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Abstract

The decentralized Federated Learning (FL) setting avoids the role of a poten-
tially unreliable or untrustworthy central host by utilizing groups of clients to
collaboratively train a model via localized training and model/gradient sharing.
Most existing decentralized FL algorithms require synchronization of client mod-
els where the speed of synchronization depends upon the slowest client. In this
work, we propose SWIFT: a novel wait-free decentralized FL algorithm that al-
lows clients to conduct training at their own speed. Theoretically, we prove that
SWIFT matches the gold-standard iteration convergence rate O(1/

√
T ) of parallel

stochastic gradient descent for convex and non-convex smooth optimization (total
iterations T ). Furthermore, we provide theoretical results for IID and non-IID
settings without any bounded-delay assumption for slow clients which is required
by other asynchronous decentralized FL algorithms. Although SWIFT achieves the
same iteration convergence rate with respect to T as other state-of-the-art (SOTA)
parallel stochastic algorithms, it converges faster with respect to run-time due to its
wait-free structure. Our experimental results demonstrate that SWIFT’s run-time
is reduced due to a large reduction in communication time per epoch, which falls
by an order of magnitude compared to synchronous counterparts. Furthermore,
SWIFT produces loss levels for image classification, over IID and non-IID data
settings, upwards of 50% faster than existing SOTA algorithms.

1 Introduction
Federated Learning (FL) is an increasingly popular setting to train powerful deep neural networks
with data derived from an assortment of clients. Recent research (Lian et al., 2017; Li et al., 2019;
Wang & Joshi, 2018) has focused on constructing decentralized FL algorithms that overcome speed
and scalability issues found within classical centralized FL (McMahan et al., 2017; Savazzi et al.,
2020). While decentralized algorithms have eliminated a major bottleneck in the distributed setting,
the central server, their scalability potential is still largely untapped. Many are plagued by high
communication time per round (Wang et al., 2019). Shortening the communication time per round
allows more clients to connect and then communicate with one another, thereby increasing scalability.

Due to the synchronous nature of current decentralized FL algorithms, communication time per round,
and consequently run-time, is amplified by parallelization delays. These delays are caused by the
slowest client in the network. To circumvent these issues, asynchronous decentralized FL algorithms
have been proposed (Lian et al., 2018; Luo et al., 2020; Liu et al., 2022; Nadiradze et al., 2021).
However, these algorithms still suffer from high communication time per round. Furthermore, their
communication protocols either do not propagate models well throughout the network (via gossip
algorithms) or require partial synchronization. Finally, these asynchronous algorithms rely on a
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Algorithm Iteration Convergence Rate Client (i) Comm-Time Complexity Neighborhood Avg. Asynchronous Private Memory
D-SGD O(1/

√
T ) O(T maxj∈Ni

Cj) ✓ ✗ ✓
PA-SGD O(1/

√
T ) O(|Cs|maxj∈Ni

Cj) ✓ ✗ ✓
LD-SGD O(1/

√
T ) O(|Cs|maxj∈Ni Cj) ✓ ✗ ✓

AD-PSGD O(τ/
√
T ) O(TCi) ✗ ✓ ✗

SWIFT O(1/
√
T ) O(|Cs|Ci) ✓ ✓ ✓

(1) Notation: total iterations T , communication set Cs (|Cs| < T ), client i’s neighborhood Ni, maximal bounded delay τ , and client i’s communication time
per round Ci. (2) As compared to AD-PSGD, SWIFT does not have a τ convergence rate term due to using an expected client delay in analysis.

Table 1: Rate and complexity comparisons for decentralized FL algorithms.

deterministic bounded-delay assumption, which ensures that the slowest client in the network updates
at least every τ iterations. This assumption is satisfied only under certain conditions (Abbasloo &
Chao, 2020), and worsens the convergence rate by adding a sub-optimal reliance on τ .

To remedy these drawbacks, we propose the Shared WaIt-Free Transmission (SWIFT) algorithm:
an efficient, scalable, and high-performing decentralized FL algorithm. Unlike other decentralized
FL algorithms, SWIFT obtains minimal communication time per round due to its wait-free structure.
Furthermore, SWIFT is the first asynchronous decentralized FL algorithm to obtain an optimal
O(1/

√
T ) convergence rate (aligning with stochastic gradient descent) without a bounded-delay

assumption. Instead, SWIFT leverages the expected delay of each client (detailed in our remarks
within Section 6). Experiments validate SWIFT’s efficiency, showcasing a reduction in communication
time by nearly an order of magnitude and run-times by upwards of 35%. All the while, SWIFT
remains at state-of-the-art (SOTA) global test/train loss for image classification compared to other
decentralized FL algorithms. We summarize our main contributions as follows.

▷ (1) Propose a novel wait-free decentralized FL algorithm (called SWIFT) and prove its theoretical
convergence without a bounded-delay assumption.

▷ (2) Implement a novel pre-processing algorithm to ensure non-symmetric and non-doubly stochas-
tic communication matrices are symmetric and doubly-stochastic under expectation.

▷ (3) Provide the first theoretical client-communication error bound for non-symmetric and non-
doubly stochastic communication matrices in the asynchronous setting.

▷ (4) Demonstrate experimentally a significant reduction in communication time and run-time per
epoch for CIFAR-10 classification in both IID and non-IID settings compared to synchronous
decentralized FL algorithms.

2 Related Works
Asynchronous Learning. HOGWILD! (Recht et al., 2011), AsySG-Con (Lian et al., 2015),
and AD-PSGD (Lian et al., 2017) are seminal examples of asynchronous algorithms that allow
clients to proceed at their own pace. However, these methods require a shared memory/oracle from
which clients grab the most up-to-date global parameters (e.g. the current graph-averaged gradient).
By contrast, SWIFT relies on a message passing interface (MPI) to exchange parameters between
neighbors, rather than interfacing with a shared memory structure. Algorithmically, each client relies
on local memory to store current neighbor weights. To circumvent local memory overload, common
in IoT clusters (Li et al., 2018), clients maintain a mailbox containing neighbor models: each client
pulls out neighbor models one at a time to sequentially compute the desired aggregated statistics.

Decentralized Stochastic Gradient Descent (SGD). The predecessor to decentralized FL is
gossip learning (Boyd et al., 2006; Hegedűs et al., 2021). Gossip learning was first introduced by
the control community to assist with mean estimation of decentrally-hosted data distributions (Aysal
et al., 2009; Boyd et al., 2005). Now, SGD-based gossip algorithms are used to solve large-scale
machine learning tasks (Lian et al., 2015, 2018; Ghadimi et al., 2016; Nedic & Ozdaglar, 2009;
Recht et al., 2011; Agarwal & Duchi, 2011). A key feature of gossip learning is the presence of
a globally shared oracle/memory with whom clients exchange parameters at the end of training
rounds (Boyd et al., 2006). While read/write-accessible shared memory is well-suited for a single-
organization ecosystem (i.e. all clients are controllable and trusted), this is unrealistic for more
general edge-based paradigms. Neighborhood-based communication and aggregation algorithms,
such as D-SGD (Lian et al., 2017) and PA-SGD (Li et al., 2019), can theoretically and empirically
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outperform their centralized counterparts, especially under heterogeneous client data distributions.
Unfortunately, these algorithms suffer from synchronization slowdowns. SWIFT is asynchronous
(avoiding slowdowns), utilizes neighborhood averaging, and does not require shared memory.

Communication Under Expectation. Few works in FL center on communication uncertainty. In
(Ye et al., 2022), a lightweight, yet unreliable, transmission protocol is constructed in lieu of slow
heavyweight protocols. A synchronous algorithm is developed to converge under expectation of an
unreliable communication matrix (probabilistic link reliability). SWIFT also convergences under
expectation of a communication matrix, yet in a different and asynchronous setting. SWIFT is already
lightweight and reliable, and our use of expectation does not regard link reliability.

Communication Efficiency. Minimizing each client i’s communication time per round Ci is a
challenge in FL, as the radius of information exchange can be large (Kairouz et al., 2021). MATCHA
(Wang et al., 2019) decomposes the base network into m disjoint matchings. Every epoch, a random
sub-graph is generated from a combination of matchings, each having an activation probability
pk. Clients then exchange parameters along this sub-graph. This requires a total communication-
time complexity of O(T

∑m
k=1 pk maxj∈Ni

Cj), where Ni are client i’s neighbors. LD-SGD (Li
et al., 2019) and PA-SGD (Wang & Joshi, 2018) explore how reducing the number of neighborhood
parameter exchanges affects convergence. Both algorithms create a communication set Cs (defined
in Appendix C) that dictate when clients communicate with one another. The communication-time
complexities are listed in Table 1. These methods, however, are synchronous and their communication-
time complexities depend upon the slowest neighbor maxj∈Ni

Cj . SWIFT improves upon this,
achieving a communication-time complexity depending on a client’s own communication-time
per round. Unlike AD-PSGD Lian et al. (2018), which achieves a similar communication-time
complexity, SWIFT allows for periodic communication, uses only local memory, and does not require
a bounded-delay assumption.

3 Problem Formulation

Decentralized FL. In the FL setting, we have n clients represented as vertices of an arbitrary
communication graph G with vertex set V = {1, . . . , n} and edge set E ⊆ V × V . Each client i
communicates with one-hop neighboring clients j such that (i, j) ∈ E . We denote the neighborhood
for client i as Ni, and clients work in tandem to find the global model parameters x by solving:

min
x∈Rd

f(x) :=

n∑
i=1

pifi(x), fi(x) := Eξi∼Di

[
ℓ(x, ξ)

]
,

n∑
i=1

pi = 1, pi ≥ 0. (1)

The global objective function f(x) is the weighted average of all local objective functions fi(x). In
Equation 1, pi,∀i ∈ [n] denotes the client influence score. This term controls the influence of client i
on the global consensus model, forming the client influence vector p = {pi}ni=1. These scores also
reflect the sampling probability of each client. We note that each local objective function fi(x) is
the expectation of loss function ℓ with respect to potentially different local data ξi = {ξi,j}Mj=1 from
each client i’s distribution Di, i.e., ξi,j ∼ Di. The total number of iterations is denoted as T .

Existing Inter-Client Communication in Decentralized FL. All clients balance their individ-
ual training with inter-client communications in order to achieve consensus while operating in a
decentralized manner. The core idea of decentralized FL is that each client communicates with
its neighbors (connected clients) and shares local information. Balancing individual training with
inter-client communication ensures individual client models are well-tailored to personal data while
remaining (i) robust to other client data, and (ii) able to converge to an optimal consensus model.

Periodic Averaging. Algorithms such as Periodic Averaging SGD (PA-SGD) (Wang & Joshi,
2018) and Local Decentralized SGD (LD-SGD) reduce communication time by performing multiple
local updates before synchronizing. This process is accomplished through the use of a communication
set Cs, which defines the set of iterations a client must perform synchronization,

Cs = {t ∈ N | t mod (s+ 1) = 0, t ≤ T}. (2)
We adopt this communication set notation, although synchronization is unneeded in our algorithm.
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Figure 1: SWIFT schematic with Cs = C1 (i.e., clients communicate every two local update steps).

4 Shared Wait-Free Transmission (SWIFT) Federated Learning

In this section, we present the Shared WaIt-Free Transmission (SWIFT) Algorithm. SWIFT is an
asynchronous algorithm that allows clients to work at their own speed. Therefore, it removes the
dependency on the slowest client which is the major drawback of synchronous settings. Moreover,
unlike other asynchronous algorithms, SWIFT does not require a bound on the speed of the slowest
client in the network and allows for neighborhood averaging and periodic communication.

A SWIFT Overview. Each client i runs SWIFT in parallel, first receiving an initial model xi,
communication set Cs, and counter ci ← 1. SWIFT is concisely summarized in the following steps:
(0) Determine client-communication weights wi via Algorithm 2.
(1) Broadcast the local model to all neighboring clients.
(2) Sample a random local data batch of size M .
(3) Compute the gradient update of the loss function ℓ with the sampled local data.
(4) Fetch and store neighboring local models, and average them with one’s own local model if ci ∈ Cs.
(5) Update the local model with the computed gradient update, as well as the counter ci ← ci + 1.
(6) Repeat steps (1)-(5) until convergence.
A diagram and algorithmic block of SWIFT are depicted in Figure 1 and Algorithm 1 respectively.

Active Clients, Asynchronous Iterations, and the Local-Model Matrix. Each time a client
finishes a pass through steps (1)-(5), one global iteration is performed. Thus, the global iteration t is
increased after the completion of any client’s averaging and local gradient update. The client that
performs the t-th iteration is called the active client, and is designated as it (Line 6 of Algorithm 1).
There is only one active client per global iteration. All other client models remain unchanged during
the t-th iteration (Line 16 of Algorithm 1). In synchronous algorithms, the global iteration t increases
only after all clients finish an update. SWIFT, which is asynchronous, increases the global iteration t
after any client finishes an update. In our analysis, we define local-model matrix Xt ∈ Rd×n as the
concatenation of all local client models at iteration t for ease of notation,

Xt := [xt
1, . . . , x

t
n] ∈ Rd×n. (3)

Inspired by PA-SGD (Wang & Joshi, 2018), SWIFT handles multiple local gradient steps before
averaging models amongst neighboring clients (Line 10 of Algorithm 1). Periodic averaging for
SWIFT, governed by a dynamic client-communication matrix, is detailed below.

Wait Free. The backbone of SWIFT is its wait-free structure. Unlike any other decentralized FL
algorithms, SWIFT does not require simultaneous averaging between two clients or a neighborhood of
clients. Instead, each client fetches the latest models its neighbors have sent it and performs averaging
with those available (Lines 11-12 of Algorithm 1). There is no pause in local training waiting for a
neighboring client to finish computations or average with, making SWIFT wait-free.

Update Rule. SWIFT runs in parallel with all clients performing local gradient updates and model
communication simultaneously. Collectively, the update rule can be written in matrix form as

Xt+1 = XtW t
it − γG(xt

it , ξ
t
it), (4)
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Algorithm 1: Shared WaIt-Free Transmission (SWIFT)
Input :Vertex set V , Total steps T , Step-size γ, Client Influence Vector p, Distributions of client

data Di, Communication set Cs, Batch size M , Loss function ℓ, and Initial model x0

Output :Consensus model 1
n

∑n
i=1 x

T
i

1 Initialize each client’s local update counter ci ← 1, ∀i ∈ V
2 Obtain each client’s new communication vector wt

i using Algorithm 2
3 for t = 1, . . . , T do
4 if network topology changes then
5 Renew each client’s communication vector wt

i using Algorithm 2
6 Randomly select an active client it according to Client Influence Probability Vector p
7 Broadcast active client’s model xt

it
to all its neighbors {k | wt

it,k
̸= 0, k ̸= it}

8 Sample a batch of active client it’s local data ξtit := {ξ
t
it,m
}Mm=1 from distribution Dit

9 Compute the gradient update: g(xt
it
, ξtit)←

1
M

∑M
m=1∇ℓ(xt

it
, ξtit,m)

10 if current step falls in the predefined communication set, i.e., cit ∈ Cs then
11 Fetch and store the latest models {xt

k} from it’s neighbors {k | wt
it,k
̸= 0, k ̸= it}

12 Model average for the active client: xt+1/2
it

←
∑

k w
t
it,k

xt
k + wt

it,it
xt
it

13 else
14 Active client model remains the same: xt+1/2

it
← xt

it

15 Model update for the active client: xt+1
it
← x

t+1/2
it

− γg(xt
it
; ξtit)

16 Update other clients: xt+1
j ← xt

j , ∀ j ̸= it
17 Update the active client’s counter cit ← cit + 1

where γ denotes the step size parameter and the matrix G(xt
it
, ξtit) ∈ Rd×n is the zero-padded

gradient of the active model xt
it

. The entries of G(xt
it
, ξtit) are zero except for the it-th column, which

contains the active gradient g(xt
it
, ξtit). Next, we describe the client-communication matrix W t

it
.

Client-Communication Matrix. The backbone of decentralized FL algorithms is the client-
communication matrix W (also known as the weighting matrix). To remove all forms of synchroniza-
tion and to become wait-free, SWIFT relies upon a novel client-communication matrix W t

it
that is

neither symmetric nor doubly-stochastic, unlike other algorithms in FL (Wang & Joshi, 2018; Lian
et al., 2018; Li et al., 2019; Koloskova et al., 2020). The result of a non-symmetric and non-doubly
stochastic client-communication matrix, is that averaging occurs for a single active client it and not
over a pair or neighborhood of clients. This curbs superfluous communication time.

Within SWIFT, a dynamic client-communication matrix is implemented to allow for periodic averag-
ing. We will now define the active client-communication matrix W t

it
in SWIFT, where it is the active

client which performs the t-th global iteration. W t
it

can be one of two forms: (1) an identity matrix
W t

it
= In if cit /∈ Cs or (2) a communication matrix if cit ∈ Cs with structure,

W t
it := In + (wt

it − eit)e
⊺
it
, wt

it := [wt
1,it , . . . , w

t
n,it ]

⊺ ∈ Rn,

n∑
j=1

wj,i = 1, wi,i ≥ 1/n ∀i. (5)

The vector wt
it
∈ Rn denotes the active client-communication vector at iteration t, which contains

the communication coefficients between client it and all clients (including itself). The client-
communication coefficients induce a weighted average of local neighboring models. We note that wt

it
is often sparse because clients are connected to few other clients only in most decentralized settings.

Novel Client-Communication Weight Selection. While utilizing a non-symmetric and non-
doubly-stochastic client-communication matrix decreases communication time, there are technical
difficulties when it comes to guaranteeing the convergence. One of the novelties of our work is that we
carefully design a client-communication matrix W t

it
such that it is symmetric and doubly-stochastic

under expectation of all potential active clients it and has diagonal values greater than or equal to
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Algorithm 2: Communication Coefficient Selection (CCS)
Input :Client Influence Score (CIS) pi ∈ R, Client Degree di ∈ R,

Client Neighbor Set Ji = {∀j : client j is a one-hop neighbor of client i},∀i
Output :Client-Communication Vector wi ∈ Rn,∀i ∈ [n]

1 for i = 1 : n in parallel do
2 if CIS are non-uniform then
3 Initialize Client-Communication Vector wi = [w1,i, w2,i, · · · , wn,i]← (1/n)ei

4 else
5 Initialize Client-Communication Vector wi = [w1,i, w2,i, · · · , wn,i]← 0

6 Exchange CIS and degree with all neighbors
7 Store Neighbor CIS Vector P J ← [{pj}j∈Ji ] ∈ Rdi

8 Construct Neighbor Subsets JL, JSE, JE ⊂ Ji as subsets of i’s neighbors with degree larger
than, no larger than and equal to di respectively

9 for ∀j ∈ JL do
10 Wait to fetch wj,i from neighbor client j with a degree larger than di

11 Determine the sum of the total coefficients assigned (TCA) siw ←
∑n

m=1 wm,i

12 if |JSE| > 0 then
13 Determine the sum of all remaining neighbors’ CIS sip ←

∑
j∈JSE P J

j

14 if |JE| > 0 then
15 Exchange siw and sip with all neighbors j ∈ JE, storing all exchanged sjw, s

j
p

16 Store s∗w ← max{siw, sjw} and s∗p ← max{sip, sjp} ∀j ∈ JE

17 Set wj,i ←
(1−s∗w)PJ

j

s∗p
∀j ∈ JE

18 Recompute siw =
∑n

m=1 wm,i and sip =
∑

j∈{JSE∪i}\JE P J
j

19 Set wj,i ← wj,i +
(1−siw)PJ

j

sip
∀j ∈ {JSE ∪ i} \ JE for all remaining neighbors

20 Send wi,j =
(1−siw)PJ

i

sip
to all waiting neighbors j ∈ JSE \ JE

21 else
22 wi,i = 1− siw

1/n. Specifically, we can write

Eit

[
W t

it

]
=

n∑
i=1

pi
[
In + (wt

i − ei)e
⊺
i

]
= In +

n∑
i=1

pi(w
t
i − ei)e

⊺
i =: W̄ t, (6)

where, we denote W̄ t as the expected client-communication matrix with the following form,
[W̄ t]i,i = 1 + pi(w

t
i,i − 1), and [W̄ t]i,j = pjw

t
i,j , for i ̸= j. (7)

Note that W̄ t is column stochastic as the entries of any column sum to one. If we ensure that W̄ t is
symmetric, then it will become doubly-stochastic. By Equation 7, W̄ t becomes symmetric if,

pjw
t
i,j = piw

t
j,i ∀i, j ∈ V. (8)

To achieve the symmetry of Equation 8, SWIFT deploys a novel pre-processing algorithm: the
Communication Coefficient Selection (CCS) Algorithm. Given any client-influence vector pi, CCS
determines all client-communication coefficients such that Equations 5 and 8 hold for every global
iteration t. Unlike other algorithms, CCS focuses on the expected client-communication matrix,
ensuring its symmetry. CCS only needs to run once, before running SWIFT. In the event that the
underlying network topology changes, CCS can be run again during the middle of training. Below,
we detail how CCS guarantees Equations 5 and 8 to hold.

The CCS Algorithm, presented in Algorithm 2, is a waterfall method: clients receive coefficients
from their larger-degree neighbors. Every client runs CCS concurrently, with the following steps:
(1) Receive coefficients from larger-degree neighbors. If the largest, or tied, skip to (2).
(2) Calculate the total coefficients already assigned sw as well as the sum of the client influence
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scores for the unassigned clients sp.
(3) Assign the leftover coefficients 1 − sw to the remaining unassigned neighbors (and self) in a
manner proportional to each unassigned client i’s percentage of the leftover influence scores pi/sp.
(4) If tied with neighbors in degree size, ensure assigned coefficients won’t sum to larger than one.
(5) Send coefficients to smaller-degree neighbors.

In Algorithm 2, the terms sw and sp play a pivotal role in satisfying Equations 5 and 8 respectively.
Equation 8 is satisfied by assigning weights amongst client i and its neighbors j as follows

pj
(1− sw)pi

sp
= pi

(1− sw)pj
sp

. (9)

Assigning weights proportionally with respect to neighboring client influence scores and total
neighbors ensures higher influence clients receive higher weighting during averaging.

5 SWIFT Theoretical Analysis

Major Message from Theoretical Analysis. As summarized in Table 1, the efficiency and effective-
ness of decentralized FL algorithms depend on both the iteration convergence rate and communication-
time complexity; their product roughly approximates the total time for convergence. In this section, we
will prove that SWIFT improves the SOTA convergence time of decentralized FL as it obtains SOTA
iteration convergence rate (Theorem 1) and outperforms SOTA communication-time complexity.

Before presenting our theoretical results, we first detail standard assumptions (Kairouz et al., 2021)
required for the analysis.

Assumption 1 (L-smooth global and local objective functions). ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ .

Assumption 2 (Unbiased stochastic gradient). Eξ∼Di

[
∇ℓ(x; ξ)

]
= ∇fi(x) for each i ∈ V .

Assumption 3 (Bounded inter-client gradient variance). The variance of the stochastic gradient is
bounded for any x with client i sampled from probability vector p and local client data ξ sampled
from Di. This implies there exist constants σ, ζ ≥ 0 (where ζ = 0 in IID settings) such that:
Ei ∥∇f(x)−∇fi(x)∥2 ≤ ζ2 ∀i,∀x, Eξ∼Di

∥∇fi(x)−∇ℓ(x; ξ)∥2 ≤ σ2,∀x.

As mentioned in Section 4, the use of a non-symmetric, non-doubly-stochastic matrix W t
it

causes
issues in analysis. In Appendix B, we discuss properties of stochastic matrices, including symmetric
and doubly-stochastic matrices, and formally define ρν , a constant related to the connectivity of
the network. Utilizing our symmetric and doubly-stochastic expected client-communication matrix
(constructed via Algorithm 2), we reformulate Equation 4 by adding and subtracting out W̄ t,

Xt+1 = XtW̄ t +Xt(W t
it − W̄ t)− γG(xt

it , ξ
t
it). (10)

Next, we present our first main result in Lemma 1, establishing a client-communication error bound.

Lemma 1 (Client-Communication Error Bound). Following Algorithm 2, the product of the difference
between the expected and actual client communication matrices is bounded as follows:

E
t∑

j=0

∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)(

1n

n
− ei)

∥∥∥2 = O
(σ2

M
+ E

t∑
j=0

∥∇fij (x
j
ij
)∥2

)
. (11)

Remark. One novelty of our work is that we are the first to bound the client-communication error in
the asynchronous decentralized FL setting. The upper bound in Lemma 1 is unique to our analysis
because other decentralized works do not incorporate wait-free communication (Lian et al., 2017; Li
et al., 2019; Wang & Joshi, 2018; Lian et al., 2018). Now, we are ready to present our main theorem,
which establishes the convergence rate of SWIFT:

Theorem 1 (Convergence Rate of SWIFT). Under assumptions 1, 2 and 3 (with Algorithm 2), let
∆f := f(x̄0)− f(x̄∗), step-size γ, total iteration T , and average model x̄t be defined as

γ :=

√
Mn2∆f√

TL+
√
M
≤

√
Mn2∆f

TL
, T ≥ 1932LM∆fρ

2
νn

4p2max, x̄t :=
1

n

n∑
i=1

xt
i.
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Then, for the output of Algorithm 1, it holds that

1

T

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥2 ≤ 2
√
∆f

T
+

2
√
L∆f

(
1 + 1921

20 ρν
(
σ2 + 6ζ2

√
M

))
√
TM

. (12)

Iteration Convergence Rate Remarks. (1) We prove that SWIFT obtains a O(1/
√
T ) iteration

convergence rate, matching the optimal rate for SGD (Dekel et al., 2012; Ghadimi & Lan, 2013;
Lian et al., 2017, 2018). (2) Unlike existing asynchronous decentralized SGD algorithms, SWIFT’s
iteration convergence rate does not depend on the maximal bounded delay. Instead, we bound any
delays by taking the expectation over the active client. The probability of each client i being the
active client is simply its sampling probability pi. We therefore assume that each client i is expected
to perform updates at its prescribed sampling probability rate pi. Clients which are often delayed in
practice can be dealt with by lowering their inputted sampling probability. (3) SWIFT converges in
fewer total iterations T with respect to n total clients compared to other asynchronous methods (Lian
et al., 2018) (T = Ω(n4p2max) in SWIFT versus T = Ω(n4) in AD-PSGD).

Communication-Time Complexity Remarks. (1) Due to its asynchronous nature, SWIFT achieves
a communication-time complexity that relies only on each client’s own communication time per
round Ci. This improves upon synchronous decentralized SGD algorithms, which rely upon the
communication time per round of the slowest neighboring client maxj∈Ni

Cj . (2) Unlike AD-PSGD
(Lian et al., 2018), which also achieves a communication-time complexity reliant on Ci, SWIFT
incorporates periodic averaging which further reduces the communication complexity from T rounds
of communication to |Cs|. Furthermore, SWIFT allows for entire neighborhood averaging, and not
just one-to-one gossip averaging. This increases neighborhood information sharing, improving model
robustness and reducing model divergence.

Corollary 1 (Convergence under Uniform Client Influence). In the common scenario where client
influences are uniform, pi = 1/n ∀i =⇒ pmax = 1/n, SWIFT obtains convergence improvements:
total iterations T with respect to the number of total clients n improves to T = Ω(n2) as compared
to T = Ω(n4) for AD-PSGD under the same conditions.

6 Experiments

Below, we perform image classification experiments for a range of decentralized FL algorithms
Krizhevsky et al. (2009). We compare the results of SWIFT to the following decentralized baselines:
• The most common synchronous decentralized FL algorithm: D-SGD (Lian et al., 2017).
• Synchronous decentralized FL communication reduction algorithms: PA-SGD (Wang & Joshi,
2018) and LD-SGD (Li et al., 2019).
• The most prominent asynchronous decentralized FL algorithm: AD-PSGD (Lian et al., 2018).

Finer details of the experimental setup are in Appendix A. Throughout our experiments we use two
network topologies: standard ring and ring of cliques (ROC). ROC-xC signifies a ring of cliques
with x clusters. The ROC topology is more reflective of a realistic network, as networks usually have
pockets of connected clients. These topologies are visualized in Figures 7 and 8 respectively.

6.1 Baseline Comparison

To compare the performance of SWIFT to all other algorithms listed above, we reproduce an exper-
iment within (Lian et al., 2018). With no working code for AD-PSGD to run on anything but an
extreme supercomputing cluster (Section 5.1.2 of (Lian et al., 2018)), reproducing this experiment
allows us to compare the relative performance of SWIFT to AD-PSGD.

Table in Figure 2 showcases that SWIFT reduces the average epoch time, relative to D-SGD, by
35% (C0 and C1). This far outpaces AD-PSGD (as well as the other synchronous algorithms), with
AD-PSGD only reducing the average epoch time by 16% relative to D-SGD. Finally, Figure 2 displays
how much faster SWIFT achieves optimal train and test loss values compared to other decentralized
baseline algorithms. SWIFT outperforms all other baseline algorithms even without any slow-down
(which we examine in Section 6.2), where wait-free algorithms like SWIFT especially shine.

8



0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

Wall-clock Time (Minutes)

Te
st

L
os

s

D-SGD
LD-SGD
PA-SGD
SWIFT
SWIFT (2-SGD)

(a) Average test loss.
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(b) Average train loss.

Figure 2: Baseline performance comparison on CIFAR-10 for 16 client ring.

Decentralized FL 16 Client Ring
Algorithms Epoch (s) % Change Comm. (s) % Change
SWIFT (C0 ) 1.019 -34.60 0.086 -86.28
D-SGD (C0 ) 1.558 — 0.627 —-

AD-PSGD∗ (C0 ) — -15.86 — —
SWIFT (C1) 1.016 -34.79 0.064 -89.79

LD-SGD (C1) 1.320 -15.28 0.428 -31.74
PA-SGD (C1) 1.281 -17.78 0.358 -42.90

* AD-PSGD results come from Table 4 in (Lian et al., 2018).

Table 2: Baseline average epoch and communication times on CIFAR-10 for 16 client ring.

6.2 Varying Heterogeneities

Varying Degrees of Non-IIDness Our second experiment evaluates SWIFT’s efficacy at converging
to a well-performing optima under varying degrees of non-IIDness. We vary the degree (percentage)
of each client’s data coming from one label. The remaining percentage of data is randomly sampled
(IID) data over all labels. A ResNet-18 model is trained by 10 clients in a 3-cluster ROC network
topology. We chose 10 clients to make the label distribution process easier: CIFAR-10 has 10 labels.
As expected, when data becomes more non-IID, the test loss becomes higher and the overall accuracy
lower (Table 3). We do see, however, that SWIFT converges faster, and to a lower average loss, than
all other synchronous baselines (Figure 3). In fact, SWIFT with C1 converges much quicker than the
synchronous algorithms. This is an important result: SWIFT converges both quicker and to a smaller
loss than synchronous algorithms in the non-IID setting.

Varying Heterogeneity of Clients In this experiment, we investigate the performance of SWIFT
under varying heterogeneity, or speed, of our clients (causing different delays). This is done with
16 clients in a ring topology. We add an artificial slowdown, suspending execution of one of the

Decentralized FL 10 Client Ring of Cliques - 3 Cluster Topology
Algorithms Epoch Time (s) Communication Time (s)
SWIFT (C0) 1.709 0.197
D-SGD (C0) 2.116 0.705
SWIFT (C1) 1.517 0.110

LD-SGD (C1) 1.973 0.575
PA-SGD (C1) 1.929 0.421

Table 3: Average epoch and communication times for non-IID setting on CIFAR-10.
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(a) 1/4 degree non-IID data.
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(b) 1/2 degree non-IID data.
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(c) 7/10 degree non-IID data.
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(d) 9/10 degree non-IID data.

Figure 3: Average test loss for varying degrees of non-IIDness on CIFAR-10, 10 client ROC-3C.

clients such that it takes a certain amount of time longer (slowdown) to perform the computational
portions of the training process. We perform tests in the case where a client is two times (2x) and
four times (4x) as slow as usual. We then compare how the decentralized algorithms fare under these
circumstances compared to the normal setting with no added slowdown.

Decentralized FL No Slowdown 2x Slowdown 4x Slowdown
Algorithms Total (s) Epoch (s) Comm. (s) Total (s) Epoch (s) Comm. (s) Total (s) Epoch (s) Comm. (s)
SWIFT (C0) 2.69 1.033 0.087 2.451 0.964 0.064 3.054 1.117 0.091
D-SGD (C0) 3.110 1.45 0.564 3.972 1.571 0.616 6.137 1.666 0.651
SWIFT (C1) 2.44 0.996 0.061 2.152 0.928 0.040 2.847 1.074 0.065

LD-SGD (C1) 3.323 1.353 0.413 3.762 1.389 0.428 5.917 1.412 0.448
PA-SGD (C1) 3.183 1.270 0.331 3.557 1.262 0.309 5.743 1.270 0.318

Table 4: Average epoch and communication times on CIFAR-10 for 16 client ring with slowdown.

In Table 4, the average epoch, communication, and total time is displayed. Average total time includes
computations, communication, and any added slowdown (wait time). SWIFT avoids large average
total times as the slowdown grows larger. The wait-free structure of SWIFT allows all non-slowed
clients to finish their work at their own speed. All other algorithms require clients to wait for the
slowest client to finish a mini-batch before proceeding. At large slowdowns (4x), the average total
time for SWIFT is nearly half of those for synchronous algorithms. Thus, SWIFT is very effective at
reducing the run-time when clients are slow within the network.
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(b) Train loss slowdown.
Figure 4: SWIFT vs. D-SGD for CIFAR-10 in 16 client ring with varying slowdown.

Figure 4 shows how SWIFT is able to converge faster to an equivalent, or smaller, test loss than
D-SGD for all slowdowns. In the case of large slowdowns (4x), SWIFT significantly outperforms
D-SGD, finishing in better than half the run-time. We do not include the other baseline algorithms to
avoid overcrowding of the plotting space. However, SWIFT also performs much better than PA-SGD
and LD-SGD as shown in Table 4. These results show that the wait-free structure of SWIFT allows it
to be efficient under client slowdown.

6.3 Varying Numbers of Clients & Network Topologies

Varying Numbers of Clients In our fourth experiment, we determine how SWIFT performs versus
other baseline algorithms as we vary the number of clients. In Table 5, the time per epoch for SWIFT
drops by nearly the optimal factor of 2 as the number of clients is doubled. For all algorithms, there
is a bit of parallel overhead when the number of clients is small, however this becomes minimal as
the number of clients grow to be large (greater than 4 clients). In comparison to the synchronous
algorithms, SWIFT actually decreases its communication time as the number of clients increases.
This allows the parallel performance to be quite efficient, as shown in Figure 5.
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Figure 5: Average communication and epoch times for increasing numbers of clients.

Varying Topologies Our fifth experiment analyzes the effectiveness of SWIFT versus other baseline
decentralized algorithms under different, and more realistic, network topologies. In this experiment
setting, we train 16 clients on varying network topologies (Table 6 and Figure 6).
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Decentralized FL 16 Client Ring 8 Client Ring 4 Client Ring 2 Client Ring
Algorithms Epoch (s) Comm. (s) Epoch (s) Comm. (s) Epoch (s) Comm. (s) Epoch (s) Comm. (s)
SWIFT (C0) 1.019 0.086 2.003 0.172 3.964 0.314 6.971 0.251
D-SGD (C0) 1.558 0.627 2.459 0.525 3.970 0.439 7.62 0.393
SWIFT (C1) 1.016 0.064 1.970 0.112 3.862 0.232 6.83 0.176

LD-SGD (C1) 1.320 0.428 2.217 0.345 3.946 0.300 6.712 0.179
PA-SGD (C1) 1.281 0.358 2.093 0.285 3.871 0.220 7.303 0.180

Table 5: Average epoch and communication times on CIFAR-10 with varying clients in ring topology.

Decentralized FL 16 Client ROC-2C 16 Client ROC-4C 16 Client Ring
Algorithms Epoch (s) Comm. (s) Epoch (s) Comm. (s) Epoch (s) Comm. (s)
SWIFT (C0) 1.793 0.416 1.291 0.124 1.367 0.121
D-SGD (C0) 2.799 1.479 2.813 1.464 2.241 0.962
SWIFT (C1) 1.611 0.295 1.494 0.174 1.348 0.085

LD-SGD (C1) 2.408 0.987 2.525 1.105 2.172 0.517
PA-SGD (C1) 2.639 0.765 2.216 0.708 1.982 0.500

Table 6: Average epoch and communication times on CIFAR-10 for varying network topologies.
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(a) ROC-2C (n = 16).
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(b) ROC-4C (n = 16).
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(c) Ring (n = 16).

Figure 6: Average test loss for varying network topologies on CIFAR-10.

7 Conclusion

SWIFT delivers on the promises of decentralized FL: a low communication and run-time algorithm
(scalable) which attains SOTA loss (high-performing). As a wait-free algorithm, SWIFT is well-
suited to rapidly solve large-scale distributed optimization problems. Empirically, SWIFT reduces
communication time by almost 90% compared to baseline decentralized FL algorithms. In future
work, we aim to add protocols for selecting optimal client sampling probabilities. We would like to
show how varying these values can: (i) boost convergence both theoretically and empirically, and (ii)
improve robustness under local client data distribution shift.
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Angelia Nedić and Alex Olshevsky. Distributed optimization over time-varying directed graphs.
IEEE Transactions on Automatic Control, 60(3):601–615, 2014.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course, 1998.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. Advances in neural information processing systems, 24,
2011.

Stefano Savazzi, Monica Nicoli, and Vittorio Rampa. Federated learning with cooperating devices:
A consensus approach for massive iot networks. IEEE Internet of Things Journal, 7(5):4641–4654,
2020.

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis of
communication-efficient sgd algorithms. arXiv preprint arXiv:1808.07576, 2018.

Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi, and Soummya Kar. Matcha: Speeding up
decentralized sgd via matching decomposition sampling. In 2019 Sixth Indian Control Conference
(ICC), pp. 299–300. IEEE, 2019.

Hao Ye, Le Liang, and Geoffrey Ye Li. Decentralized federated learning with unreliable communica-
tions. IEEE Journal of Selected Topics in Signal Processing, 2022.

14



Supplementary Material

A Aditional Experimental Details and Setup

A.1 Computational Specifications

We train our consensus model on a network of nodes. Each node has an NVIDIA GeForce RTX 2080
Ti GPU. All algorithms are built in Python and communicate via Open MPI, using MPI4Py (Python
bindings for MPI). The training is also done in Python, leveraging Pytorch.

A.2 Data Partitioning

For all experiments, the training set is evenly partitioned amongst the number of clients training the
consensus model. While the size of each client’s partition is equal, we perform testing with data
that is both (1) independent and identically distributed (iid) among all clients and (2) sorted by class
and is thus non-iid. For the iid setting, each client is assigned data uniformly at random over all
classes. In the non-iid setting, each client is assigned a subset of classes from which it will receive
data exclusively. The c classes are assigned in the following steps:
(1) The class subset size nc, for all clients, is determined as the ceiling of the number of classes per
client nc = ⌈ cn⌉. Each class k within the class subset will take up 1/nc of the client’s total data
partition if possible.
(2) The classes within each client’s class subset are assigned cyclically, starting with the first client.
The first client selects the first nc classes, the second client selects the next nc classes, and so on.
Classes can, in some cases, be assigned to multiple clients. If the final class has been assigned, and
more clients have yet to be assigned any classes, classes can be re-assigned starting at the first class.
(3) Each client is assigned data from the classes in their class subset cyclically (1/nc of its partition
for each class), starting with the first client. If no more data is available from a specific class, the
required data to fill its fraction of the partition is replaced by data from the next class.

Since we follow this data partitioning process within our experiments, each client is assigned equal
partitions of data. Therefore, following the works (Lian et al., 2018; Wang et al., 2019; Ye et al.,
2022; Li et al., 2019), we set the client influence scores to be uniform for all clients pi = 1/n ∀i ∈ V .

A.3 Experimental Setup

Below we provide information into the hyperparameters we select for our experiments in Section 6.

Experiment Type Model Epochs E γ γ Decay (Rate, E, Freq.) M Weight Decay Momentum
Baseline ResNet-18 200 0.1 (1/10, 81 & 122, Single) 32 10−4 0.9

Vary non-IIDness ResNet-18 300 0.8 (1/2, 200, 10) 32 10−4 0.9
Vary Heterogeneity ResNet-18 100 0.1 (1/2, 50, 10) 32 10−4 0.9
Vary # of Clients ResNet-18 200 0.1 (1/10, 81 & 122, Single) 32 10−4 0.9
Vary Topology ResNet-50 200 0.1 (1/2, 100, 10) 64 10−4 0.9

Table 7: Hyperparameters for all experiments.

In Table 7, one can see that the step-size decay column is split into the following sections: rate, E, and
frequency. The rate is the decay rate for the step-size. For example, in the Baseline row, the step-size
decays by 1/10. The term E is the epoch at which decay begins during training. For example, in the
Baseline row, the step-size decays at E = 81 and 122. Frequency simply is how often the step-size
decays. For example, in the Vary Topology row, the step-size decays every 10 epochs.

A.4 Network Topologies

Ring Topology. Please refer to Figure 7.
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Ring of Cliques Topology. Please refer to Figure 8.
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Figure 8: (Left) 10 Client, 3-Cluster. (Middle) 16 Client, 2-Cluster. (Right) 16 Client, 4-Cluster.

Like the works of (Jeon et al., 2021; Bellet et al., 2021), we believe that the ring of cliques network
topology is a realistic topology in the decentralized setting. In many real-world setting, like one’s
home (smart appliances, smart speakers/displays, phones, etc.), devices are connected together in a
small clique. Only a small amount of these devices have connections to other devices outside the
cluster (like a phone or router). We wanted to utilize this network topology due to this realistic nature.
In fact, (Bellet et al., 2021) shows that a ring of clique topology can be used in the decentralized
setting to reduce the impact of label distribution skew.

A.5 Notation Table

Definition Notation Definition Notation

Global Iteration t Number of Clients n
Active Client at t it Parameter Dimension d

Client (i, j) Communication Coefficient at t wt
i,j Data Dimension f

Local Model of Client i at t xt
i ∈ Rd Step-Size γ

Local Model of Active Client at t xt
it
∈ Rd Total SWIFT Iterations T

Mini-Batch Data from Active Client at t ξtit ∈ Rf Mini-Batch Size (Uniform) M
Gradient of the Active Model at t g(xt

it
, ξtit) ∈ Rd Communication Set Cs

Client i Communication Vector at t wt
i ∈ Rn Global Data Distribution D

Local Model Matrix at t Xt ∈ Rd×n Global Objective f(x)
Zero-Padded Gradient of the Active Model at t G(xt

it
, ξtit) ∈ Rd×n Client Influence Score pi

Expected Local Model Gradients at t Ḡ(Xt, ξt) ∈ Rd×n Client Influence Vector p ∈ Rn

Active Client Communication Matrix at t W t
it
∈ Rn×n One-Hot Vector ei ∈ Rn

Expected Client Communication Matrix at t W̄ t ∈ Rn×n Identity Matrix In ∈ Rn×n

Table 8: Notation Table

B Additional Properties and Algorithm Details

Stochastic Matrices. Within our work, we use a non-symmetric, non-doubly-stochastic matrix W t
it

for client averaging. Utilizing W t
it

comes with some analysis issues (it is non-symmetric), however it
provides the wait-free nature of SWIFT. Interestingly, W t

it
does have some unique properties: it is

column-stochastic. Lemma 3 proves that the product of stochastic matrices converges exponentially
to a stochastic vector with common ratio ν ∈ [0, 1).
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Symmetric and Doubly-Stochastcic Matrices. As mentioned in Section 5, we utilize Algo-
rithm 2 to select client weights such that we have a symmetric and doubly-stochastic commu-
nication matrix W̄ t under expectation. By Lemma 2, there exists a scalar ρ ∈ [0, 1) such that
max{|λ2

(
(W̄ t)⊺W̄ t

)
|, |λn

(
(W̄ t)⊺W̄ t

)
|} ≤ ρ, ∀t. This parameter ρ reflects the connectivity of the

underlying graph topology. The value of ρ is inversely proportionate to how fast information spreads
in the client network. A small value of ρ results in information spreading faster (ρ = 0 in centralized
settings).

Within our analysis, we denote the parameter ρν as a combination of ρ and ν:

ρν :=
n− 1

n
(

7

2(1− ρ)
+

√
ρ

(1−√ρ)2
+

384

(1− ν2)
) (13)

Optimal Step-Size Under Uniform Client Influence. The defined step-size γ and total iterations
T for SWIFT is

γ :=

√
Mn2∆f√

TL+
√
M
≤

√
Mn2∆f

TL
, T ≥ 1932LM∆fρ

2
νn

4p2max.

Therefore, γ can be rewritten as

γ ≤

√
Mn2∆f

(1932LM∆fρ2νn
4p2max)L

=

√
1

1932L2ρ2νn
2p2max

.

When the client influence scores are uniform (i.e, pi = 1/n ∀i ∈ V), one can see that our step-size
becomes

γ = O
(
1

L

)
.

This mirrors the optimal step-size in analysis of gradient descent convergence to first-order stationary
points O(1/L) (Nesterov, 1998).

Communication Coefficient Selection (CCS) Initialization. We include different client-
communication vector initializations if the client influence scores are uniform versus non-uniform.
The reason for this is to ensure that the self-weight for each client i, wi,i, has a value greater than
1/n. This naturally occurs when the CIS are uniform, however is not so when they are non-uniform.

C Review of Existing Inter-Client Communication in Decentralized FL

Decentralized SGD (D-SGD) (Lian et al., 2017) One of the foundational decentralized Federated
Learning algorithms is Decentralized SGD. In order to minimize Equation 1, D-SGD orchestrates
a local gradient step for all clients before performing synchronous neighborhood averaging. The
D-SGD process for a single client i is defined as:

xt+1
i =

n∑
j=1

Wij

[
xt
j − g(xt

j , ξ
t
j)
]
. (14)

The term g(xt
j , ξ

t
j) denotes the stochastic gradient of xt

j with mini-batch data ξtj sampled from the
local data distribution of client j. The matrix W is a weighting matrix, where Wij is the amount of
xt+1
i which will be made up of client j’s local model after one local gradient step (e.g. if Wij = 1/2,

then half of xt+1
i will have been composed of client j’s model after its local gradient step). The

weighting matrix only has a zero value Wij = 0 if clients i and j are not connected (they are not
within the same neighborhood). The values of Wij are generally selected ahead of time by a central
host, with the usual weighting scheme being uniform. In D-SGD, model communication occurs only
after all local gradient updates are finished. These gradient updates are computed in parallel.

Periodic Averaging SGD (PA-SGD) (Wang & Joshi, 2018) The Periodic Averaging SGD
algorithm is an extension of D-SGD. In order to save communication costs when the number of
clients grows to be large, PA-SGD performs model averaging after an additional I1 local gradient
steps. Thus, the communication set for PA-SGD is defined as:

CI1 = {t ∈ N| t mod (I1 + 1) = 0}.
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The special case of I1 = 0 reduces to D-SGD. The PA-SGD process for a single client i is defined as:

xt+1
i =

{∑w
j=1 Wij

[
xt
j − g(xt

j , ξ
t
j)
]
, t ∈ CI1

xt
i − g(xt

i, ξ
t
i), otherwise.

(15)

Compared with D-SGD, PA-SGD still suffers from the inefficiency of having to wait for the slowest
client for each update. However, PA-SGD saves communication costs by reducing the frequency of
communication.

Figure 9: I1, I2 Depiction (from (Li et al., 2019)).

Local Decentralized SGD (LD-SGD) (Li et al., 2019) Continuing to generalize the foundational
decentralized Federated Learning algorithms is Local Decentralized SGD. LD-SGD generalizes
PA-SGD by allowing multiple chunks of singular D-SGD updates, as described in Equation 14, in
between the increased local gradient steps seen in PA-SGD. The number of D-SGD chunks is dictated
by a new parameter I2.

In this case, the communication set for LD-SGD is defined as

CI1,I2 =

{⋃∑I1+I2
i=I1

{t ∈ N| t mod (i+ 1) = 0} if I1 > 0,
{t ∈ N} if I1 = 0.

For example, in the case I1 = 3, I2 = 2, LD-SGD will take three local gradient steps and then
perform two D-SGD updates (which consists of a local gradient step and then averaging) as shown in
Figure 9. The special case of I2 = 1 reduces to PA-SGD. The LD-SGD process for a single client i is
defined as:

xt+1
i =

{
Perform

∑w
j=1 Wij

[
xt
j − g(xt

j , ξ
t
j)
]
, t ∈ CI1,I2

xt
i − g(xt

i, ξ
t
i), otherwise

(16)

D Proof of the Main Theorem

Before beginning, we quickly define the expected gradient Eit

[
G(xt

it
, ξit∗,t)

]
as

Ḡ(Xt, ξt) := Eit

[
G(xt

it , ξ
t
it)

]
=

n∑
i=1

piG(xt
it , ξ

t
it). (17)

Proof of Theorem 1. In this theorem, we characterize the convergence of the average of all local
models. Using the Gradient Lipschitz assumption with Equation 10 yields

f
(Xt+11n

n

)
≤f

(Xt1n

n

)
+

〈
∇f

(Xt1n

n

)
,
Xt(W t

it
− W̄ t)1n

n
− γ

G(xt
it
, ξit∗,t)1n

n

〉

+
L

2

∥∥∥∥∥Xt(W t
it
− W̄ t)1n

n
− γ

G(xt
it
, ξit∗,t)1n

n

∥∥∥∥∥
2

. (18)
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We first denote the average over all local models as x̄t := Xt1n

n . Taking the expectation with respect
to the updating client it yields

f(x̄t+1) ≤f(x̄t) +

〈
∇f(x̄t), Xt(W̄ t − W̄ t)

1n

n
− γḠ(Xt, ξ∗,t)

1n

n

〉
+

L

2
Eit

∥∥∥∥Xt(W t
it − W̄ t)

1n

n
− γG(xt

it , ξ
it
∗,t)

1n

n

∥∥∥∥2 (19)

=f(x̄t) +

〈
∇f(x̄t),−γḠ(Xt, ξ∗,t)

1n

n

〉
+

L

2
Eit

∥∥∥∥Xt(W t
it − W̄ t)

1n

n
− γG(xt

it , ξ
it
∗,t)

1n

n

∥∥∥∥2 (20)

=f(x̄t) +

〈
∇f(x̄t),− γ

Mn

n∑
i=1

M∑
m=1

pi∇ℓ(xt
i, ξ

i
m,t)

〉

+
L

2
Eit

∥∥∥∥Xt(W t
it − W̄ t)

1n

n
− γG(xt

it , ξ
it
∗,t)

1n

n

∥∥∥∥2 (21)

=f(x̄t)− γ

〈
∇f(x̄t),

1

Mn

n∑
i=1

M∑
m=1

pi∇ℓ(xt
i, ξ

i
m,t)

〉

+
L

2
Eit

∥∥∥∥Xt(W t
it − W̄ t)

1n

n
− γG(xt

it , ξ
it
∗,t)

1n

n

∥∥∥∥2 . (22)

Taking the expectation over all local data Eξ∼Di
yields

f(x̄t+1)− f(x̄t) ≤− γ

n

〈
∇f(x̄t),

n∑
i=1

pi∇fi(xt
i)

〉

+
L

2
Eξ∼Di,it

∥∥∥∥Xt(W t
it − W̄ t)

1n

n
− γG(xt

it , ξ
it
∗,t)

1n

n

∥∥∥∥2 . (23)

By properties of the inner product

f(x̄t+1)− f(x̄t) ≤− γ

2n

(∥∥∇f(x̄t)
∥∥2 + ∥∥∥∥∥

n∑
i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

−

∥∥∥∥∥∇f(x̄t)−
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2 )

+
L

2
Eξ∼Di,it

∥∥∥∥Xt(W t
it − W̄ t)

1n

n
− γG(xt

it , ξ
it
∗,t)

1n

n

∥∥∥∥2︸ ︷︷ ︸
:=A

. (24)

Bounding Term A: Given the update equation, term A can be transformed into

Eξ∼Di,it

∥∥∥∥(Xt(W t
it − W̄ t)− γG(xt

it , ξ
it
∗,t)

)
1n

n

∥∥∥∥2 = Eξ∼Di,it

∥∥∥∥(Xt+1 −XtW̄ t

)
1n

n

∥∥∥∥2 . (25)

Due to the symmetric and doubly stochastic property of W̄ t this reduces to

Eξ∼Di,it

∥∥x̄t+1 − x̄t
∥∥2 = Eξ∼Di,it

∥∥∥∥∥ 1n
n∑

i=1

(
xt+1
i − xt

i

)∥∥∥∥∥
2

= Eξ∼Di,it

∥∥∥∥ 1n(xt+1
it
− xt

it

)∥∥∥∥2 (26)

=
1

n2
Eξ∼Di,it

∥∥xt+1
it
− xt

it

∥∥2 (27)

≤ 3

n2
Eξ∼Di,it

(∥∥xt+1
it
− x̄t+1

∥∥2 + ∥∥x̄t − xt
it

∥∥2 + ∥∥x̄t+1 − x̄t
∥∥2 ). (28)

Combining like terms yields

(1− 3

n2
)Eξ∼Di,it

∥∥x̄t+1 − x̄t
∥∥2 ≤ 3

n2
Eξ∼Di,it

(∥∥xt+1
it
− x̄t+1

∥∥2 + ∥∥x̄t − xt
it

∥∥2 ). (29)
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Since n ≥ 2 (we assume at least 2 devices are running the algorithm) we find the following result

Eξ∼Di,it

∥∥x̄t+1 − x̄t
∥∥2 ≤ 3

(n2 − 3)
Eξ∼Di,it

(∥∥xt+1
it
− x̄t+1

∥∥2 + ∥∥x̄t − xt
it

∥∥2 )
=

3

(n2 − 3)
Eξ∼Di

n∑
i=1

pi

(∥∥x̄t+1 − xt+1
i

∥∥2 + ∥∥x̄t − xt
i

∥∥2 ) (30)

Thus, we have bounded Term A. Substituting this back into Equation 24 results in

≤− γ

2n

(∥∥∇f(x̄t)
∥∥2 + ∥∥∥∥∥

n∑
i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

−

∥∥∥∥∥∇f(x̄t)−
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2 )

]

+
3L

2(n2 − 3)
Eξ∼Di

n∑
i=1

pi

(∥∥x̄t+1 − xt+1
i

∥∥2 + ∥∥x̄t − xt
i

∥∥2 ). (31)

Taking the sum from t = 0 to t = T − 1 yields

f(x̄T )− f(x̄0) ≤− γ

2n

( T−1∑
t=0

∥∥∇f(x̄t)
∥∥2 − T−1∑

t=0

∥∥∥∥∥∇f(x̄t)−
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

+

T−1∑
t=0

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2 )

+
3L

2(n2 − 3)
Eξ∼Di

T−1∑
t=0

n∑
i=1

pi

(∥∥x̄t+1 − xt+1
i

∥∥2 + ∥∥x̄t − xt
i

∥∥2 ). (32)

Using the Lipschitz Gradient assumption, the following term is bounded as
T−1∑
t=0

∥∥∥∥∥∇f(x̄t)−
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

=

T−1∑
t=0

∥∥∥∥∥
n∑

i=1

pi∇fi(x̄t)−
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

(33)

≤
T−1∑
t=0

n∑
i=1

p2i
∥∥∇fi(x̄t)−∇fi(xt

i)
∥∥2 (34)

≤ L2
T−1∑
t=0

n∑
i=1

p2i
∥∥x̄t − xt

i

∥∥2 (35)

≤ L2pmax

T−1∑
t=0

n∑
i=1

pi
∥∥x̄t − xt

i

∥∥2 (36)

Placing this back into Equation 32, and rearranging, yields

f(x̄T )− f(x̄0) ≤− γ

2n

T−1∑
t=0

∥∥∇f(x̄t)
∥∥2 − γ

2n

T−1∑
t=0

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

+
3L

2(n2 − 3)
Eξ∼Di

T−1∑
t=0

n∑
i=1

pi

(∥∥x̄t+1 − xt+1
i

∥∥2 + ∥∥x̄t − xt
i

∥∥2 )

+
γL2pmax

2n

T−1∑
t=0

n∑
i=1

pi
∥∥x̄t − xt

i

∥∥2 (37)

Given that x̄0 = x0
i for all clients i, one can see that

T−1∑
t=0

n∑
i=1

pi
∥∥x̄t+1 − xt+1

i

∥∥2 =

T−1∑
t=0

n∑
i=1

pi
∥∥x̄t+1 − xt+1

i

∥∥2 + n∑
i=1

pi
∥∥x̄0 − x0

i

∥∥2 (38)

=

T−1∑
t=0

n∑
i=1

pi
∥∥x̄t − xt

i

∥∥2 + n∑
i=1

pi
∥∥x̄T − xT

i

∥∥2 (39)

≥
T−1∑
t=0

n∑
i=1

pi
∥∥x̄t − xt

i

∥∥2 . (40)
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Using the result of Equation 38 condenses Equation 37 into

f(x̄T )− f(x̄0) ≤− γ

2n

T−1∑
t=0

∥∥∇f(x̄t)
∥∥2 − γ

2n

T−1∑
t=0

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

+

(
3L

(n2 − 3)
+

γL2pmax

2n

)
Eξ∼Di

T−1∑
t=0

n∑
i=1

pi
∥∥x̄t+1 − xt+1

i

∥∥2
︸ ︷︷ ︸

:=B

(41)

Bounding Term B. The recursion of our update rule can be written as

Xt+1 = X0 − γ

t∑
j=0

G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

W̄ q − γ

t∑
j=0

G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q) (42)

The recursion equation for the expected consensus model x̄t and expected local model for client i
can be computed by multiplying by 1n

n and ei respectively

x̄t+1 = x̄0 − γ

t∑
j=0

G(xj
ij
, ξ

ij
∗,j)

1n

n
− γ

t∑
j=0

G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)

1n

n
(43)

xt+1
i = x0

i − γ
t∑

j=0

G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

W̄ qei − γ

t∑
j=0

G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)ei (44)

Using the recursive equations above transforms the bound on term B

Eξ∼Di

T−1∑
t=0

n∑
i=1

pi
∥∥x̄t+1 − xt+1

i

∥∥2
= γ2Eξ∼Di

∑T−1
t=0

∑n
i=1 pi

∣∣∣∣∣∣∣∣−∑t
j=0 G(xj

ij
, ξ

ij
∗,j)

(
1n

n −
∏t

q=j+1 W̄
qei

)
−
∑t

j=0 G(xj
ij
, ξ

ij
∗,j)

∏t
q=j+1(W

q
iq
− W̄ q)(1n

n − ei)

∣∣∣∣∣∣∣∣2 (45)

≤2γ2Eξ∼Di

T−1∑
t=0

n∑
i=1

pi

(∥∥∥∥∥∥
t∑

j=0

G(xj
ij
, ξ

ij
∗,j)

(
1n

n
−

t∏
q=j+1

W̄ qei

)∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
t∑

j=0

G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)(

1n

n
− ei)

∥∥∥∥∥∥
2 )

(46)

=2γ2Eξ∼Di

T−1∑
t=0

n∑
i=1

pi

( t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

(
1n

n
−

t∏
q=j+1

W̄ qei

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=B1

+

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)(

1n

n
− ei)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=B3

+ 2

t∑
j=0

t∑
j′=j+1

⟨G(xj
ij
, ξ

ij
∗,j)

(1n

n
−

t∏
q=j+1

W̄ qei
)
, G(xj′

ij′
, ξ

ij′

∗,j′)
(1n

n
−

t∏
q=j′+1

W̄ qei
)
⟩︸ ︷︷ ︸

:=B2

+ 2

t∑
j=0

t∑
j′=j+1

⟨G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)(

1n

n
− ei), G(xj′

ij′
, ξ

ij′

∗,j′)

t∏
q=j′+1

(W q
iq
− W̄ q)(

1n

n
− ei)⟩︸ ︷︷ ︸

:=B4

)
(47)
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Bounding Term B1. Using Lemma 2,

Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

(
1n

n
−

t∏
q=j+1

W̄ qei

)∥∥∥∥∥∥
2

≤ Eξ∼Di

t∑
j=0

∥∥∥G(xj
ij
, ξ

ij
∗,j)

∥∥∥2
∥∥∥∥∥∥
(
1n

n
−

t∏
q=j+1

W̄ qei

)∥∥∥∥∥∥
2

(48)

= Eξ∼Di

t∑
j=0

∥∥∥∥∥ 1

M

M∑
m=1

∇ℓ(xj
ij
; ξ

ij
m,j)

∥∥∥∥∥
2
∥∥∥∥∥∥
(
1n

n
−

t∏
q=j+1

W̄ qei

)∥∥∥∥∥∥
2

(49)

≤ Eξ∼Di

t∑
j=0

∥∥∥∥∥ 1

M

M∑
m=1

∇ℓ(xj
ij
; ξ

ij
m,j)

∥∥∥∥∥
2

(
n− 1

n
)ρt−j (50)

Using Lemma 4, the equation above becomes

= 2

t∑
j=0

(
σ2

M
+
∥∥∥∇fij (xj

ij
)
∥∥∥2 )(n− 1

n
)ρt−j (51)

= 2

( t∑
j=0

σ2

M
(
n− 1

n
)ρt−j +

t∑
j=0

∥∥∥∇fij (xj
ij
)
∥∥∥2 (n− 1

n
)ρt−j

)
(52)

≤ 2(n− 1)σ2

(1− ρ)Mn
+ 2

t∑
j=0

∥∥∥∇fij (xj
ij
)
∥∥∥2 (n− 1

n
)ρt−j (53)

Taking the expectation over worker ij yields the desired bound

Eij

[
2(n− 1)σ2

(1− ρ)Mn
+ 2

t∑
j=0

∥∥∥∇fij (xj
ij
)
∥∥∥2 (n− 1

n
)ρt−j

]

=
2(n− 1)σ2

(1− ρ)Mn
+

2(n− 1)

n

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 ρt−j (54)

Bounding Term B2. Using Lemma 2,

2

t∑
j=0

t∑
j′=j+1

⟨G(xj
ij
, ξ

ij
∗,j)

(1n

n
−

t∏
q=j+1

W̄ qei
)
, G(xj′

ij′
, ξ

ij′

∗,j′)
(1n

n
−

t∏
q=j′+1

W̄ qei
)
⟩

= 2
∑t

j=0

∑t
j′=j+1

∥∥∥G(xj
ij
, ξ

ij
∗,j)

∥∥∥ ∥∥∥(1n

n −
∏t

q=j+1 W̄
qei

)∥∥∥ ∥∥∥G(xj′

ij′
, ξ

ij′

∗,j′)
∥∥∥∥∥∥(1n

n −
∏t

q=j′+1 W̄
qei

)∥∥∥ (55)
For any αj,j′ > 0 we find

≤2
t∑

j=0

t∑
j′=j+1

(∥∥∥G(xj
ij
, ξ

ij
∗,j)

∥∥∥2 ∥∥∥G(xj′

ij′
, ξ

ij′

∗,j′)
∥∥∥2

2αj,j′

+
αj,j′

∥∥∥(1n

n −
∏t

q=j+1 W̄
qei

)∥∥∥2 ∥∥∥(1n

n −
∏t

q=j′+1 W̄
qei

)∥∥∥2
2

)
(56)

≤
t∑

j ̸=j′

(∥∥∥G(xj
ij
, ξ

ij
∗,j)

∥∥∥2 ∥∥∥G(xj′

ij′
, ξ

ij′

∗,j′)
∥∥∥2

2αj,j′
+

αj,j′ρ
t−min{j,j′}

2
(
n− 1

n
)2
)
, αj,j′ = αj′,j (57)
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By applying inequality of arithmetic and geometric means to the term in the last step, we can choose
αj,j′ > 0 s.t.

≤ n− 1

n

t∑
j ̸=j′

(∥∥∥G(xj
ij
, ξ

ij
∗,j)

∥∥∥ ∥∥∥G(xj′

ij′
, ξ

ij′

∗,j′)
∥∥∥ ρ t−min{j,j′}

2

)
(58)

≤ n− 1

n

t∑
j ̸=j′

(∥∥∥G(xj
ij
, ξ

ij
∗,j)

∥∥∥2 + ∥∥∥G(xj′

ij′
, ξ

ij′

∗,j′)
∥∥∥2

2
ρ

t−min{j,j′}
2

)
(59)

=
n− 1

n

t∑
j ̸=j′

∥∥∥G(xj
ij
, ξ

ij
∗,j)

∥∥∥2 ρ t−min{j,j′}
2 (60)

=
n− 1

n

t∑
j=0

t∑
j′=j+1

∥∥∥G(xj
ij
, ξ

ij
∗,j)

∥∥∥2 ρ t−j
2 (61)

=
n− 1

n

t∑
j=0

∥∥∥G(xj
ij
, ξ

ij
∗,j)

∥∥∥2 2(t− j)ρ
t−j
2 (62)

=
n− 1

n

t∑
j=0

2(t− j)ρ
t−j
2

∥∥∥∥∥ 1

M

M∑
m=1

∇ℓ(xj
ij
; ξ

ij
m,j)

∥∥∥∥∥
2

(63)

Using Lemma 4 (and the expectation Eξ∼Di that was omitted above but is present) yields

=
2(n− 1)

n

t∑
j=0

2(t− j)ρ
t−j
2

(
σ2

M
+
∥∥∥∇fij (xj

ij
)
∥∥∥2 ) (64)

≤
4(n− 1)

√
ρσ2

Mn(1−√ρ)2
+

2(n− 1)

n

t∑
j=0

∥∥∥∇fij (xj
ij
)
∥∥∥2 2(t− j)ρ

t−j
2 (65)

Taking the expectation over worker ij yields the desired bound

Eij

[
4(n− 1)

√
ρσ2

Mn(1−√ρ)2
+

2(n− 1)

n

t∑
j=0

∥∥∥∇fij (xj
ij
)
∥∥∥2 2(t− j)ρ

t−j
2

]

=
4(n− 1)

√
ρσ2

Mn(1−√ρ)2
+

2(n− 1)

n

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 2(t− j)ρ

t−j
2 (66)

Bounding Term B3.

Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)(

1n

n
− ei)

∥∥∥∥∥∥
2

=Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− ϕ1⊺ + ϕ1⊺ − W̄ q)(

1n

n
− ei)

∥∥∥∥∥∥
2

(67)

=Eξ∼Di

∑t
j=0

∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

[∏t
q=j+1(W

q
iq
− ϕ1⊺)(1n

n − ei)−
∏t

q=j+1(W̄
q − ϕ1⊺)(1n

n − ei)

]∥∥∥∥2 (68)

≤2Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− ϕ1⊺)(

1n

n
− ei)

∥∥∥∥∥∥
2

+ 2Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W̄ q − ϕ1⊺)(
1n

n
− ei)

∥∥∥∥∥∥
2

(69)
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Due to the structure of ϕ1⊺, multiplying this matrix by 1n

n or ei yields the same result. Using this, as
well as the double stochasticity of W̄ , we find

= 2Eξ∼Di

∑t
j=0

[ ∥∥∥G(xj
ij
, ξ

ij
∗,j)

∏t
q=j+1(W

q
iq
− ϕ1⊺)(1n

n − ei)
∥∥∥2 + ∥∥∥G(xj

ij
, ξ

ij
∗,j)

∏t
q=j+1 W̄

q(1n

n − ei)
∥∥∥2 ] (70)

= 2Eξ∼Di

∑t
j=0

[ ∥∥∥G(xj
ij
, ξ

ij
∗,j)

∏t
q=j+1(W

q
iq
− ϕ1⊺)(1n

n − ei)
∥∥∥2 +

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)(

1n

n
−

t∏
q=j+1

W̄ qei)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
=B1

]
(71)

Using the result of Lemma 3, as our communication graph G is uniformly strongly connected and
[W t

it
]i,i ≥ 1/n by construction, we see that

|
[ t∏
q=j+1

W q
iq
− ϕ1⊺

]
h,k
| ≤ 4νt−j−1 ∀ h, k. (72)

Using this result, we find that

|
[ t∏
q=j+1

(W q
iq
− ϕ1⊺)(

1n

n
− ei)

]
h
| ≤ 8(

n− 1

n
)νt−j−1 ∀ h. (73)

We can remove the -1 exponent by doubling the constant out front

|
[ t∏
q=j+1

(W q
iq
− ϕ1⊺)(

1n

n
− ei)

]
h
| ≤ 16(

n− 1

n
)νt−j ∀ h. (74)

Finally, using the fact that G(xj
ij
, ξ

ij
∗,j) is all zeros except for one column, the ij-th column, yields

the desired result

Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− ϕ1⊺)(

1n

n
− ei)

∥∥∥∥∥∥
2

≤
t∑

j=0

256(
n− 1

n
)2ν2(t−j)Eξ∼Di

∥∥∥∥∥ 1

M

M∑
m=1

∇ℓ(xj
ij
, ξ

ij
∗,j)

∥∥∥∥∥
2

. (75)

Utilizing Lemma 4 yields

≤ 256(
n− 1

n
)2

t∑
j=0

ν2(t−j)

(
σ2

M
+

∥∥∥∇fij (xt
ij )

∥∥∥2 ). (76)

By properties of geometric series, and taking the expectation over worker ij , we find

≤ 256σ2

(1− ν2)M
(
n− 1

n
)2 + 256(

n− 1

n
)2

t∑
j=0

Eij

∥∥∥∇fij (xt
ij )

∥∥∥2 ν2(t−j). (77)

Using the bound of B1 in the main proof above, we arrive at the final bound of B3

Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)(

1n

n
− ei)

∥∥∥∥∥∥
2

≤ 512σ2

(1− ν2)M
(
n− 1

n
)2 +

4(n− 1)σ2

(1− ρ)Mn
+ 512(

n− 1

n
)2

t∑
j=0

Eij

∥∥∥∇fij (xt
ij )

∥∥∥2 ν2(t−j)

+
4(n− 1)

n

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 ρt−j (78)

≤4(n− 1)σ2

Mn

(
1

(1− ρ)
+

128

(1− ν2)

)
+

4(n− 1)

n

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 (ρt−j + 128ν2(t−j)

)
(79)
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Bounding Term B4. Following similar steps as bounding Term B2 we find
2Eξ∼Di

∑t
j=0

∑t
j′=j+1⟨G(xj

ij
, ξ

ij
∗,j)

∏t
q=j+1(W

q
iq
− W̄ q)(1n

n − ei), G(xj′

ij′
, ξ

ij′

∗,j′)
∏t

q=j′+1(W
q
iq
− W̄ q)(1n

n − ei)⟩

≤2Eξ∼Di

t∑
j=0

t∑
j′=j+1

(∥∥∥G(xj
ij
, ξ

ij
∗,j)

∏t
q=j+1(W

q
iq
− W̄ q)(1n

n − ei)
∥∥∥2

2

+

∥∥∥G(xj′

ij′
, ξ

ij′

∗,j′)
∏t

q=j′+1(W
q
iq
− W̄ q)(1n

n − ei)
∥∥∥2

2

)
(80)

≤2Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)(

1n

n
− ei)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
=B3

(81)

Once again, we can use the proof of Lemma 1 to bound this result.

Finishing Bound of Term B. Putting all terms together, we find that Term B is bounded above by
T−1∑
t=0

n∑
i=1

pi
∥∥x̄t+1 − xt+1

i

∥∥2
≤2γ2

T−1∑
t=0

n∑
i=1

pi

(
2(n− 1)σ2

(1− ρ)Mn
+

2(n− 1)

n

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 ρt−j

+
4(n− 1)

√
ρσ2

Mn(1−√ρ)2
+

2(n− 1)

n

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 2(t− j)ρ

t−j
2

+
12(n− 1)σ2

Mn

(
1

(1− ρ)
+

128

(1− ν2)

)
+

12(n− 1)

n

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 (ρt−j + 128ν2(t−j)

))
(82)

Simplifying results in

≤2γ2
T−1∑
t=0

n∑
i=1

pi

(
4(n− 1)σ2

Mn

(
7

2(1− ρ)
+

√
ρ

(1−√ρ)2
+

384

(1− ν2)

)

+
4(n− 1)

n

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 (7

2
ρt−j + (t− j)ρ

t−j
2 + 384ν2(t−j)

))
(83)

≤8γ2σ2T

M

(
n− 1

n
(

7

2(1− ρ)
+

√
ρ

(1−√ρ)2
+

384

(1− ν2)
)︸ ︷︷ ︸

:=ρν

)

+
8(n− 1)γ2

n

T−1∑
t=0

n∑
i=1

pi

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 (7

2
ρt−j + (t− j)ρ

t−j
2 + 384ν2(t−j)

)
(84)

Using Lemma 5 results in

≤8γ2σ2Tρν
M

+
8(n− 1)γ2

n

T−1∑
t=0

n∑
i=1

pi

t∑
j=0

(
2

∥∥∥∥∥
n∑

i=1

pi∇fi(xj
i )

∥∥∥∥∥
2

+ 12L2
n∑

i=1

pi

∥∥∥x̄j − xj
i

∥∥∥2 + 6ζ2
)(

7

2
ρt−j + (t− j)ρ

t−j
2 + 384ν2(t−j)

)
(85)
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≤8γ2σ2Tρν
M

+
16(n− 1)γ2

n

T−1∑
t=0

t∑
j=0

(∥∥∥∥∥
n∑

i=1

pi∇fi(xj
i )

∥∥∥∥∥
2

+ 6L2
n∑

i=1

pi

∥∥∥x̄j − xj
i

∥∥∥2 + 3ζ2
)(

7

2
ρt−j + (t− j)ρ

t−j
2 + 384ν2(t−j)

)
(86)

≤8γ2σ2Tρν
M

+
16(n− 1)γ2

n

T−1∑
j=0

∞∑
t=j+1

(∥∥∥∥∥
n∑

i=1

pi∇fi(xj
i )

∥∥∥∥∥
2

+ 6L2
n∑

i=1

pi

∥∥∥x̄j − xj
i

∥∥∥2 + 3ζ2
)(

7

2
ρt−j + (t− j)ρ

t−j
2 + 384ν2(t−j)

)
(87)

≤8γ2σ2Tρν
M

+
16(n− 1)γ2

n

T−1∑
j=0

(∥∥∥∥∥
n∑

i=1

pi∇fi(xj
i )

∥∥∥∥∥
2

+ 6L2
n∑

i=1

pi

∥∥∥x̄j − xj
i

∥∥∥2 + 3ζ2
)( ∞∑

h=0

7

2
ρh + hρ

h
2 + 384ν2h

)
(88)

≤8γ2σ2Tρν
M

+ 16ρνγ
2
T−1∑
j=0

(∥∥∥∥∥
n∑

i=1

pi∇fi(xj
i )

∥∥∥∥∥
2

+ 6L2
n∑

i=1

pi

∥∥∥x̄j − xj
i

∥∥∥2 + 3ζ2
)

(89)

Using Equation 38 ends with

≤8γ2σ2Tρν
M

+ 48Tρνγ
2ζ2 + 16ρνγ

2
T−1∑
t=0

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

+ 96L2ρνγ
2
T−1∑
t=0

n∑
i=1

pi
∥∥x̄t+1 − xt+1

i

∥∥2 (90)

Now subtract the final term on the right hand side from both sides
T−1∑
t=0

n∑
i=1

pi
∥∥x̄t+1 − xt+1

i

∥∥2 ( 1− 96L2ρνγ
2︸ ︷︷ ︸

:=z

)
≤8γ2σ2Tρν

M
+ 48Tρνγ

2ζ2

+ 16ρνγ
2
T−1∑
t=0

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

(91)

By Lemma 6, we can divide z from both sides
T−1∑
t=0

n∑
i=1

pi
∥∥x̄t+1 − xt+1

i

∥∥2 ≤ 8γ2σ2Tρν
Mz

+
48Tρνγ

2ζ2

z
+

16ρνγ
2

z

T−1∑
t=0

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

(92)

Finishing Bound of Term A. Substituting the bound of B above into Equation 41 yields

f(x̄T )− f(x̄0) ≤− γ

2n

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥2 − γ

2n

T−1∑
t=0

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

+

(
3L

(n2 − 3)
+

γL2pmax

2n︸ ︷︷ ︸
:=ϕ

)(
8γ2σ2Tρν

Mz
+

48Tρνγ
2ζ2

z

+
16ρνγ

2

z

T−1∑
t=0

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2 )

(93)

Rearranging terms simplifies the inequality above to

f(x̄T )− f(x̄0) ≤− γ

2n

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥2 + γ

2n

(
32ρνϕγn

z
− 1

) T−1∑
t=0

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

+
8ϕγ2σ2Tρν

Mz
+

48ϕTρνγ
2ζ2

z
(94)
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From Lemma 8, we find that (1− 32ρνϕγn
z ) ≥ 0. Therefore, the second term of the right hand side

above can be removed.

f(x̄T )− f(x̄0) ≤ − γ

2n

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥2 + 8ϕγ2σ2Tρν
Mz

+
48ϕTρνγ

2ζ2

z
(95)

Rearranging the inequality above and dividing by T yields
1

T

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥2 ≤ 2n
(
f(x̄0)− f(x̄T )

)
Tγ

+
16nϕγσ2ρν

Mz
+

96nϕρνγζ
2

z
(96)

=
2n

(
f(x̄0)− f(x̄T )

)
Tγ

+
16γϕnρν

z

(σ2

M
+ 6ζ2

)
(97)

From Lemmas 6 and 7, the inequality above becomes
1

T

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥2 ≤ 2n
(
f(x̄0)− f(x̄T )

)
Tγ

+
1921
10 Lγρν

n

(σ2

M
+ 6ζ2

)
(98)

Substituting in the defined step-size γ (as well as its bound) yields
1

T

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥2 ≤2n
(
f(x̄0)− f(x̄T )

)
T

(√
TL+

√
M√

Mn2∆f

)

+
1921
10 L

n

(√
Mn2∆f√
TL

)
ρν

(σ2

M
+ 6ζ2

)
(99)

=
2
√
∆f

T
+

2
√
L∆f√
TM

+
1921
10

√
L∆fρν

(
σ2 + 6ζ2

√
M

)
√
TM

(100)

The final desired result is shown as

1

T

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥2 ≤ 2
√

∆f

T
+

2
√

L∆f

(
1 + 1921

20 ρν
(
σ2 + 6ζ2

√
M

))
√
TM

(101)

E Additional Lemmas

Lemma 2 (From Lemma 3 in Lian et al. 2018 (Lian et al., 2018)). Let W t be a symmetric doubly
stochastic matrix for each iteration t. Then∥∥∥∥∥1n

n
−

T∏
t=1

W tei

∥∥∥∥∥
2

≤ n− 1

n
ρT , ∀T ≥ 0.

Lemma 3 (From Corollary 2 in Nedic and Olshevsky 2014 (Nedić & Olshevsky, 2014)). Let the
communication graph G be uniformly strongly connected (otherwise known as B-strongly-connected
for some integer B > 0), and A(t) ∈ Rn×n be a column stochastic matrix with [A(t)]i,i ≥ 1/n ∀i, t.
Define the product of matrices A(t) through A(s) (for t ≥ s ≥ 0) as A(t : s) := A(t) . . . A(s). Then,
there exists a stochastic vector ϕ(t) ∈ Rn such that

|[A(t : s)]i,j − ϕi(t)| ≤ Cνt−s

will always hold for the following values of C and ν,
C = 4, ν = (1− 1/nnB)1/B < 1.

Lemma 4. Under Assumption 1, the following inequality holds

Eξ∼Di

∥∥∥∥∥ 1

M

M∑
m=1

∇ℓ(xt
i, ξ

i
m,t)

∥∥∥∥∥
2

≤ σ2

M
+

∥∥∇fi(xt
i)
∥∥2 .

Lemma 5. Under Assumption 1, the following inequality holds

Ei

∥∥∇fi(xt
i)
∥∥2 ≤ 2

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

+ 12L2
n∑

i=1

pi
∥∥x̄t − xt

i

∥∥2 + 6ζ2.
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Lemma 6. Given the defined step-size γ and total iterations T in Theorem 1, the term z is bounded

1 > z := 1− 96L2ρνγ
2 ≥ 1− 384

1932(775)
.

Lemma 7. Given the defined step-size γ and total iterations T in Theorem 1, the term ϕ is bounded

ϕ :=
3L

(n2 − 3)
+

L2γpmax

2n
≤ L

n2
(12 +

2

775(193)
).

Lemma 8. Given the defined step-size γ and total iterations T in Theorem 1, we find the following
bound

(
1− 32ρνϕγn

z

)
≥ 0

F Lemma Proofs

Proof of Lemma 1. These steps are shown in the Main Theorem proof. Due to the symetry and
double stochasticity of W̄ we find

Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)(

1n

n
− ei)

∥∥∥∥∥∥
2

(102)

=Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− ϕ1⊺ + ϕ1⊺ − W̄ q)(

1n

n
− ei)

∥∥∥∥∥∥
2

(103)

=Eξ∼Di

∑t
j=0

∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

[∏t
q=j+1(W

q
iq
− ϕ1⊺)(1n

n − ei)−
∏t

q=j+1(W̄
q − ϕ1⊺)(1n

n − ei)

]∥∥∥∥2 (104)

≤2Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− ϕ1⊺)(

1n

n
− ei)

∥∥∥∥∥∥
2

+ 2Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W̄ q − ϕ1⊺)(
1n

n
− ei)

∥∥∥∥∥∥
2

(105)

Due to the structure of ϕ1⊺, multiplying this matrix by 1n

n or ei yields the same result. Using this, as
well as the double stochasticity of W̄ , we find

= 2Eξ∼Di

∑t
j=0

[ ∥∥∥G(xj
ij
, ξ

ij
∗,j)

∏t
q=j+1(W

q
iq
− ϕ1⊺)(1n

n − ei)
∥∥∥2 + ∥∥∥G(xj

ij
, ξ

ij
∗,j)

∏t
q=j+1 W̄

q(1n

n − ei)
∥∥∥2 ] (106)

= 2Eξ∼Di

∑t
j=0

[ ∥∥∥G(xj
ij
, ξ

ij
∗,j)

∏t
q=j+1(W

q
iq
− ϕ1⊺)(1n

n − ei)
∥∥∥2 +

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)(

1n

n
−

t∏
q=j+1

W̄ qei)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
=B1

]
(107)

Using the result of Lemma 3, as our communication graph G is uniformly strongly connected and
[W t

it
]i,i ≥ 1/n by construction, we see that

|
[ t∏
q=j+1

W q
iq
− ϕ1⊺

]
h,k
| ≤ 4νt−j−1 ∀ h, k. (108)

Using this result, we find that

|
[ t∏
q=j+1

(W q
iq
− ϕ1⊺)(

1n

n
− ei)

]
h
| ≤ 8(

n− 1

n
)νt−j−1 ∀ h. (109)

We can remove the -1 exponent by doubling the constant out front

|
[ t∏
q=j+1

(W q
iq
− ϕ1⊺)(

1n

n
− ei)

]
h
| ≤ 16(

n− 1

n
)νt−j ∀ h. (110)
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Since G(xj
ij
, ξ

ij
∗,j) is all zeros except for one column, the ij-th column, we find

Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− ϕ1⊺)(

1n

n
− ei)

∥∥∥∥∥∥
2

≤
t∑

j=0

256(
n− 1

n
)2ν2(t−j)Eξ∼Di

∥∥∥∥∥ 1

M

M∑
m=1

∇ℓ(xj
ij
, ξ

ij
∗,j)

∥∥∥∥∥
2

. (111)

Utilizing Lemma 4 yields

≤ 256(
n− 1

n
)2

t∑
j=0

ν2(t−j)

(
σ2

M
+

∥∥∥∇fij (xt
ij )

∥∥∥2 ). (112)

By properties of geometric series, and taking the expectation over worker ij , we find

≤ 256σ2

(1− ν2)M
(
n− 1

n
)2 + 256(

n− 1

n
)2

t∑
j=0

Eij

∥∥∥∇fij (xt
ij )

∥∥∥2 ν2(t−j). (113)

Using the bound Equation 54 (term B1) in the main proof above, we arrive at the final bound

Eξ∼Di

t∑
j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)(

1n

n
− ei)

∥∥∥∥∥∥
2

≤ 512σ2

(1− ν2)M
(
n− 1

n
)2 +

4(n− 1)σ2

(1− ρ)Mn
+ 512(

n− 1

n
)2

t∑
j=0

Eij

∥∥∥∇fij (xt
ij )

∥∥∥2 ν2(t−j)

+
4(n− 1)

n

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 ρt−j (114)

≤4(n− 1)σ2

Mn

(
1

(1− ρ)
+

128

(1− ν2)

)
+

4(n− 1)

n

t∑
j=0

Eij

∥∥∥∇fij (xj
ij
)
∥∥∥2 (ρt−j + 128ν2(t−j)

)
(115)

Thus, we have our desired result

E
t∑

j=0

∥∥∥∥∥∥G(xj
ij
, ξ

ij
∗,j)

t∏
q=j+1

(W q
iq
− W̄ q)(

1n

n
− ei)

∥∥∥∥∥∥
2

≤ O(σ
2

M
+ E

t∑
j=0

∥∥∥∇fij (xj
ij
)
∥∥∥2). (116)
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Proof of Lemma 4.

Eξ∼Di

∥∥∥∥∥ 1

M

M∑
m=1

∇ℓ(xt
i, ξ

i
m,t)

∥∥∥∥∥
2

(117)

=
1

M2
Eξ∼Di

∥∥∥∥∥
M∑

m=1

∇ℓ(xt
i, ξ

i
m,t)−∇fi(xt

i) +∇fi(xt
i)

∥∥∥∥∥
2

(118)

=
1

M2
Eξ∼Di

∥∥∥∥∥
M∑

m=1

∇ℓ(xt
i, ξ

i
m,t)−∇fi(xt

i)

∥∥∥∥∥+ Eξ∼Di

∥∥∥∥∥
M∑

m=1

∇fi(xt
i)

∥∥∥∥∥
2

+
2

M2
Eξ∼Di

〈 M∑
m=1

(
∇ℓ(xt

i, ξ
i
m,t)−∇fi(xt

i)
)
,

M∑
m=1

∇fi(xt
i)
〉

(119)

=
1

M2

M∑
m=1

Eξ∼Di

∥∥∇ℓ(xt
i, ξ

i
m,t)−∇fi(xt

i)
∥∥+M2

∥∥∇fi(xt
i)
∥∥2 (120)

≤σ2

M
+
∥∥∇fi(xt

i)
∥∥2 (121)

Proof of Lemma 5.

Ei

∥∥∇fi(xt
i)
∥∥2 = Ei

∥∥∥∥∥∇fi(xt
i)−

n∑
i′=1

pi′∇fi(xt
i′) +

n∑
i′=1

pi′∇fi(xt
i′)

∥∥∥∥∥
2

(122)

≤ 2Ei

(∥∥∥∥∥∥∇fi(xt
i)−

n∑
j=1

pj∇fj(xt
j)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
n∑

j=1

pj∇fj(xt
j)

∥∥∥∥∥∥
2 )

(123)

The first term on the right hand side can be bounded by

Ei

∥∥∥∥∥∥∇fi(xt
i)−

n∑
j=1

pj∇fj(xt
j)

∥∥∥∥∥∥
2

=3Ei

(∥∥∥∥∇fi(xt
i)−∇fi(

Xt1n

n
)

∥∥∥∥2 +
∥∥∥∥∥∥

n∑
j=1

pj∇fj(
Xt1n

n
)−

n∑
j=1

pj∇fj(xt
j)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∇fi(X
t1n

n
)−

n∑
j=1

pj∇fj(
Xt1n

n
)

∥∥∥∥∥∥
2 )

(124)

≤3Ei

(
L2

∥∥xt
i − x̄t

∥∥2 + n∑
j=1

pj
∥∥∇fj(x̄t)−∇fj(xt

j)
∥∥2 + ∥∥∇fi(x̄t)−∇f(x̄t)

∥∥2 ) (125)

≤3Ei

(
L2

∥∥xt
i − x̄t

∥∥2 + L2
n∑

j=1

pj
∥∥x̄t − xt

j

∥∥2 )+ 3ζ2 (126)

=6L2
n∑

i=1

pi
∥∥x̄t − xt

i

∥∥2 + 3ζ2 (127)

Combining all terms yields the final result

Ei

∥∥∇fi(xt
i)
∥∥2 ≤ 2

∥∥∥∥∥
n∑

i=1

pi∇fi(xt
i)

∥∥∥∥∥
2

+ 12L2
n∑

i=1

pi
∥∥x̄t − xt

i

∥∥2 + 6ζ2 (128)
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Proof of Lemma 6. It is trivial to see that z < 1. We now determine the lower bound of z given
n ≥ 2, pmax ≥ 1/n, and ρν ≥ 775/4

z = 1− 96L2ρνγ
2 = 1− 96L2ρν(

Mn2∆f

TL
) = 1− 96L2ρν(

1

1932L2ρ2νn
2p2max

) (129)

= 1− 96

1932ρνn2p2max

≤ 1− 384

1932(775)
(130)

Proof of Lemma 7. Given n ≥ 2 and ρν ≥ 775/4, and the definition of γ, one can see

ϕ = (
3L

(n2 − 3)
+

L2γpmax

2n
) =

L

n2
(

3

(1− 3/n2)
+

Lγnpmax

2
) (131)

≤ L

n2
(

3

(1− 3/n2)
+

Lnpmax

2
(

√
Mn2∆f√
TL

)) (132)

Using the definition of T it follows that

ϕ ≤ L

n2
(

3

(1− 3/n2)
+

Lnpmax

2
(

1

193Lρνnpmax
)) ≤ L

n2
(

3

(1− 3/4)
+

1

386ρν
) (133)

=
L

n2
(12 +

2

775(193)
) (134)

Proof of Lemma 8. Given n ≥ 2, pmax ≥ 1/n Lemma 6, and Lemma 7, one can see

1− 1− 32ρνϕγn

z
= 1− 32ρνϕn

z
(

1

193Lρνnpmax
) = 1− 32nϕ

193Lz
(135)

≥ 1−
32(12 + 2

775(193) )

193zn
≥ 1−

16(12 + 2
775(193) )

193(1− 384
1932(775) )

≥ 0 (136)
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