
Under review as submission to TMLR

Disobeying Directions: Switching Random Walk Filters for
Unsupervised Node Embedding Learning on Directed Graphs

Anonymous authors
Paper under double-blind review

Abstract
Unsupervised learning of node embeddings for directed graphs (digraphs) requires careful
handling to ensure unbiased modelling. This paper addresses two key challenges: (1) the
obstruction of information propagation in random walk and message-passing methods due
to local sinks, and (2) the representation of multiple multi-step directed neighbourhoods,
arising from the distinction between in- and out-neighbours. These challenges are intercon-
nected—local sinks can be mitigated by treating the graph as undirected, but this comes
at the cost of discarding all directional information. We make two main contributions to
unsupervised embedding learning for digraphs. First, we introduce ReachNEs (Reachability
Node Embeddings), a general framework for analysing embedding models and diagnos-
ing local sink behaviour on digraphs. ReachNEs defines the reachability filter, a matrix
polynomial over normalized adjacency matrices that captures multi-step, direction-sensitive
proximity. It unifies the analysis of message-passing and random walk models, making its in-
sights applicable across a wide range of embedding methods. Second, we propose DirSwitch,
a novel embedding model that resolves both local sink bias and neighbourhood multiplic-
ity via switching random walks. These walks use directed edges for local steps, preserving
directional structure, then switch to undirected edges for long-range transitions, enabling
escape from local sinks and improving information dispersal. Empirical results on node clas-
sification benchmarks demonstrate that DirSwitch consistently outperforms state-of-the-art
unsupervised digraph proximity embedding methods, and also serves as a flexible digraph
extension for self-supervised graph neural networks. Our source code is publicly available.1

1 Introduction

Directed graphs (digraphs) and node embeddings are both essential modelling tools for graph data. Digraphs
are ubiquitous for describing networks with asymmetric relationships, such as citation networks (McCallum
et al., 2000), online dating platforms (Takac & Zabovsky, 2012), financial transactions (Fire & Guestrin,
2020), brain connectomes (Winding et al., 2023), and the Internet (Faloutsos et al., 1999). Similarly, node
embeddings are key to solving machine learning and data mining tasks on graphs, including node classification
(Hou et al., 2023), node clustering (Wang et al., 2017b), graph alignment (Heimann et al., 2018), and
link prediction (Virinchi & Saladi, 2023). Despite their combined prevalence, the field of unsupervised
embedding learning for digraphs remains under-explored. Most research has focused on undirected graphs
and (semi-)supervised learning, even though task-specific labelled data is often scarce (Hu et al., 2020b).

Embedding modelling for digraphs presents several challenges. A primary requirement is the ability to
capture the asymmetric nature of digraphs. Conventional spectral-based approaches fall short, as asymmetric
matrices do not admit eigendecomposition (Zhang et al., 2021b). As a result, it is common practice to treat
digraphs as undirected, thereby discarding important relational information (Rossi et al., 2023).

Recent research on digraph node embeddings has focused on adapting random walk and message-passing
approaches to capture digraph asymmetry (Zhou et al., 2017; Khosla et al., 2020; Tong et al., 2020; Zhang
et al., 2021b; Virinchi & Saladi, 2023; Rossi et al., 2023). These approaches rely on information propagation
between nodes to generate embeddings that represent the connectivity of multi-step node neighbourhoods.

1https://anonymous.4open.science/r/dirswitch-experiments-tmlr2025-C5F2

1

https://anonymous.4open.science/r/dirswitch-experiments-tmlr2025-C5F2

Under review as submission to TMLR

1 2

(a) Undirected, U

1 2

(b) Default, OO

1 2

(c) Reverse, II

1 2

(d) Out-In, OI

1 2

(e) In-Out, IO

Figure 1: Visualization of local sinks and neighbourhood multiplicity. Each digraph shows a valid definition
of the 2-step neighbourhood of node 1, highlighted in black. Note that each directed neighbourhood is unique,
carrying independent information. (a) uses undirected edges, resulting in the maximum number of reachable
nodes at the expense of the digraph structure. (b) shows the neighbourhood using the default, outgoing edge
directions. The local sink, node 2, obstructs the information flow, so the neighbourhood consists of a single
node. In (c), the reverse, incoming edges are followed, and (d) and (e) use mixed edge directions. (d) uses
outgoing edges for the first step and incoming edges for the second, and vice versa for (e).

To account for digraph asymmetry, these models separate propagation along outgoing (default) edges from
reverse (incoming) edges, creating two sets of paired node embeddings.

While these models have addressed digraph asymmetry, other challenges have been overlooked. This work
tackles two such challenges: local sinks and neighbourhood multiplicity, visualized in Figure 1. The unidirec-
tionality of digraph edges means information flows in only one direction. As a result, digraphs contain local
sinks, i.e., nodes without outgoing edges. As shown in Figure 1b, these sinks obstruct information propaga-
tion and hinder exploration of multi-step neighbourhoods. This leads to a disproportionate influence of sink
nodes, resulting in biased embedding models. For instance, in Figure 1b, node 1 only receives information
from the sink node (node 2).

As highlighted in Figure 1, the multi-step neighbourhood in digraphs is not uniquely defined. This multiplic-
ity arises from the fact that each node has two distinct sets of neighbours: out-neighbours and in-neighbours,
each with different interpretations. In citation graphs, where each node represents a publication, out-
neighbours correspond to cited papers, while in-neighbours correspond to citing papers. When multi-step
neighbourhoods are considered, this multiplicity is exponentially amplified, as each node can have up to 2r

distinct r-step neighbourhoods. Each of these directed neighbourhoods has unique characteristics and inter-
pretations. For instance, the out-in neighbourhood in Figure 1d contains papers that cite the same publica-
tions as node 1, while Figure 1e highlights papers that have been cited together with node 1. The challenge for
unsupervised node embedding models is to represent this multitude of distinct neighbourhoods as accurately
as possible, since it is generally unknown a priori which neighbourhoods are key for solving downstream tasks.

In this work, we present two key contributions to address the challenges of unsupervised embedding learn-
ing for digraphs: (1) ReachNEs (Reachability Node Embeddings), a unifying framework for analysing node
embedding models, and (2) DirSwitch, a flexible approach for mitigating the issues of local sinks and neigh-
bourhood multiplicity, applicable to both random walk and message-passing embedding models.

ReachNEs is a mathematical framework designed to study and analyse the challenges of digraph node em-
bedding modelling. Flexibility and analytical tractability are prioritized in its design. To achieve this,
ReachNEs is built around the reachability graph filter, a matrix computed as a polynomial of normalized
adjacency matrices, capturing asymmetric node proximity through multi-step random walk transition prob-
abilities between node pairs in the graph.

The reachability matrix unifies random walk and message-passing embedding models. To generate random
walk-based proximity embeddings (Zhou et al., 2017; Zhu et al., 2021a), matrix factorization is used to decom-
pose the reachability matrix into low-dimensional factors. Conversely, the reachability matrix can serve as a
neighbourhood smoothing filter to produce linear message-passing embeddings (Wu et al., 2019). This versa-
tility makes the insights drawn from ReachNEs analysis applicable to a wide range of embedding techniques.

The ReachNEs framework is also flexible with respect to modelling different neighbourhood scales, supporting
multi-scale embeddings, which are crucial in the unsupervised setting (Rozemberczki et al., 2021). This
control is provided by the coefficients of the reachability matrix’s defining polynomial, which are interpreted
as random walk length probabilities.

2

Under review as submission to TMLR

Input graph)a(Default edge directions)b(

DirSwitch-1)c(

Node embeddings)d(

Random walk filters

Figure 2: A qualitative illustration of edge direction switching. (a): The Cora-ML citation graph, with nodes
coloured by class label (for visualization purposes only; not used in the model). (b) and (c): Random walk
transition probabilities from a specific initialization node, with a 50% stopping probability at each step. The
graph in (b) shows the default edge directions, while the graphs in (c) employ our DirSwitch-1 approach.
DirSwitch-1 performs one directed step using either default (left) or reverse (right) edge directions, followed
by undirected transitions. (d): UMAP (Sainburg et al., 2021) visualizations of node embeddings after
applying smoothing filters to all nodes. The DirSwitch-1 embedding space better reflects the spatial ground
truth class separation, demonstrating its improved neighbourhood smoothing on digraphs.

We use ReachNEs to quantify the effects of local sinks on information flow and to mathematically character-
ize the multiplicity of distinct directed neighbourhoods in digraphs. This analysis reveals a tension between
these two issues. The local sink problem can be easily resolved by treating digraphs as undirected, allowing
information to flow freely within each weakly connected component. However, this comes at the cost of losing
the distinction between directed neighbourhoods, reducing the expressivity of the embedding model. There-
fore, we seek a model that can address local sinks while preserving the capture of directed neighbourhoods.

Our second contribution, DirSwitch, achieves this balance. The core idea of DirSwitch is to decouple local,
short-range random walk behaviour from global, long-range behaviour. Specifically, DirSwitch preserves
local edge direction expressivity by performing directed random walks in the initial steps. It then switches
to treating the graph as undirected, allowing information to propagate freely and escape local sinks. The
effectiveness of this approach is illustrated in Figure 2.

We empirically evaluate DirSwitch both within and beyond the ReachNEs framework. First, we verify the
that DirSwitch both improves information propagation on digraphs compared to fully directed approaches,
without comprimisign the representation of local neighbourhood multiplicity.

We then demonstrate that this results in higher-quality embeddings and increased effectiveness by bench-
marking DirSwitch on 14 standard node classification benchmark datasets. Compared to ReachNEs models
that do not distinguish between local and global random walk behaviours, DirSwitch either achieves the
highest accuracy or performs within one standard deviation of the best result across all datasets. This
holds true for both the random walk-based proximity embedding setting and the message-passing setting.
Importantly, DirSwitch performs well on both homophilic and heterophilic datasets (Zhu et al., 2020). This
is desirable as it implies a broad applicability of the DirSwitch in real-world unsupervised settings where the
validity of a homophily assumption is in question (Wang et al., 2023).

To further assess DirSwitch’s practical effectiveness, we evaluate it against recent state-of-the-art digraph
methods. On six proximity embedding benchmarks without node attributes, DirSwitch achieves the highest
accuracy on all datasets except one, where it performs within one standard deviation of the best.

3

Under review as submission to TMLR

For message-passing embeddings, we apply DirSwitch as a digraph extension of the GraphSAGE graph neural
network (GNN) model (Hamilton et al., 2017) and integrate it with self-supervised loss functions, which have
previously been limited to undirected graphs (Zhang et al., 2021a; Hou et al., 2023). This demonstrates how
insights from ReachNEs can be leveraged to enhance embedding models more broadly. As a baseline, we use
the recent digraph GNN extension by Rossi et al. (2023), designed for supervised learning. Again, DirSwitch
achieves higher accuracy on all but one dataset, underscoring the need for additional considerations when
modelling digraphs in the unsupervised setting.

2 ReachNEs: Reachability Node Embeddings

This section introduces the ReachNEs framework for learning and analysing node embeddings in digraphs.
It consists of two components: the reachability graph filter, which represents multi-step node relations, and
reduction methods, which extract embeddings. Section 2.1 derives reachability filters from random walks,
while Section 2.2 describes the walk length distributions that determine the filter’s smoothing properties.
Finally, Section 2.3 presents reduction methods that unify message-passing and proximity-based embeddings.

2.1 The random walk reachability filter

Let G = (N,M) be a directed, potentially weighted graph without self-loops, where N is the set of nodes and
M is the set of edges. The graph has n = |N| nodes and m = |M| edges. The adjacency matrix A ∈ Rn×n is
defined as follows, along with the out-degree and in-degree of a node j:

Ai,j =
{

Wj 7→i if (j, i) ∈ M,

0 otherwise,
degO(j) =

n∑
k=1

Ak,j , degI(j) =
n∑

k=1
Aj,k. (1)

Here, Wj 7→i ∈ R≥0 is a nonnegative weight associated with the edge (j, i). Note that the columns of A
correspond to out-neighbourhoods, while the rows correspond to in-neighbourhoods.

We treat undirected graphs as a special case of the above definitions, where Ai,j = Aj,i for all edges in M.
Consequently, a digraph can be transformed into its corresponding undirected graph by adding the reverse
edge (j, i) to M for every edge (i, j) ∈ M, forming the edge set Mundir. In terms of the adjacency matrix,
this symmetrization is achieved by summing A and its transpose A⊺, Aundir = A + A⊺.

Next, we define three random walk normalized adjacency matrices, denoted as AO, AI, and AU, which we
collectively refer to as A∗ ∈ [0, 1]n×n. Each of these matrices is a column-stochastic matrix (Horn & Johnson,
2012, Ch. 8.7) and serves as a random walk state transition matrix. Specifically, given a probability state
vector p(k) ∈ [0, 1]n, where p

(k)
i represents the probability of a random walker being at node i after k steps,

the state vector after k + 1 steps is computed as p(k+1) = A∗p(k).

Each normalized adjacency matrix defines a different random walk behaviour with respect to the edge
directions. For AO, a random walker follows the default edge directions, transitioning from a node to its
neighbours along outgoing edges. Conversely, transitions using AI follow the reverse edge directions, meaning
the walker traverses incoming edges. For AU, the edges are treated as undirected, allowing the random walker
to move across both outgoing and incoming edges. These behaviours are formally defined as follows:

AOi,j =
{

1 if i = j and degO(j) = 0,
Ai,j

degO(j) otherwise,
AIi,j =

{
1 if i = j and degI(j) = 0,

Aj,i

degI(j) otherwise,

AUi,j =
{

1 if i = j and deg(j) = 0,
Aundiri,j

deg(j) otherwise,
deg(i) =

n∑
k=1

Aundirk,i.

To ensure column stochasticity, diagonal elements are set to 1 for nodes without legal edges to follow. Such
nodes are referred to as sink nodes, as a random walker gets stuck on these nodes. For digraphs without sink
nodes, the above definitions can be expressed compactly in matrix form:

AO = AD−1
O , AI = A⊺D−1

I , AU = AundirD
−1,

4

Under review as submission to TMLR

where DO, DI, and D are diagonal matrices of the respective node degrees.

The rows and columns of A∗ describe relationships between nodes based on their immediate neighbourhoods.
This concept can be extended to capture multi-step connectivity through matrix powers. Specifically, the jth
column of the power matrix Ak

∗ encodes the transition probabilities of a random walk of length k initialized
at node j. This follows directly from the state transition formula p(k+1) = A∗p(k). Accordingly, we denote
element (i, j) of Ak

∗ as P (j ⇝ i|k), representing the probability of transitioning from node j to node i in
exactly k steps.

While Ak
∗ provides a snapshot of transition probabilities at a specific walk length k, selecting an appropriate

value of k is non-trivial and introduces potential biases. A fixed k inherently restricts the description of node
neighbourhoods. For example, setting k = 2 might fail to capture immediate neighbours if no 2-step paths
exist between them, resulting in zero transition probabilities for such nodes.

To mitigate the bias and sensitivity introduced by single walk lengths, we instead impose a probability
distribution over the walk length: Pw(k). Using this distribution, the node transition probabilities are
computed by marginalizing over the walk length. This leads to the definition of the reachability matrix
R ∈ Rn×n, where each element Ri,j represents the probability of transitioning from node j to node i, with
the walk length sampled from Pw(k):

R(A∗; Pw) =
∞∑

k=0
Pw(k)Ak

∗, Ri,j(A∗; Pw) = P (j ⇝ i| Pw) =
∞∑

k=0
Pw(k)P (j ⇝ i|k). (2)

This definition of the reachability matrix R relies purely on random walk probabilities, making it equally
applicable to both directed and undirected graphs. Beyond its simplicity, R has several important interpre-
tations that enhance its analytical utility. For example, R can be viewed as a specific case of a convolutional
graph filter (Isufi et al., 2024, Eq. 3). It can also be viewed as a matrix function of A∗ (Higham, 2008),
with each Pw(k) corresponding to a Taylor series coefficient. As we elaborate in Appendix C, this connection
links R to solutions of differential equations modelling various forms of graph-based diffusion.

Figure 3a illustrates the reachability matrix R(AU; Pw) for a U.S. political blogs graph (Adamic & Glance,
2005). Each column of the matrix represents a transition probability distribution for a random walk initialized
at the node corresponding to the column index. The two prominent visual blocks correspond to political
alignments in the dataset. Figure 3b further visualizes one column vector, superimposed on a ridiculogram
of the Polblogs graph. Also in this figure are the two political blocks are visible, with the reachability being
mostly constrained to the left cluster.

2.2 Walk length distributions

As defined in Equation 2, the walk length distribution Pw(k) dictates the contribution of each adjacency
matrix power Ak

∗, shaping the filter’s smoothing behavior. Various walk length distributions have been
explored in the literature, and the ReachNEs framework is not restricted to any specific choice.

Table 1: Overview of the studied random walk length distributions Pw(k; τ), where k represents the walk
length variable. Each distribution is parameterized by the average walk length τ . For readability, we use α
as a substitution variable in the geometric and binomial distributions. The binomial distribution includes an
additional parameter, K, representing the maximum walk length. Distribution plots are shown in Figure 3c.

Name Geometric Binomial Poisson Uniform

Abbreviation Geom Binom Pois U

Pw(k; τ) (1 − α)αk, α = τ

τ + 1
(

K
k

)
(1 − α)K−kαk, α = τ

K
e−τ τk

k!

{ 1
2τ + 1 if k ∈ [0, 2τ],

0 otherwise

5

Under review as submission to TMLR

(a) A reachability matrix (b) One reachability vector

0 1 2 3 4 5 6 7 8 9 101112
Walk length, k

0.0

0.1

0.2

0.3

Pr
ob

.m
as

sf
un

ct
io

n,
P
w

(k
) Geometric(τ = 2)

Poisson(τ = 2)

0 1 2 3 4 5 6 7 8 9 101112
Walk length, k

0.0

0.1

0.2

0.3

Pr
ob

.m
as

sf
un

ct
io

n,
P
w

(k
) Binom(τ = 2)

Uniform(τ = 2)

(c) Walk length distributions

Figure 3: (a) The reachability matrix R(AU; Pois(τ = 2)) for the Polblogs graph, where each column repre-
sents the transition probabilities for a random walk initialized at the corresponding node. (b) Visualization
of a single column of R, superimposed on a ridiculogram of the Polblogs graph, highlighting the localized
reachability distribution. (c) The four walk length distributions Pw(k) studied in this work for τ = 2: Ge-
ometric, Poisson, Binomial, and Uniform. These distributions determine the weight of each walk length in
the computation of R.

In this work, we focus on four widely used distributions: geometric, binomial, Poisson, and uniform. Their
probability mass functions (pmfs) are presented in Table 1, each parameterized by its average walk length
τ = E[Pw]. Figure 3c visualizes these pmfs for τ = 2. Below, we briefly describe each distribution, with
further discussion and analysis provided in Appendix C.

The geometric distribution is widely used in node embedding research (Zhou et al., 2017; Yan et al., 2024).
It is often interpreted through the random surfer model (Page et al., 1999), where α = τ/(τ + 1) represents
the probability of continuing the walk, while 1 − α denotes the probability of restarting. The distribution is
monotonically decreasing for all τ , and as τ → ∞, it flattens but remains mode-centered at k = 0.

The binomial distribution is defined with a finite maximum walk length K and also admits a random surfer
interpretation, where α represents the probability of taking a step, and 1 − α is the probability of remaining
at the current node. As discussed in Appendix C.5, this distribution naturally emerges when self-loops are
added to graphs, a common practice in graph convolutional networks (Kipf & Welling, 2017; Wu et al., 2019).

In the limit of K → ∞, the binomial distribution converges to the Poisson distribution. The Poisson
distribution has been applied in structural node embedding methods (Donnat et al., 2018; Zhu et al., 2021a;
Ceylan et al., 2022) and establishes a connection between reachability and heat diffusion on graphs, as
discussed in Appendix C.

Unlike the geometric distribution, the binomial and Poisson distributions tend to produce non-informative
reachability filters as τ → ∞. As their modes increase with τ , larger values emphasize smoothing for high k,
leading to over-smoothing as the columns of R approach uniformity across the graph. A detailed theoretical
analysis is provided in Appendix C, and this effect is key to understanding some of our experimental results.

Finally, the uniform distribution is widely used in node embedding models, as it naturally arises from common
negative sampling schemes (Perozzi et al., 2014; Qiu et al., 2018; Chanpuriya & Musco, 2020).

2.3 Reachability reduction into node embeddings

The reachability matrix defined above captures multi-step relationships between node pairs in a graph. To
complete the ReachNEs framework, we now describe how this pairwise information is transformed into node
embeddings. These transformations are called reduction methods, as they reduce the n × n matrix R to a
smaller embedding matrix Z ∈ Rn×p.

The reduction method serves two main purposes. First, it projects nodes into a lower-dimensional space
(p < n), improving computational efficiency for downstream tasks and alleviating the curse of dimension-
ality (Hastie et al., 2009, Ch. 2.5). Second, the choice of reduction method encodes specific equivalence
relationships into the embeddings (Zhu et al., 2021a).

6

Under review as submission to TMLR

We explore two reduction approaches: proximity embeddings and message-passing embeddings. Proximity
embeddings capture structural equivalence, where embedding similarity reflects spatial closeness between
nodes. In contrast, message-passing embeddings represent automorphic equivalence, emphasizing local con-
nectivity patterns and allowing for similarity between distant nodes. Further details on the relationship
between reachability reductions and equivalence relationships can be found in Appendix B.

2.3.1 Proximity embedding reduction

Proximity embeddings represent nodes based on their connectivity, capturing how close nodes are to each
other. In undirected graphs, these embeddings are often referred to as positional embeddings (Zhu et al.,
2021a). However, in digraphs, the asymmetric nature of relationships makes the concept of “position” in
a symmetric, Euclidean sense inappropriate. Instead, we define node proximity asymmetrically using the
reachability matrix R(A∗; Pw), where the element Ri,j quantifies the closeness of node j to node i. The walk
length distribution Pw controls the resolution of this proximity.

To derive proximity embeddings from R, we employ Singular Value Decomposition (SVD) (Golub &
Van Loan, 2013, Ch. 2.4), a widely used technique in proximity embedding methods (Qiu et al., 2018;
Zhu et al., 2021a). Let U , Σ, V ⊺ = SVD(R) represent the SVD of R, and let U:,:q, Σ:q,:q, and V:,:q denote the
q-truncation of U , Σ, and V , respectively, where q = p/2. The proximity embeddings are then defined as:

Z =
[
ZU ZV

]
∈ Rn×2q, ZU = U:,:q

√
Σ:q,:q ∈ Rn×q, ZV = V:,:q

√
Σ:q,:q ∈ Rn×q. (3)

The proximity embeddings capture node proximity in two key ways. First, the inner product of the left
and right embeddings approximates the reachability matrix: R ≈ ZU Z⊺

V = U:,:qΣ:q,:qV:,:q
⊺. Second, the

Euclidean distance between embeddings in Z reflects the overlap of multi-step neighbourhoods. The latter is
particularly important for downstream tasks such as clustering, where embedding distances are often utilized.

The following equality (derived in Appendix A.3) formalizes the relationship between reachability similarity
and embedding distance:

∥Ri,: − Rj,:∥2
2 + ∥R:,i − R:,j∥2

2 =
∥∥∥(Zi,: − Zj,:)

√
Σ̂
∥∥∥2

2
, Σ̂ =

[
Σ:q,:q 0

0 Σ:q,:q

]
. (4)

The left-hand side measures the difference between rows and columns of R for nodes i and j, quantifying
the overlap of their multi-step neighbourhoods. The right-hand side represents the distance between their
respective proximity embeddings in Z. This equivalence implies that, for q ≤ rank(R), two nodes have
identical embeddings in Z if and only if their multi-step neighbourhoods perfectly overlap.

This property is particularly valuable for distance-based downstream tasks. However, its validity relies on
the first term in the definition of R in Equation 2, i.e., Pw(k = 0)In, being zero. This term introduces
a constant, non-neighbourhood-dependent contribution that prevents structurally equivalent nodes from
having identical embeddings. To address this, we compute R for proximity embeddings using a shifted walk-
length distribution; meaning that the coefficients in Equation 2 are replaced with Pw(k−1), using Pw(−1) = 0.

Another modification to the definition of R is the application of the elementwise thresholding function
f(Ri,j) = log(max(nRi,j , 1)) before performing the SVD. This contrast-enhancing function amplifies the
difference between elements where Ri,j < 1

n and those where Ri,j ∈
[

1
n , 1

log n

]
. This type of contrast

enhancement has been shown to yield practical benefits for undirected graphs (Qiu et al., 2018; Chanpuriya
& Musco, 2020; Zhu et al., 2021a), and we find that these advantages extend to digraphs as well.

2.3.2 Message-passing embedding reduction

Message-passing embedding reduction requires an initial set of node representations, i.e., a matrix of node
attribute vectors X ∈ Rn×d. These attributes typically supplement the graph structure, such as text embed-
dings of paper abstracts in citation graphs (Hu et al., 2020a). Alternatively, X may consist of graph-derived
properties, such as node degrees or local clustering coefficients.

7

Under review as submission to TMLR

The ReachNEs message-passing embeddings are smoothed versions of the node attribute vectors, with the
columns of the reachability matrix R defining the multi-step smoothing filter over each node’s local neigh-
bourhood. Thus, initial d-dimensional message-passing embeddings are straightforwardly obtained via the
matrix multiplication Z = R⊺X. To further reduce the dimensionality to p dimensions, techniques like PCA
(Murphy, 2012, Ch. 12.2) can be applied, yielding the embeddings Z = PCA(R⊺X).

Connection to message-passing. Message-passing is commonly used in the context of graph neural
networks (Gilmer et al., 2017). In typical descriptions, each node receives messages from its neighbours in the
form of embedding vectors, which are aggregated and then used to update its own embedding representation.
Given this, it may not be immediately clear how the linear model R⊺X relates to message-passing.

To establish this connection, we expand R⊺X by bringing the transpose inside the sum of Equation 2:

R⊺X =
(∞∑

k=0
Pw(k)Ak

∗

)⊺

X =
∞∑

k=0
Pw(k)

(
Ak

∗
)⊺

X =
∞∑

k=0
Pw(k)A⊺

∗
kX. (5)

Next, we let H(0) = X and Z(0) = Pw(0)X, and express the sum in Equation 5 as an iterative algorithm:

For k ∈ {1, 2, . . . },

{
H(k) = A⊺

∗H(k−1),

Z(k) = Z(k−1) + Pw(k)H(k).
(6)

This iterative formulation connects directly to message-passing. To clarify the connection, consider the
update H(k) = A⊺

U H(k−1) for the undirected random walk matrix. Assuming no sink nodes and uniform
edge weights for simplicity, the process can be expressed as:

A⊺
U H = D−1A⊺

undirH, [A⊺
U H]i,: = 1

deg(i)
∑

j:(j,i)∈Mundir

Hj,:. (7)

The right-hand side describes mean neighbourhood aggregation, where messages (represented by H) are
averaged over a node’s immediate neighbours. This mirrors the aggregation function used in GraphSAGE
(Hamilton et al., 2017, Alg. 1). Similarly, A⊺

O and A⊺
I aggregate messages over outgoing and incoming

neighbourhoods, respectively, as in the directed GraphSAGE extension proposed by Rossi et al. (2023). Full
mathematical expressions for the directed case are provided in Appendix A.2.

3 Local sinks and directed neighbourhood multiplicity

In this section, we use the ReachNEs framework to study local sinks and neighbourhood multiplicity. We
examine how local sinks obstruct information propagation and quantify their effects using entropy. Addition-
ally, we formalize the multiplicity of directed neighbourhoods within ReachNEs and discuss its implications
for embedding model expressivity. Finally, we explore how model expressivity can be improved through
embedding concatenation.

3.1 Local sink analysis

As seen in Section 2, the elements of the reachability matrix R represent random walk transition probabilities,
with each column describing a smoothing over multi-step neighbourhoods for a given node. However, local
sinks in digraphs can significantly disrupt this smoothing process.

As highlighted in Figure 1b, local sinks are nodes, or small sets of nodes, without directed paths to the rest of
the graph. Random walks initiated at sink nodes remain trapped, preventing them from gathering additional
neighbourhood information. Moreover, transition probabilities of walks starting at other nodes tend to
accumulate in sinks, as random walkers can enter but cannot escape. This accumulation disproportionately
amplifies the influence of sink nodes on the reachability filter, introducing bias into the embedding model.

8

Under review as submission to TMLR

(a) Cora-ML. Left: O, Right: U (b) Fly Larva. Left: O, Right: U

Figure 4: Graph visualizations illustrating the accumulation of transition probabilities in local sinks. Node
size and colour represent the magnitude of reachability, with black indicating zero. (a) shows the Cora-ML
citation graph using default directed edges on the left (O), and undirected edges on the right (U). The left
graph displays accumulation of reachability in a small subset of sink nodes, while the right graph shows more
uniform coverage across the multi-step neighbourhood of the initial node. (b) shows the same pattern for
the Fly Larva dataset where the left graph exhibits disproportionate accumulation in sinks, while the right
graph effectively disperses transition probabilities.

These effects are illustrated using ridiculograms of real-world graphs in Figure 4. Figure 4a demonstrates this
phenomenon on the Cora-ML citation graph. On the left, reachability is computed using the default edge
directions, R(AO), causing reachability to concentrate in a small set of sink nodes. In contrast, the graph on
the right, which uses undirected edges, R(AU), produces a reachability distribution that more evenly covers
the multi-step neighbourhood of the starting node.

This effect is not limited to near-acyclic citation graphs but is observed across various directed graphs. As
shown in Figure 4b, similar results occur in the brain connectome of the fly larva (Winding et al., 2023),
despite this graph being significantly denser than Cora-ML (see Table 2 for statistics).

The columns of the reachability matrix capture the impact of local sinks on information propagation. Con-
sider a node j, whose random walk probabilities are given by the column R:,j . If j is a sink node, or if its
transition probabilities are largely absorbed by a sink, the reachability will be concentrated in a few nonzero
values in R:,j ; a property we refer to as low dispersal. Conversely, high dispersal indicates that probabilities
are more evenly distributed across j’s multi-step neighbourhood.

This notion of dispersal is naturally captured by Shannon entropy (Cover & Thomas, 2005, Ch. 2.1). We
define the reachability entropy of node j as H(j; R) = −

∑n
i=1 Ri,j log2 Ri,j . Entropy is always non-negative,

reaching zero when all probability is concentrated in a single node. Conversely, it attains its maximum value,
log2 n, when probabilities are uniformly distributed across all n nodes. Thus, higher entropy corresponds to
reduced bias toward sink nodes and improved dispersal.

In Figure 5, we plot the entropy for the Cora-ML and Fly Larva graphs. The y-axes represent entropy,
H(j; R), while the x-axes correspond to nodes j, sorted by entropy values. We use Pw = Pois(τ), with
each coloured line representing a distinct τ value. The dashed line indicates the entropy of the asymptotic
reachability matrix as τ → ∞ for the undirected graph (see Appendix C.1).

Notably, transitioning from the directed to the undirected graph results in a significant entropy increase for
Cora-ML, as seen in Figure 5a and Figure 5b. This reflects the improved dispersal in the undirected case,
where sink nodes are absent.

We also observe differences in behaviour as the neighbourhood scale parameter τ increases. In the undirected
case, entropy steadily grows toward its asymptotic value, as expected. However, in the directed case, entropy
decreases for sufficiently large τ , as probability becomes concentrated in sink nodes.

For the Fly Larva graph, the entropy differences between the directed and undirected cases are smaller,
which is expected given its higher density. Nonetheless, entropy remains higher in the undirected case, with
the largest difference occurring at the highest τ value, where reachability again accumulates in sink nodes
for the directed graph.

9

Under review as submission to TMLR

0 2 4 6 8 10 12 Ri,j ∝ deg(i)

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2τ =4

(a) Cora-ML, O

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(b) Cora-ML, U

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(c) Fly Larva, O

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(d) Fly Larva, U

Figure 5: Reachability under Pw = Pois(τ), using AO and AU. The x-axes correspond to nodes sorted
by their entropy value. The colours represent various values of τ . The black dashed line indicates the
entropy of a reachability distribution proportional to the node degrees, which corresponds to the limiting
and uninformative distribution as τ → ∞. See Appendix C.1 for further details.

It is important to note that high dispersal alone does not guarantee embedding quality. This becomes evident
when considering that maximum entropy is achieved when Ri,j = 1

n , meaning smoothing is performed uni-
formly across the graph. While this maximizes dispersal, it renders the embeddings uninformative. Instead,
dispersal must be complemented by another key property, which we discuss in the next section: expressivity.

3.2 Neighbourhood multiplicity and embedding model expressivity

3.2.1 Neighbourhood multiplicity

The directed neighbourhood of a digraph is not uniquely defined, as visualized in Figure 1 using 2-step
neighbourhoods. At each step of a random walk, the walker may follow either the outgoing or incoming
edges of the current node. This dichotomy gives rise to up to 2K unique neighbourhoods for a K-step walk.

We formalize this using a truncated K-step reachability matrix. First, we define the edge orientation specifier
as a string σ, where each character σl ∈ {U, O, I} corresponds to a normalized adjacency matrix Aσl

. Given
an edge orientation specifier of length K, the truncated reachability matrix is defined as:

R(K)(A; Pw, σ) = Pw(0)In +
K∑

k=1
Pw(k)

↶
k∏

l=1
Aσl

,

↶
k∏

l=1
Aσl

= Aσk
. . . Aσ2Aσ1 . (8)

Since each Aσl
is a column-stochastic transition matrix, the same holds for the product in Equation 8,

where the arrow indicates the product order. Thus, if Pw is properly normalized for K-step truncation,
R(K)(A; Pw, σ) represents transition probabilities for multi-directional walks. For example, σ = OIO gener-
ates the probabilities of a walk that follows outgoing edges in the first step, incoming edges in the second,
and outgoing edges again in the third. Our definition also allows undirected edges (U) in the walks, which
will be relevant for defining DirSwitch in Section 4.

Each edge direction specifier σ generally produces a unique reachability matrix with distinct neighbourhood
characteristics. Next, we discuss how this multiplicity can be represented using embeddings.

3.2.2 Model expressivity: multi-scale and multi-directional embeddings

A key objective of unsupervised embedding models is to maximize the graph connectivity information cap-
tured for each node. Ideally, embeddings should retain all relevant graph information, allowing them to be
used independently and efficiently for downstream tasks without requiring access to the full graph. We refer
to an embedding model’s ability to preserve graph information as its expressivity.

To understand expressivity, it is useful to think of the embedding vector Zi,: ∈ Rp as a signature of node i,
summarizing its characteristics. Ideally, if two nodes i and j have identical embedding vectors, Zj,: = Zi,:,
they should be equivalent under a specific node equivalence definition. We discuss relevant notions of
equivalence for proximity and message-passing embeddings in Appendix B.

10

Under review as submission to TMLR

Currently, no known efficient embedding model guarantees this signature property, as such a model would
imply a polynomial-time solution to the graph isomorphism problem (Grohe & Schweitzer, 2020). Conse-
quently, research continues to focus on enhancing embedding model expressivity. One common and effective
approach is embedding concatenation (Jin et al., 2019; Corso et al., 2020).

Embedding concatenation involves extracting multiple sets of embeddings that capture different graph char-
acteristics, e.g., Z(1) ∈ Rn×p1 and Z(2) ∈ Rn×p2 , and combining them into a joint embedding space,
Z =

[
Z(1) Z(2)] ∈ Rn×p1+p2 . This approach is particularly advantageous for unsupervised embeddings, as

it ensures that both Z(1) and Z(2) contribute to the representation in Z.

Concatenation is particularly popular for producing multi-scale embeddings (Rozemberczki et al., 2021).
The goal of multi-scale embeddings is to represent the inherent hierarchical structure of real-world graphs
(Newman, 2018, Ch. 14.7.2) by concatenating embeddings that capture different neighbourhood scales. The
ReachNEs framework enables this by incorporating multiple walk length distributions, Pw. For example,
using Pw

(1) = Geom(τ = 1) and Pw
(2) = Pois(τ = 3) results in two reachability matrices, R(Pw

(1)) and
R(Pw

(2)), which focus on immediate and 3-step neighbourhoods, respectively.

The same principle enhances embedding expressivity for directed neighbourhoods. By concatenating embed-
dings from distinct multi-step directed neighbourhoods, we obtain multi-directional embeddings. Within the
ReachNEs framework, edge direction specifiers σ generate reachability matrices corresponding to different
directed neighbourhoods, e.g., R(σ(1)) and R(σ(2)). Multi-directional concatenation can also be combined
with multi-scale concatenation to produce embeddings that incorporate both perspectives.

However, a key limitation of embedding concatenation is that the embedding dimensionality, p, grows with
each additional concatenation. This increase can be rapid, given the exponential number of distinct directed
neighbourhoods and their possible combinations with multi-scale embeddings. Excessively high dimension-
ality leads to increased memory and computational costs, as well as potential issues related to the curse of
dimensionality. Therefore, it is beneficial to pair concatenation with dimensionality reduction techniques,
such as PCA (Murphy, 2012, Ch. 12.2).

4 DirSwitch: Switching reachability filters

The previous section highlights a dual challenge in digraph embedding modelling. Local sinks obstruct
information propagation, leading to embeddings biased toward sink nodes. This issue can be easily mitigated
by treating the digraph as undirected, effectively ignoring edge directions. However, this approach reduces
model expressivity by discarding information about the multiplicity of directed neighbourhoods.

To address these intertwined issues, we propose switching random walks. The key idea is to generate multi-
directional embeddings by following directed edges for the first r steps of a random walk, thereby capturing
local directed neighbourhood structure. After r steps, the graph is treated as undirected, allowing the walk
to escape sinks and achieve broader dispersal.

We name this approach DirSwitch. To formally define the DirSwitch model, we introduce a shorthand
notation for the edge direction specifier σ. For a K-step random walk, we define σ as a string of length
r + 1, where r < K. The final character, σr+1, determines the direction for the last K − r steps of the walk.

Rewriting Equation 8 using this notation and taking the limit as K → ∞, we obtain:

R(A; Pw, σ) = Pw(0)In +
r∑

k=1
Pw(k)

↶
k∏

l=1
Aσl

+
∞∑

k=r+1
Pw(k)Ak−r

σr+1

↶
r∏

l=1
Aσl

. (9)

In this formulation, a DirSwitch model is characterized by the first r letters in σ being either O or I,
representing directed walk steps, while the final character, σr+1, is set to U, ensuring undirected propagation
for the remaining steps.

The switch to undirected edges addresses the issue of local sinks, but it remains necessary to incorporate
representations of different directed neighbourhoods. To achieve this, we use the multi-directional concate-

11

Under review as submission to TMLR

nation approach described in Section 3.2. For a given value of r, we define the DirSwitch-r embedding
model as the concatenation of all 2r possible configurations of a σ sequence of length r + 1 ending with
σr+1 = U. For example, DirSwitch-1 concatenates embeddings using σ = OU and σ = IU, while DirSwitch-2
uses σ ∈ {OOU, OIU, IOU, IIU}, and so on for any DirSwitch-r model.

As a baseline for our experiments, we define MultiDir-r similarly to DirSwitch-r, but without the switch to
undirected edges. That is, MultiDir-1 uses σ = O and σ = I, while MultiDir-2 uses σ ∈ {O, OI, IO, I}, etc.

As noted in Section 3.2, multi-directional concatenation can be combined with multi-scale concatenation,
often leading to higher embedding quality. However, this combination yields diminishing returns. If r steps of
multi-directionality are used along with s different walk length distributions for a target embedding dimension
p, each individual combination of σ and Pw contributes only p

2rs dimensions to the final embedding.

5 Related works

5.1 Embedding learning frameworks

The ReachNEs framework draws upon three broad graph learning paradigms: proximity-based node embed-
ding learning (Huang et al., 2021; Zhu et al., 2021a), graph signal processing (Shuman et al., 2013), and the
message-passing framework (Gilmer et al., 2017).

Similar to ReachNEs, the frameworks introduced by Huang et al. (2021) and Zhu et al. (2021a) unify
proximity-based embedding learning through matrix factorization of random walk-based node proximity
matrices. These works demonstrate how such frameworks can incorporate a wide range of random walk-
based embedding models, including Perozzi et al. (2014); Grover & Leskovec (2016); Zhou et al. (2017); Qiu
et al. (2018); Khosla et al. (2020). However, unlike our work, both focus exclusively on undirected graphs,
whereas ReachNEs is designed for digraphs. Additionally, neither Huang et al. (2021) nor Zhu et al. (2021a)
analyse message-passing embeddings. Huang et al. (2021) concentrates solely on proximity embeddings,
while Zhu et al. (2021a) also considers structural embeddings, such as GraphWave (Donnat et al., 2018).

From a graph signal processing perspective, ReachNEs message-passing embeddings can be viewed as a
special case of graph convolutional filtering, which produces embeddings via neighbourhood smoothing.
This is evident when comparing reachability smoothing in Equation 5 to (Isufi et al., 2024, Eq. 3). The
key difference is that ReachNEs constrains the polynomial coefficients to form a probability distribution
over walk lengths, whereas graph convolutional filters impose no such constraint. This restriction allows
the reachability matrix to be interpreted as a random walk transition probability matrix, enabling a unified
analysis of both message-passing and proximity embeddings. In contrast, graph convolutional filters lack
this interpretation and are not typically used for proximity embeddings.

In Section 2.3.2, we demonstrated that ReachNEs is a linear message-passing model. Message-passing is
widely employed in graph neural networks (GNNs) to learn embeddings. The SGCN model by Wu et al.
(2019) is an example of a linear, unsupervised GNN similar to ReachNEs but designed for undirected graphs.
Since SGCN introduces self-loops for each node, it can be related to the ReachNEs model using the binomial
walk length distribution, a connection we explore in Appendix C.5.

More commonly, message-passing GNNs are parameterized, nonlinear models requiring training via non-
convex optimization (Gilmer et al., 2017). While this makes their analysis more complex than our reachability
framework, their overall algorithmic structure remains similar. In fact, only minor modifications to Equa-
tion 6 are needed to derive the basic GraphSAGE embedding encoder (Hamilton et al., 2017). In Section 6.5,
we leverage this connection to demonstrate how our findings extend to the self-supervised GNN setting.

5.2 Digraph models

Research on message-passing embedding models, particularly GNNs, has primarily focused on undirected
graphs (Rossi et al., 2023). This is especially true in unsupervised and self-supervised learning, where recent
state-of-the-art models remain constrained to undirected graphs (Hassani & Khasahmadi, 2020; Thakoor
et al., 2022; Zhang et al., 2021a; Hou et al., 2023).

12

Under review as submission to TMLR

For (semi-)supervised learning, Rossi et al. (2023) proposed digraph extensions for common GNN embedding
encoders. Unlike DirSwitch, which uses concatenation to preserve the contributions of different directed
neighbourhoods in distinct embedding components, Rossi et al. (2023) employs parameterized mixing of these
components. This approach requires the model to learn how to extract and preserve relevant information
from multi-directional neighbourhoods. However, this filtering process is more challenging in unsupervised
settings due to the weaker learning signal.

In contrast, research on unsupervised proximity embeddings for digraphs has progressed further than its
message-passing counterpart. The models HOPE (Ou et al., 2016), APP (Zhou et al., 2017), and NERD
(Khosla et al., 2020) follow a similar approach to ReachNEs and DirSwitch, leveraging random walks and
matrix factorization of proximity matrices. However, none of these models explicitly address local sinks and
neighbourhood multiplicity, which are the primary focus of our work.

Additionally, there are several notable differences. Both HOPE and APP use the geometric walk length
distribution, while NERD employs the uniform distribution. In contrast, ReachNEs treats the choice of
distribution as a parameter. NERD also introduces alternating walks, where edge direction specifiers switch
between outgoing and incoming edges (e.g., σ = OIOI... or σ = IOIO...). While this pattern may help
random walks escape some sinks, restricting the model to only these sequences introduces bias by excluding
other directed neighbourhood definitions.

Furthermore, HOPE utilizes partial and generalized SVD (Hochstenbach, 2009) for matrix factorization,
whereas ReachNEs employs the more scalable single-pass SVD (Yu et al., 2017). Both APP and NERD
rely on Monte Carlo sampling of random walks and implicit matrix factorization via gradient descent and
negative sampling, while ReachNEs directly computes the reachability matrix using matrix multiplication.

Finally, DGGAN (Zhu et al., 2021b) and BLADE (Virinchi & Saladi, 2023) are unsupervised digraph embed-
ding methods that incorporate neural networks. While neither explicitly addresses the issue of local sinks,
BLADE follows an embedding mixing strategy similar to Rossi et al. (2023), where a GNN is responsible for
filtering information from distinct directed neighbourhoods.

6 Experiments

Our experiments focus on evaluating DirSwitch and are divided into three parts. First, we validate that
DirSwitch mitigates low dispersal caused by local sinks in digraphs (Section 6.1) while preserving the ability
to represent directed neighbourhoods (Section 6.2). Second, in Section 6.3, we demonstrate that these
improvements lead to higher-quality embeddings by evaluating DirSwitch in combination with ReachNEs on
14 node classification benchmark datasets.

Third, we evaluate DirSwitch’s practical effectiveness by comparing it to recent digraph embedding models
on node classification benchmarks. Specifically, we first assess DirSwitch with ReachNEs proximity embed-
dings against state-of-the-art unsupervised digraph proximity embedding approaches (Section 6.4). Then, in
Section 6.5, we demonstrate DirSwitch’s flexibility by applying it beyond the ReachNEs framework. We ex-
tend self-supervised GNNs to digraphs using ReachNEs and compare this approach to the method proposed
by Rossi et al. (2023), which generalizes GNNs to digraphs in the semi-supervised setting.

Our experiments use the graph learning datasets summarized in Table 2, which span a diverse range of graph
types and properties, including variations in density, connectivity, and node attributes. Unless otherwise
specified, we compute truncated reachability using K = 12 steps. All experiments were conducted in a
Google Cloud environment with an Nvidia L4 24GB GPU, 32 vCPUs @ 2.20GHz, and 128GB of memory.

6.1 Improving dispersal

To verify that DirSwitch mitigates local sinks and improves dispersal, we measure the reachability entropy
H(j; R) = −

∑n
i=1 Ri,j log2 Ri,j (see Section 3.1) for various reachability matrices R(Pw, σ). Specifically, we

compare DirSwitch edge direction specifiers σ ∈ {OU, OIU, OIOU} against MultiDir specifiers σ ∈ {O, OI, OIO}
and purely undirected edges, σ = U. We use two walk length distributions: Pois(τ = 2), which highlights
short-range differences, and U(τ = 5), which captures long-range behaviour.

13

Under review as submission to TMLR

Table 2: Graph statistics for the datasets. The columns report the number of nodes (n) and edges (m), the
median out- and in-degrees (|degO|, |degI|), the number of weakly and strongly connected components (#CC
and #SCC), the global clustering coefficient (CG), and the average path length (⟨lpath⟩) computed on the
undirected version of the graph. Additionally, when available, we list the number of node attributes (d), the
number of node label classes (|Y|), and the homophily coefficient of the undirected graph (hU). The final column
specifies the graph type. All values use shorthand notation with K=103 and M=106.

Dataset n m | degO | | degI | # CC # SCC CG ⟨lpath⟩ d |Y| hU Type

Arxiv1 170K 1.2M 4 1 1 141K 0.017 5.7 128 40 0.64 Citation
Arxiv-Year2 170K 1.2M 4 1 1 141K 0.017 5.7 128 5 0.29 Citation
Citeseer3 4.2K 5.4K 1 0 515 4209 0.084 7.4 602 6 0.96 Citation
CoCite4 44K 20K 2 2 652 44K 0.081 5.5 – 15 0.42 Citation
Cora3 20K 65K 2 1 364 16K 0.14 6.2 8710 70 0.59 Citation
Cora-ML3 3K 8.4K 2 1 61 2603 0.12 5.3 2879 7 0.82 Citation
Cora (Subelj)4 23K 92K 3 1 1 18K 0.12 5.8 – 70 0.56 Citation
Enron5 7.9K 142K 3 7 58 861 0.16 3.1 – – – Email
EU-Email6 1K 25K 14 17 20 203 0.29 2.6 – 42 0.47 Email
Fly Larva7 3K 116K 33 33 5 136 0.30 2.7 – 93 0.14 Connectome
Polblogs8 1.5K 19K 4 2 268 688 0.25 2.7 – 2 0.91 Hyperlink
Pokec2 1.6M 31M 8 8 1 326K 0.058 4.7 65 3 0.43 Dating
Pubmed4 20K 44K 0 1 1 20K 0.054 6.4 – 3 0.79 Citation
Roman Empire2 23K 33K 1 1 1 23K 0.28 2.4K 300 18 0.05 Text
Snap Patents2 2.9M 14M 3 3 181K 2.9M 0.066 6.8 269 5 0.22 Citation
WikiVote9 7K 103K 2 0 24 5816 0.14 3.2 – – – Voting

1 Hu et al. (2020a) 2 Lim et al. (2021) 3 Bojchevski & Günnemann (2018) 4 Khosla et al. (2020) 5 Klimt & Yang (2004)
6 Yin et al. (2017) 7 Winding et al. (2023) 8 Adamic & Glance (2005) 9 Leskovec et al. (2010)

Figure 6 presents results for four representative graphs, with additional datasets provided in Appendix E.
The top row shows results for Pois(τ = 2), while the bottom row corresponds to U(τ = 5).

The entropy associated with DirSwitch specifiers closely approaches that of undirected edges, which consis-
tently achieve the highest entropy due to the absence of sinks. This outcome is both expected and desirable,
highlighting how the switch to undirected edges mitigates the dispersal-limiting effects of local sinks.

These effects are most pronounced for long-range walks using U(τ = 5), shown in the bottom row. In
Figures 6a, 6b, and 6c, there is a significant entropy gap between the DirSwitch curves and the MultiDir
curves ({O, OI, OIO}). The Cora-ML, Arxiv, and Wikivote graphs are sparsely connected (see Table 2),
leading to increased reachability concentration in local sinks and lower entropy. In contrast, the densely
connected Fly Larva graph in Figure 6d exhibits a less pronounced but still noticeable entropy difference.

For local smoothing with Pois(τ = 2) (top row), the entropy increase for DirSwitch over OI and OIO is visible
but small. This is because alternating O- and I-steps allows short-range walkers to partially escape sinks.
Moreover, we observe a discernible gap between U and the DirSwitch directions. This gap reflects the reduced
dispersal caused by using edge directions in the initial steps of DirSwitch random walks. As walk length
increases, both effects vanish as the undirected regime of DirSwitch dominates, as seen in the bottom row.

6.2 Directed neighbourhood expressivity

We use node embedding graph alignment (Heimann et al., 2018) to verify that DirSwitch can represent the
diversity of directed neighborhoods. Graph alignment is a generalized version of the graph isomorphism
problem, where nodes in two graphs are matched based on structural similarity (Skitsas et al., 2023).

Following the embedding benchmark protocols of Heimann et al. (2018) and Jin et al. (2021), we construct
a second graph G2 = (N,M2) from a given graph G1 = (N,M1) by removing 15% of the edges from M1 and
randomly permuting the node indices. Node embeddings are then computed for both graphs, and each node
in G2 is matched to a node in G1 based on the shortest Euclidean distance between embeddings. This process
is repeated five times with different random seeds.

The graph alignment task benefits significantly from embedding expressivity, particularly the ability to
distinguish distinct directed neighbourhoods, as this reduces the risk of erroneous matches. However, for

14

Under review as submission to TMLR

U O OI OIO OU OIU OIOU

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

2

4

6

8

En
tro

py

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0.0

2.5

5.0

7.5

En
tro

py

(a) Cora-ML

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

En
tro

py

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

En
tro

py

(b) Arxiv

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

(c) Wikivotes

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0.0

2.5

5.0

7.5

En
tro

py

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

(d) Fly Larva

Figure 6: Neighbourhood dispersal evaluation for four graphs, measured via reachability entropy,
−
∑n

i=1 Ri,j log2 Ri,j , computed for each node and sorted. Each curve corresponds to a different edge direc-
tion specifier σ, with the top row showing results for Pw(k; τ) = Pois(τ = 2) (local dispersal) and the bottom
row for U(τ = 5) (long-range dispersal). DirSwitch variants (e.g., OU, OIU, OIOU) demonstrate high dispersal,
comparable to U, while purely directed specifiers (O, OI, OIO) exhibit lower entropy due to sink effects.

matching to be feasible, embeddings must also capture local graph structure that generalizes across separate
graph components. To achieve this, we use ReachNEs message-passing embeddings combined with node
attributes derived from graph structure, including out- and in-degrees and the four digraph local clustering
coefficients defined by Fagiolo (2007).

We compare the multi-directional DirSwitch-r against MultiDir-r for r ≤ 3, as well as undirected (σ = U)
and default directed (σ = O) edges. To account for the influence of walk length distribution on embedding
expressivity, we evaluate both Pw = Geom(τ) and Pw = Pois(τ) for τ ∈ (0, 20], using a reachability truncation
of K = 30 steps.

Figure 7 presents results for four datasets, with τ values along the x-axes and graph alignment accuracy on
the y-axes. Additional results for other datasets and walk length distributions are provided in Appendix F.
DirSwitch-r and MultiDir-r achieve comparable accuracies for each r, with accuracy increasing as r grows.
This similarity is expected, as both methods use concatenation to represent 2r directed neighbourhoods.

A closer comparison reveals that DirSwitch-r consistently outperforms MultiDir-r, provided τ is not too
large. This improvement stems from DirSwitch mitigating sink bias. When reachability is concentrated in
small node sets, embeddings become overly sensitive to edge removal, as this can then radically change the
reachability distribution. This sensitivity reduces the alignment accuracy. By alleviating this bias, DirSwitch
provides more robust representations.

For the same reason, the undirected edges perform better than the default directed edges. However, overall,
both these single-neighbourhood baselines achieve the lowest overall accuracies due to their inability to
capture directed neighbourhood multiplicity.

Another notable observation is the impact of the walk length distribution Pw(τ). In all cases, accuracy
collapses as τ → 0, corresponding to the use of node attributes without smoothing. Additionally, for the
Poisson distribution, accuracy decreases as τ increases, whereas for the geometric distribution, it plateaus.
This behaviour aligns with the expected asymptotic properties of both distributions.

In short, as τ increases, the mode of Pois(τ) shifts continuously, emphasizing long-range walks over local
smoothing. This results in less distinguishable embeddings and lower alignment accuracy. In contrast, the
geometric distribution maintains local neighbourhood smoothing, preventing significant accuracy drops at
higher τ values. See Appendix C for further details.

15

Under review as submission to TMLR

Undirected Default MultiDir-1 MultiDir-2 MultiDir-3 DirSwitch-1 DirSwitch-2 DirSwitch-3

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

H
its

@
1

(a) Cora-ML, Geom(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

H
its

@
1

(b) Cora-ML, Pois(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

0.6

0.8

H
its

@
1

(c) Flylarva, Geom(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

0.6

0.8

H
its

@
1

(d) Flylarva, Pois(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

0.6

H
its

@
1

(e) EU-Email, Geom(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

0.6

H
its

@
1

(f) EU-Email, Pois(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

0.6

H
its

@
1

(g) Wikivotes, Geom(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

0.6

H
its

@
1

(h) Wikivotes, Pois(τ)

Figure 7: Evaluation of edge direction expressivity for four graphs using the geometric, Geom(τ), and
Poisson, Pois(τ), walk length distributions. The y-axes represent graph alignment accuracy under 15% edge
removal, while the x-axes correspond to τ , the average walk length. The curve colours and styles denote
different sets of edge direction specifiers, σ.

The difference between Pois and Geom is also evident in the comparison between DirSwitch-r and MultiDir-r.
With the geometric distribution, DirSwitch consistently achieves higher alignment accuracy across varying τ
values, as discussed above. However, for the Poisson distribution, DirSwitch’s accuracy declines more rapidly
than that of MultiDir as τ increases in some datasets. For instance, this effect is observed for DirSwitch-3
and MultiDir-3 in Figures 7b and 7d.

This behaviour stems from the shifting mode of Pois. In the limit τ → ∞, DirSwitch embeddings converge
to identical representations within a weakly connected component. In contrast, MultiDir embeddings retain
finer granularity, as equivalence groups in the directed case remain more distinct. This explains why MultiDir
can surpass DirSwitch in alignment accuracy at large τ values.

6.3 DirSwitch embedding quality evaluation

In this section, we demonstrate that DirSwitch’s increased dispersal and multi-directionality lead to
higher-quality embeddings. To assess this, we use node classification as a representative downstream task,
comparing ReachNEs embeddings generated with DirSwitch-r, MultiDir-r, undirected edges (U), and default
directed edges (O).

Setup Table 2 lists the node classification benchmark datasets. For datasets with node attributes, we
evaluate message-passing ReachNEs, while for those without attributes, we use proximity ReachNEs.

Node embeddings are computed in a fully unsupervised manner, after which a logistic regression classifier
is trained on frozen embeddings. We employ a 3x repeated 5-fold cross-validation strategy to obtain mean
performance and standard deviations.

To assess the impact of both multi-directional and multi-scale concatenation, we include both single- and
multi-scale embeddings in our analysis. Table 3 details the walk length distributions used for single- and
multi-scale embeddings. We consider two single-scale distributions and three multi-scale distributions, incor-
porating two, three, and four scales, respectively. The embedding dimensions are set to p = 1024 and p = 512.

Results Overview Table 4 reports classification accuracies for message-passing ReachNEs, while Table 6
presents results for proximity ReachNEs, both using p = 1024. Across all datasets and embedding types,

16

Under review as submission to TMLR

Table 3: Abbreviations used when reporting results for multi-scale reachability embeddings. Visualizations
are available in Figure 9 in the Appendix.
Abbreviation Geom Pois Geom-U Binom-3 Geom-4
Distributions, Pw Geom(k; τ = 1) Pois(k; τ = 2) Geom(k; τ = 1),

U(k − 1; τ = 2)
Binom(k; τ = 1), Binom(k − 2; τ = 2),
Binom(k − 5; τ = 3)

Geom(k; τ = 1), Geom(k − 1; τ = 2),
Geom(k − 2; τ = 3), Geom(k − 3; τ = 4)

Table 4: Node classification accuracy for message-passing ReachNEs with p = 1024 embedding dimensions.
Columns correspond to different datasets and multi-scale walk length distributions, while rows represent
various edge direction specifiers. Each entry reports the mean accuracy and standard deviation. Bold
blue highlights the highest accuracy in each column, with light blue indicating results within one standard
deviation of the best. Similarly, bold orange denotes the lowest accuracy, and light orange represents values
within one standard deviation of the worst.

Edge directions Arxiv Arxiv Year
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 55.0±0.2 42.4±0.3 55.5±0.3 54.2±0.2 55.4±0.3 36.5±0.3 35.4±0.5 36.7±0.2 37.8±0.2 38.2±0.2

Undirected 61.6±0.2 64.9±0.3 67.0±0.2 69.8±0.2 69.1±0.2 36.4±0.2 36.5±0.2 37.1±0.2 37.6±0.3 38.3±0.3

MultiDir-1 59.8±0.3 59.4±0.3 60.2±0.3 60.5±0.2 60.3±0.2 37.0±0.3 35.3±0.8 38.1±0.2 39.3±0.2 39.7±0.3
MultiDir-2 61.2±0.3 65.3±0.3 65.2±0.3 64.9±0.3 65.3±0.3 38.5±0.3 37.9±0.4 40.9±0.2 42.0±0.2 41.7±0.2
MultiDir-3 61.5±0.3 65.5±0.3 65.9±0.3 65.9±0.3 65.7±0.3 40.0±0.3 40.6±0.3 42.3±0.2 43.2±0.3 42.4±0.3

DirSwitch-1 61.5±0.3 65.9±0.2 67.3±0.3 69.7±0.2 68.4±0.3 38.2±0.3 37.8±0.2 39.9±0.3 40.2±0.3 41.5±0.2
DirSwitch-2 61.5±0.3 65.8±0.3 66.9±0.3 69.6±0.3 68.4±0.2 39.6±0.2 39.5±0.3 41.4±0.3 41.9±0.3 42.4±0.2
DirSwitch-3 61.5±0.3 65.8±0.3 66.7±0.3 69.0±0.3 67.8±0.3 40.0±0.3 40.9±0.4 42.4±0.3 43.3±0.3 43.3±0.3

Edge directions Cora-ML Citeseer Cora
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 31.5±1.6 35.8±2.4 46.1±2.1 58.4±2.2 63.2±2.3 67.5±2.0 56.5±1.9 60.8±2.7 70.0±2.0 72.9±2.1 52.4±0.6 51.2±0.7 57.6±0.7 59.3±0.7 60.2±0.8

Undirected 31.2±1.9 41.0±2.2 54.5±1.7 72.1±2.2 76.1±1.8 76.2±1.8 83.7±1.4 72.6±1.8 88.0±1.7 89.0±1.2 59.4±0.6 64.9±0.8 67.5±0.7 69.3±0.7 69.6±0.7

MultiDir-1 55.1±2.1 53.2±2.0 66.9±2.1 72.2±2.1 75.4±2.3 66.1±2.0 60.8±1.8 73.8±1.3 78.6±1.7 81.0±1.6 64.3±0.6 63.3±0.6 65.8±0.8 65.3±1.0 64.8±1.0
MultiDir-2 71.3±1.6 71.1±2.3 78.4±1.8 79.8±2.1 82.3±1.4 79.4±1.2 78.4±1.2 84.3±1.4 85.0±1.2 86.0±1.4 67.1±0.7 68.4±0.7 67.8±0.9 66.5±0.9 66.0±0.9
MultiDir-3 78.9±1.9 80.0±1.0 84.0±1.4 83.9±1.4 84.5±1.5 84.7±1.7 87.2±1.2 87.0±1.5 87.3±1.3 87.5±1.2 66.7±0.9 68.5±0.9 66.8±0.9 65.3±0.8 64.4±0.9

DirSwitch-1 56.9±2.9 57.5±2.4 72.0±2.0 79.4±1.6 82.3±2.0 73.9±1.2 76.5±1.9 85.6±1.5 91.4±0.8 91.3±1.5 65.6±0.7 67.5±0.8 69.5±0.8 70.1±0.9 69.7±0.8
DirSwitch-2 71.6±1.8 72.4±2.4 80.7±1.6 84.3±1.6 84.4±1.9 80.4±1.3 85.1±1.4 88.6±1.0 90.9±1.0 90.1±1.0 67.5±0.6 68.9±0.7 68.9±0.9 69.0±0.7 68.0±0.7
DirSwitch-3 79.1±2.0 80.6±1.6 84.0±1.5 85.6±1.6 85.7±1.4 84.7±1.3 88.0±0.9 87.7±1.3 89.6±0.8 88.5±1.2 66.4±0.8 68.7±0.8 67.0±0.8 67.1±0.6 65.6±0.9

Edge directions Roman Empire Pokec Snap Patents
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 69.3±0.9 32.5±0.4 68.5±0.6 51.2±0.6 67.2±0.8 60.1±0.2 59.0±0.8 61.7±0.1 60.7±0.1 65.4±0.1 35.7±0.1 41.7±0.1 39.2±0.1 42.2±0.2 43.1±0.3

Undirected 67.2±0.8 46.9±0.7 70.9±0.7 65.9±0.8 70.0±0.4 60.3±0.1 59.6±0.5 62.0±0.1 62.3±0.1 71.7±0.1 30.8±0.1 29.9±0.1 31.8±0.1 33.2±0.1 34.7±0.4

MultiDir-1 71.8±0.8 42.0±0.8 66.7±0.8 56.6±0.7 69.9±0.9 61.3±0.1 60.1±0.1 62.2±0.1 61.7±0.1 67.3±0.1 41.0±0.1 43.9±0.4 45.7±0.1 47.8±0.2 46.9±0.2
MultiDir-2 71.9±0.5 60.4±0.7 71.1±0.5 65.2±0.6 75.5±0.6 61.5±0.1 61.1±0.1 63.2±0.1 63.0±0.1 69.1±0.1 45.2±0.1 46.5±0.2 46.8±0.2 49.8±0.2 48.1±0.2
MultiDir-3 73.1±0.6 68.0±0.6 73.7±0.7 69.2±0.7 76.0±0.5 61.8±0.1 63.5±0.0 64.8±0.1 64.8±0.1 70.7±0.1 45.9±0.1 49.1±0.1 47.4±0.1 49.8±0.7 46.5±0.1

DirSwitch-1 73.0±0.6 58.4±0.8 72.4±0.9 67.5±0.5 74.6±0.6 61.2±0.1 60.3±0.3 62.8±0.1 62.8±0.1 70.0±0.1 40.8±0.1 40.8±0.1 42.7±0.1 43.8±0.1 44.8±0.3
DirSwitch-2 72.0±0.5 62.8±0.7 74.2±0.5 70.8±0.6 76.4±0.7 61.4±0.1 60.9±0.1 63.5±0.1 64.1±0.1 71.5±0.1 46.6±0.1 48.1±0.2 46.8±0.1 47.2±0.2 47.6±0.4
DirSwitch-3 72.8±0.6 67.9±0.6 75.1±0.6 72.5±0.6 76.4±0.6 61.6±0.1 62.7±0.1 64.7±0.1 64.4±0.1 70.3±0.1 46.3±0.1 50.8±0.3 49.2±0.1 49.4±0.3 48.8±0.3

DirSwitch-r consistently achieves the highest accuracies or performs within one to two standard deviations of
the best results. In the tables, we highlight the best results for each scale in bold blue and results within one
standard deviation in light blue. The consistent top performance of DirSwitch across datasets and multi-scale
choices underscores its superior embedding quality compared to non-switching approaches. Similar trends
are observed for p = 512, with further analysis provided in Appendix G.

A notable trend is that default edge directions (σ = O) yield some of the lowest accuracies across all
datasets and scales, as highlighted in orange. This suggests that embedding quality improves both by using
undirected edges (U) and by concatenating σ = I embeddings, as done in MultiDir-1. These results further
support the claim that mitigating local sinks and capturing different directed neighbourhoods enhances
embedding quality.

Next, we conduct a deeper analysis of these results. To facilitate this, we use the relative accuracy improve-
ments in Tables 5 and 7. These values represent the highest accuracy in each row of Tables 4 and 6, relative
to the accuracy of the default edge direction (O). For default edge directions themselves, absolute accuracy
values are reported.

17

Under review as submission to TMLR

Table 5: Relative improvements in node classification accuracy for message-passing ReachNEs with p = 1024.
The values reflect the maximum accuracy for per row and dataset in Table 4. The top row displays absolute
accuracies for the default edge directions, with standard deviations expressed as percentages. The subsequent
rows present the relative improvements compared to the top row. The table is structured with the four
homophilic datasets on the left and the four heterophilic datasets on the right.

Edge directions Cora-ML Citeseer Cora Arxiv Roman Empire Arxiv Year Pokec Snap Patents

Default 63.2±3.4% 72.9±3.0% 60.2±1.1% 55.5±0.5% 69.3±0.9% 38.2±0.8% 65.4±0.4% 43.1±0.4%

Undirected +20.5% +22.0% +15.5% +25.8% +2.2% +0.2% +9.5% -19.3%

MultiDir-1 +19.4% +11.1% +9.2% +9.0% +3.5% +3.9% +2.8% +11.0%
MultiDir-2 +30.3% +18.0% +13.5% +17.7% +8.9% +9.9% +5.6% +15.6%
MultiDir-3 +33.7% +20.0% +13.6% +18.9% +9.6% +12.9% +8.0% +15.6%

DirSwitch-1 +30.3% +25.4% +16.3% +25.7% +7.5% +8.5% +6.9% +4.1%
DirSwitch-2 +33.6% +24.7% +14.5% +25.4% +10.2% +10.9% +9.3% +11.7%
DirSwitch-3 +35.7% +22.9% +14.0% +24.5% +10.2% +13.4% +7.5% +17.9%

Homophilic vs heterophilic datasets for message-passing embeddings The node classification
datasets in Table 2 exhibit varying levels of homophily (Zhu et al., 2020), i.e., the tendency of nodes with the
same class label to connect. The homophily level is quantified in the hU column, representing the average
fraction of a node’s neighbours that share its label (Rossi et al., 2023, Eq. 1).

We observe distinct differences between homophilic and heterophilic datasets in the message-passing results
in Table 5. The three homophilic datasets—Cora-ML, Citeseer, and Cora (leftmost in the table)—experience
a 15–26% accuracy improvement when using undirected edges. In contrast, the heterophilic Roman Empire
and Arxiv Year datasets show no significant improvement over default directions, while Snap Patents exhibits
a 19% accuracy drop. Pokec is a partial exception, where undirected edges yield benefits with Geom-4, a
case analysed in Appendix G.

On the other hand, heterophilic datasets such as Arxiv Year and Snap Patents see substantial accuracy gains
as r increases in DirSwitch-r and MultiDir-r. For instance, DirSwitch-3 improves accuracy by +17.9% on
Snap Patents, compared to +4.1% for DirSwitch-1. Meanwhile, in homophilic datasets, DirSwitch’s accuracy
remains stable across different r values.

Together, these results indicate that multi-directional representations are more important for heterophilic
datasets, whereas using undirected edges is beneficial in homophilic cases. These findings align with prior
observations in supervised graph neural networks for digraphs (Rossi et al., 2023).

This contrasting behaviour can be explained through the lens of reachability. In homophilic datasets, nodes
with the same label tend to cluster locally. Removing edge directions improves dispersal and promotes
local smoothing, resulting in more similar embeddings for same-label nodes and improved classification
performance. This effect is illustrated in Figure 2.

In heterophilic graphs, however, capturing local connectivity patterns that repeat across different regions
is essential for distinguishing node roles. Here, multi-directional approaches play a crucial role, as discard-
ing edge direction information can introduce spurious similarities between nodes with distinct, direction-
dependent neighbourhoods.

Sparse vs dense graphs for proximity embeddings We next analyse classification accuracies for
proximity embeddings in Table 7, observing distinct trends based on graph density. Denser graphs (Fly Larva,
EU-Email, and Polblogs) benefit more from multi-directional embeddings, whereas sparser graphs (CoCite,
Pubmed, and Cora (subelj)) achieve higher accuracies when dispersal is increased using undirected edges. For
instance, the sparse CoCite graph improves by 19% with undirected edges, with a similar 20% improvement
for each DirSwitch model. Conversely, the dense Polblogs graph gains only 4.5% from undirected edges but
sees a 9.5% boost with DirSwitch-3.

18

Under review as submission to TMLR

Table 6: Node classification accuracy for proximity ReachNEs with p = 1024 embedding dimensions.
Columns correspond to different datasets and multi-scale walk length distributions, while rows represent
various edge direction specifiers. The values denote average accuracies with standard deviations. Bold blue
highlights the best results in each column, with light blue indicating results within one standard deviation.
Similarly, bold orange marks the worst results, with light orange showing values within one standard devia-
tion of the lowest performance.

Edge directions Fly Larva EU-Email Polblogs
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 42.2±2.0 45.2±2.0 49.0±1.9 49.5±1.7 50.1±2.0 30.3±3.3 36.6±2.9 54.0±3.0 65.0±2.8 66.0±3.2 61.8±2.7 70.2±2.4 73.0±2.7 79.1±1.9 82.0±2.1

Undirected 45.0±1.7 50.9±2.0 53.7±2.1 54.6±1.7 55.4±1.7 29.8±3.0 35.4±3.7 57.2±3.5 70.6±2.9 72.5±3.1 64.4±3.3 76.8±2.0 79.1±2.4 84.3±2.2 85.7±1.9

MultiDir-1 47.3±1.6 49.1±1.8 50.8±1.8 51.9±1.9 52.0±1.9 50.2±3.1 59.7±3.7 68.1±2.9 72.2±2.8 73.5±3.0 73.7±2.6 74.7±2.6 83.6±1.9 85.2±1.7 86.7±2.1
MultiDir-2 50.3±2.3 50.7±2.1 52.4±2.2 54.2±2.0 53.6±1.7 66.8±3.2 69.5±3.3 74.9±3.0 75.2±2.8 74.7±2.6 83.4±2.3 84.4±2.1 88.2±2.0 88.7±1.6 89.2±1.5
MultiDir-3 51.8±2.6 52.6±2.2 53.8±2.1 53.6±1.8 53.0±1.5 73.5±3.4 74.2±2.4 74.9±2.3 73.1±3.3 70.4±2.9 88.0±1.7 88.0±2.0 89.2±1.4 89.7±1.5 89.8±1.6

DirSwitch-1 48.8±1.7 51.6±1.6 53.8±2.4 55.8±1.7 55.8±2.4 50.9±3.2 59.8±3.7 70.5±3.1 74.8±2.8 75.6±2.4 75.6±2.6 75.3±2.2 85.5±2.4 86.6±2.1 86.2±2.2
DirSwitch-2 50.3±1.7 51.9±2.1 54.1±1.5 56.7±2.0 56.2±1.9 66.8±2.7 69.8±3.5 74.6±2.9 75.7±2.5 74.8±2.5 83.8±2.2 85.2±1.7 88.4±2.1 87.1±2.1 89.7±1.6
DirSwitch-3 52.4±1.7 52.8±1.6 55.6±1.8 55.6±1.8 55.6±1.8 73.3±2.6 73.8±2.7 75.3±2.6 72.2±2.9 70.6±2.8 87.9±1.8 88.4±1.6 89.4±1.6 87.1±2.0 89.8±1.5

Edge directions CoCite Pubmed Cora (subelj)
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 38.6±0.4 39.0±0.4 39.9±0.5 39.8±0.4 40.2±0.6 72.4±0.7 72.6±0.7 73.3±0.8 73.1±0.7 72.6±0.6 58.2±0.7 58.2±1.0 59.0±0.8 59.2±0.9 59.3±0.8

Undirected 45.3±0.5 45.8±0.6 46.6±0.4 47.9±0.5 47.6±0.5 81.9±0.5 82.2±0.6 82.2±0.5 82.4±0.6 82.2±0.6 65.7±0.7 66.0±0.8 66.7±0.7 67.1±0.8 67.0±0.8

MultiDir-1 39.8±0.5 40.0±0.5 40.8±0.5 41.3±0.6 41.3±0.5 73.9±0.7 73.5±0.8 72.9±0.6 72.7±0.8 71.5±0.7 58.7±0.8 58.5±0.8 58.7±0.7 58.3±0.8 58.3±0.7
MultiDir-2 42.5±0.6 43.2±0.5 43.9±0.6 45.0±0.6 45.0±0.5 77.8±0.6 77.4±0.7 77.0±0.6 76.3±0.6 75.7±0.9 61.3±0.8 61.5±0.7 61.7±0.6 61.6±0.7 61.8±0.8
MultiDir-3 44.2±0.5 44.7±0.5 44.6±0.4 46.4±0.4 46.1±0.5 79.3±0.6 79.0±0.6 78.7±0.6 78.0±0.6 77.7±0.6 61.6±0.8 62.1±0.7 62.4±0.7 62.2±0.7 62.5±0.7

DirSwitch-1 45.3±0.4 45.9±0.5 46.9±0.5 48.4±0.4 47.9±0.5 81.6±0.7 81.9±0.6 82.0±0.7 82.3±0.6 81.9±0.7 65.2±0.7 65.7±0.8 66.0±0.8 66.4±0.7 66.4±0.7
DirSwitch-2 44.9±0.5 45.9±0.5 46.8±0.5 48.3±0.5 48.0±0.4 81.8±0.7 81.8±0.7 81.8±0.6 81.9±0.7 81.1±0.6 64.0±0.9 64.7±0.8 65.1±0.8 65.6±0.9 65.4±0.7
DirSwitch-3 43.8±0.5 45.1±0.5 45.8±0.5 48.3±0.5 47.5±0.5 81.3±0.6 81.4±0.6 80.9±0.7 81.2±0.7 80.4±0.6 61.8±0.8 62.9±0.8 63.1±0.9 64.4±0.8 63.9±0.9

Table 7: Relative improvements in node classification accuracy for proximity ReachNEs with p = 1024. The
values reflect the maximum accuracy for per row and dataset in Table 6. The top row displays absolute
accuracies for the default edge directions, with standard deviations expressed as percentages. The subsequent
rows present the relative improvements compared to the top row. The table is structured with the three
denser graphs on the left and the three sparser graphs on the right.

Edge directions Fly Larva EU-Email Polblogs CoCite Pubmed Cora (subelj)

Default 50.1±3.9% 66.0±4.6% 82.0±2.9% 40.2±1.2% 73.3±1.0% 59.3±1.4%

Undirected +10.6% +9.8% +4.5% +19.0% +12.4% +13.2%

MultiDir-1 +3.9% +11.3% +5.8% +2.7% +0.8% -1.0%
MultiDir-2 +8.2% +14.0% +8.8% +11.9% +6.1% +4.3%
MultiDir-3 +7.5% +13.4% +9.5% +15.5% +8.2% +5.4%

DirSwitch-1 +11.5% +14.5% +5.6% +20.2% +12.3% +12.1%
DirSwitch-2 +13.2% +14.7% +9.4% +20.2% +11.7% +10.7%
DirSwitch-3 +11.1% +14.0% +9.5% +20.2% +11.0% +8.6%

This difference between dense and sparse graphs can be explained by reachability entropy. Even with purely
directed edges, entropy remains high for the dense Fly Larva graph (see Figure 6d), indicating that local
sinks do not significantly hinder dispersal. A similar pattern is observed for EU-Email and Polblogs in
Appendix E, explaining why undirected edges provide less benefit in these graphs.

Instead, increasing embedding distinguishability, e.g., by representing directed neighbourhoods, becomes
more important. Enhancing expressivity through concatenation is generally advantageous for dense graphs.
Comparing default edges and DirSwitch-1 in Table 6, we observe significant accuracy gains when transitioning
from single-scale to multi-scale walk length distributions. For example, Polblogs achieves only 61% accuracy
with single-scale Geom but improves to 82% with multi-scale Geom-4. Conversely, sparser datasets show only
minor improvements with multi-scale embeddings, with dispersal remaining the primary factor influencing
embedding quality.

19

Under review as submission to TMLR

Further analysis Additional discussion of these results is provided in Appendix G, where we examine the
accuracy improvements from multi-scale embeddings and the diminishing returns of repeated concatenation.
Further analysis of the Pokec dataset is presented in Appendix G.

6.4 Comparison to state-of-the-art digraph proximity embeddings

We compare DirSwitch with proximity ReachNEs embeddings against state-of-the-art unsupervised digraph
proximity embedding approaches discussed in Section 5.2. Hyperparameters for each model are optimized
via cross-validation grid search, with the search grids and best values reported in Appendix D.2.

Following hyperparameter tuning, test accuracy is evaluated using the best hyperparameter setting on new
3x repeated 5-fold cross-validation splits, with five different random seeds per model. We use the official
implementations for all baselines except BLADE, which we reimplement as its source code is not publicly
available.

Table 8 presents the average test accuracies and standard deviations for each proximity embedding dataset.
DirSwitch consistently achieves the highest average accuracy across datasets or performs within one standard
deviation of the best model (EU-Email). Notably, DirSwitch outperforms competing approaches by a signif-
icant margin on Fly Larva, achieving 57% accuracy compared to 49% for BLADE. These results highlight
DirSwitch’s ability to leverage both multi-directional and multi-scale embeddings while avoiding local sinks,
distinguishing it from prior proximity embedding models.

6.5 Applying DirSwitch to self-supervised message-passing graph neural networks

DirSwitch is not limited to the ReachNEs framework and can also be applied to message-passing graph
neural networks (GNNs). The most natural integration is with the GraphSAGE model (Hamilton et al.,
2017), given its structural similarity to ReachNEs. By defining H(0) = Z(0) = X, we can represent the
DirSwitch-GraphSAGE model using the following iterative formulation, analogous to Equation 6:

For k ∈ {1, 2, . . . },

{
H(k) = A⊺

∗H(k−1),

Z(k) = σ
(

Z(k−1)W
(k−1)
1 + H(k)W

(k−1)
2

)
,

(10)

The key differences are the weight matrices W1 and W2, which replace the walk length probability coeffi-
cients, and the non-linear activation function σ.

For training the weight matrices, we employ self-supervised learning, the current state-of-the-art approach for
unsupervised GNN training. These loss functions typically combine reconstruction and contrastive learning
objectives. In our experiments, we use two recent and efficient methods: GraphMAEv2 (Hou et al., 2023)
and CCA-SSG (Zhang et al., 2021a). We adopt the default hyperparameters for both loss functions and
optimizers, as recommended by the original implementations. We train DirSwitch-1 and DirSwitch-3 models
but exclude DirSwitch-2 due to the high computational cost of GNN training.

Table 8: Node classification accuracies for proximity node embedding models. Bold indicate the
top accuracy, and results within one standard deviation, for each dataset. Average and standard
deviations are calculated over 3x repeated 5-fold cross validations, and 5 different random seeds.

Model Flylarva EU-Email Polblogs CoCite Pubmed Cora (subelj)

HOPE1 35.8 ± 1.9 49.3 ± 3.6 83.2 ± 3.1 30.4 ± 1.2 65.3 ± 0.9 34.0 ± 0.8
APP2 42.8 ± 2.3 76.3 ± 2.8 88.9 ± 1.7 46.7 ± 0.5 81.2 ± 0.6 65.6 ± 0.7
NERD3 40.3 ± 2.2 71.3 ± 3.2 89.4 ± 1.7 28.1 ± 0.5 76.5 ± 0.7 45.7 ± 0.6
DGGAN4 16.5 ± 1.4 11.7 ± 2.5 54.6 ± 2.9 17.7 ± 0.4 41.5 ± 0.9 6.2 ± 0.3
BLADE5 49.2 ± 2.2 66.7 ± 3.0 89.3 ± 1.9 24.2 ± 0.5 60.2 ± 1.2 27.7 ± 1.0

DirSwitch 56.8 ± 2.2 75.6 ± 2.7 90.0 ± 1.7 48.3 ± 0.5 82.2 ± 0.6 66.6 ± 0.7
1 Ou et al. (2016) 2 Zhou et al. (2017) 3 Khosla et al. (2020) 4 Zhu et al. (2021b) 5 Virinchi & Saladi (2023)

20

Under review as submission to TMLR

Table 9: Node classification accuracy for self-supervised GraphSAGE embeddings using training via Graph-
MAEv2 and CCA-SSG losses. Bold indicate the top accuracy for each dataset. Average and standard
deviations are calculated over 3x repeated 5-fold cross validations and 5 different seeds.

(a) GraphMAEv2

Edge directions Roman Empire Arxiv Year Pokec Snap Patents Cora-ML Citeseer Cora Arxiv

Default 66.09±0.79 44.49±0.24 64.62±0.20 45.68±0.26 79.61±1.76 80.13±1.28 59.48±0.61 59.81±0.25
Undirected 68.17±0.74 40.08±0.26 65.99±0.52 33.82±0.07 86.03±1.42 90.71±0.92 68.54±0.74 70.49±0.23

Rossi et al. (2023) 67.05±1.85 46.38±0.34 57.93±0.55 61.34±0.28 81.88±3.94 87.53±2.30 34.35±4.42 65.53±0.52

DirSwitch-1 71.76±0.76 41.28±0.28 67.16±0.34 39.49±0.30 85.79±1.48 89.03±1.19 68.01±0.83 69.95±0.21
DirSwitch-3 71.90±0.78 46.65±0.31 67.57±0.25 57.99±0.21 85.24±1.37 86.67±1.06 66.31±0.80 68.40±0.23

(b) CCA-SSG

Edge directions Roman Empire Arxiv Year Pokec Snap Patents Cora-ML Citeseer Cora Arxiv

Default 53.73±0.94 45.01±0.26 58.07±0.27 46.37±0.25 61.70±3.82 69.72±1.77 39.70±0.94 36.73±1.46
Undirected 53.85±2.45 35.82±0.28 60.38±0.74 38.60±0.13 82.64±1.59 80.71±1.36 52.35±1.30 45.93±1.18

Rossi et al. (2023) 53.74±0.75 46.83±0.44 60.54±0.50 65.55±0.28 60.44±2.94 64.64±2.41 31.28±2.21 34.92±0.54

DirSwitch-1 56.77±2.36 45.19±0.35 66.23±0.70 49.84±0.60 82.00±1.76 77.35±2.53 52.70±1.28 61.63±0.38
DirSwitch-3 66.39±1.24 52.64±0.30 67.25±0.21 64.08±0.19 82.27±1.42 85.26±1.32 61.07±0.80 63.58±0.30

As baselines, we compare against GraphSAGE with default (O) and undirected (U) edges, as well as the
digraph extension of GraphSAGE proposed by Rossi et al. (2023). Like DirSwitch, Rossi et al. (2023)
incorporates multi-directional neighbourhoods but does not include a switch to undirected edges.

Unlike ReachNEs, GNNs typically use a small number of aggregation steps to balance computational ef-
ficiency and mitigate over-smoothing (Chen et al., 2020). We set K = 4 aggregation steps, following the
default in GraphMAEv2 (Hou et al., 2023).

Table 9 presents the results for GraphMAEv2 and CCA-SSG. As observed in the ReachNEs experiments
(Section 6.3), performance varies qualitatively between heterophilic and homophilic datasets, with undirected
edges generally performing better in homophilic cases. This is particularly evident in Cora, where DirSwitch
and undirected edges significantly outperform both the default edges and Rossi et al. (2023).

The only dataset where Rossi et al. (2023) surpasses DirSwitch in accuracy is Snap Patents. As shown in
Table 5, using undirected edges causes a substantial accuracy drop for Snap Patents in ReachNEs, and the
same trend is observed with GraphSAGE.

7 Limitations and future work

This work has focused on two key challenges in digraph embedding learning: the dispersal-obstructing effects
of local sinks and the ability to represent multiple directed neighbourhoods. However, other factors, such as
the role of loops, may also be critical and warrant further investigation.

For tractability, our analysis considered graphs with a single type of supplementary information: node
attributes. In reality, graphs are often far more complex, incorporating multiple edge types, attributed edges
(as in knowledge graphs (Wang et al., 2017a)), or temporal dynamics where edges evolve over time. While
we expect the DirSwitch principle, i.e., separating short-range and long-range behaviours, to generalize to
these cases, addressing expressivity in multi-modal graphs will likely require specialized techniques beyond
our current concatenation approach.

Another limitation lies in the embedding reduction methods explored. We focused on two widely used
techniques: node attribute smoothing for message-passing embeddings and SVD for proximity embeddings.
However, other reduction methods, such as structural embeddings, remain unexplored in our analysis. In-
vestigating how local sinks and multi-directional embeddings affect alternative reduction techniques is an
important avenue for future research, especially since much of the existing work on structural embeddings
is limited to undirected graphs (Donnat et al., 2018; Zhu et al., 2021a; Jin et al., 2021).

21

Under review as submission to TMLR

Finally, while our benchmark evaluation demonstrates DirSwitch’s effectiveness, its real-world utility in
unsupervised tasks such as node clustering or anomaly detection remains underexplored. These tasks of-
ten lack well-defined ground-truth labels, making evaluation challenging and necessitating further research.
Expanding DirSwitch to these domains presents exciting opportunities for future work.

8 Conclusion

In this paper, we analysed unsupervised node embedding learning on digraphs through the lens of our
reachability random walk filter framework, ReachNEs. Our analysis identified two key challenges: local
sinks obstruct information propagation, while embeddings must also capture a multitude of distinct directed
neighbourhoods.

To address these issues, we introduced DirSwitch, which decouples local and global behaviours in multi-
step smoothing. DirSwitch preserves directed neighbourhoods locally through multi-directional embedding
concatenation while treating the graph as undirected for long-range interactions, mitigating the effects of
local sinks.

We demonstrated that DirSwitch significantly enhances embedding quality, achieving higher accuracy on
standard node classification benchmarks. Additionally, we showcased its practical effectiveness by outper-
forming state-of-the-art unsupervised proximity embedding models. Finally, we highlighted DirSwitch’s
broad applicability by using it to generalize self-supervised graph neural networks to digraphs, illustrating
its flexibility across different embedding paradigms.

22

Under review as submission to TMLR

References
Lada A. Adamic and Natalie Glance. The Political Blogosphere and the 2004 U.S. Election: Divided They

Blog. In LinkKDD ’05, pp. 36–43, 2005. URL https://doi.org/10.1145/1134271.1134277.

Aleksandar Bojchevski and Stephan Günnemann. Deep Gaussian Embedding of Graphs: Unsupervised In-
ductive Learning via Ranking. In ICLR ’18, 2018. URL https://openreview.net/forum?id=r1ZdKJ-0W.

Stephen P Borgatti and Martin G Everett. Notions of Position in Social Network Analysis. Sociological
methodology, 22:1–35, 1992. URL https://doi.org/10.2307/270991.

Ciwan Ceylan, Kambiz Ghoorchian, and Danica Kragic. Digraphwave: Scalable Extraction of Structural
Node Embeddings via Diffusion on Directed Graphs, 2022. URL https://doi.org/10.48550/arXiv.
2207.10149.

Sudhanshu Chanpuriya and Cameron Musco. Infinitewalk: Deep Network Embeddings as Laplacian Embed-
dings with a Nonlinearity. In KDD ’20, pp. 1325–1333, 2020. URL https://doi.org/10.1145/3394486.
3403185.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and Relieving the Over-Smoothing
Problem for Graph Neural Networks from the Topological View. AAAI ’20, 34(04):3438–3445, 2020. URL
https://doi.org/10.1609/aaai.v34i04.5747.

Fan R.K. Chung. Spectral graph theory. Number 92 in Regional conference series in mathematics. American
Mathematical Society, 1997. URL https://doi.org/10.1090/cbms/092.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velickovic. Principal Neighbourhood
Aggregation for Graph Nets. In NeurIPS ’20, 2020. URL https://doi.org/10.48550/arXiv.2004.
05718.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons, Ltd, 2nd
edition, 2005. URL https://doi.org/10.1002/047174882X.

Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning Structural Node Embeddings
Via Diffusion Wavelets. In KDD’18, pp. 1320–1329, 2018. URL https://doi.org/10.1145/3219819.
3220025.

Giorgio Fagiolo. Clustering in complex directed networks. Physical Review E, 76(2), 2007. URL https:
//doi.org/10.1103/PhysRevE.76.026107.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the internet
topology. ACM SIGCOMM Computer Communication Review, 29(4):251–262, 1999. URL https://doi.
org/10.1145/316194.316229.

Matthias Fey and Jan E. Lenssen. Fast Graph Representation Learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019. URL https://doi.org/10.48550/
arXiv.1903.02428.

Michael Fire and Carlos Guestrin. The rise and fall of network stars: Analyzing 2.5 million graphs to reveal
how high-degree vertices emerge over time. Information Processing and Management: an International
Journal, 57(2), 2020. URL https://doi.org/10.1016/j.ipm.2019.05.002.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural Message
Passing for Quantum Chemistry. In ICML ’17, pp. 1263–1272, 2017. URL https://proceedings.mlr.
press/v70/gilmer17a.html.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press, 4th
edition, 2013. URL https://epubs.siam.org/doi/book/10.1137/1.9781421407944.

Martin Grohe and Pascal Schweitzer. The graph isomorphism problem. Communications of the ACM, 63
(11):128–134, 2020. URL https://doi.org/10.1145/3372123.

23

https://doi.org/10.1145/1134271.1134277
https://openreview.net/forum?id=r1ZdKJ-0W
https://doi.org/10.2307/270991
https://doi.org/10.48550/arXiv.2207.10149
https://doi.org/10.48550/arXiv.2207.10149
https://doi.org/10.1145/3394486.3403185
https://doi.org/10.1145/3394486.3403185
https://doi.org/10.1609/aaai.v34i04.5747
https://doi.org/10.1090/cbms/092
https://doi.org/10.48550/arXiv.2004.05718
https://doi.org/10.48550/arXiv.2004.05718
https://doi.org/10.1002/047174882X
https://doi.org/10.1145/3219819.3220025
https://doi.org/10.1145/3219819.3220025
https://doi.org/10.1103/PhysRevE.76.026107
https://doi.org/10.1103/PhysRevE.76.026107
https://doi.org/10.1145/316194.316229
https://doi.org/10.1145/316194.316229
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.1016/j.ipm.2019.05.002
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://epubs.siam.org/doi/book/10.1137/1.9781421407944
https://doi.org/10.1145/3372123

Under review as submission to TMLR

Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. In KDD’16, pp.
855–864, 2016. URL https://doi.org/10.1145/2939672.2939754.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding Structure with Randomness: Proba-
bilistic Algorithms for Constructing Approximate Matrix Decompositions. SIAM Review, 53(2):217–288,
2011. URL https://doi.org/10.1137/090771806.

Brian C. Hall. The Matrix Exponential. In Lie Groups, Lie Algebras, and Representations. Springer Cham,
2015. URL https://doi.org/10.1007/978-3-319-13467-3.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large Graphs. In
NeurIPS’17, volume 30, 2017. URL https://doi.org/10.48550/arXiv.1706.02216.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive Multi-View Representation Learning on Graphs.
In ICML’20, pp. 4116–4126, 2020. URL https://proceedings.mlr.press/v119/hassani20a.html.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer
New York, 2nd edition, 2009. URL https://doi.org/10.1007/978-0-387-84858-7.

Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Representation Learning-Based
Graph Alignment. In CIKM’18, pp. 117–126, 2018. URL https://doi.org/10.1145/3269206.3271788.

Nicholas J. Higham. Functions of Matrices. Society for Industrial and Applied Mathematics, 2008. URL
https://doi.org/10.1137/1.9780898717778.

Michiel E. Hochstenbach. A Jacobi–Davidson type method for the generalized singular value problem. Linear
Algebra and its Applications, 431(3):471–487, 2009. URL https://doi.org/10.1016/j.laa.2009.03.
003.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2nd edition, 2012.
URL https://doi.org/10.1017/9781139020411.

Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang. GraphMAE2:
A Decoding-Enhanced Masked Self-Supervised Graph Learner. In WWW’23, pp. 737–746, 2023. URL
https://doi.org/10.1145/3543507.3583379.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. In Advances in
Neural Information Processing Systems, volume 33, pp. 22118–22133. Curran Associates, Inc., 2020a.
URL https://doi.org/10.48550/arXiv.2005.00687.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for Pre-training Graph Neural Networks. In ICLR ’20, 2020b. URL https://openreview.
net/forum?id=HJlWWJSFDH.

Zexi Huang, Arlei Silva, and Ambuj Singh. A Broader Picture of Random-walk Based Graph Embedding.
In KDD ’21, pp. 685–695. ACM, 2021. URL https://doi.org/10.1145/3447548.3467300.

Elvin Isufi, Fernando Gama, David I Shuman, and Santiago Segarra. Graph Filters for Signal Processing
and Machine Learning on Graphs. IEEE Transactions on Signal Processing, 72:4745–4781, 2024. URL
https://doi.org/10.1109/TSP.2024.3349788.

Di Jin, Ryan A. Rossi, Eunyee Koh, Sungchul Kim, Anup Rao, and Danai Koutra. Latent Network Sum-
marization: Bridging Network Embedding and Summarization. In KDD’19, pp. 987–997, 2019. URL
https://doi.org/10.1145/3292500.3330992.

Junchen Jin, Mark Heimann, Di Jin, and Danai Koutra. Toward Understanding and Evaluating Structural
Node Embeddings. ACM TKDD, 16(3), 2021. URL https://doi.org/10.1145/3481639.

24

https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1137/090771806
https://doi.org/10.1007/978-3-319-13467-3
https://doi.org/10.48550/arXiv.1706.02216
https://proceedings.mlr.press/v119/hassani20a.html
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1145/3269206.3271788
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1016/j.laa.2009.03.003
https://doi.org/10.1016/j.laa.2009.03.003
https://doi.org/10.1017/9781139020411
https://doi.org/10.1145/3543507.3583379
https://doi.org/10.48550/arXiv.2005.00687
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH
https://doi.org/10.1145/3447548.3467300
https://doi.org/10.1109/TSP.2024.3349788
https://doi.org/10.1145/3292500.3330992
https://doi.org/10.1145/3481639

Under review as submission to TMLR

Megha Khosla, Jurek Leonhardt, Wolfgang Nejdl, and Avishek Anand. Node Representation Learning
for Directed Graphs. In ECML PKDD 2019, pp. 395–411, 2020. URL https://doi.org/10.1007/
978-3-030-46150-8_24.

Thomas N. Kipf and Max Welling. Semi-supervised Classification with Graph Convolutional Networks. In
ICLR’17. OpenReview, 2017. URL https://openreview.net/pdf?id=SJU4ayYgl.

Bryan Klimt and Yiming Yang. The Enron Corpus: A New Dataset for Email Classification Research. In
ECML ’04. Springer Berlin Heidelberg, 2004.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed Networks in Social Media. In CHI ’10, 2010.
URL https://doi.org/10.1145/1753326.1753532.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser-Nam
Lim. Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods.
In NeurIPS ’21, 2021. URL https://openreview.net/forum?id=DfGu8WwT0d.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the con-
struction of internet portals with machine learning. Information Retrieval, 3:127–163, 2000. URL
https://doi.org/10.1023/A:1009953814988.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT press, 2012. URL https:
//mitpress.mit.edu/9780262018029/.

Mark Newman. Networks. Oxford university press, 2nd edition, 2018. URL https://doi.org/10.1093/
oso/9780198805090.001.0001.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric Transitivity Preserving Graph
Embedding. In KDD ’16, pp. 1105–1114, 2016. URL https://doi.org/10.1145/2939672.2939751.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab, 1999. URL http://ilpubs.
stanford.edu:8090/422/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In NeurIPS
’19, pp. 8024–8035, 2019. URL https://dl.acm.org./doi/10.5555/3454287.3455008.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: online learning of social representations. In
KDD ’14, pp. 701–710. Association for Computing Machinery, 2014. URL https://doi.org/10.1145/
2623330.2623732.

Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook, 2012. URL http://www2.
compute.dtu.dk/pubdb/pubs/3274-full.html. Version 20121115.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network Embedding as Matrix
Factorization: Unifying DeepWalk, LINE, PTE, and Node2vec. In WSDM’18, pp. 459–467, 2018. URL
https://doi.org/10.1145/3159652.3159706.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, and
Jie Tang. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. In KDD ’20, pp.
1150–1160, 2020. URL https://doi.org/10.1145/3394486.3403168.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann, and
Michael M Bronstein. Edge Directionality Improves Learning on Heterophilic Graphs. In LoG ’23, 2023.
URL https://doi.org/10.48550/arXiv.2305.10498.

25

https://doi.org/10.1007/978-3-030-46150-8_24
https://doi.org/10.1007/978-3-030-46150-8_24
https://openreview.net/pdf?id=SJU4ayYgl
https://doi.org/10.1145/1753326.1753532
https://openreview.net/forum?id=DfGu8WwT0d
https://doi.org/10.1023/A:1009953814988
https://mitpress.mit.edu/9780262018029/
https://mitpress.mit.edu/9780262018029/
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1145/2939672.2939751
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://dl.acm.org./doi/10.5555/3454287.3455008
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/3394486.3403168
https://doi.org/10.48550/arXiv.2305.10498

Under review as submission to TMLR

Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K. Ahmed, Danai Koutra, and John Boaz Lee. On Proximity
and Structural Role-Based Embeddings in Networks: Misconceptions, Techniques, and Applications. ACM
TKDD, 14(5), 2020. URL https://doi.org/10.1145/3397191.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-Scale attributed node embedding. Journal of
Complex Networks, 9(2), 2021. URL https://doi.org/10.1093/comnet/cnab014.

Tim Sainburg, Leland McInnes, and Timothy Q Gentner. Parametric UMAP Embeddings for Representation
and Semisupervised learning. Neural Computation, 33(11):2881–2907, 2021. URL https://doi.org/10.
1162/neco_a_01434.

David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to networks and other
irregular domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013. URL https://doi.org/10.
1109/MSP.2012.2235192.

Konstantinos Skitsas, Karol Orłowski, Judith Hermanns, Davide Mottin, and Panagiotis Karras. Com-
prehensive Evaluation of Algorithms for Unrestricted Graph Alignment. In EDBT’23, 2023. URL
https://dx.doi.org/10.48786/edbt.2023.21.

Lubos Takac and Michal Zabovsky. Data analysis in public social networks. In International scientific
conference and international workshop present day trends of innovations, volume 6, 2012. URL https:
//snap.stanford.edu/data/soc-Pokec.html.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L. Dyer, Remi Munos,
Petar Veličković, and Michal Valko. Large-Scale Representation Learning on Graphs via Bootstrapping.
In ICLR’22, 2022. URL https://doi.org/10.48550/arXiv.2102.06514.

Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim. Digraph
Inception Convolutional Networks. In NeurIPS ’20, volume 33, pp. 17907–17918, 2020. URL https://
proceedings.neurips.cc/paper/2020/hash/cffb6e2288a630c2a787a64ccc67097c-Abstract.html.

J. J. Peter Veerman and Robert Lyons. A Primer on Laplacian Dynamics in Directed Graphs, 2020. URL
https://doi.org/10.48550/arXiv.2002.02605.

Srinivas Virinchi and Anoop Saladi. BLADE: Biased Neighborhood Sampling based Graph Neural Network
for Directed Graphs. In WSDM ’23, pp. 42–50, 2023. URL https://dl.acm.org/doi/10.1145/3539597.
3570430.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007. URL
https://doi.org/10.1007/s11222-007-9033-z.

Haonan Wang, Jieyu Zhang, Qi Zhu, Wei Huang, Kenji Kawaguchi, and Xiaokui Xiao. Single-Pass Con-
trastive Learning Can Work for Both Homophilic and Heterophilic Graph. Transactions on Machine
Learning Research, 2023. URL https://openreview.net/forum?id=244KePn09i.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge Graph Embedding: A Survey of Approaches
and Applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724–2743, 2017a. URL
https://doi.org/10.1109/TKDE.2017.2754499.

Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community Preserving
Network Embedding. AAAI ’17, 35(1), 2017b. URL https://ojs.aaai.org/index.php/AAAI/article/
view/10488.

Michael Winding, Benjamin D. Pedigo, Christopher L. Barnes, Heather G. Patsolic, Youngser Park, Tom
Kazimiers, Akira Fushiki, Ingrid V. Andrade, Avinash Khandelwal, Javier Valdes-Aleman, Feng Li, Na-
dine Randel, Elizabeth Barsotti, Ana Correia, Richard D. Fetter, Volker Hartenstein, Carey E. Priebe,
Joshua T. Vogelstein, Albert Cardona, and Marta Zlatic. The connectome of an insect brain. Science, 379
(6636), 2023. URL https://doi.org/10.1126/science.add9330.

26

https://doi.org/10.1145/3397191
https://doi.org/10.1093/comnet/cnab014
https://doi.org/10.1162/neco_a_01434
https://doi.org/10.1162/neco_a_01434
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/MSP.2012.2235192
https://dx.doi.org/10.48786/edbt.2023.21
https://snap.stanford.edu/data/soc-Pokec.html
https://snap.stanford.edu/data/soc-Pokec.html
https://doi.org/10.48550/arXiv.2102.06514
https://proceedings.neurips.cc/paper/2020/hash/cffb6e2288a630c2a787a64ccc67097c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/cffb6e2288a630c2a787a64ccc67097c-Abstract.html
https://doi.org/10.48550/arXiv.2002.02605
https://dl.acm.org/doi/10.1145/3539597.3570430
https://dl.acm.org/doi/10.1145/3539597.3570430
https://doi.org/10.1007/s11222-007-9033-z
https://openreview.net/forum?id=244KePn09i
https://doi.org/10.1109/TKDE.2017.2754499
https://ojs.aaai.org/index.php/AAAI/article/view/10488
https://ojs.aaai.org/index.php/AAAI/article/view/10488
https://doi.org/10.1126/science.add9330

Under review as submission to TMLR

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
Graph Convolutional Networks. In ICML’19, pp. 6861–6871, 2019. URL https://doi.org/10.48550/
arXiv.1902.07153.

Yuchen Yan, Yongyi Hu, Qinghai Zhou, Lihui Liu, Zhichen Zeng, Yuzhong Chen, Menghai Pan, Huiyuan
Chen, Mahashweta Das, and Hanghang Tong. PaCEr: Network Embedding From Positional to Structural.
In WWW ’24, pp. 2485–2496. Association for Computing Machinery, 2024. URL https://doi.org/10.
1145/3589334.3645516.

Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local Higher-Order Graph Clustering. In
KDD ’17, pp. 555–564, 2017. URL https://doi.org/10.1145/3097983.3098069.

Wenjian Yu, Yu Gu, Jian Li, Shenghua Liu, and Yaohang Li. Single-Pass PCA of Large High-Dimensional
Data. In IJCAI ’17, pp. 3350–3356, 2017. URL https://doi.org/10.24963/ijcai.2017/468.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and S Yu Philip. From Canonical Correlation Analysis
to Self-supervised Graph Neural Networks. In NeurIPS’21, 2021a. URL https://doi.org/10.48550/
arXiv.2106.12484.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. MagNet: A Neural
Network for Directed Graphs. In NeurIPS’21, volume 34, pp. 27003–27015, 2021b. URL https://doi.
org/10.48550/arXiv.2102.11391.

Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. Scalable Graph Embedding for Asym-
metric Proximity. AAAI ’17, 31(1), 2017. URL https://doi.org/10.1609/aaai.v31i1.10878.

Jing Zhu, Xingyu Lu, Mark Heimann, and Danai Koutra. Node Proximity is All You Need: Unified Structural
and Positional Node and Graph Embedding. In SDM’21, pp. 163–171, 2021a. URL https://doi.org/
10.1137/1.9781611976700.19.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond Homophily
in Graph Neural Networks: Current Limitations and Effective Designs. In NeurIPS ’20, 2020. URL
https://doi.org/10.48550/arXiv.2006.11468.

Shijie Zhu, Jianxin Li, Hao Peng, Senzhang Wang, and Lifang He. Adversarial Directed Graph Embedding.
AAAI ’21, 35(5):4741–4748, 2021b. URL https://doi.org/10.1609/aaai.v35i5.16605.

27

https://doi.org/10.48550/arXiv.1902.07153
https://doi.org/10.48550/arXiv.1902.07153
https://doi.org/10.1145/3589334.3645516
https://doi.org/10.1145/3589334.3645516
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.24963/ijcai.2017/468
https://doi.org/10.48550/arXiv.2106.12484
https://doi.org/10.48550/arXiv.2106.12484
https://doi.org/10.48550/arXiv.2102.11391
https://doi.org/10.48550/arXiv.2102.11391
https://doi.org/10.1609/aaai.v31i1.10878
https://doi.org/10.1137/1.9781611976700.19
https://doi.org/10.1137/1.9781611976700.19
https://doi.org/10.48550/arXiv.2006.11468
https://doi.org/10.1609/aaai.v35i5.16605

Under review as submission to TMLR

A Additional details on ReachNEs and DirSwitch

A.1 Verification of column stochasticity of the random walk normalized adjacency matrices

In Section 2.1, we defined the random walk normalized adjacency matrices as follows:

AOi,j =
{

1 if i = j and degO(j) = 0,
Ai,j

degO(j) otherwise,
AIi,j =

{
1 if i = j and degI(j) = 0,

Aj,i

degI(j) otherwise,

AUi,j =
{

1 if i = j and deg(j) = 0,
Aundiri,j

deg(j) otherwise.

These definitions ensure that each matrix is column stochastic, meaning that each column sums to one. We
verify this property below:

n∑
k=1

AOk,j =
{

1 if degO(j) = 0
1

degO(j)
∑n

k=1 Ak,j if degO(j) > 0
=
{

1 if degO(j) = 0
degO(j)
degO(j) if degO(j) > 0

= 1,

n∑
k=1

AIk,j =
{

1 if degI(j) = 0
1

degI(j)
∑n

k=1 Aj,k if degI(j) > 0
=
{

1 if degI(j) = 0
degI(j)
degI(j) if degI(j) > 0

= 1,

n∑
k=1

AUk,j =
{

1 if deg(j) = 0
1

deg(j)
∑n

k=1 Aundirk,j if deg(j) > 0
=
{

1 if deg(j) = 0
deg(j)
deg(j) if deg(j) > 0

= 1.

A.2 Message-passing embeddings for directed edges

In Section 2.3.2, we highlighted the connection between the reachability message-passing reduction using
R(AU) and the undirected message-passing graph neural network GraphSAGE (Hamilton et al., 2017) in
Equation 7. Here, we present the corresponding formulas for directed cases:

A⊺
O H = D−1

O A⊺H, [A⊺
O H]i,: =

n∑
j=1

AOj,iHj,: = 1
degO(i)

∑
j:(i,j)∈M

Hj,:, (11)

A⊺
I H = D−1

I AH, [A⊺
I H]i,: =

n∑
j=1

AIj,iHj,: = 1
degI(i)

∑
j:(j,i)∈M

Hj,:. (12)

Note that in Equation 11, messages are aggregated over outgoing edges of node i, meaning that they flow op-
posite to edge directions. Conversely, in Equation 12, messages are aggregated along the incoming, following
the edge directions.

A.3 Proximity embeddings and structural equivalence

We extend Section 2.3.1 by deriving Equation 4, which relates the distances between reachability vectors in
R to distances between embedding vectors in Z. For convenience, we restate the equation:

∥Ri,: − Rj,:∥2
2 + ∥R:,i − R:,j∥2

2 =
∥∥∥(Zi,: − Zj,:)

√
Σ̂
∥∥∥2

2
, Σ̂ =

[
Σ:q,:q 0

0 Σ:q,:q

]
. (13)

Assuming rank(R) = q, the n − q smallest singular values vanish, leading to:

R = U:,:qΣ:q,:q(V:,:q)⊺ = U:,:q
√

Σ:q,:q

(
V:,:q

√
Σ:q,:q

)⊺
= ZU Z⊺

V .

28

Under review as submission to TMLR

We can then express each row of R as the inner product between the corresponding row in ZU and ZV , and
similarly, each column of R can be expressed as the inner product between a row in ZV and ZU :

Ri,: = ZU i,:Z
⊺
V , R:,i = ZU (ZV i,:)⊺.

We now derive Equation 13, using the simplified notation U = U:,:q, Σ = Σ:q,:q, and V = V:,:q:

∥Ri,: − Rj,:∥2
2 + ∥R:,i − R:,j∥2

2 =
∥∥ZU i,:Z

⊺
V − ZU j,:Z

⊺
V

∥∥2
2 +

∥∥ZU (ZV i,:)⊺ − ZU (ZV j,:)⊺
∥∥2

2 (14)

=
∥∥(ZU i,: − ZU j,:

)
Z⊺

V

∥∥2
2 +

∥∥ZU

(
ZV i,: − ZV j,:

)⊺∥∥2
2 (15)

=
∥∥∥(ZU i,: − ZU j,:

)√
ΣV ⊺

∥∥∥2

2
+
∥∥∥U

√
Σ
(
ZV i,: − ZV j,:

)⊺∥∥∥2

2
(16)

=
∥∥∥(ZU i,: − ZU j,:

)√
Σ
∥∥∥2

2
+
∥∥∥√

Σ
(
ZV i,: − ZV j,:

)⊺∥∥∥2

2
(17)

=
q∑

k=1

√
Σk,k

(
ZU i,k − ZU j,k

)2 +
q∑

k=1

√
Σk,k

(
ZV i,k − ZV j,k

)2 (18)

=
2q∑

k=1

√
Σ̂k,k (Zi,k − Zj,k)2 (19)

=
∥∥∥(Zi,: − Zj,:)

√
Σ̂
∥∥∥2

2
(20)

The transition from Equation 16 to Equation 17 follows from the orthogonality of U and V , i.e., U⊺U = Iq

and V ⊺V = Iq.

A.4 Computational complexity of ReachNEs

In this section, we discuss the time and memory complexity of ReachNEs and how to efficiently implement
it for embedding learning on large graphs. The primary computational bottleneck is the n × n reachability
matrix R, which is generally dense. Storing R explicitly is infeasible for even moderately large graphs—for
instance, a graph with one million nodes would require over 3TB of memory.

For message-passing embeddings, the iterative algorithm described in Equation 6 offers a practical way to
bypass the need to store R explicitly. For convenience, we restate it below:

For k ∈ {1, 2, . . . },

{
H(k) = A⊺

∗H(k−1),

Z(k) = Z(k−1) + Pw(k)H(k),
H(0) = X, Z(0) = Pw(0)X. (21)

Rather than computing R in full and multiplying it with the node feature matrix X ∈ Rn×d, this iterative
formulation directly constructs the embedding matrix Z(K) = R⊺X through sequential summation. This re-
duces the memory complexity from quadratic to linear, specifically O(nd+m), where nd accounts for the em-
bedding matrices H(k) and Z(k), and m is the number of non-zero entries in the sparse adjacency matrix A∗.

The time complexity of the iterative message-passing algorithm in Equation 21 is O(Kmd+Knd), where md
arises from the sparse-dense matrix multiplication A⊺

∗H(k−1), and nd comes from the embedding summation
update. Both operations are efficiently supported by existing GPU libraries (Paszke et al., 2019; Fey &
Lenssen, 2019), making the method highly practical in large-scale settings.

By contrast, proximity ReachNEs presents greater memory challenges. Both standard and randomized SVD
methods (Halko et al., 2011) require multiple passes over all elements of the input matrix, which is problem-
atic since storing R in memory is intractable, and recomputing it on-the-fly is computationally prohibitive.

To address this, we adopt the single-pass randomized SVD (SP-rSVD) algorithm proposed by Yu et al. (2017).
SP-rSVD follows the general structure of randomized SVD (rSVD) (Halko et al., 2011), but avoids multiple
passes over the input. First, the reachability matrix R is projected into a lower-dimensional subspace via a

29

Under review as submission to TMLR

random matrix Ω ∈ Rn×p to compute G = RΩ. Then, G is used as a proxy to approximate the left singular
subspace of R.

Unlike standard rSVD, SP-rSVD also computes a second projection H = R⊺G ∈ Rn×p in the same pass,
enabling accurate SVD approximation without re-accessing R. Once G and H are computed, the remaining
SVD steps proceed efficiently on these compressed matrices. We refer the reader to the original paper by Yu
et al. (2017) for implementation details and theoretical guarantees.

To compute G and H efficiently in a single pass over R, we combine the SP-rSVD algorithm with the
sequential summation strategy described in Equation 21. In particular, a single row of R can be obtained
by setting X = In:,i, yielding Ri,:

⊺ = R⊺In:,i.

Using this approach, the matrices G and H can be constructed incrementally, as shown in Equation 22,
starting with initializations G = 0n×p and H = 0n×p:

For i ∈ {1, 2, . . . , n} :
Compute Ri,: via Equation 21 with X = In:,i

g = Ri,:Ω
Gi,: = g

H = H + Ri,:
⊺g.

(22)

In practice, it is advantageous to process multiple rows of R in parallel batches to maximize GPU throughput.
Letting b denote the batch size, the memory complexity of the algorithm becomes O(np + nb + m), where
m is the number of non-zero entries in the adjacency matrix.

The total time complexity of proximity ReachNEs is O(nm + np2): the O(nm) term arises from computing
all n rows of R via sparse matrix multiplications, while O(np2) corresponds to the final SVD computation
in SP-rSVD (Yu et al., 2017).

To accelerate this process, our implementation leverages the PyTorch framework, with built-in support for
both single- and multi-GPU environments. A further advantage over the original MATLAB implementation
of SP-rSVD is PyTorch’s support for automatic differentiation, which opens up new research directions for
self-supervised proximity embedding methods based on differentiable reachability matrices.

B Structural and automorphic node equivalence

This section provides a brief overview of structural and automorphic node equivalences and their relationship
to proximity- and message-passing-based ReachNEs embeddings. For a more detailed discussion of node
equivalence notions, we refer the reader to Borgatti & Everett (1992), and for their relevance to node
embeddings, see Rossi et al. (2020); Jin et al. (2021); Zhu et al. (2021a).

B.1 Definitions and intuition

We begin with structural equivalence. Two nodes are said to be structurally equivalent if they have identical
connections to the same set of nodes. In directed graphs, this means that both their sets of in-neighbours
and out-neighbours are identical (Borgatti & Everett, 1992). Structural equivalence is strongly associated
with node proximity, and there can be at most two steps between two structurally equivalent nodes in an
undirected graph.

The second notion is automorphic equivalence. Intuitively, two nodes are automorphically equivalent if they
occupy the same topological role in the graph. That is, they share all graph-theoretic properties (such as
in-/out-degree, centrality, or clustering coefficients), and cannot be distinguished except by their node labels.

Formally, let π : N → N be a permutation of the node set of a graph G = (N,M), and let Pπ denote the
corresponding permutation matrix, i.e., a binary matrix where Pπ(π(i), i) = 1 for all i, and all other entries
are zero. Then, an automorphism is any π for which (i, j) ∈ M ⇐⇒ (π(i), π(j)) ∈ M, or equivalently, when

30

Under review as submission to TMLR

1 2

3 4
5 6

7 8

9 10
Figure 8: Illustration of structural and automorphic node equivalence. Nodes with the same colour (e.g.,
nodes 1 and 3) are structurally equivalent, meaning they share identical connections to the same set of nodes.
Nodes with the same shape (e.g., nodes 2, 4, 7, and 9) are automorphically equivalent, meaning they are
indistinguishable based solely on graph structure without node labels.

the adjacency matrix satisfies A = PπAP ⊺
π . Two nodes i and j are said to be automorphically equivalent if

there exists an automorphism π such that π(i) = j.

In Figure 8, we illustrate structural and automorphic node equivalence. Nodes with the same colour are struc-
turally equivalent, while nodes with the same shape are automorphically equivalent. Structural equivalence
always implies automorphic equivalence, but not vice versa, as evident in the figure.

Figure 8 also highlights how structural equivalence implies node proximity, whereas automorphically equiv-
alent nodes can be far apart, such as nodes 1 and 10. In fact, automorphic nodes can even exist in separate
weakly connected components. This distinction is crucial, as embeddings that capture automorphic equiva-
lence enable meaningful comparisons across graphs, which is essential for tasks like graph alignment (Heimann
et al., 2018) and node similarity search (Qiu et al., 2020).

B.2 Relation to ReachNEs

Structural and automorphic equivalences are directly linked to proximity and message-passing embeddings.
Under reasonable assumptions, we can show that ReachNEs proximity embeddings assign identical represen-
tations to structurally equivalent nodes, while message-passing embeddings do the same for automorphically
equivalent nodes. This provides a theoretical foundation for ReachNEs and justifies the use of embedding
distances in downstream tasks.

We now formalize this connection. Consider message-passing ReachNEs, where node attributes X play a
crucial role. Although automorphic nodes share identical structural properties, they may still be distin-
guishable by their attributes. Thus, for automorphic equivalence to hold in message-passing embeddings, we
introduce node attribute equivalence, requiring that both the graph structure and attributes remain invariant
under permutation. That is, for a valid automorphism π, we must have both A = PπAP ⊺

π and X = PπX.

The equation A = PπAP ⊺
π states that A remains invariant under the automorphism π. The same holds

for the normalized adjacency matrices, Aσ = PπAσP ⊺
π , and for their powers, Ak

σ = PπAk
σP ⊺

π . This follows
directly:

k∏
l=1

Aσl
=

k∏
l=1

PπAσl
P ⊺

π

= PπAσ1 P ⊺
π Pπ︸ ︷︷ ︸
In

Aσ2 . . . Aσk
P ⊺

π

= Pπ

(
k∏

l=1
Aσl

)
P ⊺

π .

Since the reachability matrix R is a sum of power matrices, it follows that R is also invariant under auto-
morphism R = PπRP ⊺

π .

31

Under review as submission to TMLR

Automorphism invariance of message-passing ReachNEs. We now show that message-passing
ReachNEs are invariant under automorphism, meaning that any pair of automorphic and node attribute-
equivalent nodes will have identical embeddings. Formally, we aim to show that:

PπZ = Z,

where Z = R⊺X represents message-passing embeddings (see Section 2.3.2).

The proof follows directly from the invariance of R and X:

PπZ = PπR⊺X = PπR⊺ In︸︷︷︸
P ⊺

π Pπ

X

= PπR⊺P ⊺
π︸ ︷︷ ︸

R⊺

PπX︸ ︷︷ ︸
X

= R⊺X = Z.

This follows from the fact that message-passing ReachNEs perform local smoothing iteratively across nodes,
ensuring that embeddings remain unchanged under automorphisms.

Automorphism non-invariance of proximity ReachNEs. Unlike message-passing ReachNEs, prox-
imity embeddings are obtained via SVD reduction, a global operation that does not necessarily preserve
automorphism invariance. In general:

PπZ ̸= Z.

A formal proof for undirected graphs is provided by Zhu et al. (2021a).

Structural invariance of proximity ReachNEs (with exceptions). Next, we examine the relationship
between proximity ReachNEs and structural equivalence. From Section A.3, we know that as long as
q ≤ rank(R), the distance between embedding vectors will be zero if and only if their corresponding rows
and columns in R are identical. Thus, it remains to show that structurally equivalent nodes have equal rows
and columns in R.

By definition, two nodes i and j are structurally equivalent if they share the same neighbours, implying:

Ai,: = Aj,:, and A:,i = A:,j .

It follows that the i-th and j-th rows and columns of Ak are identical for all k ≥ 1. However, for k = 0,
we have A0 = In, which assigns distinct rows and columns to each node. Thus, to ensure that the columns
and rows of the reachability matrix adhere to structural invariance, we exclude the k = 0 term when for
proximity embeddings, as discussed in Section 2.3.1.

While the above reasoning establishes structural invariance for most nodes, a key exception arises due to
the random walk normalization. In our definitions of AO, AI, and AU from Section 2.1, we assign diagonal
elements of 1 to sink nodes to maintain proper transition matrices. However, this modification disrupts
structural equivalence: sink nodes with no outgoing edges will not have identical rows and columns in the
normalized adjacency matrices. Consequently, their reachability vectors, and thus their proximity ReachNEs
embeddings, will differ.

This issue is common in random-walk-based proximity embeddings (Perozzi et al., 2014; Grover & Leskovec,
2016; Zhou et al., 2017; Qiu et al., 2018; Khosla et al., 2020). A simple, ad hoc solution is to assign the
zero vector, 0, to all zero-degree sink nodes as a post-processing step after the embedding computation. The
practical benefits of this adjustment remain an open question for future research.

C Asymptotic behaviour of random walk length distributions

This section expands on the analysis in Section 2.2, focusing on the asymptotic behaviour of different random
walk length distributions and their implications for the reachability matrix R as τ → ∞.

32

Under review as submission to TMLR

We begin with the Poisson distribution, deriving its associated diffusion differential equation and estab-
lishing its well-known connection to the normalized Laplacian. Next, we derive a similar equation for the
geometric distribution, demonstrating that, unlike the Poisson case, it does not necessarily converge to a
non-informative stationary distribution as τ → ∞.

We then examine the relationships between distributions in the K-truncated setting, proving that:

R(K)(A∗; Geom(τ)) → R(K)(A∗; U(τ)), as τ → ∞,

R(K)(A∗; Binom(τ)) → R(K)(A∗; Pois(τ)), as K → ∞.

Finally, we highlight the relation between the binomial distribution and random walks on graphs with self-
loops added at each node.

C.1 The Poisson Distribution

We now establish the identity:
R(A∗; Pois(τ)) = e−τL∗ , (23)

where L∗ = In − A∗ is the normalized graph Laplacian.

Starting from the definition in Equation 2, we rewrite the reachability matrix as:

R(A∗; Pois(τ)) =
∞∑

k=0
e−τ τk

k! Ak
∗ = e−τ eτA∗ = e−τL∗ ,

using properties of the matrix exponential (Hall, 2015).

Next, we show that for an initial probability distribution p(0) ∈ [0, 1]n, the solution:

p(τ) = R(A∗, Pois(τ))p(0) (24)

satisfies the differential equation:
dp

dτ
= −L∗p(τ). (25)

Proof. From Equation 23, we recall that:

R(A∗, Pois(τ)) = e−τL∗ .

Setting τ = 0 gives R(A∗, Pois(0)) = In, ensuring that the initial condition is satisfied:

p(0) = p(0).

Differentiating Equation 24 with respect to τ :

dp(τ)
dτ

= d
dτ

e−τL∗p(0) = −L∗e−τL∗p(0) = −L∗p(τ).

Thus, p(τ) satisfies the differential equation as required.

The differential relation in Equation 25 is useful for analysing the dynamics of R(A∗, Pois(τ)) with respect
to τ , allowing us to establish its asymptotic behavior.

Focusing first on the undirected case, the eigenvalue multiplicity of 0 in the normalized Laplacian LU equals
the number of weakly connected components in the graph (Chung, 1997; von Luxburg, 2007). The corre-
sponding eigenvectors u take values:

ui = deg(i)∑
k∈C(j) deg(k)

33

Under review as submission to TMLR

for each node i within a weakly connected component C(j). These eigenvectors are the only stationary
solutions to Equation 25, as all other eigenvalues of LU are strictly positive.

Thus, as τ → ∞, the reachability matrix converges to:

R(AU, Pois(τ))i,j → deg(i)∑
k∈C(j) deg(k) . (26)

Importantly, all nodes within the same weakly connected component have identical asymptotic reachability
values, making them indistinguishable under the Poisson walk length distribution for undirected graphs.
Consequently, downstream tasks relying on embedding distinguishability, such as graph alignment, are ex-
pected to degrade as τ increases. This effect was also observed in Figures 7d and 7b.

The above analysis provides a good first-order approximation of the Poisson distribution’s behaviour on
digraphs. However, a precise theoretical analysis using LO and LI is more involved and beyond the scope of
this paper. Instead, we refer to Veerman & Lyons (2020) for valuable insights. Specifically, the multiplicity
of the eigenvalue 0 corresponds to the number of reaches in the graph (Veerman & Lyons, 2020, Theorem
4.6). Unlike weakly connected components, multiple reaches can overlap. Consequently, the eigenvectors
exhibit a more complex structure (Veerman & Lyons, 2020, Theorem 5.1), and nodes within a reach do not
necessarily converge to the same reachability vector as τ → ∞.

C.2 The geometric distribution

We now analyse the asymptotic behavior of walk lengths following the geometric distribution. We start with
the parameterization α ∈ [0, 1), related to τ by α = τ

1+τ , so that as τ → ∞, we have α → 1.

As before, we express the reachability matrix as a matrix function:

R(A∗; Geom(α)) = (1 − α)
∞∑

k=0
αkAk

∗ = (1 − α) (In − αA∗)−1
. (27)

Substituting α = τ
1+τ and simplifying, we obtain:

R(A∗; Geom(τ)) = 1
1 + τ

(
In − τ

1 + τ
A∗

)−1

= (In + τ(In − A∗))−1

= (In + τL∗)−1
.

Using this identity, we show that p(τ) = R(A∗; Geom(τ))p(0) satisfies the differential equation:

dp(τ)
dτ

= − (In + τL∗)−1
L∗p(τ), p(0) = p(0). (28)

Proof. The initial condition is satisfied since R(A∗; Geom(0)) = In, so p(0) = p(0). To compute the deriva-
tive dp(τ)

dτ , we apply the matrix inversion derivative rule (Petersen & Pedersen, 2012, Sec. 2.2):

dp(τ)
dτ

= d
dτ

(
(In + τL∗)−1

)
p(0)

= − (In + τL∗)−1
L∗ (In + τL∗)−1

p(0)

= − (In + τL∗)−1
L∗p(τ).

Thus, the differential equation is verified.

The differential equation in Equation 28 offers insight into the similarities and differences between the
dynamics of the geometric and Poisson distributions. Both equations contain the term L∗p(τ), implying

34

Under review as submission to TMLR

that any stationary distribution under Poisson dynamics is also stationary for the geometric case. However,
the presence of the prefactor (In + τL∗)−1 in Equation 28 suggests that this stationary distribution may
not be reached under geometric dynamics.

To understand this, let λ be an eigenvalue of L∗. Then 1
1+τλ is an eigenvalue of (In + τL∗)−1. For any

λ > 0, we see that 1
1+τλ → 0 as τ → ∞. Consequently, many eigenvectors will yield near-zero gradients as

τ increases, effectively stalling the dynamics.

As a result, p(τ) is likely to become “stuck” before converging to the non-informative stationary distribution
that characterizes Poisson dynamics. This phenomenon is also observed empirically in Figures 5 and 7,
where both dispersal entropy and graph alignment accuracy exhibit this same saturation effect.

C.3 Relation between the geometric and the uniform distribution

An interesting asymptotic behavior of the geometric distribution is that its K-truncation approaches the
uniform distribution as τ → ∞, or equivalently, as α → 1.

To demonstrate this, we begin with the expression for the K-truncated reachability of the geometric distri-
bution using the α parameterization:

R(K)(A∗; Geom(α)) = (1 − α)
Z(α, K)

∞∑
k=0

αkAk
∗, (29)

where Z(α, K) is the normalization factor required due to the truncation.

Next, we reparameterize using ε = 1 − α, yielding:

R(K)(A∗; ε) = ε

Z(ε, K)

K∑
k=0

(1 − ε)kAk
∗. (30)

We can compute the normalization factor Z(ε, K) as:

Z(ε, K) =
K∑

k=0
ε(1 − ε)k = ε

1 − (1 − ε)K+1

1 − (1 − ε) = 1 − (1 − ε)K+1.

As ε → 0, we can use the approximation (1 − ε)k = 1 − kε + O(ε2) for both Z(ε, K) and the summands in
Equation 30 to show that R(K)(A∗; ε) approaches the reachability matrix under the uniform distribution:

lim
ε→0

R(K)(A∗; ε) = lim
ε→0

ε

(K + 1)ε

K∑
k=0

(1 − kε)Ak
∗

= lim
ε→0

1
K + 1

K∑
k=0

Ak
∗ − ε

K + 1

K∑
k=0

kAk
∗

= 1
K + 1

K∑
k=0

Ak
∗.

C.4 Relation between the binomial and the Poisson distribution

The final asymptotic behavior we highlight is that the reachability under the binomial walk length distribu-
tion, R(K)(A∗; Binom(τ)), approaches that of the Poisson distribution R(A∗; Pois(τ)) as K → ∞.

35

Under review as submission to TMLR

We begin by expressing R(K)(A∗; Binom(τ)) as a matrix function using the Binomial Theorem:

R(K)(A∗; Binom(τ)) =
K∑

k=0

(
K

k

)(
1 − τ

K

)K−k (τ

K

)k

Ak
∗

=
((

1 − τ

K

)
In + τ

K
A∗

)K

=
(

In − τ

K
L∗

)K

.

Next, we perform the substitution Kτ = K
τ , and as we take the limit Kτ → ∞, we obtain:

lim
Kτ →∞

(
In − 1

Kτ
L∗

)τKτ

= e−τL∗ = R(A∗; Pois(τ)). (31)

Here, we recover the matrix exponential using its limit definition (Hall, 2015), which, together with Equa-
tion 23, proves the asymptotic equality to the Poisson-based reachability.

C.5 Relation between the binomial distribution and self-loops

Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017) popularized the common pre-processing step
of adding self-loops to each node, a practice that has since been widely adopted in self-supervised GNN
methods (Wu et al., 2019; Zhang et al., 2021a; Thakoor et al., 2022). As discussed in Section 2.2, there is a
close connection between the binomial walk length distribution and graphs with added self-loops, which we
explore in this section.

This connection becomes evident when we consider the random surfer interpretation of the binomial dis-
tribution. In this view, a random walker makes a total of K decisions. At each step, the walker moves
to a neighbouring node with probability α, or remains at its current node (i.e., performs a self-loop) with
probability 1 − α. The probability of taking exactly k steps to neighbouring nodes (and K − k self-loops)
then follows the binomial distribution:

Pw(k; α) =
(

K

k

)
(1 − α)K−kαk.

The corresponding reachability matrix is given by:

R(K)(A∗; Binom(α)) =
K∑

k=0

(
K

k

)
(1 − α)K−kαkAk

∗. (32)

We can rewrite this expression using the Binomial Theorem and the fact that the diagonal matrix (1 − α)In

commutes with any matrix under multiplication:

R(K)(A∗; Binom(α)) =
K∑

k=0

(
K

k

)
(1 − α)K−kαkAk

∗

=
K∑

k=0

(
K

k

)
(1 − α)K−kIK−k

n αkAk
∗

=
K∑

k=0

(
K

k

)
((1 − α)In)K−k (αA∗)k

= ((1 − α)In + αA∗)K

= AK
∗+.

36

Under review as submission to TMLR

Here, we define A∗+ = (1 − α)In + αA∗ as a self-loop enhanced normalized adjacency matrix. We see that
the binomial reachability matrix is simply the Kth power of A∗+.

This matrix consists of two parts: a diagonal component (1 − α)In, representing the probability of staying
at the current node (i.e., self-loops), and a weighted adjacency component αA∗, representing the transition
probabilities to neighbouring nodes.

A very similar construction arises in message-passing models that explicitly add self-loops. In what follows,
we formalize this for random walks using the outgoing edge transition matrix AO. The analysis extends
directly to the incoming edge matrix AI and the undirected matrix AU.

First, let S = A + In be the adjacency matrix with added self-loops, and let DO+ = DO + In denote the
corresponding out-degree matrix. Then, the normalized transition matrix for the self-loop-enhanced graph
is given by SO = SD−1

O+ .

We decompose SO into two components: SO = P⟲ + P→, where P⟲ = diag(SO) contains the self-loop (stay-
in-place) probabilities, and P→ contains the off-diagonal transition probabilities to neighbouring nodes.

This structure closely mirrors that of A∗+ = (1 − α)In + αA∗. In both cases, the stay-in-place behavior
is captured by a diagonal matrix—P⟲ for SO and (1 − α)In for A∗+—while the remaining transitions are
modelled via P→ and αA∗, respectively.

Consequently, the Kth power of SO produces a matrix polynomial with binomial coefficients, analogous to
the binomial reachability matrix in Equation 32. This observation aligns with practice: in a K-step linear
GCN, node embeddings are computed as Z = (SK

O)⊺X (Wu et al., 2019), which matches the message-passing
form of the binomial reachability matrix R(K)(A∗; Binom(α)) = AK

∗+ described in Section 2.3.2.

Thus, both approaches share the same underlying random surfer interpretation and exhibit similar mathe-
matical structures. However, there is one key difference: in the binomial reachability model, the stay-in-place
probability is uniform across all nodes, controlled by the scalar (1 − α). In contrast, for GCNs with added
self-loops, the stay-in-place probability varies by node and is given by P⟲, where P⟲i,i = 1

1+degO(i) . This
means that nodes with lower out-degree have higher probability of remaining in place.

Whether this degree-dependent behavior improves embedding quality is ultimately an empirical question
and may depend on the characteristics of the graph and the downstream task.

D Additional experiment setup information

D.1 Single- and multi-scale ReachNEs embedding distributions

This section provides further details related to the experimental setup described in Section 6. Figure 9 shows
the random walk length distributions used in the ReachNEs experiments, as listed in Table 3.

The first plot, Figure 9a, displays the two single-scale distributions, referred to as Geom and Pois. The
Geom distribution corresponds to Geom(k; τ = 1), emphasizing the node itself (k = 0) and short-range
walks (1–2 steps). In contrast, Pois uses Pois(k; τ = 2), which down-weights self-loops and focuses on
medium-range neighbourhoods (2–4 steps).

The Geom-U setting creates two-scale embeddings by combining two distributions designed to capture both
short- and medium-range structure. The first is Geom(k; τ = 1) (same as in Geom), while the second is the
shifted uniform distribution U(k − 1; τ = 2), which excludes the k = 0 term and concentrates probability
mass over k ∈ [1, 5].

The Binom-3 and Geom-4 settings are multi-scale distributions designed to capture short-, medium-, and
long-range reachability. Binom-3 is inspired by Gaussian mixture models (Murphy, 2012, Ch. 11.2.1) and
combines three binomial components: Binom(k; τ = 1) centred at k = 0, Binom(k − 2; τ = 1) centred at
k = 2, and Binom(k − 5; τ = 1) centred at k = 5. To account for the increasing range, we increase the
parameter τ for longer walks, thereby widening the support of the distribution.

37

Under review as submission to TMLR

0 1 2 3 4 5 6 7 8 9 101112
Walk length, k

0.0

0.1

0.2

0.3

0.4

0.5
Pr

ob
.m

as
sf

un
ct

io
n,
P
w

(k
) Geometric(τ = 1)

Poisson(τ = 2)

(a) Geom and Pois

0 1 2 3 4 5 6 7 8 9 101112
Walk length, k

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

.m
as

sf
un

ct
io

n,
P
w

(k
) Geometric(τ = 1)

Uniform(τ = 2)

(b) Geom-U

0 1 2 3 4 5 6 7 8 9 101112
Walk length, k

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

.m
as

sf
un

ct
io

n,
P
w

(k
) Binom(τ = 1)

Binom(τ = 2)
Binom(τ = 3)

(c) Binom-3

0 1 2 3 4 5 6 7 8 9 101112
Walk length, k

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

.m
as

sf
un

ct
io

n,
P
w

(k
) Geometric(τ = 1)

Geometric(τ = 2)
Geometric(τ = 3)
Geometric(τ = 4)

(d) Geom-4

Figure 9: Plots of the walk length distributions Pw listed in Table 3. (a) show the two distributions used to
create single-scale ReachNEs embeddings, while (b), (c) and (d) show the distributions used for multi-scale
embeddings, with 2, 3 and 4 components respectively.

In contrast, Geom-4 uses four geometric components with progressively increasing mode and tail width:
Geom(k; τ = 1), Geom(k − 1; τ = 2), Geom(k − 2; τ = 3), and Geom(k − 3; τ = 4). Unlike Binom-3, these
distributions are not centred on long-range steps but exhibit heavy tails, meaning they still provide smoothing
over distant nodes. The advantage of Geom-4 is that it places distinct modes over steps k ∈ {0, 1, 2, 3}, a
range where most node-distinguishing information typically resides. This focus on short- and mid-range
steps aligns with the goal of preserving local structure while retaining some long-range awareness.

D.2 Hyperparameters for proximity embedding comparison

Table 10 shows the hyperparameter search grids for each digraph proximity method compared in Section 6.4.
For all models, we tune the number of embedding dimensions using p ∈ [64, 1024]. Note that for HOPE, we
report halved values, as the implementation internally doubles the embedding size.

For DirSwitch-r, we tune both the number of directed steps r and the choice of walk length distributions
Pw. For the other baselines, we tune their respective hyperparameters that influence proximity scale. These
include:

• the β parameter for HOPE,

• the number of walk steps and jump factor for APP,

• the number of walk steps for NERD,

• the number of layers for BLADE.

We also tune selected learning-related hyperparameters: the number of sampled walks for NERD, the loss
trade-off parameter λ for DGGAN, and the learning rate and number of epochs for BLADE.

With this setup, the total grid sizes are approximately comparable across methods. DirSwitch uses 75
different hyperparameter combinations. Among the baselines, APP and BLADE have the largest grids, with
120 and 300 combinations respectively. DGGAN has the smallest grid (45 combinations), as it is significantly
more computationally expensive to train, making extensive tuning infeasible.

The best-performing hyperparameter settings for each model and dataset, based on cross-validation accuracy,
are listed in Table 11. For DirSwitch-r, we observe that multi-scale embeddings with three or four components
consistently yield the best results, aligning with prior findings on the benefits of multi-scale embedding
strategies (Rozemberczki et al., 2021).

38

Under review as submission to TMLR

Table 10: Hyperparameter grids used for the comparison of proximity embedding models in Section 6.4.

Model Hyperparameter Values

DirSwitch-r
Emb. dim. p 64, 128, 256, 512, 1024

r 1, 2, 3
Pw Geom, Pois, Geom-U , Binom-3, Geom-4

HOPE β 0.001, 0.01, 0.1, 0.2, 0.35, 0.5, 0.65, 0.8, 0.9, 1.0
Emb. dim. p 32, 64, 128, 256, 512

APP
Emb. dim. p 64, 128, 256, 512, 1024

Jump factor 0.1, 0.25, 0.5, 0.75
Walk steps 2, 3, 4, 5, 6, 7

NERD
Emb. dim. p 64, 128, 256, 512, 1024

Num. samples 1, 2, 3
Walk steps 2, 3, 4, 5, 6

DGGAN
Emb. dim. p 64, 128, 256, 512, 1024

λ 5e-06, 1e-05, 5e-05
Learning rate 5e-05, 0.0001, 0.0005

BLADE

Emb. dim. p 64, 128, 256, 512, 1024
Learning rate 0.0001, 0.001, 0.01

Num. epochs 10, 30, 50, 100
Num. layers 2, 3, 4, 5, 6

Table 11: The best hyperparameter values for each proximity embedding model and dataset.

Model Fly Larva EU-Email Polblogs CoCite Pubmed Cora (subelj)

DirSwitch
Emb. dim. p 256 Emb. dim. p 1024 Emb. dim. p 128 Emb. dim. p 1024 Emb. dim. p 1024 Emb. dim. p 1024

r 3 r 2 r 1 r 1 r 1 r 1
Pw Geom-4 Pw Binom-3 Pw Binom-3 Pw Binom-3 Pw Binom-3 Pw Binom-3

HOPE β 1 β 1 β 0.9 β 0.9 β 0.9 β 1
Emb. dim. p 512 Emb. dim. p 128 Emb. dim. p 32 Emb. dim. p 512 Emb. dim. p 512 Emb. dim. p 512

APP
Emb. dim. p 1024 Emb. dim. p 512 Emb. dim. p 64 Emb. dim. p 512 Emb. dim. p 1024 Emb. dim. p 1024

Jump factor 0.75 Jump factor 0.75 Jump factor 0.5 Jump factor 0.25 Jump factor 0.75 Jump factor 0.75
Walk steps 5 Walk steps 4 Walk steps 5 Walk steps 5 Walk steps 5 Walk steps 7

NERD
Emb. dim. p 256 Emb. dim. p 1024 Emb. dim. p 128 Emb. dim. p 256 Emb. dim. p 512 Emb. dim. p 256

Num. samples 3 Num. samples 3 Num. samples 2 Num. samples 3 Num. samples 3 Num. samples 3
Walk steps 5 Walk steps 5 Walk steps 5 Walk steps 6 Walk steps 6 Walk steps 6

DGGAN
Emb. dim. p 256 Emb. dim. p 512 Emb. dim. p 128 Emb. dim. p 128 Emb. dim. p 128 Emb. dim. p 256

λ 5e-06 λ 1e-05 λ 5e-05 λ 1e-05 λ 5e-05 λ 5e-06
Learning rate 0.0005 Learning rate 0.0005 Learning rate 5e-05 Learning rate 5e-05 Learning rate 0.0001 Learning rate 5e-05

BLADE

Emb. dim. p 1024 Emb. dim. p 1024 Emb. dim. p 512 Emb. dim. p 1024 Emb. dim. p 1024 Emb. dim. p 1024
Learning rate 0.0001 Learning rate 0.0001 Learning rate 0.001 Learning rate 0.0001 Learning rate 0.0001 Learning rate 0.0001

Num. epochs 10 Num. epochs 10 Num. epochs 10 Num. epochs 10 Num. epochs 10 Num. epochs 30
Num. layers 3 Num. layers 2 Num. layers 6 Num. layers 4 Num. layers 6 Num. layers 2

39

Under review as submission to TMLR

0 2 4 6 8 10 12 Ri,j ∝ deg(i)

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

τ =0.0

τ =0.25

τ =1
τ =2
τ =4

(a) CiteSeer, O

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(b) CiteSeer, U

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(c) Enron, O

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(d) Enron, U

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

2

4

6

8

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(e) EU-Email, O

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

2

4

6

8

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(f) EU-Email, U

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0.0

2.5

5.0

7.5

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(g) Polblogs, O

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0.0

2.5

5.0

7.5

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(h) Polblogs, U

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

15

En
tro

py

τ =0.0
τ =0.25
τ =1
τ =2
τ =4

(i) Roman Empire, O

0.0 0.5 1.0
Proportion of nodes

0

5

10

15

En
tro

py

τ =0.0

τ =0.25

τ =1
τ =2
τ =4

(j) Roman Empire, U

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0
En

tro
py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(k) Wikivotes, O

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

τ =0.0

τ =0.25

τ =1

τ =2

τ =4

(l) Wikivotes, U

Figure 10: Reachability under Pw = Pois(τ), using AO and AU. The x-axes correspond to nodes sorted
by their entropy value. The colours represent various values of τ . The black dashed line indicates the
entropy of a reachability distribution proportional to the node degrees, which corresponds to the limiting
and uninformative distribution as τ → ∞. See Appendix C.1 for further details.

E Additional analysis of local sinks and dispersal

This section provides additional analysis of local sinks and reachability dispersal for graph datasets not
included in the main paper due to space constraints. As before, we use reachability entropy to quantify
dispersal. Recall that the reachability entropy of node j is defined as:

H(j; R) = −
n∑

i=1
Ri,j log2 Ri,j , (33)

where Ri,j is the (i, j)-th element of the reachability matrix R(Pw, σ), computed under a walk length distri-
bution Pw and edge direction specifier σ.

Figure 10 complements Figure 5 by presenting results for six additional datasets, using the Poisson walk
length distribution Pw = Pois(τ). Each coloured curve corresponds to a different value of τ . The figure
focuses on comparing the dispersal effects of default directed edges (σ = O) versus undirected edges (σ = U).

Consistent with the examples in Section 3.1, we observe substantial entropy gains when using undirected
edges on sparse and moderately dense graphs. For example, the sparse CiteSeer graph shows a pronounced
increase in entropy, while medium-density graphs such as Enron, Polblogs, and Wikivotes also exhibit clear
improvements. These gains become more pronounced at larger τ values, as reachability under directed edges
increasingly concentrates in local sinks.

In contrast, the dense EU-Email graph, with an average node degree of 25, shows only minor differences be-
tween the directed and undirected cases. While small increases in entropy are still visible (cf. Figure 10e and
10f), the graph’s high density mitigates sink formation and enables more uniform information propagation.

40

Under review as submission to TMLR

Figure 11 extends Figure 6 by presenting results for eleven additional datasets. We again use Pw = Pois(τ =
2) to model short-range walks and Pw = U(τ = 5) for longer-range behaviour.

The figure compares DirSwitch edge direction specifiers with those of MultiDir. The results closely follow the
trends observed in Figure 5, with DirSwitch consistently achieving higher entropy than MultiDir—especially
under the long-range distribution Pw = U(τ). As before, the differences are most pronounced on sparse
graphs, including Arxiv, CoCite, Pubmed, and Snap Patents.

The Roman Empire graph constitutes a counterexample to the trends described above. As shown in Fig-
ure 10i and 10j, there is virtually no difference in entropy between σ = O and σ = U, despite the graph’s
sparsity. In fact, close inspection reveals that entropy is slightly lower for the undirected case, particularly for
large values of τ . This effect is even more pronounced in Figure 11j, where σ = O yields the highest entropy
under the uniform walk length distribution. This is the only dataset where such behaviour is observed.

To understand this counterintuitive result, we must examine the specific structural properties of the Ro-
man Empire graph. As shown in Table 2, this graph stands out with an unusually long average path
length—around 2400 steps. The underlying reason is its chain-like topology: the graph primarily consists
of a long linear sequence of nodes, where each node typically has an in-degree and out-degree of one. Occa-
sionally, nodes branch off from the main chain and later reconnect.

Figure 12 visualizes a subgraph of the Roman Empire graph, clearly illustrating this structure. It also
highlights why entropy may decrease in the undirected case. The node colours represent reachability values
from the same starting node under σ = O on the left, and σ = U on the right, both using the uniform
walk length distribution. As shown in Figure 12a, reachability in the directed case is spread more uniformly
along the chain. In contrast, Figure 12b shows that the undirected case concentrates reachability around
the starting node.

This is a consequence of the chain structure: in the directed case, random walks proceed almost exclusively
forward along the chain. In the undirected case, however, each step introduces a 33–50% chance of stepping
backward. This backward drift increases the likelihood of returning to or remaining near the starting node,
reducing entropy.

F Additional graph alignment results

Figure 13 presents graph alignment results for three additional datasets, complementing the four datasets
shown in Figure 7. As in the main paper, the y-axes indicate graph alignment accuracy, while the x-axes
show values of τ . The top row corresponds to Pw = Geom(τ), and the bottom row to Pw = Pois(τ).

The results in Figure 13 are consistent with the findings from the main paper. For both DirSwitch-r and
MultiDir-r, alignment accuracy increases with r, reflecting the benefit of representing a larger number of di-
rected neighbourhoods. In contrast, models using σ = O and σ = U consistently achieve the lowest accuracies,
as they lack the capacity to capture multiple directed neighbourhoods. DirSwitch-r generally outperforms
MultiDir-r, highlighting that mitigating the effects of local sinks contributes to improved alignment accuracy.

We again observe the distinct behaviours of the Poisson and geometric walk length distributions: increasing τ
tends to degrade accuracy under Pois(τ), whereas accuracy plateaus under Geom(τ), as previously discussed.

A notable exception is the Pubmed dataset, where DirSwitch-r with Pw = Pois(τ) reaches peak accuracy
around τ ≈ 9, indicating that a relatively large receptive field is required for optimal performance. This
contrasts with the other datasets, which generally attain their highest accuracy for τ < 5.

This behaviour can be attributed to the structure of the Pubmed graph. As shown in Table 2, Pubmed has
a very sparse local structure-its median out-degree is 0, and its median in-degree is 1—meaning that the
short-range neighbourhoods of many nodes are nearly indistinguishable. Additionally, Pubmed exhibits the
longest average path length among the alignment datasets. These factors necessitate a broader receptive
field to generate more expressive and distinguishable embeddings.

41

Under review as submission to TMLR

U O OI OIO OU OIU OIOU

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

En
tro

py

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

En
tro

py

(a) Arxiv

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

2

4

6

En
tro

py

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

2

4

6

En
tro

py

(b) CiteSeer

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

En
tro

py

(c) CoCite

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

2

4

6

8

En
tro

py

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

(d) Cora

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

En
tro

py

(e) Cora (Subelj)

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

(f) Enron

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

2

4

6

8

En
tro

py

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

2

4

6

8

En
tro

py

(g) Polblogs

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

15

En
tro

py
0.00 0.25 0.50 0.75 1.00

Proportion of nodes

0

5

10

15

En
tro

py

(h) Pokec

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0.0

2.5

5.0

7.5

En
tro

py

0.0 0.5 1.0
Proportion of nodes

0.0

2.5

5.0

7.5

10.0

En
tro

py

(i) Pubmed

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

2

4

En
tro

py

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

2

4

6

En
tro

py

(j) Roman Empire

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

En
tro

py

0.00 0.25 0.50 0.75 1.00
Proportion of nodes

0

5

10

15

En
tro

py

(k) Snap Patents

Figure 11: Neighbourhood dispersal evaluation for 11 graphs, measured via reachability entropy,
−
∑n

i=1 Ri,j log2 Ri,j , computed for each node and sorted. Each curve corresponds to a different edge direc-
tion specifier σ, with the top row showing results for Pw(k; τ) = Pois(τ = 2) (local dispersal) and the bottom
row for U(τ = 5) (long-range dispersal). DirSwitch variants (e.g., OU, OIU, OIOU) demonstrate high dispersal,
comparable to U, while purely directed specifiers (O, OI, OIO) exhibit lower entropy due to sink effects.

42

Under review as submission to TMLR

(a) Roman Empire, O (b) Roman Empire, U

Figure 12: Both figures show the same subgraph of the Roman Empire graph. The node colours reflect the
reachability vector for the same node under the uniform walk length distribution. (a) uses default directed
edges (σ = O) while (b) uses undirected edge (σ = U).

Undirected Default MultiDir-1 MultiDir-2 MultiDir-3 DirSwitch-1 DirSwitch-2 DirSwitch-3

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

0.6

H
its

@
1

(a) Enron, Geom(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

0.6

H
its

@
1

(b) Polblogs, Geom(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.1

0.2

0.3

0.4

H
its

@
1

(c) Pubmed, Geom(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

0.6

H
its

@
1

(d) Enron Pois(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.2

0.4

0.6

H
its

@
1

(e) Polblogs, Pois(τ)

0 5 10 15
τ – avg. num. walk steps

0.0

0.1

0.2

0.3

0.4

H
its

@
1

(f) Pubmed, Pois(τ)

Figure 13: Evaluation of edge direction expressivity for four graphs using the geometric, Geom(τ), and
Poisson, Pois(τ), walk length distributions. The y-axes represent graph alignment accuracy under 15% edge
removal, while the x-axes correspond to τ , the average walk length. The curve colours and styles denote
different sets of edge direction specifiers, σ.

43

Under review as submission to TMLR

G Additional DirSwitch embedding quality evaluation

This section provides further analysis and discussion of the results presented in Section 6.3, focusing on the
benefits of multi-scale embeddings, the limitations introduced by fixed embedding dimensionality and the
presence of 2-step homophiliy in the Pokec dataset.

Multi-scale embeddings and diminishing returns. The results in Tables 4 and 6 offer clear evidence
of the benefits of multi-scale embeddings. Across all datasets, we observe at least moderate improvements
when transitioning from single-scale to multi-scale walk length distributions, with several datasets exhibiting
substantial accuracy gains. For instance, on Cora-ML, the classification accuracy for undirected embeddings
increases from 31% to 76%; on Citeseer, from 76% to 89%; and on Cora, from 59% to 69% when switching
from Geom to Geom-4. These results highlight the importance of embedding expressivity in unsupervised
learning.

Similar trends are observed for proximity embeddings in Table 6. For example, EU-Email improves from
30% to 72%, and Polblogs from 64% to 85% under the same change in walk length distributions.

However, the benefits of multi-scale embeddings diminish as the number of multi-directional neighbourhoods
increases, particularly for MultiDir-r and DirSwitch-r. In Cora-ML, for example, DirSwitch-1 improves from
57% to 82% when switching from Geom to Geom-4, whereas DirSwitch-3 shows a more modest improvement
from 79% to 86%.

This trend is even more pronounced in the results for p = 512 embedding dimensions (Tables 13 and 15). In
these cases, increasing both the number of multi-directional neighbourhoods and the number of scales can
lead to accuracy degradation. For example, in Table 13, the accuracy for Cora declines as r increases and
when using Binom-3 or Geom-4. A similar pattern is observed for EU-Email in Table 15.

This behaviour arises from the diminishing returns of combining multi-directional and multi-scale embeddings
via concatenation under fixed dimensionality constraints. As described in Section 4, the total embedding
dimension p must be divided among all combinations of direction specifiers and walk length distributions.
When p is fixed, increasing the number of concatenated components reduces the dimensionality available for
each, limiting their expressivity. As a result, performance gains plateau at p = 1024 and begin to decline at
p = 512.

While increasing p can help alleviate this issue by allowing more capacity for embedding components, this
approach has practical limitations. Larger embeddings require more memory and computational resources,
and may introduce challenges such as overfitting or the curse of dimensionality in downstream tasks. Future
work is needed to explore more efficient ways to compress and integrate multi-directional and multi-scale
information into compact embeddings without sacrificing expressivity.

Homophily in the Pokec dataset. As noted in the main paper, the classification results for the Pokec
dataset in Table 4 exhibit behaviour that diverges from other heterophilic datasets. In particular, we observe
a notable accuracy increase when using Geom-4, especially for undirected edges: accuracy rises from 62%
with Binom-3 to 72% with Geom-4. While Pokec typically follows the heterophilic trend—where undirected
embeddings underperform compared to DirSwitch-r and MultiDir-r—this pattern is reversed for Geom-4.

To understand this, we need to examine the structural properties of the Pokec dataset. Pokec is an online
Slovak social network, with nodes representing users and labels corresponding to reported gender. As
reported by Lim et al. (2021), who curated this benchmark, the graph is heterophilic at the 1-step level
due to the predominance of heterosexual connections. This is reflected in a low 1-step homophily score of
0.43.

However, the homophily increases significantly at the 2-step level, rising to 0.61. This indicates that while
direct connections tend to be between users of different genders, the extended 2-step neighbourhoods are
more gender-homogeneous. In such cases, undirected smoothing becomes more effective, especially when the
embedding method emphasizes these mid-range neighbourhoods.

44

Under review as submission to TMLR

Table 12: Further investigation into the Pokec dataset. The walk length distributions are single-scale indi-
cator distributions that place the entire probability mass on a single k-value.

(a) p = 512

Edge directions 1k=0 1k=1 1k=2 1k=3

Default 61.4±0.1 63.0±0.1 63.2±0.1 62.5±0.1

Undirected 61.4±0.1 63.0±0.1 69.9±0.1 66.2±0.1

MultiDir-1 61.4±0.1 63.4±0.1 65.3±0.1 63.3±0.1
MultiDir-2 61.4±0.1 63.4±0.1 68.0±0.1 63.9±0.1

DirSwitch-1 61.4±0.1 63.4±0.1 68.0±0.1 66.3±0.1
DirSwitch-2 61.4±0.1 63.4±0.1 68.0±0.1 66.1±0.1
DirSwitch-3 61.4±0.1 60.7±0.1 67.1±0.1 63.5±0.1

(b) p = 1024

Edge directions 1k=0 1k=1 1k=2 1k=3

Default 61.4±0.1 63.0±0.1 63.1±0.1 62.5±0.1

Undirected 61.4±0.1 63.0±0.1 69.9±0.0 66.2±0.1

MultiDir-1 61.4±0.1 63.4±0.1 65.3±0.1 63.3±0.1
MultiDir-2 61.4±0.1 63.4±0.1 68.0±0.1 63.9±0.1

DirSwitch-1 61.4±0.1 63.4±0.1 68.0±0.1 66.3±0.1
DirSwitch-2 61.4±0.1 63.4±0.1 68.0±0.1 66.1±0.1
DirSwitch-3 61.4±0.1 63.4±0.1 68.0±0.1 65.9±0.1

This is precisely what the Geom-4 distribution achieves. As seen in Figure 9d, one of its components is
Geom(k − 2; τ = 3), which emphasizes 2-step neighbourhoods more than the other multi-scale distributions.
This focus on 2-step structure explains the performance gain observed with Geom-4 and undirected edges.

To further validate this interpretation, we conduct an additional experiment using indicator walk length
distributions that place all probability mass on a single step length:

Pw = 1k=τ =
{

1 if k = τ

0 otherwise
. (34)

This isolates the effect of each specific neighbourhood scale. The results, shown in Table 12, confirm that
2-step neighbourhoods (1k=2) yield the highest accuracy for undirected edges. In contrast, no similar perfor-
mance gain is observed for directed edges (Default), reinforcing the notion that the combination of undirected
smoothing and mid-range reachability is key to improved performance on Pokec.

Beyond explaining this anomaly, the analysis highlights a broader point: homophily and heterophily are
not binary properties but exist on a spectrum. The optimal embedding strategy may vary across this
spectrum, and models tailored exclusively for one end may perform poorly on datasets lying in the middle.
This underscores the utility of DirSwitch, which we have shown to perform consistently well across both
homophilic and heterophilic settings.

45

Under review as submission to TMLR

Table 13: Node classification accuracy for message-passing ReachNEs with p = 512 embedding dimensions.
Columns correspond to different datasets and multi-scale walk length distributions, while rows represent
various edge direction specifiers. Each entry reports the mean accuracy and standard deviation. Bold
blue highlights the highest accuracy in each column, with light blue indicating results within one standard
deviation of the best. Similarly, bold orange denotes the lowest accuracy, and light orange represents values
within one standard deviation of the worst.

Edge directions Arxiv Arxiv Year
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 55.0±0.2 42.4±0.4 55.4±0.2 54.2±0.2 55.4±0.2 36.5±0.3 35.2±0.5 36.7±0.2 37.8±0.3 38.2±0.3

Undirected 61.6±0.2 64.9±0.2 67.0±0.2 69.8±0.2 69.1±0.2 36.5±0.2 36.5±0.2 37.1±0.2 37.6±0.3 38.3±0.2

MultiDir-1 59.8±0.3 59.4±0.3 60.1±0.3 60.2±0.3 60.0±0.3 37.0±0.3 35.1±0.7 38.1±0.2 39.1±0.2 39.4±0.3
MultiDir-2 61.2±0.3 65.3±0.3 65.1±0.3 64.4±0.3 64.6±0.3 38.6±0.3 38.0±0.3 40.5±0.3 41.1±0.2 41.0±0.3
MultiDir-3 60.9±0.3 65.5±0.3 65.3±0.3 64.7±0.3 64.1±0.2 39.7±0.3 40.2±0.3 41.4±0.3 42.1±0.3 41.3±0.2

DirSwitch-1 61.5±0.3 65.9±0.2 67.3±0.3 69.5±0.2 68.6±0.3 38.2±0.2 37.8±0.2 39.9±0.3 39.8±0.3 41.2±0.3
DirSwitch-2 61.5±0.3 65.7±0.2 66.7±0.3 68.9±0.3 67.8±0.3 39.6±0.3 39.5±0.3 40.9±0.3 41.1±0.3 41.5±0.3
DirSwitch-3 60.8±0.3 65.6±0.3 65.9±0.3 67.7±0.3 66.3±0.3 39.6±0.3 40.5±0.3 41.4±0.2 42.1±0.2 42.2±0.3

Edge directions Cora-ML Citeseer Cora
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 50.5±3.1 51.9±2.1 64.2±2.6 70.5±1.3 73.5±1.7 70.7±1.8 58.4±2.2 74.1±2.6 75.8±1.9 78.2±1.6 57.4±0.7 54.1±0.8 60.7±0.8 60.9±0.8 61.1±0.9

Undirected 60.4±2.5 68.1±2.2 73.8±1.8 82.2±1.3 83.7±1.4 80.6±1.4 86.6±1.5 87.0±1.5 93.9±0.9 92.8±1.1 64.9±0.7 68.1±0.7 69.2±0.6 70.1±0.9 70.0±0.8

MultiDir-1 68.5±2.4 67.5±2.4 75.2±2.6 77.2±2.2 79.4±2.3 76.1±1.9 75.4±2.1 80.7±1.9 81.9±1.5 82.8±1.5 65.5±0.7 64.8±0.8 65.3±1.1 63.5±1.0 62.7±0.9
MultiDir-2 79.1±1.7 78.8±1.6 82.7±1.6 83.1±1.4 84.3±1.2 83.9±1.7 85.1±1.7 86.0±1.4 85.8±1.6 86.6±1.2 66.7±1.1 68.1±0.9 66.2±0.9 64.5±1.0 63.6±1.1
MultiDir-3 83.1±1.5 83.6±1.7 85.2±1.5 84.8±1.5 84.7±1.6 85.2±1.5 88.0±1.4 87.0±1.3 87.1±1.2 87.2±0.9 65.0±0.8 67.2±1.0 64.4±1.0 62.0±1.1 61.1±0.9

DirSwitch-1 72.9±1.9 73.7±2.1 81.3±1.9 85.0±1.5 85.2±1.2 82.8±1.0 88.4±1.2 89.2±1.3 91.5±0.9 90.7±1.2 67.5±0.9 69.3±0.7 69.1±0.9 69.2±1.0 68.4±0.7
DirSwitch-2 79.5±2.0 80.8±1.9 84.1±1.6 85.7±1.9 85.7±1.5 85.3±1.1 88.8±0.9 88.4±1.1 90.0±1.2 88.8±1.3 66.7±0.9 68.6±0.8 67.4±0.8 67.4±0.6 65.8±0.7
DirSwitch-3 82.8±1.3 83.5±1.4 85.3±1.0 86.1±1.3 85.7±1.4 85.4±1.3 88.2±1.1 87.1±0.9 88.4±0.8 87.5±1.1 64.9±0.9 67.1±0.9 64.5±0.9 64.7±0.5 62.2±0.6

Edge directions Roman Empire Pokec Snap-Patents
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 69.3±0.9 32.2±0.6 67.0±0.5 49.9±0.6 69.6±0.6 60.3±0.1 59.0±0.8 61.6±0.1 60.7±0.2 65.5±0.1 35.6±0.1 41.7±0.1 39.1±0.0 40.8±0.1 40.9±0.1

Undirected 67.4±0.9 47.0±0.9 69.3±0.7 63.7±0.6 70.0±0.7 60.3±0.1 59.4±0.4 62.0±0.1 62.3±0.1 71.7±0.1 30.8±0.1 29.9±0.0 31.7±0.1 32.7±0.1 33.9±0.4

MultiDir-1 70.1±0.8 40.7±0.8 68.8±0.5 59.6±0.8 71.5±0.6 61.2±0.1 60.2±0.0 62.3±0.1 61.7±0.1 67.3±0.1 40.9±0.0 43.4±0.3 43.9±0.2 46.7±0.1 45.2±0.1
MultiDir-2 71.6±0.6 63.2±0.7 72.0±0.8 66.7±0.5 75.5±0.7 61.6±0.1 61.2±0.2 63.2±0.1 62.7±0.1 67.9±0.1 42.9±0.0 44.0±0.1 45.3±0.2 47.4±0.2 45.0±0.1
MultiDir-3 72.0±0.5 69.1±0.5 73.0±0.8 67.4±0.7 72.5±0.4 61.8±0.1 63.5±0.1 63.1±0.1 62.3±0.1 62.4±0.2 44.2±0.1 47.2±0.1 45.2±0.0 46.4±0.1 44.8±0.1

DirSwitch-1 71.6±0.5 57.1±0.9 73.8±0.5 69.2±0.7 75.3±0.7 61.2±0.1 60.4±0.3 62.8±0.1 62.8±0.1 69.9±0.0 40.7±0.0 40.8±0.1 40.4±0.1 41.6±0.1 42.7±0.4
DirSwitch-2 71.9±0.5 65.5±0.7 74.7±0.4 70.6±0.7 76.1±0.6 61.5±0.1 60.9±0.2 63.5±0.1 63.6±0.1 69.9±0.1 44.2±0.2 46.0±0.1 44.7±0.1 44.9±0.2 45.2±0.3
DirSwitch-3 71.8±0.5 69.1±0.5 74.3±0.5 70.1±0.4 72.7±0.5 61.6±0.1 62.7±0.1 62.9±0.1 62.1±0.1 62.0±0.1 44.4±0.1 48.8±0.1 46.3±0.1 46.9±0.2 46.9±0.2

Table 14: Relative improvements in node classification accuracy for message-passing ReachNEs with p = 512.
The values reflect the maximum accuracy for per row and dataset in Table 13. The top row displays absolute
accuracies for the default edge directions, with standard deviations expressed as percentages. The subsequent
rows present the relative improvements compared to the top row. The table is structured with the four
homophilic datasets on the left and the four heterophilic datasets on the right.

Edge directions Cora-ML Citeseer Cora Arxiv Roman Empire Arxiv Year Pokec Snap-Patents

Default 73.5±2.9% 78.2±2.6% 61.1±1.3% 55.4±0.5% 69.6±0.9% 38.2±0.8% 65.5±0.4% 41.7±0.2%

Undirected +13.9% +20.1% +14.6% +25.9% +0.7% +0.3% +9.5% -18.8%

MultiDir-1 +8.1% +6.0% +7.1% +8.7% +2.8% +3.1% +2.8% +12.0%
MultiDir-2 +14.8% +10.8% +11.4% +17.8% +8.5% +7.8% +3.8% +13.7%
MultiDir-3 +16.0% +12.6% +9.9% +18.2% +5.0% +10.4% -3.1% +13.1%

DirSwitch-1 +16.0% +17.0% +13.3% +25.4% +8.3% +7.9% +6.8% +2.4%
DirSwitch-2 +16.7% +15.2% +12.2% +24.3% +9.4% +8.7% +6.8% +10.4%
DirSwitch-3 +17.3% +13.1% +9.8% +22.1% +6.8% +10.5% -3.9% +17.1%

46

Under review as submission to TMLR

Table 15: Node classification accuracy for proximity ReachNEs with p = 512 embedding dimensions.
Columns correspond to different datasets and multi-scale walk length distributions, while rows represent
various edge direction specifiers. The values denote average accuracies with standard deviations. Bold blue
highlights the best results in each column, with light blue indicating results within one standard deviation.
Similarly, bold orange marks the worst results, with light orange showing values within one standard devia-
tion of the lowest performance.

Edge directions Flylarva EU-Email Polblogs
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 45.3±1.8 46.1±2.4 48.8±1.9 49.2±2.0 49.8±2.0 46.1±3.1 56.6±3.5 64.2±3.5 68.8±3.4 70.4±3.6 71.7±2.7 74.7±2.2 82.6±2.2 85.0±2.1 85.6±1.9

Undirected 47.8±2.0 50.4±1.9 53.6±2.0 55.1±1.7 54.9±2.0 50.3±3.8 58.6±3.3 70.1±3.2 75.3±2.7 75.8±2.6 77.0±2.6 79.2±2.7 85.6±1.8 87.4±2.1 87.0±1.9

MultiDir-1 48.5±1.9 48.5±2.1 51.4±2.3 52.5±1.9 52.0±1.8 65.4±3.0 67.5±3.1 73.7±3.1 73.8±3.0 73.7±2.7 81.7±1.9 83.1±2.1 86.4±2.0 87.7±1.7 88.4±1.7
MultiDir-2 51.8±2.3 51.4±1.7 53.2±1.9 52.7±2.3 52.7±2.1 74.0±2.7 74.5±2.7 75.2±3.3 72.5±2.9 70.4±2.7 87.9±1.8 87.6±1.7 89.1±1.7 89.2±1.6 89.6±1.6
MultiDir-3 53.4±1.9 53.5±2.1 53.7±1.9 54.0±1.6 54.7±1.5 73.9±2.3 75.3±3.0 70.0±2.5 66.4±3.4 63.6±2.7 89.0±1.4 89.5±1.3 89.8±1.8 89.5±2.0 89.2±1.4

DirSwitch-1 50.0±2.3 51.5±1.7 54.2±1.7 56.1±2.1 55.4±1.5 66.4±3.3 69.5±3.4 74.9±2.9 75.7±2.3 75.4±2.6 83.7±2.2 84.1±1.8 88.3±2.1 87.5±2.0 89.7±1.5
DirSwitch-2 52.4±2.1 52.8±2.0 55.2±2.0 55.9±2.1 55.5±1.9 73.6±2.8 74.0±3.1 74.9±2.7 72.6±2.5 70.1±2.7 87.6±2.1 88.3±2.0 89.5±1.8 87.8±1.8 90.0±1.6
DirSwitch-3 54.2±1.9 54.6±1.6 54.9±1.9 56.2±1.7 56.0±2.2 74.8±3.0 74.6±2.7 70.5±3.0 66.2±3.0 63.9±3.3 88.8±1.7 89.4±1.6 89.7±1.6 89.7±1.4 90.0±1.9

Edge directions CoCite Pubmed Cora (subelj)
Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4 Geom Pois Geom-U Binom-3 Geom-4

Default 37.6±0.5 38.2±0.6 38.9±0.6 38.9±0.5 38.9±0.5 71.2±0.7 71.0±0.7 71.3±0.6 70.7±0.7 69.9±0.7 55.8±0.9 55.8±0.8 56.4±0.8 56.5±0.8 56.3±0.6

Undirected 44.7±0.5 45.7±0.4 46.4±0.5 47.7±0.6 47.3±0.5 81.5±0.6 81.8±0.6 81.6±0.6 82.1±0.6 81.5±0.7 65.1±0.7 65.7±0.8 66.1±0.8 66.4±0.8 66.3±0.7

MultiDir-1 38.8±0.6 39.3±0.6 40.0±0.5 40.1±0.5 40.3±0.5 71.5±0.6 71.0±0.6 70.2±0.7 68.9±0.7 68.4±0.8 55.5±0.7 55.6±0.9 55.5±0.7 55.3±0.7 55.3±0.9
MultiDir-2 41.5±0.6 42.3±0.5 42.9±0.7 44.0±0.5 44.0±0.5 76.2±0.6 76.0±0.7 75.1±0.7 74.4±0.8 74.1±0.6 58.1±0.7 58.6±0.6 58.6±0.8 58.7±0.7 58.9±0.7
MultiDir-3 42.3±0.5 43.2±0.5 44.3±0.5 45.9±0.4 45.6±0.3 78.3±0.6 78.0±0.7 77.0±0.7 76.7±0.8 75.9±0.7 58.8±0.9 59.3±0.9 59.0±0.7 58.8±1.0 59.7±0.8

DirSwitch-1 44.3±0.5 45.4±0.4 46.2±0.5 47.8±0.5 47.3±0.6 81.1±0.7 81.3±0.6 81.2±0.6 81.5±0.6 80.6±0.7 63.4±0.8 64.2±0.7 64.6±0.8 65.3±0.7 65.0±0.7
DirSwitch-2 43.1±0.6 44.5±0.5 45.4±0.4 48.0±0.4 46.8±0.5 80.8±0.6 81.0±0.7 80.5±0.6 80.9±0.7 80.0±0.6 61.1±0.8 62.4±0.7 62.6±0.8 64.0±0.8 63.4±0.8
DirSwitch-3 41.8±0.5 43.5±0.5 44.5±0.5 47.1±0.5 46.3±0.5 80.1±0.7 80.4±0.7 80.0±0.7 79.8±0.6 78.6±0.7 58.0±0.7 59.6±0.7 60.1±0.8 61.0±0.9 61.2±0.8

Table 16: Relative improvements in node classification accuracy for proximity ReachNEs with p = 512. The
values reflect the maximum accuracy for per row and dataset in Table 15. The top row displays absolute
accuracies for the default edge directions, with standard deviations expressed as percentages. The subsequent
rows present the relative improvements compared to the top row. The table is structured with the three
denser graphs on the left and the three sparser graphs on the right.

Edge directions Flylarva EU-Email Polblogs CoCite Pubmed Cora (subelj)

Default 49.8±4.1% 70.4±4.8% 85.6±2.6% 38.9±1.4% 71.3±0.9% 56.5±1.4%

Undirected +10.7% +7.8% +2.0% +22.4% +15.1% +17.7%

MultiDir-1 +5.4% +4.9% +3.2% +3.5% +0.3% -1.5%
MultiDir-2 +6.8% +6.8% +4.6% +13.1% +6.9% +4.4%
MultiDir-3 +9.8% +7.1% +4.8% +17.8% +9.8% +5.8%

DirSwitch-1 +12.8% +7.6% +4.8% +22.9% +14.3% +15.6%
DirSwitch-2 +12.4% +6.5% +5.1% +23.2% +13.5% +13.4%
DirSwitch-3 +12.8% +6.4% +5.1% +20.9% +12.7% +8.3%

47

	Introduction
	ReachNEs: Reachability Node Embeddings
	The random walk reachability filter
	Walk length distributions
	Reachability reduction into node embeddings
	Proximity embedding reduction
	Message-passing embedding reduction

	Local sinks and directed neighbourhood multiplicity
	Local sink analysis
	Neighbourhood multiplicity and embedding model expressivity
	Neighbourhood multiplicity
	Model expressivity: multi-scale and multi-directional embeddings

	DirSwitch: Switching reachability filters
	Related works
	Embedding learning frameworks
	Digraph models

	Experiments
	Improving dispersal
	Directed neighbourhood expressivity
	DirSwitch embedding quality evaluation
	Comparison to state-of-the-art digraph proximity embeddings
	Applying DirSwitch to self-supervised message-passing graph neural networks

	Limitations and future work
	Conclusion
	Additional details on ReachNEs and DirSwitch
	Verification of column stochasticity of the random walk normalized adjacency matrices
	Message-passing embeddings for directed edges
	Proximity embeddings and structural equivalence
	Computational complexity of ReachNEs

	Structural and automorphic node equivalence
	Definitions and intuition
	Relation to ReachNEs

	Asymptotic behaviour of random walk length distributions
	The Poisson Distribution
	The geometric distribution
	Relation between the geometric and the uniform distribution
	Relation between the binomial and the Poisson distribution
	Relation between the binomial distribution and self-loops

	Additional experiment setup information
	Single- and multi-scale ReachNEs embedding distributions
	Hyperparameters for proximity embedding comparison

	Additional analysis of local sinks and dispersal
	Additional graph alignment results
	Additional DirSwitch embedding quality evaluation

