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Abstract
Conformal prediction is a powerful tool for con-
structing prediction intervals for black-box mod-
els, providing a finite sample coverage guarantee
for exchangeable data. However, this exchange-
ability is compromised when some entries of the
test feature are contaminated, such as in the case
of cellwise outliers. To address this issue, this
paper introduces a novel framework called detect-
then-impute conformal prediction. This frame-
work first employs an outlier detection procedure
on the test feature and then utilizes an imputation
method to fill in those cells identified as outliers.
To quantify the uncertainty in the processed test
feature, we adaptively apply the detection and im-
putation procedures to the calibration set, thereby
constructing exchangeable features for the con-
formal prediction interval of the test label. We
develop two practical algorithms, PDI-CP and
JDI-CP, and provide a distribution-free coverage
analysis under some commonly used detection
and imputation procedures. Notably, JDI-CP
achieves a finite sample 1 − 2α coverage guar-
antee. Numerical experiments on both synthetic
and real datasets demonstrate that our proposed
algorithms exhibit robust coverage properties and
comparable efficiency to the oracle baseline.

1. Introduction
As the volume and complexity of data expand, machine
learning models and algorithms have become essential
tools for enhancing decision-making processes across var-
ious domains, including autonomous driving (Min et al.,
2024), wing design (Zhang et al., 2024), and disease di-
agnosis (Shang et al., 2024). Ensuring the reliability of
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prediction models in risk-sensitive applications hinges on
valid uncertainty quantification. Conformal prediction (CP,
Vovk et al. (2005)) offers a flexible and robust frame-
work for uncertainty quantification of arbitrary machine
learning models by constructing prediction interval (PI).
To be specific, suppose we have collected an i.i.d. la-
beled dataset Dl = {(Xi, Yi)}ni=1 ⊂ Rd × R where
(Xi, Yi) ∼ P = PX × PY |X . Given the test data Xn+1,
CP issues a PI ĈCP(Xn+1) satisfying the marginal cover-
age P{Yn+1 ∈ ĈCP(Xn+1)} ≥ 1 − α if the test data and
labeled data are exchangeable. However, the distribution
of some variables in test data may deviate from that of the
training data due to measurement error, natural variation,
or feature contamination. This issue, referred to as cell-
wise outliers (Alqallaf et al., 2009), can result in inaccurate
predictions and flawed decisions. For example, consider a
hospital that seeks to use the patient’s biomarkers to pre-
dict incidence rate based on a model trained on data from
recovered patients. For a newly admitted patient, some of
whose biomarkers may differ from those in the training set.
Conducting robust uncertainty quantification for machine
learning models in the presence of cellwise outliers remains
an underexplored area.

In this case, we observe a contaminated test feature X̃n+1

with entries

X̃n+1,j =

{
Xn+1,j , j ∈ [d] \ O∗

Zn+1,j , j ∈ O∗ , (1)

where O∗ ⊆ [d] denotes coordinates of cellwise outliers in
X̃n+1, and Zn+1 ∼ PZ is an arbitrarily distributed outliers
and independent of {(Xi, Yi)}n+1

i=1 . Our goal is to build a
PI for test label Yn+1 with a target coverage level 1 − α
when only X̃n+1 is observed. However, the classical CP
method is incapable of providing a valid PI as test data
(X̃n+1, Yn+1) is not exchangeable with the labeled data Dl.
Furthermore, the distribution shift from the labeled data to
the test data is unknown and difficult to estimate without ad-
ditional distribution or structure assumptions, which makes
the weighted conformal prediction (WCP) method (Tibshi-
rani et al., 2019) that requires consistent likelihood ratio
estimation unsuitable in this context as well. Therefore, a
more principled CP approach is needed to address cellwise
outliers in test data.
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To deal with cellwise outliers, our framework starts from
the common approach, detect then impute (Raymaekers
& Rousseeuw, 2021; 2024b). We implement a detection
method to identify the locations of outliers in X̃n+1 and
mask those entries, followed by using an imputation method
to impute the masked entries. After this procedure, we
obtain the processed feature X̌DI

n+1 (see Section 3.1 for de-
tails). The next step is to construct the PI using the labeled
data Dl and X̌DI

n+1. However, X̌DI
n+1 and Xi for i ∈ [n]

remain nonexchangeable because the detection and imputa-
tion procedures cannot exactly recover the uncontaminated
feature Xn+1. To tackle this challenge, our key strategy
involves adaptively applying detection and imputation pro-
cedures to the labeled features Xi for i ∈ [n], aiming to
produce exchangeable copies of the processed test feature
X̌DI

n+1. Subsequently, we utilize the split conformal predic-
tion (SCP) method (Papadopoulos et al., 2002; Vovk et al.,
2005) to construct the PI based on the residuals computed
from the processed labeled data. Building on this concept,
we first propose an oracle detection-imputation conformal
prediction (ODI-CP) method and prove that it can achieve a
finite sample coverage property. Following this, we develop
a proxy detection-imputation CP (PDI-CP) method based
on the data-driven approximation to ODI-CP. To further
have a finite sample coverage guarantee, we propose an-
other algorithm joint detection-imputation CP (JDI-CP) to
construct Jackknife+ type PI (Barber et al., 2021).

Our contributions have three folds: (1) we propose a novel
CP framework to efficiently address the issue of cellwise
outliers in test data, which can be wrapped around any
well-known detection and imputation procedure; (2) for
arbitrarily cellwise outliers, we establish coverage error
bounds for PDI-CP and a finite sample 1 − 2α coverage
property for JDI-CP, and all results are distribution-free;
(3) experiments on synthetic data and real data show that
the proposed method has a robust coverage control and a
comparable performance with oracle approaches.

2. Related work
Cellwise outliers. In the context of handling extensive
datasets, it is increasingly common for only a few individual
entries (cells) to show anomalies, called cellwise outliers,
first published by Alqallaf et al. (2009). Building upon this
concept, Van Aelst et al. (2011) proposed the earliest cell-
wise detection method and Rousseeuw & Bossche (2018) pi-
oneered the Detect Deviating Cells (DDC) algorithm, which
predicts the value for each cell and identifies outliers by the
significant deviations of predicted values from the original
values. Thereafter, Raymaekers & Rousseeuw (2021) pro-
posed the cellHandler method, which integrates all relations
in variables to identify complex adversarial cellwise outliers.
Along this line, Zaccaria et al. (2024) proposed the cell-

GMM method to detect cellwise outliers in heterogeneous
populations. Inspired by these detection methods, Liu et al.
(2022) proposed the BiRD algorithm to control the false
discovery rate in detection. Besides detection, there are
various cellwise robust methods available for cases includ-
ing discriminant analysis (Aerts & Wilms, 2017), principal
component analysis (Hubert et al., 2019), regression models
(Öllerer et al., 2016; Filzmoser et al., 2020), cluster analy-
sis (Garcı́a-Escudero et al., 2021), location and covariance
estimators (Raymaekers & Rousseeuw, 2024a) and so on.
To the best of our knowledge, this paper is the first work
considering the predictive inference problem with cellwise
outliers.

Conformal prediction without exchangeability. Our paper
is related to the line of work on the CP approaches catered
to nonexchangeable data. Chernozhukov et al. (2018) ex-
tended CP to time series data based on block-permutation.
Tibshirani et al. (2019) proposed the weighted conformal
prediction (WCP) framework to deal with the covariate shift
between labeled data and test data. Further, Yang et al.
(2024) developed a doubly robust approach to construct PIs
satisfying approximate marginal coverage under covariate
shift. Podkopaev & Ramdas (2021) studied the conformal
PI under the label shift case. For arbitrary distribution shift
issues, Barber et al. (2023) developed a robust weighted CP
method with deterministic weights that could provide ap-
proximately marginal coverage under gradual changes in the
data distribution. Cauchois et al. (2024) studied construct-
ing distributional robust PI for the test data sampled from a
distribution in an f -divergence ball around the population
of labeled data. This paper focuses on discussing another
special case of nonexchangeability caused by cellwise out-
liers, which cannot be addressed by the methods proposed
so far.

Predictive inference with missing data. Another topic
closely related to our paper is the construction of PI in
the presence of missing values in features. The entries
identified as cellwise outliers by the detection procedure are
masked, transforming the primary problem into predictive
inference with missing data. Zaffran et al. (2023; 2024)
examined a setting where missing values may occur in both
labeled and test features, proposing to perform SCP after
imputing the missing entries in both sets. This approach
could achieve finite-sample marginal coverage if the random
missing patterns in the labeled and test sets are exchangeable.
However, this assumption does not hold in our context, as
the masked entries identified by the detection procedure lack
exchangeability due to cellwise outliers in the test feature.
In addition, Lee et al. (2024) proposed the propensity score
discretized conformal prediction (pro-CP) to construct PIs
with missing values in outcomes. This is different from the
scenario considered in this paper.
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Conformal inference for outlier detection. In recent years,
conformal inference has emerged as an important tool in
the field of outlier detection at the intersection of statistics
and machine learning. Due to the space limit, we list some
relevant works (Guan & Tibshirani, 2022; Zhang et al., 2022;
Bates et al., 2023b; Marandon et al., 2024; Bashari et al.,
2024; Liang et al., 2024). However, the above works aim to
apply conformal inference to test the presence of outliers,
while this paper focuses on the uncertainty quantification of
prediction and the construction of PI when some entries of
the observed test feature are contaminated.

3. Problem setup and oracle approach
In this section, we present problem formulation and moti-
vation of our method from an oracle perspective. Before
that, we list some useful notations. We split the labeled data
Dl into the training set Dt = {(Xi, Yi)}n0−1

i=1 and the cali-
bration set Dc = {(Xi, Yi)}ni=n0

, where 1 < n0 < n. The
prediction model µ̂(·) : Rd → R is fitted on the training
set. Given real numbers {ri}ni=1 and α ∈ (0, 1), we de-
note q̂−α ({ri}ni=1) and q̂+α ({ri}ni=1) as the ⌈α(n+1)⌉th and
⌈(1− α)(n+ 1)⌉th smallest value in {ri}ni=1, respectively.
Given x ∈ Rd, we write the ℓ-th coordinate of x as xℓ.

3.1. Detection and imputation procedures

This subsection introduces the detection (D) and imputation
(I) procedures to clean the test feature for constructing PI.

A generic detection procedure (D) includes two ingredi-
ents: cellwise score function ŝj(·) : R→ R and threshold
τj ∈ R for j ∈ [d], which are both fitted on the training
set Dt. Given any x ∈ Rd, we write the output of detec-
tion procedure as D(x) = {j ∈ [d] : ŝj(xj) > τj}. For
example, Z-score (Curtis et al., 2016) is a detection method
based on standardization, which has score zj := ŝj(xj) =
(xj − µj)/σj , where µj and σj are the mean and standard
deviation of the j-th coordinate. Typically, the entry xj is
considered as an outlier when |zj | > 3. Other more so-
phisticated detection methods include DDC (Rousseeuw
& Bossche, 2018), one-class SVM classifier (Bates et al.,
2023a), etc.

We define the imputation procedure (I) as a function of
feature x ∈ Rd and entry subset O ⊆ [d], then the imputed
value for coordinate j ∈ O is given by

[I(x,O)]j =

{
xj , j /∈ O
ϕj({xl}l/∈O), j ∈ O

,

where ϕj(·) : Rdobs → R with dobs = d−|O| is imputation
function for the j-th coordinate, and is also fitted on the
training set Dt. The output of most popular imputation
methods can be formalized in the above form, such as Mean
Imputation, k-Nearest Neighbour (kNN, Troyanskaya et al.

(2001)) and Multivariate Imputation by Chained Equations
(MICE, Van Buuren et al. (1999)).

Hereafter, we abbreviate the detection and imputation pro-
cedure as DI, and denote the processed test feature as

X̌DI
n+1 = I(X̃n+1, Õn+1), Õn+1 = D(X̃n+1). (2)

3.2. Oracle detection-imputation

Because DI cannot exactly recover the ground truth feature
Xn+1, i.e., X̌DI

n+1 ̸= Xn+1. Therefore, we must consider
the recovery uncertainty from DI when constructing the
PI. We begin with an oracle procedure by assuming O∗ is
known and D satisfies the following sure detection assump-
tion. Later we will discuss the necessity of this assumption
for informative coverage in Section 3.3.

Assumption 3.1 (Sure detection). We call the detection pro-
cedure D has the sure detection property, if all the cellwise
outliers are detected, namely O∗ ⊆ Õn+1 = D(X̃n+1) for
test point X̃n+1.

Assumption 3.2 (Isolated detection). Given the score func-
tion ŝj and threshold τj , the detection indicator 1{ŝj(xj) ≤
τj} depends only on xj for j ∈ [d].

Denote Ôn+1 = D(Xn+1) as the detection subset by apply-
ing D to the uncontaminated feature Xn+1, which cannot
be obtained in practice. Assumption 3.2 says that the de-
tection indicator of each coordinate is independent of each
other, which is used to build the connection between Õn+1

and Ôn+1, and we will also provide coverage results when
this assumption does not hold in Section 5. Next lemma
shows that the randomness of Õn+1 completely originates
from Ôn+1.

Lemma 3.3. Under Assumptions 3.1 and 3.2, it holds that
Õn+1 = Ôn+1 ∪ O∗ and

X̌DI
n+1 = I(Xn+1, Ôn+1 ∪ O∗). (3)

Denote Ôi = D(Xi) for i = n0, . . . , n as outputs by ap-
plying D in calibration features. Since ŝj(·) and τj are
independent of calibration set Dc and (Xn+1, Yn+1), we
know that {Ôi ∪ O∗}n+1

i=n0
are exchangeable. Define the

oracle detection-imputation (ODI) features

X̌∗
i = I(Xi, Ôi ∪ O∗), i = n0, . . . , n. (4)

By comparing (3) and (4), we have X̌∗
n+1 = X̌DI

n+1. Let
R∗

i = |Yi− µ̂(X̌∗
i )| be residuals computed by ODI features.

We introduce the PI defined as

ĈODI(X̃n+1) = µ̂(X̌DI
n+1)± q̂+α ({R∗

i }ni=n0
), (5)

and call this oracle method as ODI-CP. For simplicity, we
use the absolute residual score to construct PI here, but
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our method supports various non-conformity scores as well,
such as normalized residual (Lei et al., 2018), conformalized
quantile regression (CQR) (Romano et al., 2019), et al. The
following proposition provides finite sample coverage for
ODI-CP.

Proposition 3.4. Suppose the detection procedure D satis-
fies Assumptions 3.1 and 3.2, then

P
{
Yn+1 ∈ ĈODI(X̃n+1)

}
≥ 1− α. (6)

The role of data-driven mask Ôi in ODI features (4) is to
keep the exchangeability with the processed test feature (3)
masked by Ôn+1. This idea is similar to the operations on
the calibration set in selective conformal prediction litera-
ture (Bao et al., 2024b;a; Jin & Ren, 2025), where they aim
to construct PI for selected test data and consider perform-
ing a similar selection procedure on the calibration set to
satisfy the post-selection exchangeable condition.

3.3. Necessity of sure detection property

The next theorem gives a negative result for the case when
the sure detection property of D does not hold.

Theorem 3.5. If X̌DI
n+1 contains cellwise outliers, given

any PI taking the form Ĉ(X̌DI
n+1) = µ̂(X̌DI

n+1) ± q̂n and
satisfying marginal coverage P{Yn+1 ∈ Ĉ(X̌DI

n+1)} ≥ 1−
α. For arbitrary M > 0, there exists a prediction model µ̂,
distributions P and PZ such that for (Xn+1, Yn+1) ∼ P
and Zn+1 ∼ PZ , P(q̂n ≥ M) ≥ 1 − α. In other words,

limM→∞ E
[
|Ĉ(X̌DI

n+1)|
]
=∞.

This theorem indicates that if outliers persist within the pro-
cessed feature X̌DI

n+1, the further PI will fail to provide a
meaningful coverage guarantee in a distribution-free and
model-free fashion. Therefore, the sure detection property
introduced in Assumption 3.1 is reasonable and necessary
for predictive inference tasks with the existence of cellwise
outliers. The proof of Theorem 3.5 and a similar negative re-
sult under CQR score are deferred to Appendix C.2. In fact,
Assumption 3.1 can be satisfied in practice if we choose
relatively smaller detection thresholds {τj}dj=1 in D proce-
dure. In fact, a similar sure detection condition also appears
in Wasserman & Roeder (2009); Meinshausen et al. (2009);
Liu et al. (2022).

4. Detect-then-impute conformal prediction
In this section, we develop two practical algorithms named
PDI-CP and JDI-CP to construct the PI, and the corre-
sponding coverage property is analyzed. The PDI-CP is
based on a proxy of the ODI features in the previous sec-
tion, and the JDI-CP is a Jackknife+ type construction to
guarantee finite sample coverage.

4.1. Proxy detection-imputation

Since O∗ is impossible to know in practice, the best proxy
we have access to is the output Õn+1 of detection procedure
D. By replacing O∗ with Õn+1 in (4), we have the proxy
detection-imputation (PDI) features

X̌i = I(Xi, Ôi ∪ Õn+1), i = n0, . . . , n. (7)

Denote the residuals in calibration set as {Ři := |Yi −
µ̂(X̌i)|}ni=n0

, and we construct the PI for Yn+1 as:

ĈPDI(X̃n+1) = µ̂(X̌DI
n+1)± q̂+α ({Ři}ni=n0

). (8)

Algorithm 1 PDI-CP
Input: Calibration set {(Xi, Yi)}ni=n0

, test feature X̃n+1,
prediction model µ̂, detection procedure D, imputation
procedure I, miscoverage level α.

1: Õn+1 ← D(X̃n+1)
2: X̌DI

n+1 ← I(X̃n+1, Õn+1)
3: for i = n0, . . . , n do
4: Ôi ← D(Xi)
5: X̌i ← I(Xi, Ôi ∪ Õn+1)
6: Ři ← |Yi − µ̂(X̌i)|
7: end for
8: ĈPDI(X̃n+1)← µ̂(X̌DI

n+1)± q̂+α ({Ři}ni=n0
)

Output: ĈPDI(X̃n+1)

We call the construction stated in (8) as PDI-CP, and sum-
marize its implementation in Algorithm 1. Next, we analyze
the coverage property of PDI-CP.
Definition 4.1 (ℓ1-sensitivity). The ℓ1-sensitivity of predic-
tion model µ̂ is sup∥x−x′∥1≤1 |µ̂(x)− µ̂(x′)| ≤ Sµ̂.

The ℓ1-sensitivity measures the stability of a prediction
model to its input, which is similar to that in differential pri-
vacy literature (Dwork et al., 2014). For example, for a lin-
ear regression model µ̂(x) = β⊤x+ b, whose ℓ1-sensitivity
is given by Sµ̂ = ∥β∥1.
Definition 4.2 (Mean Imputation). The imputation function
is ϕj(·) = x̄j = 1

n0−1

∑n0−1
i=1 Xij for j ∈ [d], i.e., the

cellwise sample mean obtained from the training set.

The following theorem provides the coverage property of
PDI-CP under the Mean Imputation rule.
Theorem 4.3. Suppose the detection procedure D satisfies
Assumptions 3.1 and 3.2, and µ̂ has the ℓ1-sensitivity Sµ̂

in Definition 4.1. Let Ei := maxj∈[d] |Xij − x̄j |, i =
n0, . . . , n, n+ 1 be error of Mean Imputation in Definition
4.2. We have

P
{
Yn+1 ∈ ĈPDI(X̃n+1)

}
≥ 1− α

− P
{
q̂+α

(
{R∗

i − Sµ̂ · Ei · |Õn+1 \ O∗|}ni=n0

)
< R∗

n+1

≤ q̂+α

(
{R∗

i + Sµ̂ · Ei · |Õn+1 \ O∗|}ni=n0

)}
.
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According to the representation, the coverage gap of
PDI-CP depends on the error of Mean Imputation and
the number of false discoveries |Õn+1 \ O∗|, which repre-
sents the number of inliers incorrectly identified as outliers
by the detection procedure D. In an ideal scenario where
Õn+1 = O∗, PDI-CP can achieve the finite sample cover-
age as ODI-CP. The proof for Theorem 4.3 is deferred to
Appendix C.3.

4.2. Joint detection-imputation

The coverage gaps of PDI-CP are caused by the nonex-
changeability between PDI feature X̌i and processed test
feature X̌DI

n+1. This subsection proposes a robust approach
to constructing exchangeable features by applying a mod-
ified DI procedure on test feature X̃n+1, which achieves
1− 2α finite sample coverage in the worst case.

We begin with a careful inspection of pairwise exchange-
ability in test feature and calibration feature after DI. Un-
der Lemma 3.3, we can rewrite PDI feature (7) as X̌i =
I(Xi, Ôi ∪ Ôn+1 ∪ O∗). Since Ôi and Ôn+1 are ex-
changeable, it is easy to verify that I(Xi, Ôi ∪ Ôn+1 ∪O∗)
and I(Xn+1, Ôi ∪ Ôn+1 ∪ O∗) are also exchangeable.
Using Lemma 3.3 again, the latter one is identical to
I(X̃n+1, Ôi ∪ Õn+1). In light of this observation, we have
the following pairwise joint detection-imputation (JDI) fea-
tures: for i = n0, . . . , n,

X̌i
n+1 = I(X̃n+1, Ôi ∪ Õn+1),

X̌n+1
i = I(Xi, Ôi ∪ Õn+1).

Notice that, X̌n+1
i is the same as the PDI feature (7), and we

use a new notation here to emphasize the pairwise relation.

With the pairwise JDI features, we leverage the Jackknife+
technique proposed by Barber et al. (2021) to construct the
PI for Yn+1:

ĈJDI(X̃n+1) =
[
q̂−α ({µ̂(X̌i

n+1)− Ři}ni=n0
),

q̂+α ({µ̂(X̌i
n+1) + Ři}ni=n0

)
]
, (9)

where Ři = |Yi − µ̂(X̌n+1
i )| = |Yi − µ̂(X̌i)| is the same

as the residuals in (8). The method presented above is
called JDI-CP, and we summarize the implementation in
Algorithm 2.

Theorem 4.4. Suppose the detection procedure D satisfies
Assumptions 3.1 and 3.2, then

P
{
Yn+1 ∈ ĈJDI(X̃n+1)

}
≥ 1− 2α.

The proof of Theorem 4.4 is given in Appendix C.4. Even
though JDI-CP cannot achieve the target level 1− α due
to the intrinsic limit of Jackknife+ type method (Barber
et al., 2021), the finite sample result in Theorem 4.4 is

Algorithm 2 JDI-CP
Input: Same as Algorithm 1.

1: Õn+1 ← D(X̃n+1)
2: for i = n0, . . . , n do
3: Ôi ← D(Xi)
4: X̌n+1

i ← I(Xi, Ôi ∪ Õn+1)

5: X̌i
n+1 ← I(X̃n+1, Ôi ∪ Õn+1)

6: Ři ← |Yi − µ̂(X̌n+1
i )|

7: end for
8: Q̂−

α ← q̂−α ({µ̂(X̌i
n+1)− Ři}ni=n0

)

9: Q̂+
α ← q̂+α ({µ̂(X̌i

n+1) + Ři}ni=n0
)

10: ĈJDI(X̃n+1)← [Q̂−
α , Q̂

+
α ]

Output: ĈJDI(X̃n+1)

still important in practical tasks for two reasons: (1) Õn+1

may contain many false discoveries which leads to a large
coverage gap for PDI-CP; (2) the coverage property of
JDI-CP holds for arbitrary imputation rules. In Appendix
B.2, we provide an alternative version of JDI-CP, which
achieves a finite sample 1 − α coverage guarantee under
the same conditions in Theorem 4.4. However, it is quite
conservative compared with the original version because it
uses ∪ni=n0

Ôi ∪ Õn+1 to mask calibration features and test
feature. In our experiments, JDI-CP has a robust coverage
control without adjusting the quantile level in (9).

We notice that Jackknife+ technique is also used in CP-
MDA-Nested algorithm in Zaffran et al. (2023; 2024) to
build PI with missing values in features, and a similar 1−2α
coverage property is proved. However, the algorithmic de-
signs of CP-MDA-Nested and JDI-CP are very different.
The former uses the observed and exchangeable missing pat-
terns to perform nested masking for each pair of calibration
and test features, while JDI-CP uses outputs of D (i.e., Ôi

and Õn+1), which are not exchangeable.

To end this section, we use Figure 1 to illustrate the connec-
tion and difference of the proposed methods.

5. Coverage analysis beyond isolated detection
The coverage results in the previous section are based on
the isolated detection in Assumption 3.2, now we discuss
the theoretical properties of our method when the detection
score relies on other coordinates, e.g., DDC detection pro-
cedure (Rousseeuw & Bossche, 2018). Now we rewrite
the detection score ŝj(xj) = ŝj(xj ;x−j), where x−j is the
subvector of x by dropping xj . Denote

T̃n+1 = {j ∈ [d] \ O∗ : ŝj(Xn+1,j ; X̃n+1,−j) > τj},
T̂n+1 = {j ∈ [d] \ O∗ : ŝj(Xn+1,j ;Xn+1,−j) > τj}.

The two sets above represent the false discoveries of D
applied on contaminated feature X̃n+1 and clean feature
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ODI-CP

PDI-CP

JDI-CP

Proxy mask
in calibration features

Joint mask
in test feature

Calibration feature

𝑿"𝒊∗ 	= 	𝐈(𝑋# ,	𝒪*#∪ 𝒪∗)

𝑿"𝒊 = 𝐈(𝑋# , 𝒪*# ∪ 𝒪-$%&)
	

Test feature

𝑿"𝒏%𝟏𝒊 	= 	𝐈(𝑋-$%&, 𝒪*# ∪ 𝒪-$%&)

𝑿.𝒏%𝟏)* = 𝐈(𝑋-$%&, 𝒪-$%&)

PI type

SCP
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Figure 1. An illustration of the relationship of ODI-CP, PDI-CP and JDI-CP. Ôi = D(Xi) and Õn+1 = D(X̃n+1).

Xn+1 except for j ∈ O∗, respectively. Without Assumption
3.2, the ODI features {X̌∗

i }ni=n0
and X̌DI

n+1 are no longer
exchangeable, and the coverage guarantee of ODI-CP and
JDI-CP will be broken. The next theorem characterizes the
coverage gaps of our algorithms through T̃n+1 and T̂n+1.

Theorem 5.1. Suppose the detection procedure D satisfies
Assumptions 3.1, and µ̂ has the ℓ1-sensitivity Sµ̂ in Defini-
tion 4.1. Under the Mean Imputation in Definition 4.2,
(1) PDI-CP satisfies that

P
{
Yn+1 ∈ ĈPDI(X̃n+1)

}
≥ 1− α

−
[
FR∗

(
q̂+α ({R∗

i }ni=n0
) + ∆n+1

)
− FR∗(q̂+α ({R∗

i }ni=n0
))
]

− P
{
q̂+α

(
{R∗

i − Sµ̂ · Ei · |T̃n+1|}ni=n0

)
< R∗

n+1

≤ q̂+α

(
{R∗

i + Sµ̂ · Ei · |T̃n+1|}ni=n0

)}
,

where FR∗ is the distribution function of ODI-CP residuals
{R∗

i }ni=n0
, and ∆n+1 = Sµ̂ · |T̃n+1△T̂n+1| · En+1 where

△ denotes the symmetric difference.
(2) JDI-CP satisfies that

P
{
Yn+1 ∈ ĈJDI(X̃n+1)

}
≥ 1− 2α

−
[
FY (Q̂

+
α + 2∆n+1)− FY (Q̂

+
α )
]

−
[
FY (Q̂

−
α )− FY (Q̂

−
α − 2∆n+1)

]
,

where FY is the distribution function of Y , Q̂−
α and Q̂+

α are
defined in Algorithm 2 where X̌n+1

i and X̌i
n+1 are replaced

by I(Xi, Ôi ∪ O∗ ∪ T̂n+1) and I(Xn+1, Ôi ∪ O∗ ∪ T̂n+1)
respectively.

The proof of Theorem 5.1 is given in Appendix C.5. If
the sets T̃n+1 and T̂n+1 are infinitely close, then the error
∆n+1 → 0 and ĈJDI(X̃n+1) still has 1 − 2α coverage
guarantee. Further, if |T̃n+1| = |T̂n+1| → 0, it means
the detection method can accurately find the cellwise out-
liers without false discoveries, then ĈPDI(X̃n+1) can also
achieve the target 1− α coverage.

We use the DDC method as an example to demonstrate the
relation between T̃n+1 and T̂n+1 (see Appendix D for details
of DDC method). A commonly used similarity metric of
two sets is Jaccard similarity (Murphy, 1996):

Jaccard(T̃n+1, T̂n+1) =
|T̃n+1 ∩ T̂n+1|
|T̃n+1 ∪ T̂n+1|

∈ [0, 1]

with a value closer to 1 indicating T̃n+1 and T̂n+1 are more
similar. Figure 2 visualizes Jaccard(T̃n+1, T̂n+1) and the
number of occurrences of T̃n+1 = T̂n+1 = ∅ during 500
trials, each with 100 test points. It can be seen that T̃n+1 and
T̂n+1 are almost the same except in a few trials. In addition,
the frequency of T̃n+1 = T̂n+1 = ∅ reaches above 0.6.

Figure 2. An illustration of the similarity of T̃n+1 and T̂n+1 (left
axis, red cross marks) and the number of occurrences of empty
and nonempty sets (right axis, blue and gray dots).

6. Simulation
We write N(µ, σ2) for the normal distribution with mean
µ and variance σ2, SN(µ, σ2, α) for the skewed normal
with skewness parameter α, t(k) for the t-distribution with
k degrees of freedom, and Bern(p) for the Bernoulli distri-
bution with success probability p. Given any x ∈ Rd, define
f(x) = E(Yi|Xi = x) and ηi = Yi − f(Xi). We consider
three data generation settings in Lei et al. (2018):
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• Setting A (linear, homoscedastic, light-tailed):f(x) =
β⊤x; {Xij}dj=1

i.i.d.∼ N(0, 1); ηi ∼ N(0, 1);ηi ⊥ Xi.

• Setting B (nonlinear, homoscedastic, heavy-tailed):
f(x) is an additive function of B-splines of x1, . . . , xd;
{Xij}dj=1

i.i.d.∼ N(0, 1); ηi ∼ t(2); ηi ⊥ Xi.

• Setting C (linear, correlated features, heteroskedas-
tic, heavy-tailed): f(x) = β⊤x; {Xij}dj=1

i.i.d.∼
1
3N(0, 1) + 1

3SN(0, 1, 5) + 1
3Bern(0.5), and

then given autocorrelation by redefining sequen-
tially each Xij to be a convex combination of
Xij , Xi,j−1, . . . , Xi,(j−3)∧1; ηi ∼ t(2), with variable
standard deviation 1 + 2 |f (Xi)|3 /E

(
|f(X)|3

)
.

Let ϵ be the probability that a cell in the test feature is
contaminated. Then we obtain the test feature with entries

X̃n+1,j =

{
Xn+1,j , with probability 1− ϵ

Zn+1,j , with probability ϵ
, (10)

where the noise Zn+1,j
i.i.d.∼ N(µ, σ) and µ, σ are randomly

sampled from U(0, 10). All simulation results in the fol-
lowing are averages over 200 trials with 200 labeled data
and 100 test data. The nominal coverage level is set to be
1−α = 90% and d = 15. For comparison, we also conduct
following methods (see Appendix E.1 for specific forms):

1. Baseline: mask the entries of {Xi}ni=n0
∪ X̃n+1

by O∗, then compute residuals on the calibration set
and construct SCP interval, which can be seen as an
optimal oracle approach to construct split conformal
PI in the cellwise outlier case;

2. SCP: directly compute residuals on the calibration set
and contaminated test feature, then construct SCP in-
terval without performing DI;

3. WCP: first estimate the likelihood ratio between labeled
data and test data using random forests approach, then
construct WCP interval.

Figure 3 presents the empirical coverage and length of six
methods. As expected, SCP and WCP fail to reach the target
coverage level. Notably, when the contamination probability
is high, e.g. ϵ = 0.2, WCP even outputs a PI with infinite
width. Meanwhile, our proposed method can achieve 1− α
target coverage and return PIs with almost the same lengths
as Baseline method. Since SCP and WCP cannot pro-
vide valid coverage control, we regard Baseline as the
benchmark for the subsequent experiments.

6.1. Combinations with other detection methods

This experiment is to verify the validity of our methods
under other plausible cellwise detection methods besides

Figure 3. Simulation results of six methods. D is DDC, I is Mean

Imputation, ϵ = 0.1 and τj =
√

χ2
1,0.95. The red line is the target

coverage level 1− α = 90%.

DDC. Here we consider two procedures: the one-class SVM
classifier method (Bates et al., 2023a) with τj = 0.2 and
the cellMCD estimate method (Raymaekers & Rousseeuw,
2024a) with τj =

√
χ2
1,0.99, where τj is determined to

control the FDR (false discovery rate). The former satisfies
Assumption 3.2 while the latter does not. According to
Figure 4, our method still has the coverage guarantee when
employing other detection procedures. The empirical TPR
(true positive rate) and FDR of detection methods are given
in Appendix E.2.

6.2. Combinations with other imputation methods

Besides Mean Imputation, we also conduct experiments
under the other two imputation methods: k-Nearest Neigh-
bour (kNN, Troyanskaya et al. (2001)) and Multivariate
Imputation by Chained Equations (MICE, Van Buuren et al.
(1999)). Figure 5 shows that if we replace Mean Imputation
with kNN or MICE in DI, then our method is still able to
achieve target 1− α coverage.

6.3. Performance under different contaminated ratios

From (10), we can see the probability that at least one cell of
Xn+1 is contaminated by Zn+1 is 1−(1−ϵ)d, which grows
very quickly as ϵ and d increase. For example, in our setting
d = 15, ϵ = 0.05 suffices to have over 46% of contaminated
test data on average, while ϵ = 0.2 can achieve over 97%
of contaminated test data. Here we explore the effect of

7
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(a) One-class SVM

(b) cellMCD

Figure 4. Simulation results of Baseline and our methods with
different D procedures. I is Mean Imputation and ϵ = 0.1.

contamination levels ϵ on our method. We set D as DDC,
and the parameter p in detection threshold τj =

√
χ2
1,p as

{0.95, 0.93, 0.9} corresponding to ϵ ∈ {0.1, 0.15, 0.2} to
control FDR. According to Figure 6, our method can achieve
a very tight coverage control under each contamination level.
Other supplementary simulation results refer to Appendix
E.3.

6.4. Performance under different detection thresholds

We conduct this experiment by varying the DDC detection
threshold

√
χ2
1,p (adjusting p). As the threshold decreases,

the number of discoveries increases, leading to a higher FDR
and a higher TPR. Table 1 shows that our method has a ro-
bust coverage performance when the threshold changes and
can achieve approximate control of coverage when TPR<1.

Table 1. Empirical TPR and FDR of DDC with different thresholds
under Setting A when ϵ = 0.1.

p 0.99 0.9 0.7 0.5

TPR 0.987 0.992 0.995 1
FDR 0.035 0.340 0.669 0.793
PDI coverage 0.902 0.901 0.907 0.909
JDI coverage 0.895 0.899 0.904 0.904

6.5. Performance with CQR score

To demonstrate that our method can be combined with other
non-conformity scores, we conduct an experiment using

(a) kNN

(b) MICE

Figure 5. Simulation results of Baseline and our methods with

different I procedures. D is DDC, ϵ = 0.1 and τj =
√

χ2
1,0.95.

Figure 6. Simulation results of Baseline and our methods when
ϵ ∈ {0.1, 0.15, 0.2}. D is DDC and I is Mean Imputation.

CQR to construct PIs. We compare the Baselinewith our
method under Setting A with different contaminated ratios.
Figure 7 shows that the PIs constructed by our method
with CQR score can still approximately achieve the target
coverage rate.

Figure 7. Simulation results of Baseline and our methods when
PI is constructed by CQR. D is DDC and I is Mean Imputation.
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7. Application on real data
7.1. Airfoil data

We apply the proposed method to the airfoil dataset from
the UCI Machine Learning Repository (Dua & Graff, 2019),
where the response Y and covariates X (with 5 dimensions)
are described in Appendix E.4. We select 1000 labeled data
and 500 test data in 100 trials. Since it is unknown which
cells are outliers in reality, we artificially introduce outliers
with ϵ = 0.02 to construct test features with both genuine
and artificial cellwise outliers. The details of the experiment
are presented in Appendix E.4. Figure 8 shows that our
method can achieve 1−α coverage while SCP and WCP fail
to reach the target coverage.

Figure 8. Experimental results on airfoil dataset. D is DDC and I
is Mean Imputation.

7.2. Wind direction data

Another example involves the hourly wind direction data
from a meteorological station in the Central-West region
of Brazil (https://tempo.inmet.gov.br/TabelaEstacoes/A001).
In 100 trials, we randomly select 1000 labeled data and 500
test data, and add artificial outliers with ϵ = 0.02 to test
features. The variable list and data processing steps are
presented in Appendix E.5. From Figure 9, we conclude
that our method outperforms SCP and WCP in actual cases
where cellwise outliers are present in the test feature.

Figure 9. Experimental results on wind direction dataset. D is
DDC and I is Mean Imputation.

7.3. Riboflavin data

To further demonstrate robustness, we test our method on the
gene expression dataset for riboflavin production provided
by DSM (Kaiseraugst, Switzerland), which was offered
by Bühlmann & Mandozzi (2014) and confirmed to have
cellwise outliers by Liu et al. (2022). The details can be

Figure 10. Experimental results on riboflavin dataset. D is DDC
and I is Mean Imputation.

found in Appendix E.6. Figure 10 shows that our methods
maintain coverage above the target 1−α = 90% while WCP
fails to provide meaningful PIs, that is, the PIs constructed
by WCP may have infinite length.

8. Conclusion
This paper proposes a new detect-then-impute conformal
prediction framework to address the cellwise outliers in the
test feature. We develop two efficient algorithms PDI-CP
and JDI-CP to construct prediction intervals, which can be
wrapped around arbitrary mainstream detection and impu-
tation procedures. In particular, JDI-CP achieves a finite
sample 1− 2α coverage guarantee under the sure detection
property of the detection procedure. We conduct extensive
experiments to illustrate the robustness and efficiency of
our proposed algorithms in both synthetic data and real
applications.
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A. Notation table

Table 2. The mathematical notations in this paper.

Notation Meaning Comments
Xi The ith instance Data model
Yi The label corresponding to Xi Data model
X̃n+1 The test feature with cellwise outliers Data model
Zn+1 The instance of outliers with arbitrarily distributed Data model
X̌DI

n+1 The test feature processed by DI Data model
Xij The jth coordinate of the ith instance Data model
x The vector x = (x1, x2, ..., xd)

T ∈ Rd Data model
xℓ The ℓth coordinate of x Data model
X̌∗

i The ODI feature Data model
X̌i The PDI feature Data model
X̌i

n+1 The JDI feature Data model
X̌n+1

i The JDI feature which is the same as the PDI feature X̌i Data model
R∗

i The residual computed by ODI features Algorithm output
Ři The residual computed by PDI features Algorithm output
Dl The labeled dataset Set
Dt The training dataset Set
Dc The calibration dataset Set
O∗ The coordinates of cellwise outliers in X̃n+1 Set
Ôi The detected coordinates by applying D to Xi Set
Õn+1 The detected coordinates by applying D to X̃n+1 Set
T̃n+1 The false discoveries of D applied on X̃n+1 except for j ∈ O∗ Set
T̂n+1 The false discoveries of D applied on Xn+1 except for j ∈ O∗ Set
µ̂(·) The prediction model Function
q̂−α (·) The ⌈α(n+ 1)⌉ quantile function Function
q̂+α (·) The ⌈(1− α)(n+ 1)⌉ quantile function Function
ŝj(·) The cellwise score function of jth coordinate Function
ϕj(·) The imputation function of jth coordinate Function
D(x) The output of detection procedure Function
I(x,O) The output of imputation procedure Function
n0 The critical point of split Algorithm parameter
α The target coverage level Algorithm parameter
τj The detection threshold of jth coordinate Algorithm parameter
N(µ, σ2) The normal distribution with mean µ and variance σ2 Distribution model
SN(µ, σ2, α) The skewed normal with skewness parameter α Distribution model
t(k) The t-distribution with k degrees of freedom Distribution model
Bern(p) The Bernoulli distribution with success probability p Distribution model

B. More methods to construct PI
B.1. Naive combination of DI and CP

We consider a method by naively combining the DI procedure with split conformal prediction, which is abbreviated as
Naive-DI. The processed features of Naive-DI are defined as

X̌Naive-DI
i = I(Xi, Õn+1), i = n0, . . . , n+ 1,

and the PI for Yn+1:

ĈNaive-DI(X̃n+1) = µ̂(X̌Naive-DI
n+1 )± q̂+α ({|Yi − µ̂(X̌Naive-DI

i )|}ni=n0
). (B.1)
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However, Naive-DI constructed in this way fails to achieve 1 − α coverage in several cases. As an example, we
consider the coverage of PIs constructed by ODI-CP, PDI-CP and Naive-DI under Setting A when ϵ = {0.1, 0.15, 0.2},
τj =

√
χ2
1,0.9 and Zn+1,j

i.i.d.∼ N(µ, σ) where µ, σ are randomly sampled from U(0, 0.1). From Figure 11, it can be seen
that when the gap between Zn+1 and the clean data is not very large, and the detection threshold τj is small enough to
detect more outliers, the Naive-DI method fails to 1− α coverage regardless of the level of contaminated probability. In
comparison, our method has a better coverage in these cases, which is due to the consideration of the effect of {Ôi}ni=n0

when masking. This empirical evidence confirms that simply combining DI with CP (without our proposed modifications)
cannot guarantee valid coverage.

Figure 11. Simulation results of ODI-CP, PDI-CP and Naive-DI under Setting A when ϵ ∈ {0.1, 0.15, 0.2}. D is DDC, I is Mean
Imputation.

B.2. An alternative version of JDI

If we take into account the cellwise outliers contained in all calibration features, we can provide the following conservative
version of JDI, whose features and PI are listed below.

Conservative-JDI (C-JDI) features:

X̌C-JDI
i = I(Xi,

n⋃
i=n0

Ôi ∪ Õn+1), i = n0, . . . , n+ 1,

and the PI for Yn+1:

ĈC-JDI(X̃n+1) = µ̂(X̌C-JDI
n+1 )± q̂+α ({|Yi − µ̂(X̌C-JDI

i )|}ni=n0
). (B.2)

We introduce Theorem B.1 to demonstrate the coverage guarantee of C-JDI.

Theorem B.1. Suppose the detection procedure D satisfies Assumptions 3.1 and 3.2, then

P
{
Yn+1 ∈ ĈC-JDI(X̃n+1)

}
≥ 1− α.

Proof. Notice that, Lemma 3.3 shows that Õn+1 = Ôn+1 ∪ O∗, which implies that
⋃n+1

i=n0
Ôi ∪ O∗ =

⋃n
i=n0
Ôi ∪ Õn+1.

Given the unordered set of {Xi}n+1
i=n0

, the joint mask
⋃n+1

i=n0
Ôi ∪ O∗ is fixed. Hence we know {X̌C-JDI

i }n+1
i=n0

are
exchangeable. Using the standard proof of split conformal prediction (Lei et al., 2018; Tibshirani et al., 2019), we can prove
the result.

We present an example for comparison of PDI-CP, JDI-CP, and C-JDI in three settings, where ϵ = 0.05, τj and Zn+1

are the same as those in Appendix B.1. From Figure 12, we can see that our method can achieve the target coverage rate,
which is consistent with simulation results. Although the C-JDI method can also achieve the target coverage, its PI is wider
and coverage rate is looser than PDI-CP and JDI-CP, indicating that the PIs constructed by C-JDI are more conservative.

13
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Taking into account both Appendix B.1 and B.2, our method outperforms Naive-DI and C-JDI, which is able to build
tight PIs that satisfy the target coverage.

Figure 12. Simulation results of PDI, JDI and C-JDI. D is DDC, I is Mean Imputation and ϵ = 0.05.

C. Technical Proofs
In this section, we fix the training set {(Xi, Yi)}n0−1

i=1 and only consider the randomness from calibration set {(Xi, Yi)}ni=n0

and test data (Xn+1, Yn+1, Zn+1).

C.1. Proof of Lemma 3.3 and Proposition 3.4

Proof. Firstly, we prove Lemma 3.3. Notice that for any j ∈ [d] \ O∗, we have X̃n+1,j = Xn+1,j . It follows that

Õn+1 = O∗ ∪ {j ∈ [d] \ O∗ : ŝj(X̃n+1,j) > τj}
= O∗ ∪ {j ∈ [d] \ O∗ : ŝj(Xn+1,j) > τj}
= O∗ ∪ {j ∈ O∗ : ŝj(Xn+1,j) > τj} ∪ {j ∈ [d] \ O∗ : ŝj(Xn+1,j) > τj}
= O∗ ∪ Ôn+1,

where the first equality holds due to Assumption 3.1; and the second equality holds due to Assumption 3.2. From the
definition, we know

[I(X̃n+1, Ôn+1 ∪ O∗)]j =

{
X̃n+1,j = Xn+1,j , j /∈ Ôn+1 ∪ O∗

ϕj({X̃n+1,l}l/∈Ôn+1∪O∗) = ϕj({Xn+1,l}l/∈Ôn+1∪O∗), j ∈ Ôn+1 ∪ O∗

= [I(Xn+1, Ôn+1 ∪ O∗)]j .

Thus we have

X̌DI
n+1 = I(X̃n+1, Õn+1) = I(X̃n+1, Ôn+1 ∪ O∗) = I(Xn+1, Ôn+1 ∪ O∗), (C.1)

which is exchangeable to X̌∗
i = I(Xi, Ôi ∪ O∗) for i = n0, . . . , n.

Next, we prove Proposition 3.4. Recalling that R∗
i = |Yi − µ̂(X̌∗

i )| for i = n0, . . . , n. Denote R∗
n+1 = |Yn+1 − µ̂(X̌DI

n+1)|.
By the exchangeability of {R∗

i }
n+1
i=n0

, we can guarantee

P
{
Yn+1 ∈ ĈODI(X̃n+1)

}
= P

{
R∗

n+1 ≤ q̂+α ({R∗
i }ni=n0

)
}
≥ 1− α. (C.2)

C.2. Proof of Theorem 3.5

Proof. We consider the case where d = 2. Suppose X is a two-dimensional standard normal random variable with n
observations, the corresponding labels are Yi = Xi,1 + Xi,2 where Xi,1, Xi,2 ∼ Uniform([0, 1]) for i ∈ [n]. Suppose

14



Conformal Prediction with Cellwise Outliers

µ̂ is a linear regression model µ̂(x) = β1x1 + β2x2 where β2 ̸= 0. The test point X̃n+1 = (Xn+1,1, Xn+1,2)
⊤ where

Xn+1,2 = M+1
β2

1{β1 ≥ 1}+ M−β1+2
β2

1{β1 < 1} for some large positive value M .

Now we consider the case X̌DI
n+1 still contains cellwise outlier after DI, that is D(X̃n+1) = ∅ and X̌DI

n+1 = X̃n+1. When
β1 ≥ 1, notice that

|Yn+1 − µ̂(X̌DI
n+1)| = |(1− β1)Xn+1,1 +Xn+1,2 −M − 1| ≥M. (C.3)

By the form of PI, it holds that

1− α = P{Yn+1 ∈ Ĉ(X̌DI
n+1)} = P

{
|Yn+1 − µ̂(X̌DI

n+1)| ≤ q̂n
}
≤ P (q̂n ≥M) .

When β1 < 1, notice that

|Yn+1 − µ̂(X̌DI
n+1)| = |(1− β1)Xn+1,1 +Xn+1,2 −M − 2 + β1| ≥M,

and (C.3) still holds.

Theorem C.1. If X̌DI
n+1 contains cellwise outliers, given any PI taking the form Ĉ(X̌DI

n+1) = [f̂ lo(X̌DI
n+1)− q̂n, f̂up(X̌DI

n+1)+

q̂n], where f̂ lo and f̂up are the lower and upper quantile regression models, and q̂n is the quantile of the empirical distribution
of CQR score computed on the calibration set. Suppose Ĉ(X̌DI

n+1) satisfies marginal coverage P{Yn+1 ∈ Ĉ(X̌DI
n+1)} ≥ 1−α.

For arbitrary M > 0, there exists f̂ lo and f̂up, and distributions P and PZ such that for (Xn+1, Yn+1) ∼ P and

Zn+1 ∼ PZ , P(q̂n ≥M) ≥ 1− α. In other words, limM→∞ E
[
|Ĉ(X̌DI

n+1)|
]
=∞.

Proof. Following the proof of Theorem 3.5 in Appendix B.2, the labels are Yi = Xi,1 + Xi,2 where Xi,1, Xi,2 ∼
Uniform([0, 1]) for i ∈ [n + 1]. Suppose f̂ lo(x) = βlo

1 x1 + βlo
2 x2 where βlo

2 ̸= 0, and the test point X̃n+1 =
(Xn+1,1, Zn+1,2)

⊤ where the outlier is given by

Zn+1,2 =
M + 1

βlo
2

1{βlo
1 ≥ 1}+ M + 2

βlo
2

1{0 < βlo
1 < 1}+ M − βlo

1 + 2

βlo
2

1{βlo
1 ≤ 0}

for some large positive value M . If X̌DI
n+1 still contains Zn+1,2 and Ĉ(X̌DI

n+1) covers the true label, we have

max{f̂ lo(X̌DI
n+1)− Yn+1, Yn+1 − f̂up(X̌DI

n+1)} ≥ f̂ lo(X̌DI
n+1)− Yn+1 ≥M,

which means P(q̂n ≥M) ≥ P(Yn+1 ∈ Ĉ(X̌DI
n+1)) ≥ 1− α.

C.3. Proof of Theorem 4.3

Proof. According to Definition 4.2, we denote by x̄i = (x̄1, . . . , x̄j , . . . , x̄d)
⊤ the Mean Imputation values of Xi for

i = n0, . . . , n+ 1. Denote

δ̂i,j = 1{ŝ(Xi,j) ≤ τj}, i = n0, . . . , n+ 1, j ∈ [d], (C.4)

and

∆̂i = diag({δ̂i,j}j∈[d]), i = n0, . . . , n+ 1, (C.5)

∆̃n+1 = diag({δ̃n+1,j}j∈[d]), (C.6)
∆n+1 = diag({δn+1,j}j∈[d]),

where δ̃n+1,j = 1{ŝj(X̃n+1,j) ≤ τj} and δn+1,j = 1{j ∈ [d] \ O∗}. Then the difference between ODI feature and PDI
feature can be written as

X̌i − X̌∗
i =

[
∆̂i∆̃n+1Xi + (I − ∆̂i∆̃n+1)x̄i

]
−
[
∆̂i∆n+1Xi + (I − ∆̂i∆n+1)x̄i

]
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= ∆̂i(∆̃n+1 −∆n+1)Xi − ∆̂i(∆̃n+1 −∆n+1)x̄i

= ∆̂i(∆̃n+1 −∆n+1)(Xi − x̄i). (C.7)

Denote by Ei,j = |Xi,j − x̄j | the Mean Imputation error of each entry for i = n0, . . . , n. Invoking ℓ1-sensitivity of µ̂, we
have ∣∣Ři −R∗

i

∣∣ = ∣∣|Yi − µ̂(X̌i)| − |Yi − µ̂(X̌∗
i )|
∣∣

≤
∣∣µ̂(X̌i)− µ̂(X̌∗

i )
∣∣ ≤ Sµ̂ ·

∥∥X̌i − X̌∗
i

∥∥
1

= Sµ̂ ·
d∑

j=1

δ̂i,j |δ̃n+1,j − δn+1,j ||Xi,j − x̄j |

= Sµ̂ ·
∑

j∈[d]\O∗

δ̂i,j(δn+1,j − δ̃n+1,j) · Ei,j

≤ Sµ̂ ·max
j∈[d]

Ei,j ·
∑

j∈[d]\O∗

(δn+1,j − δ̃n+1,j)

:= Sµ̂ · Ei · |Õn+1 \ O∗|, (C.8)

where Ei := maxj∈[d] Ei,j and the third equality holds due to Assumption 3.1.

By the construction of ĈODI(X̃n+1) in (5), we have

P
{
Yn+1 ∈ ĈPDI(X̃n+1)

}
= P

{
|Yn+1 − µ̂(X̌DI

n+1)| ≤ q̂+α ({Ři}ni=n0
)
}

= P
{
R∗

n+1 ≤ q̂+α ({Ři}ni=n0
)
}
, (C.9)

and the coverage gap between ĈODI(X̃n+1) and ĈPDI(X̃n+1) is∣∣∣P{Yn+1 ∈ ĈPDI(X̃n+1)
}
− P

{
Yn+1 ∈ ĈODI(X̃n+1)

}∣∣∣
=
∣∣P{R∗

n+1 ≤ q̂+α ({Ři}ni=n0
)
}
− P

{
R∗

n+1 ≤ q̂+α ({R∗
i }ni=n0

)
}∣∣

= P
{
min

(
q̂+α ({Ři}ni=n0

), q̂+α ({R∗
i }ni=n0

)
)
< R∗

n+1 ≤ max
(
q̂+α ({Ři}ni=n0

), q̂+α ({R∗
i }ni=n0

)
)}

≤ P
{
q̂+α

(
{R∗

i − Sµ̂ · Ei · |Õn+1 \ O∗|}ni=n0

)
< R∗

n+1 ≤ q̂+α

(
{R∗

i + Sµ̂ · Ei · |Õn+1 \ O∗|}ni=n0

)}
. (C.10)

Combined with Assumption 3.2 and Proposition 3.4, we can obtain the coverage property of PDI-CP

P
{
Yn+1 ∈ ĈPDI(X̃n+1)

}
≥ 1− α

− P
{
q̂+α

(
{R∗

i − Sµ̂ · Ei · |Õn+1 \ O∗|}ni=n0

)
< R∗

n+1 ≤ q̂+α

(
{R∗

i + Sµ̂ · Ei · |Õn+1 \ O∗|}ni=n0

)}
. (C.11)

C.4. Proof of Proposition 4.4

Proof. We follow the proof in Barber et al. (2021) to show the result. We abbreviate the set of integers {n0, . . . , n} as
[n0, n] in this subsection. Notice that under Assumptions 3.1 and 3.2, (X̌n+1

i , Yi) ∪ (X̌i
n+1, Yn+1) are exchangeable. For

i, j ∈ [n0, n+ 1] with i ̸= j, denote X̌j
i = I(Xi, Ôi ∪ Ôj ∪ O∗). Then we assert that µ̂(X̌j

i ) ̸= µ̂(X̌i
j) for i ̸= j.

Define a matrix of residuals, D ∈ R(n+2−n0)×(n+2−n0), with entries

Dpq =

{
+∞, p = q

|Yp+n0−1 − µ̂(X̌q+n0−1
p+n0−1)|, p ̸= q

(C.12)

for p, q ∈ [n+ 2− n0], i.e., the off-diagonal entries represent the residual for the (p+ n0 − 1)-th point which processed by
DI with mask Ôp+n0−1 ∪ Ôq+n0−1 ∪ O∗.
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Define a comparison matrix, A ∈ {0, 1}(n+2−n0)×(n+2−n0), with entries

Apq = 1{Dpq > Dqp},

and Apq = 1 means that the residual of Xp+n0−1 is larger than that of Xq+n0−1 which are processed with the same mask
Ôp+n0−1 ∪ Ôq+n0−1 ∪ O∗, and we say that data point (p+ n0 − 1) “wins” (q + n0 − 1).

Define a set S(A) ⊆ [n+ 2− n0] of strange points as

S(A) =

{
p ∈ [n+ 2− n0] :

n+2−n0∑
q=1

Apq ≥ (1− α)(n+ 2− n0)

}
, (C.13)

i.e., p ∈ S(A) if it holds that, when we compare the residual Dpq of the (p+ n0 − 1)-th point against residual Dqp of the
(q + n0 − 1)-th point, the residual Dpq is the larger one for a sufficiently high fraction of these comparisons. Note that each
strange point p ∈ S(A) can “lose” against at most α(n+2−n0)− 1 other strange points, this is because point (p+n0− 1)
must “win” against at least (1− α)(n+ 2− n0) points in total because it is strange, and point (p+ n0 − 1) cannot win
against itself as the definition of Dpq .

Denote by s = |S(A)| the number of strange points. The key realization is now that, if we think about grouping each pair of
strange points by the losing point, then we see that there are at most

s · (α(n+ 2− n0)− 1)

pairs of strange points. So we have

s(s− 1)

2
≤ s · (α(n+ 2− n0)− 1), (C.14)

which simplifies to s ≤ 2α(n+ 2− n0)− 1 < 2α(n+ 2− n0).

Since the data points {(X̌j
i , Yi)}i,j∈[n0,n+1] are exchangeable and the fitting algorithm is not affected by DI, it follows that

A
d
= ΠAΠT for any (n + 2 − n0) × (n + 2 − n0) permutation matrix Π. In particular, for any index q ∈ [n + 2 − n0],

suppose we take Π to be any permutation matrix with Πq,n+2−n0
= 1 (i.e., corresponding to a permutation mapping n+ 1

to q + n0 − 1), then we have
n+ 2− n0 ∈ S(A)⇐⇒ q ∈ S(ΠAΠT ),

and therefore
P{n+ 2− n0 ∈ S(A)} = P{q ∈ S(ΠAΠT )} = P{q ∈ S(A)}.

In other words, if we compare an arbitrary calibration point q + n0 − 1 where q ∈ [n+ 2− n0] versus the test point n+ 1,
these two points are equally likely to be strange, by the exchangeability of the data. So we can calculate

P{n+ 2− n0 ∈ S(A)} = 1

n+ 2− n0

n+2−n0∑
q=1

P{q ∈ S(A)}

=
E
[∑n+2−n0

q=1 1{q ∈ S(A)}
]

n+ 2− n0
=

E[|S(A)|]
n+ 2− n0

=
s

n+ 2− n0
≤ 2α, (C.15)

according to (C.14). By the construction of ĈJDI(X̃n+1) in (9), we have the following equivalence relation

Yn+1 /∈ ĈJDI(X̃n+1)⇐⇒Yn+1 > q̂+α

({
µ̂(X̌i

n+1) + Ři

}n
i=n0

)
or Yn+1 < q̂−α

({
µ̂(X̌i

n+1)− Ři

}n
i=n0

)
. (C.16)

In either case, we have

(1− α)(n+ 2− n0) ≤
n∑

i=n0

1{Yn+1 /∈ µ̂(X̌i
n+1)± Ři}
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=

n∑
i=n0

1{|Yi − µ̂(X̌n+1
i )| < |Yn+1 − µ̂(X̌i

n+1)|}

=

n+1−n0∑
q=1

1{Dq,n+2−n0 < Dn+2−n0,q} =
n+1−n0∑

q=1

An+2−n0,q, (C.17)

and therefore n+ 2− n0 ∈ S(A) according to (C.13). Combined with (C.15), we have

P{Yn+1 /∈ ĈJDI(X̃n+1)} ≤ P{n+ 2− n0 ∈ S(A)} ≤ 2α. (C.18)

C.5. Proof of Theorem 5.1

C.5.1. PROOF OF PDI-CP

Proof. Under Assumption 3.1, denote

X̌DI
n+1 = I(Xn+1,O∗ ∪ T̃n+1), (C.19)

X̌∗
n+1 = I(Xn+1,O∗ ∪ T̂n+1). (C.20)

The difference between X̌DI
n+1 and X̌∗

n+1 is

X̌DI
n+1 − X̌∗

n+1 = (∆̃T
n+1∆n+1 − ∆̂T

n+1∆n+1)Xn+1 + (∆̂T
n+1∆n+1 − ∆̃T

n+1∆n+1)x̄n+1

= ∆n+1(∆̃
T
n+1 − ∆̂T

n+1)(Xn+1 − x̄n+1), (C.21)

where

∆̃T
n+1 = diag({δ̃Tn+1,j}j∈[d]) = diag({1{j /∈ T̃n+1}}j∈[d]),

∆̂T
n+1 = diag({δ̂Tn+1,j}j∈[d]) = diag({1{j /∈ T̂n+1}}j∈[d]),

and x̄n+1 = (x̄1, . . . , x̄j , . . . , x̄d)
⊤ is the Mean Imputation value of X̃n+1.

Denote Řn+1 = |Yn+1 − µ̂(X̌DI
n+1)| and Ř∗

n+1 = |Yn+1 − µ̂(X̌∗
n+1)|. Invoking ℓ1-sensitivity of µ̂, we have

|Řn+1 − Ř∗
n+1| ≤ Sµ̂ ·

∥∥X̌DI
n+1 − X̌∗

n+1

∥∥
1

= Sµ̂ ·
∑d

j=1|δn+1,j | · |δ̃Tn+1,j − δ̂Tn+1,j | · |Xn+1,j − x̄j |

= Sµ̂ ·
∑

j∈[d]\O∗ |δ̃Tn+1,j − δ̂Tn+1,j | · |Xn+1,j − x̄j |

≤ Sµ̂ · |T̃n+1△T̂n+1| · En+1

:= ∆n+1, (C.22)

where En+1 := maxj∈[d] |Xn+1,j − x̄j | is the same as the definition in Theorem 4.3. Notice that X̌∗
n+1 is exchangeable

with ODI features {X̌∗
i }ni=n0

under Assumption 3.1, then the coverage gap of ODI-CP is∣∣∣P{Yn+1 ∈ ĈODI(X̃n+1)
}
− (1− α)

∣∣∣
=
∣∣P{Řn+1 ≤ q̂+α ({R∗

i }ni=n0
)
}
− (1− α)

∣∣
≤
∣∣P{Ř∗

n+1 −∆n+1 ≤ q̂+α ({R∗
i }ni=n0

)
}
− |P

{
Ř∗

n+1 ≤ q̂+α ({R∗
i }ni=n0

)
}∣∣

= FR∗(q̂+α ({R∗
i }ni=n0

) + ∆n+1)− FR∗(q̂+α ({R∗
i }ni=n0

)), (C.23)

where FR∗ is the distribution function of ODI-CP residuals {R∗
i }ni=n0

. Similar to the proof of Theorem 4.3, we can obtain
the coverage of PDI-CP:

P
{
Yn+1 ∈ ĈPDI(X̃n+1)

}
≥ 1− α−

[
FR∗(q̂+α ({R∗

i }ni=n0
) + ∆n+1)− FR∗(q̂+α ({R∗

i }ni=n0
))
]

− P
{
q̂+α

(
{R∗

i − Sµ̂ · Ei · |T̃n+1|}ni=n0

)
< R∗

n+1 ≤ q̂+α

(
{R∗

i + Sµ̂ · Ei · |T̃n+1|}ni=n0

)}
.
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C.5.2. PROOF OF JDI-CP

Proof. Under Assumption 3.1, denote

Xn+1
i = I(Xi, Ôi ∪ O∗ ∪ T̂n+1), i = n0, . . . , n, (C.24)

Xi
n+1 = I(Xn+1, Ôi ∪ O∗ ∪ T̂n+1), i = n0, . . . , n. (C.25)

According to Proposition 4.4, we have

P
{
Yn+1 ∈ ĈJDI(Xn+1)

}
≥ 1− 2α, (C.26)

where

ĈJDI(Xn+1) =
[
q̂−α ({µ̂(Xi

n+1)− |Yi − µ̂(Xn+1
i )|}ni=n0

), q̂+α ({µ̂(Xi
n+1) + |Yi − µ̂(Xn+1

i )|}ni=n0
)
]
. (C.27)

Note that if Assumption 3.2 is satisfied, Xn+1
i and Xi

n+1 are equal to X̌n+1
i and X̌i

n+1. Based on this, we can characterize
the differences between features and obtain the coverage property of ĈJDI(X̃n+1) beyond Assumption 3.2. First, notice
that the difference between X̌i

n+1 and Xi
n+1 is

X̌i
n+1 −Xi

n+1 = ∆̂i∆n+1(∆̃
T
n+1 − ∆̂T

n+1)Xn+1 + ∆̂i∆n+1(∆̂
T
n+1 − ∆̃T

n+1)x̄n+1

= ∆̂i∆n+1(∆̃
T
n+1 − ∆̂T

n+1)(Xn+1 − x̄n+1), (C.28)

and the difference between X̌n+1
i and Xn+1

i is

X̌n+1
i −Xn+1

i = ∆̂i∆n+1(∆̃
T
n+1 − ∆̂T

n+1)Xi + ∆̂i∆n+1(∆̂
T
n+1 − ∆̃T

n+1)x̄i

= ∆̂i∆n+1(∆̃
T
n+1 − ∆̂T

n+1)(Xi − x̄i). (C.29)

Invoking ℓ1-sensitivity of µ̂, we have

|µ̂(X̌i
n+1)− µ̂(Xi

n+1)| ≤ Sµ̂ ·
∥∥X̌i

n+1 −Xi
n+1

∥∥
1

= Sµ̂ ·
∑d

j=1|δ̂i,j | · |δn+1,j | · |δ̃Tn+1,j − δ̂Tn+1,j | · |Xn+1,j − x̄j |

= Sµ̂ ·
∑

j∈[d]\O∗ |δ̂i,j | · |δ̃Tn+1,j − δ̂Tn+1,j | · |Xn+1,j − x̄j |

≤ Sµ̂ · |T̃n+1△T̂n+1| · En+1,

(C.30)

and ∣∣|Yi − µ̂(X̌n+1
i )| − |Yi − µ̂(Xn+1

i )|
∣∣ ≤ Sµ̂ · |T̃n+1△T̂n+1| · En+1. (C.31)

Notice that the upper bound in (C.30) and (C.31) is exactly ∆n+1 in (C.22). Combining with (C.26), we can obtain the
coverage gap:∣∣∣P{Yn+1 ∈ ĈJDI(X̃n+1)

}
− P

{
Yn+1 ∈ ĈJDI(Xn+1)

}∣∣∣
=
∣∣P{q̂−α ({µ̂(X̌i

n+1)− |Yi − µ̂(X̌n+1
i )|}ni=n0

) < Yn+1 ≤ q̂+α ({µ̂(X̌i
n+1) + |Yi − µ̂(X̌n+1

i )|}ni=n0
)
}

−P
{
q̂−α ({µ̂(Xi

n+1)− |Yi − µ̂(Xn+1
i )|}ni=n0

) < Yn+1 ≤ q̂+α ({µ̂(Xi
n+1) + |Yi − µ̂(Xn+1

i )|}ni=n0
)
}∣∣

≤
∣∣P{q̂−α ({µ̂(Xi

n+1)−∆n+1 − (|Yi − µ̂(Xn+1
i )|+∆n+1)}ni=n0

) < Yn+1 ≤
q̂+α ({µ̂(Xi

n+1) + ∆n+1 + (|Yi − µ̂(Xn+1
i )|+∆n+1)}ni=n0

)}
−P
{
q̂−α ({µ̂(Xi

n+1)− |Yi − µ̂(Xn+1
i )|}ni=n0

) < Yn+1 ≤ q̂+α ({µ̂(Xi
n+1) + |Yi − µ̂(Xn+1

i )|}ni=n0
)
}∣∣

=
∣∣∣P{Q̂−

α − 2∆n+1 < Yn+1 ≤ Q̂+
α + 2∆n+1

}
− P

{
Q̂−

α < Yn+1 ≤ Q̂+
α

}∣∣∣
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= FY (Q̂
+
α + 2∆n+1)− FY (Q̂

+
α ) + FY (Q̂

−
α )− FY (Q̂

−
α − 2∆n+1), (C.32)

where

Q̂−
α = q̂−α ({µ̂(Xi

n+1)− |Yi − µ̂(Xn+1
i )|}ni=n0

), (C.33)

Q̂+
α = q̂+α ({µ̂(Xi

n+1) + |Yi − µ̂(Xn+1
i )|}ni=n0

). (C.34)

D. DDC Method
The DDC method is the most widely used method to detect cellwise outliers. We display the process of DDC in Figure 13,
and the details of the robust functions (highlighted in orange) can be found in Rousseeuw & Bossche (2018).
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Figure 13. An implementation of DDC detection method.

E. Additional experiment results
E.1. Three benchmark methods in simulation

Now we present the specific construction forms of the three methods used for comparison in Section 6.

• Baseline: mask the entries of {Xi}ni=n0
∪ X̃n+1 by O∗, and obtain the processed features

X̌Base
i = I(Xi,O∗), i = n0, . . . , n,

X̌Base
n+1 = I(X̃n+1,O∗) = I(Xn+1,O∗),

then construct SCP interval

ĈBase(X̃n+1) = µ̂(X̌Base
n+1 )± q̂+α ({|Yi − µ̂(X̌Base

i )|}ni=n0
).

• SCP: directly compute residuals Ri = |Yi − µ̂(Xi)| on the calibration set, then construct SCP interval

ĈSCP(X̃n+1) = µ̂(X̃n+1)± q̂+α ({Ri}ni=n0
) (E.1)

• WCP: consider the weights of residuals

pwi (x) =
w (Xi)∑n

l=n0
w(Xl) + w(x)

, i = n0, . . . , n,
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pwn+1(x) =
w(x)∑n

l=n0
w(Xl) + w(x)

,

where the likelihood ratio w(x) = dPX̃(x)/dPX(x) with X̃n+1 ∼ PX̃ can be estimated by Random Forests (more
generally, any classifier that outputs estimated probabilities of class membership) as mentioned in Tibshirani et al.
(2019), then construct WCP interval

ĈWCP(X̃n+1) = µ̂(X̃n+1)± q̂+α

(
n∑

i=n0

pwi (X̃n+1)δRi
+ pwn+1(X̃n+1)δ∞

)
. (E.2)

E.2. TPR and FDR for detection methods

In Table 3-5, we summarize the empirical TPR and FDR obtained through the application of the detection methods in the
simulation.

Table 3. Empirical TPR and FDR of DDC under three settings when ϵ = {0.2, 0.15, 0.1}, where the noise Zn+1,j is 10 .

Setting TPR FDR
0.2 0.15 0.1 0.2 0.15 0.1

A 1 1 1 0.082 0.113 0.179
B 1 1 1 0.067 0.108 0.232
C 1 1 1 0.080 0.116 0.182

Table 4. Empirical TPR and FDR of DDC under three settings when ϵ = {0.2, 0.15, 0.1}, where the noise Zn+1,j
i.i.d.∼ N(µ, σ), µ, σ

are randomly sampled from U(0, 10).

Setting TPR FDR
0.2 0.15 0.1 0.2 0.15 0.1

A 0.991 0.990 0.990 0.084 0.115 0.186
B 0.990 0.990 0.990 0.078 0.116 0.236
C 0.990 0.990 0.990 0.085 0.116 0.182

Table 5. Empirical TPR and FDR of one-class SVM classifier and cellMCD estimate methods under three settings when ϵ = 0.1, where
the noise Zn+1,j

i.i.d.∼ N(µ, σ) and µ, σ are randomly sampled from U(0, 10).

Setting
TPR FDR

SVM MCD SVM MCD
A 0.988 0.990 0.026 0.173
B 0.988 0.989 0.023 0.172
C 0.988 0.989 0.027 0.175

E.3. Supplementary simulation results for 6.3

In addition to Mean Imputation, we present the empirical coverage and length of Baseline and our method under different
contamination probabilities when I is kNN or MICE in Figure 14 and 15, respectively. The parameters are the same as those
in 6.3.
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Figure 14. Simulation results of Baseline and our methods when ϵ ∈ {0.1, 0.15, 0.2}. D is DDC and I is kNN.

Figure 15. Simulation results of Baseline and our methods when ϵ ∈ {0.1, 0.15, 0.2}. D is DDC and I is MICE.

E.4. Supplement of airfoil dataset study

Table 6. Available variables in the airfoil dataset.

Variable Unit
Scaled sound pressure level of NASA airfoils (target) dB
Frequency Hz
Attack-angle deg
Chord-length m
Free-stream-velocity m/s
Suction-side-displacement-thickness m

Creating training data, test data, and covariate shift: We repeated an experiment for 200 trials, and for each trial we randomly
partition the data {(Xi, Yi)}1000i=1 into two equally sized subsets Dt and Dc, and construct a test set Dtest containing cellwise
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outliers with the following steps.

• Log the first and fifth features of X across all the data.

• According to the contamination probability ϵ = 0.02, randomly select some entries to assign outlier 50.

• Use DI to handle covariates, where τj is set to
√
χ2
1,0.95 to control FDR.

• The set O∗ used in Baseline and ODI-CP is the coordinates of those artificially added noises.

E.5. Supplement of wind direction dataset study

Table 7. Available variables in the wind direction dataset.

Variable Unit
Wind direction (target) rad
Cosine of wind direction in the previous hour dimensionless
Sine of wind direction in the previous hour dimensionless
Atmospheric pressure in the previous hour mB
Air temperature (dry bulb) in the previous hour ◦C
Dew point temperature in the previous hour ◦C
Relative humidity in the previous hour %
Wind gust in the previous hour m/s
Wind speed in the previous hour m/s

Additional details are referred to E.4, but the test set Dtest is constructed with the following steps.

• According to the contamination probability ϵ = 0.02, randomly select some entries to assign outlier 100.

• Use DI to handle covariates, where τj is set to
√
χ2
1,0.95 to control FDR.

• The set O∗ used in Baseline and ODI-CP is the coordinates of those artificially added noises.

E.6. Supplement of riboflavin dataset study

Table 8. Available variables in the riboflavin dataset.

Variable Comments
Logarithm of riboflavin production rate target
Log-transformed gene expression levels p = 4088 (co)variables

Additional details are referred to E.4 without introducing artificial outliers.

• Use DI to handle covariates, where τj is set to
√
χ2
1,0.95 to control FDR.

• The set O∗ is unknown, so the experiments of Baseline and ODI-CP are not conducted.

• There may be cellwise outliers in Dt and Dc.
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