective antigen binding, and therefore exhibit significantly less sequence diversity in
comparison to CDRs. CDR3 is the most diverse region and has a longer length distribution in VHHs
than in scFvs, allowing for more versatility in targeting antigen binding sites.

For CAR T-cell therapy to be efficacious, the designed protein must fulfil several criteria. The protein
must be successfully transduced into T-cells via a suitable vector, express well, bind specifically to
the target antigen, and finally trigger T-cell activation, ideally in a target-dependent manner. This
complex behaviour makes the discovery or design of CARs a challenging problem.

3 Hit maturation of CARs using ML

In this work we explore Protein Language Models (PLMs) as a potential avenue to enable hit
maturation in CARs - efficient, ML-guided exploration of the vast design space, going beyond
naive approaches such as deep mutational scans [Fowler and Fields, 2014] or substitution methods
[Henikoff and Henikoff, 1992]. We focus on the performance of CARs against a variety of targets, to
discover patterns that either enable good performance (such as activation, expression, and specificity)
or that negatively impact the cell.

We specifically use auto-regressive models in this work, as they i) allow us to assess the likelihood of
a sequence under the model, ii) allow efficient sampling of the distribution learned by the model in
order to explore mutations around an initial candidate1, iii) have well-established methods and tools
for fine-tuning after pre-training, and iv) may enable zero-shot approaches to the design of CARs.

3.1 High-throughput evaluation of CARs

To align PLMs to the task of hit maturation, we need to derive sufficient experimental data about the
performance of CARs. The goal is to determine the suitability of a CAR for a specific target and to
assign a scalar score that is well correlated with CAR performance.

Our platform, as depicted in Figure 2, starts of with a semi-synthetic VHH library, wherein most of the
diversity (∼ 1011) exists in the CDR3 region. We first isolate binders for a specific target by creating a
VHH phage display library. These phages are exposed to immobilised target protein and non-specific
binders are washed away in a process known as phage panning. We conduct multiple rounds of this
selection process to enrich the population of binders, and use Next Generation Sequencing (NGS) to
identify the sequences of the binding population at each step.

The VHHs that bind to the target of interest are subsequently reformatted into a CAR library (∼ 105).
We then generate a pool of CAR-T cells, with each cell expressing a single CAR design. By co-
culturing the library-expressing cells with target-expressing cells and target-negative cells, we can
assess the level of cell activation and use a fluorescence-activated cell sorter to isolate the activated
and non-activated subsets of these libraries. Using NGS we can identify the candidates in each subset.
The fractions of activated and non-activated cells for each CAR across different cell lines are used to
score their performance, leading to a single scalar associated with each CAR.

1Recently, Hayes et al. [2024] have demonstrated how masking LMs can be fine-tuned using similar
approaches and how issues with sampling can be circumvented, which we are keen to explore in future work.
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Figure 3: Encoding of a pair of chosen and rejected completion for a context prompt. Context- and
chosen CDR3s are sampled from good performers for a specific target, rejected CDR3s from poor
performers for the same target. We produce up to n = 10 different pairs for each good CDR3.

3.2 Preference-based fine-tuning of PLMs

In natural language, it is often challenging to assign absolute quality ratings to responses. Human
raters can, however, express preferences between two outputs, establishing a partial order. Preference
Optimization has been developed to fine-tune large language models (LLMs) based on this signal,
and techniques such as Reinforcement Learning with Human Feedback (RLHF) [Christiano et al.,
2017] have become the most common approach for the alignment of LLMs. Our setting is similar –
high-throughput testing of CARs, while scalable, may lack sufficient precision to resolve the finest
difference between candidate CARs. In line with other recent work in the field [Hayes et al., 2024]
we therefore formulate a preference-optimisation task.

We use Direct Preference Optimisation (DPO) [Rafailov et al., 2024] to fine-tune models based
on data derived from high-throughput experiments. DPO is a simplified approach to preference
optimisation, which does not require a separate reward model, but instead formulates a simple
classification problem to improve the probability that the chosen response is preferred over the
rejected response. More formally, DPO relies on a sigmoid-based learning objective:

LDPO(πθ ∣ πst,Dp) = E(x,yw,yu)∼Dp
[logσ (β log

πθ(yw ∣ x)

πst(yw ∣ x)
− β log

πθ(yu ∣ x)

πst(yu ∣ x)
)] (1)

where πst is the pretrained model, πθ the model being fine-tuned, x is the context (prompt), and
yw, yu are the chosen and rejected completions. The idea behind this loss is to maximise the margin
between the rejected and chosen completions conditioned on the same context. We explore other loss
functions beyond the sigmoid loss in equation 1:

Hinge, as proposed by [Liu et al., 2024] and originally inspired by [Zhao et al., 2023];

Lhinge(πθ ∣ πst,Dp) = E(x,yw,yu)∼Dp
[max(0,1 − (β log

πθ(yw ∣ x)

πst(yw ∣ x)
− β log

πθ(yu ∣ x)

πst(yu ∣ x)
))] (2)

Kahneman-Tversky Optimization [Ethayarajh et al., 2024]

LKTO(πθ ∣ πst,Dp) = E(x,yw,yu)∼Dp
[1 − v(x, y)] (3)

where

v(x, y) =

⎧
⎪⎪
⎨
⎪⎪
⎩

σ (β (log πθ(y∣x)
πst(y∣x)

−KL(πθ(y ∣ x)∥πst(y ∣ x)))) if y = yw

σ (β (KL(πθ(y ∣ x)∥πst(y ∣ x)) − log
πθ(y∣x)
πst(y∣x)

)) if y = yu

We set λW and λU introduced by [Ethayarajh et al., 2024] to 1 to weigh chosen and rejected
completions equally, and omit them in equation 3.

3.3 Preference dataset

We construct a preference dataset Dp based on scored candidates across a number of different target
antigens. We group all candidate sequences by CDR3 (retaining the maximum performing variant of
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Figure 4: Comparison between rewards, the mean difference between the log probabilities of πθ and
πst for rejected and chosen completions, and margins between them, for models trained using the
three analysed loss functions (best performing hyperparameters were chosen for each loss function).
Models trained using the original sigmoid-based loss penalise the rejected completions heavily, and
tend to become overly confident in their decisions, making them more susceptible to overfitting and
numerical instability. They could perhaps benefit from more sophisticated regularisation mechanisms.
Models trained with hinge loss maintain very small margins, which may explain their tendency to
produce trivial completions, despite promising validation loss and accuracies. It is possible that in
the future iterations, after construction of datasets with harder examples [Robinson et al., 2021],
models using this loss have some potential to yield useful results due to their rapid convergence and
stability. KTO’s behaviour appears to be best aligned with our desired use-case of hit maturation, as
it increases the likelihood of the chosen completion instead of penalising the rejected completion, all
while achieving high margins.

other CDRs if relevant) to form the set of CDR3s S per target antigen, and their associated scores
P , and split them into good performers (score larger than tc) and poor performers (score less than
tr). For every good performer, we construct up to n = 10 preference pairs by randomly sampling
a poor performer and concatenating k = 5 randomly sampled good performers as context (prompt).
Intuitively, these context CDR3s softly encode the target antigen and should allow the model to tailor
its conditional distribution to the target during fine-tuning, potentially enabling generalisation to new
targets that were not present in the training set (even though this is not the focus of this work).

The difficulty of the task can be controlled via the threshold parameters tc and tr. Using this procedure
and conservative thresholds we construct a total of 70k pairs with 3k pairs held out as validation
set with a fully disjoint set of context and candidate CDR3s. Candidate sequences are restricted to
CDR3s and have an average length between 10 and 11 amino acids. An example preference pair is
illustrated in Figure 3.

3.4 Fine-tuning ProGen2 based on preference data

Throughout this work we rely on ProGen2 [Nijkamp et al., 2023] as the pretrained model due to
the publicly available implementation and wide choice of pretrained weights, ranging from 151M to
6.4B parameters. Pretrained on approximately 280M protein sequences, ProGen2 serves as a robust
baseline for fine-tuning. We do not apply traditional supervised fine-tuning prior to DPO-based
training, as we did not observe a tangible benefit in preliminary experiments.

Our implementation is based on Huggingface’s DPO trainer, adapting configurations based on model
size and hardware constraints. We explore small (151M), medium (764M) and large (2.7B) model
variants. Experiments are conducted on Google’s Cloud Platform, using 8 NVIDIA A100 GPUs
(80GB) per machine for large models, 4 for medium models; and a single NVIDIA T4 for small
models.

We explore learning rates from 10−4 to 10−8 and a linear learning rate decay. We use per-device batch
sizes of 16 for large models, 32 for medium models, 32 for small models, and gradient accumulation
to achieve larger effective batch-sizes. We tune β, which controls deviation from the base model,
and find β = 0.1 works well across most experiments. We train models for approximately 10 epochs,
which we found sufficient to ensure convergence, and retain the checkpoint with the lowest validation
loss for further experiments.
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3.5 Model selection

We found the medium-sized variant of Progen2 to be the best trade-off between performance and
resource efficiency, where large models did not show improved performance while requiring signifi-
cantly more compute.

Overall, various combinations of hyper-parameters showed promising training metrics, where we
observed validation accuracy beyond 75%. However, manual inspection revealed that some fine-tuned
models produced trivial or collapsed CDR3 sequences when greedily sampling from the model
conditioned on a suitable context, which was not reflected in the training metrics. Notably, models
trained with hinge loss often overfitted quickly and performed well on the preference dataset, yet
generated trivial outputs. We speculate that models trained with KTO loss prioritise the utility of
the generated sequences over simply maximising the log-likelihood of preferences, as argued by
[Ethayarajh et al., 2024]. This is illustrated in Figure 4.

The remaining evaluation in this paper is thus focused on a medium-sized model (764M parameters)
trained with the KTO loss. Training and validation metrics for various learning rates are illustrated in
Figure 8 in the appendix.

4 Evaluation

We aim to evaluate whether a fine-tuned model can be successfully applied to hit maturation, where
we explore the design space surrounding a candidate CAR discovered in the pipeline outlined above.
Overall we pursue two questions: i) Can we exceed the performance of the candidate CAR by
exploring single or double mutants, and ii) is model loss correlated to the performance of CARs in a
way that would enable guided exploration of the CAR design space around selected candidates?

We conduct assays in 96-well plates, where each well contains cells expressing a single synthesised
CAR with up to two amino acid mutations. This enables us to assess the immune response (activation)
individually for each CAR, replicating the best-practice (low throughput) evaluation. We conduct
three experiments:

Greedy generation for two manually selected candidate CARs that showed promising performance
in previous experiments for a target included in the training set, we construct a suitable context of 5
well performing CDR3s, and generate candidates greedily left-to-right, following suggested top 3
substitutions for each position by the model as outlined in algorithm 1. Based on likelihood (model
loss2), we pick the top 15 single mutants, and the top 15 double mutants to evaluate on a 96-well
plate. Two of the selected mutants were in the training-set, and have been removed from further
analysis below.

Exhaustive search For the same two candidates, we score all possible single and double mutants
using the model across all possible permutations of 5 context CDR3s to get the average likelihood,
and pick the top scoring 45 mutants for each candidate to evaluate in a 96-well plate. Three of the
selected mutants were in the training-set, and have been removed from further analysis below.

Few shot maturation To replicate the desired use-case for hit maturation we select 10 additional
candidate CARs (of which 7 were in the training set). For each CAR, we do an exhaustive search
for single and double mutants as outlined above, and evaluate the top 8 mutants along with each
candidate CAR on a 96-well plate. None of the selected mutants were part of the training set.

Note that exhaustive search of all single and double mutants and scoring them across all 120 context
permutations is computationally significantly more expensive than the alternative greedy approach.
Intuitively, exhaustive search may find candidates with higher likelihood than the greedy approach, as
each position is only conditioned on whatever is "left" of the position, even if a different substitution
would significantly increase the likelihood of the remaining positions to the "right".

4.1 Results

Figure 5 illustrates all single and double mutants discovered using the greedy approach along with
a performance score of T cell reporter activation (∆GFP). Overall, we observe a strong Pearson

2We rely on cross-entropy for next-token prediction as a surrogate for likelihood

6



1.6 1.8 2.0
model loss

0

10

20

30

40

50

60

70

GF
P

All (-0.574)
1
2
ax + b

1.6 1.8 2.0
model loss

0

10

20

30

40

50

60

70

GF
P

Candidate 1 (-0.699)

orig
1
2

1.6 1.8 2.0
model loss

0

10

20

30

40

50

60

70

GF
P

Candidate 2 (-0.418)

orig
1
2

Figure 5: Model loss vs activation for greedily generated candidates. All plots show model loss
averaged over all possible context permutations, plotted against activation measured as ∆GFP. Dots
indicate candidates with a single mutation, crosses two mutations, black lines indicate baseline
performance of each candidate. Overall we see strong correlation between averaged model loss and
activation.

1.4 1.6 1.8 2.0
model loss

10

0

10

20

30

40

50

60

70

GF
P

All (-0.673)
1
2
ax + b

1.4 1.6 1.8 2.0
model loss

10

0

10

20

30

40

50

60

70

GF
P

Candidate 1 (-0.751)

orig
1
2

1.4 1.6 1.8 2.0
model loss

10

0

10

20

30

40

50

60

70

GF
P

Candidate 2 (-0.507)

orig
1
2

Figure 6: Model loss vs activation for greedily generated candidates and candidates from exhaustive
search. All plots show model loss averaged over all possible context permutations, plotted against
activation measured as ∆GFP. Dots indicate candidates with a single mutation, crosses two mutations,
black lines indicate baseline performance of each candidate.

correlation between average model loss and ∆GFP (−0.574). This correlation is higher for Candidate
1 (−0.699), but in all cases correlation is significant at p < 0.05. We also assess the correlation of
model loss to ∆GFP of the pretrained model before fine-tuning (see Figure 9 in the Appendix), and
find that fine-tuning significantly improves correlation for both candidate 1 (−0.699 vs. 0.218) and
candidate 2 (−0.418 vs. 0.072).

Figure 6 shows the performance for mutants discovered greedily along with those discovered via
exhaustive search. To account for systematic bias, we normalise ∆GFP on the second plate using the
performance of each reference CAR as a guide. We see, perhaps surprisingly, that the majority of
top candidates found via exhaustive search show promising performance and cluster tightly around
the performance of each baseline. In particular, we discover many single and double mutants of
candidate 1 that significantly outperform the baseline. Both greedy as well as exhaustive search yield
better correlation and more favourable performance for candidate 1, even though both candidates
were in the training set (see figure 5 and 6).

Figure 7 shows the performance of mutants relative to their parent for seven candidates from the
training set (S1-S7) and three candidates from the validation set (S8-S10). In the majority of cases
we discover at least a few mutants that outperform their parent, and in three cases mutants that show
more than double the performance – a promising result given the size of the search space (104 - 105).
Performance further appears to generalise to the validation set (S8-S10), but we do not yet have
sufficient experimental data to determine statistical significance.

Further work is necessary to explore the factors that influence the performance of the approach, to
determine if the source of the discrepancy between candidate 1 and candidate 2 is biological (i.e.
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Figure 7: For 10 selected sequences, 8 mutants are evaluated in a 96-well plate. The parents in S1-S7
are from the training set, and S8-S10 are from the validation set. None of the mutants occur in the
preference dataset.

Algorithm 1 Greedy diversification
function GREEDYGEN(L,R, k, topk)

D = [concat(L,R)]
if k == 0 or ∣R∣ < 2 then

return D
end if
S = [argmaxtopk(logits(concat(L,R))p)∀p ∈ [1 . . . (∣R∣−1)]] ▷ get top k subst. per position in R
for p ∈ [1 . . . (∣R∣−1)] do

for s ∈ Sp do
if valid(s) then

D =D ∪GREEDYGEN(concat(L,R∶p, s),R(p+1)∶, k − 1, topk)
end if

end for
end for
return(D)

end function

structural), or whether it may be an artefact from the construction of the preference dataset. While
these preliminary results are difficult to interpret due to low number of candidates, we can draw two
conclusions: i) Overall model loss seems to be well correlated to candidate performance, which
supports our hypothesis that such models can guide exploration of the design space surrounding a
candidate CAR, and ii) to maximise the chances of discovering high-performing mutants, it is crucial
to conduct an exhaustive search, even if this comes at higher computational cost. Recent advances in
sampling from PLMs [Hayes et al., 2024], may address this limitation, which we leave for future
work to explore.

4.2 Discussion

In this work we explore Protein Language Models (PLMs) for hit maturation in cell therapy, and
demonstrate how data from a high-throughput experimental platform can be harnessed to formulate
a preference task. Even with relatively simple experiments, using well-established methods and
pre-trained publicly available models, we obtain promising results – highlighting the significant
potential of PLMs in cell therapy, which could generalise to other therapeutic modalities.

As the presented results are preliminary there remains much to explore, including leveraging multi-
dimensional single-cell data to capture more comprehensive information on gene expression profiles,
which would potentially alleviate the lack of precision of high-throughput testing. Furthermore, our
approach is agnostic to spatial protein structure, where Graph Learning techniques [Hetzel et al.,
2021, Jiang et al., 2024] could lead to improved performance and better understanding of which
candidates have the most potential for maturation.
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A Appendix
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Figure 8: Training (top row) and validation metrics (bottom row) for various settings of learning rate
in a progen2-medium trained with KTO. Loss remains high for both the smallest and largest learning
rates. Based on these results and further qualitative evaluation (see text for details), we selected 10−5

for further experimentation in this work.
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Figure 9: Model loss of progen2-medium before fine-tuning vs activation for greedily generated
candidates. All plots show model loss averaged over all possible context permutations, plotted
against activation measured as ∆GFP. Dots indicate candidates with a single mutation, crosses two
mutations, black lines indicate baseline performance of each candidate. As expected, performance
before fine-tuning is poor (insignificant Pearson correlation of 0.218 and 0.072), where some of
the worst performing mutants obtain the lowest loss. Without fine-tuning, this model would not be
helpful when exploring the design space of CARs, motivating the need for preference-based fine
tuning of PLMs.
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