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ABSTRACT

Bayesian meta-learning (BML) enables fitting expressive generative models to
small datasets by incorporating inductive priors learned from a set of related tasks.
The Neural Process (NP) is a prominent deep neural network-based BML ar-
chitecture, which has shown remarkable results in recent years. In its standard
formulation, the NP encodes epistemic uncertainty in an amortized, factorized,
Gaussian variational (VI) approximation to the BML task posterior (TP), using
reparametrized gradients. Prior work studies a range of architectural modifications
to boost performance, such as attentive computation paths or improved context ag-
gregation schemes, while the influence of the VI scheme remains under-explored.
We aim to bridge this gap by introducing GMM-NP, a novel BML model, which
builds on recent work that enables highly accurate, full-covariance Gaussian mix-
ture (GMM) TP approximations by combining VI with natural gradients and trust
regions. We show that GMM-NP yields tighter evidence lower bounds, which
increases the efficiency of marginal likelihood optimization, leading to improved
epistemic uncertainty estimation and accuracy. GMM-NP does not require com-
plex architectural modifications, resulting in a powerful, yet conceptually simple
BML model, which outperforms the state of the art on a range of challenging
experiments, highlighting its applicability to settings where data is scarce.

1 INTRODUCTION

Driven by algorithmic advances in the field of deep learning (DL) and the availability of increasingly
powerful GPU-assisted hardware, the field of machine learning achieved a plethora of impressive re-
sults in recent years (Parmar et al., 2018; Radford et al., 2019; Mnih et al., 2015). These were enabled
to a large extent by the availability of huge datasets, which enables training expressive deep neu-
ral network (DNN) models. In practice, e.g., in industrial settings, such datasets are unfortunately
rarely available, rendering standard DL approaches futile. Nevertheless, it is often the case that simi-
lar tasks arise repeatedly, such that the number of context examples on a novel target task is typically
relatively small, but the joint meta-dataset of examples from all tasks accumulated over time can be
massive, s.t. powerful inductive biases can be extracted using meta-learning (Hospedales et al.,
2022). While these inductive biases allow restricting predictions to only those compatible with the
meta-data, there typically remains epistemic uncertainty due to task ambiguity, as the context data
is often not informative enough to identify the target task exactly. Bayesian meta-learning (BML)
aims at an accurate quantification of this uncertainty, which is crucial for applications like active
learning, Bayesian optimization (Shahriari et al., 2016), model-based reinforcement learning (Chua
et al., 2018), robotics (Deisenroth et al., 2011), and in safety-critical scenarios.
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Figure 1: Visualization of our GMM-NP model for a dz = 2 dimensional latent space, trained on
a meta-dataset of sinusoidal functions with varying amplitudes and phases, after having observed a
single context example (red cross, right panel) from an unseen task (black dots, right panel). Left
panel: unnormalized task posterior (TP) distribution (contours) and GMM TP approximation with
K = 3 components (ellipses, mixture weights in %). Right panel: corresponding function samples
from our model (blue lines). A single context example leaves much task ambiguity, reflected in a
highly correlated, multi-modal TP. Our GMM approximation correctly captures this: predictions are
in accordance with (i) the observed data (all samples pass close to the red context example), and
with (ii) the learned inductive biases (all samples are sinusoidal), cf. also Fig. 12 in App. A.5.5

A prominent BML approach is the Neural Process (NP) (Garnelo et al., 2018b) which employs a
DNN-based conditional latent variable (CLV) model, in which the Bayesian belief about the tar-
get task is encoded in a factorized Gaussian task posterior (TP) approximation, and inference is
amortized over tasks using set encoders (Zaheer et al., 2017). This architecture can be optimized effi-
ciently using variational inference (VI) with standard, reparametrized gradients (Kingma & Welling,
2014). A range of modifications, such as adding deterministic, attentive, computation paths (Kim
et al., 2019), or Bayesian set encoders (Volpp et al., 2021), have been proposed in recent years to
improve predictive performance. Interestingly, the VI scheme with an amortized, factorized Gaus-
sian TP, optimized using standard gradients, remains largely unaltered. Yet, it is well known that
(i) the factorized Gaussian assumption rarely holds in Bayesian learning (MacKay, 2003; Wilson
& Izmailov, 2020), (ii) amortized inference can yield suboptimal posterior approximations (Cre-
mer et al., 2018), and (iii) natural gradients are superior to standard gradients for VI in terms of
optimization efficiency and robustness (Khan & Nielsen, 2018).

Building on these insights and on recent advances in VI (Lin et al., 2020; Arenz et al., 2022), we
propose GMM-NP, a novel NP-based BML algorithm that employs (i) a full-covariance Gaussian
mixture (GMM) TP approximation, optimized in a (ii) non-amortized fashion, using (iii) robust
and efficient trust region natural gradient (TRNG)-VI. We demonstrate through extensive empirical
evaluations and ablations that our approach yields tighter evidence lower bounds, more efficient
model optimization, and, thus, markedly improved predictive performance, outperforming the state-
of-the-art both in terms of epistemic uncertainty quantification and accuracy. Notably, GMM-NP
does not require complex architectural modifications, which shows that accurate TP inference is
crucial for accurate BML, an insight we believe will be valuable for future research.

2 RELATED WORK

Multi-task learning aims to leverage inductive biases learned on a meta-dataset of similar tasks
for improved data efficiency on unseen target tasks of similar structure. Notable variants include
transfer-learning (Zhuang et al., 2020), that refines and combines pre-trained models (Golovin et al.,
2017; Krizhevsky et al., 2012), and meta-learning (Schmidhuber, 1987; Thrun & Pratt, 1998; Vilalta
& Drissi, 2005; Hospedales et al., 2022), which makes the multi-task setting explicit in the model
design by formulating fast adapation mechanisms in order to learn how to solve tasks with little
context data (“few-shot learning”). A plethora of architectures were studied in the literature, includ-
ing learner networks that adapt model parameters (Bengio et al., 1991; Schmidhuber, 1992; Ravi
& Larochelle, 2017), memory-augmented DNNs (Santoro et al., 2016), early instances of Bayesian
meta-models (Edwards & Storkey, 2017; Hewitt et al., 2018), and algorithms that that make use of
learned measures of task similarity (Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017).

Arguably the most prominent meta-learning approaches are the Model-agnostic Meta-learning
(MAML) and the Neural Process (NP) model families, due to their generality and flexibility. While
the original MAML (Finn et al., 2017) and Conditional NP (Garnelo et al., 2018a) formulations do
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not explicitly model the epistemic uncertainty arising naturally in few-shot settings due to task am-
biguity, both model families were extended to fully Bayesian meta-learning (BML) algorithms that
explicitly infer the TP based on a CLV formulation (Heskes, 2000; Bakker & Heskes, 2003). Im-
portant representatives are Probabilistic MAML (Grant et al., 2018; Finn et al., 2018) and Bayesian
MAML (Kim et al., 2018), as well as several NP-based BML approaches that inspire our work.
These include the Standard NP (Garnelo et al., 2018b), which was extended by attentive computa-
tion paths to avoid underfitting (Kim et al., 2019), or by Bayesian set encoders (Zaheer et al., 2017;
Wagstaff et al., 2019; Volpp et al., 2020) for improved handling of task ambiguity, as well as by hier-
archical (Wang & Van Hoof, 2020), bootstrapped (Lee et al., 2020), or graph-based (Louizos et al.,
2019) latent distributions. While the original NP formulation employs an amortized, reparametrized,
stochastic gradient VI objective (Kingma & Welling, 2014; Rezende et al., 2014), Monte-Carlo
(MC)-based objective functions were also studied (Gordon et al., 2019; Volpp et al., 2021).

From a more general perspective, VI emerged as a central tool in many areas of probabilistic machine
learning, which require tractable approximations of intractable probability distributions, typically
arising as the posterior in Bayesian models (Gelman et al., 2004; Koller & Friedman, 2009; Neal,
1996; Wilson & Izmailov, 2020). While early approaches (Attias, 2000) allow analytic updates,
more complex algorithms employ stochastic gradients w.r.t. the variational parameters (Ranganath
et al., 2014; Kingma & Welling, 2014; Blundell et al., 2015). Such approaches are straightforward
to implement and computationally efficient for factorized Gaussian variational distributions, but ig-
nore the information geometry of the loss landscape, leading to suboptimal convergence rates (Khan
& Nielsen, 2018). Natural gradient (NG)-VI (Amari, 1998) alleviates this problem and recent work
(Hoffman et al., 2013; Winn & Bishop, 2005; Khan & Nielsen, 2018; Khan et al., 2018) success-
fully applies this idea at scale to complex models, requiring only first-order gradient information
(Lin et al., 2019). Further extensions enable NG-VI for structured variational distributions such
as mixture models by decomposing the NG update into individual updates per mixture component
(Arenz et al., 2018; Lin et al., 2020) which, in combination with trust region (TR) step size control
(Abdolmaleki et al., 2015; Arenz et al., 2022), yields robust and efficient VI algorithms for versatile
and highly expressive variational distributions such as Gaussian mixture models (GMMs).

3 PRELIMINARIES

We now briefly recap the TRNG-VI algorithm (Lin et al., 2020; Arenz et al., 2022) as well as the
NP model (Garnelo et al., 2018b), which form the central building blocks of our GMM-NP model.

3.1 TRUST REGION NATURAL GRADIENT VI WITH GAUSSIAN MIXTURE MODELS

Variational Inference. We consider a probability distribution p (z) over a random variable z ∈ Rdz ,
which is intractable in the sense that we know it only up to some normalization constant Z, i.e.,
p (z) = p̃ (z) /Z with Z =

∫
p (z) dz and tractable p̃(z). We seek to approximate p (z) by a

tractable distribution qϕ (z), parametrized by ϕ. Variational inference (VI) frames this task as the
minimization w.r.t. ϕ of the reverse Kullback-Leiber (KL) divergence (Kullback & Leibler, 1951)

KL [qϕ||p] ≡ −Eqϕ(z)

[
log

p̃ (z)

qϕ (z)

]
+ logZ ≡ −L (ϕ) + logZ, (1)

where we introduced evidence lower bound (ELBO) L (ϕ). As Z is independent of ϕ, minimizing
the KL divergence is equivalent to maximizing the ELBO.

Natural Gradients. A standard approach employs stochastic, reparametrized gradients w.r.t. ϕ
(Kingma & Welling, 2014) for optimization. While this is computationally efficient, it ignores the
geometry of the statistical manifold defined by the set of probability distributions qϕ, which can lead
to suboptimal convergence rates (Khan & Nielsen, 2018). A more efficient solution is to perform
updates in the natural gradient (NG) direction, i.e., the direction of steepest ascent w.r.t. the Fisher
information metric (Amari, 1998). State-of-the-art approaches estimate the NG from first-order
gradients of p (z) by virtue of Stein’s lemma (Lin et al., 2019), yielding efficient NG-VI algorithms
that scale to complex problems (Khan et al., 2018; Lin et al., 2020; Arenz et al., 2022).

Trust Regions. Selecting appropriate step sizes for updates in ϕ can be intricate, which is why
Abdolmaleki et al. (2015) propose a (zero-order) algorithm that incorporates a trust region constraint
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of the form KL [qϕ||qϕold ] ≤ ε, which restricts the updates in distribution space and can be enforced
with manageable computational overhead (a scalar, convex optimization problem in the Lagrangean
parameter for the constraint). As shown by Arenz et al. (2022), such trust regions can easily be
combined with gradient information, and allow more aggressive updates in comparison to setting
the step size directly, while still ensuring robust convergence.

VI with Gaussian Mixture Models. The quality of the approximation depends on the expressive-
ness of the distribution family qϕ. In settings where p corresponds to the Bayesian posterior of
complex latent variable models (MacKay, 2003; Wilson & Izmailov, 2020), simple Gaussian ap-
proximations do not yield satisfactory results, as p typically is multimodal. In such cases, Gaussian
mixture models (GMMs) are an appealing choice, as they provide cheap sampling, evaluation, and
marginalization while allowing expressive approximations (Arenz et al., 2018). However, a naive
application of VI is futile because gradients are coupled between GMM components, leading to
computationally intractable updates. Fortunately, Arenz et al. (2018) and Lin et al. (2020) show that
updating the components and weights individually is possible, while preventing a collapse of the
approximation onto a single posterior mode. This leads to two state-of-the-art algorithms for NG-VI
with variational GMMs, that differ most notably in the way the step sizes for the updates are con-
trolled: iBayes-GMM (Lin et al., 2020), which directly sets step sizes for the updates, and TRNG-VI
(Arenz et al., 2022), which employs trust regions for more efficient and robust convergence.

3.2 BAYESIAN META-LEARNING WITH NEURAL PROCESSES
θ

yℓ,n zℓxℓ,n

N

L

The Multi-Task Latent Variable Model. We aim to fit a genera-
tive model to a meta-dataset D = D1:L, consisting of regression tasks
Dℓ = {xℓ,1:N ,yℓ,1:N} with inputs xℓ,n ∈ Rdx and corresponding evalu-
ations yℓ,n ∈ Rdy of unknown functions fℓ, i.e., yℓ,n = fℓ (xℓ,n) + εn,
where εn denotes (possibly heteroskedastic) noise. Tasks are assumed
to share statistical structure as formalized in the multi-task CLV model
shown to the right, defining the joint probability distribution

pθ (y1:L,1:N , z1:L|x1:L,1:N ) =
∏
ℓ,n

pθ (yℓ,n|xℓ,n, zℓ) p (zℓ) , (2)

where zℓ ∈ Rdz denote latent task descriptors and θ denotes task-global parameters that capture
shared statistical structure. Having observed context data Dc

∗ = {xc
∗,1:M∗

,yc
∗,1:M∗

} ⊂ D∗ from a
target task D∗, predictions are provided in terms of the marginal predictive distribution

pθ (y∗,1:N∗ |x∗,1:N∗ ,Dc
∗) =

∫ ∏
n

pθ (y∗,n|x∗,n, z∗) pθ (z∗|Dc
∗) dz∗, (3)

with the task posterior (TP) distribution pθ (z∗|Dc
∗) =

∏
m pθ(y

c
∗,m|xc

∗,m, z∗)p (z∗) / pθ (Dc
∗).

The Neural Process. In its standard formulation, the Neural Process (NP) (Garnelo et al., 2018b)
defines a factorized Gaussian likelihood pθ (y|x, z) ≡ N

(
y|decµθ (x, z) , diag

(
σ2

n

))
, where the

decoder decµθ is a DNN with weights θ, and observation noise variance σ2
n . As the TP is in-

tractable for this likelihood choice, NP computes a factorized Gaussian approximation qϕ (z∗|Dc
∗) ≡

N (z∗|encµϕ (Dc
∗) , diag(encσϕ (Dc

∗))) with deep set encoders (Zaheer et al., 2017; Wagstaff et al.,
2019) encµϕ, encσϕ, parametrized by ϕ. The parameters Φ ≡ (θ,ϕ) are optimized jointly on

the meta-data by stochastic gradient ascent on the ELBO
∑L

ℓ=1 Lℓ (Φ) w.r.t. the approximate log
marginal predictive likelihood defined by

log qΦ (yℓ,1:N |xℓ,1:N ,Dc
ℓ) ≡ log

∫ ∏
n

pθ (yℓ,n|xℓ,n, zℓ) qϕ (zℓ|Dc
ℓ) dzℓ (4)

≥ Eqϕ(zℓ|Dℓ)

[∑
n

log pθ (yℓ,n|xℓ,n, zℓ) + log
qϕ (zℓ|Dc

ℓ)

qϕ (zℓ|Dℓ)

]
≡ Lℓ (Φ) , (5)

where Dc
ℓ ⊂ Dℓ, and stochastic gradients w.r.t. ϕ are estimated using the reparametrization trick

(Kingma & Welling, 2014). Note that NP amortizes inference (the variational parameters ϕ are
shared across tasks) and that it re-uses qϕ (zℓ|·) to compute the variational distribution qϕ (zℓ|Dℓ),
taking advantage of its deep set encoder, which allows to condition it on datasets of arbitrary size.
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4 BAYESIAN META-LEARNING WITH GMM TASK POSTERIORS

Motivation. Our work is motivated by the observation that the current state-of-the-art approach for
training NP-based BML models is suboptimal. Concretely, we identify three interrelated issues with
the optimization objective Eq. (5):

(I1) Expressivity of the Variational Distribution. qϕ is a (i) factorized, (ii) unimodal Gaussian
distribution, (iii) amortized over tasks. In effect, this parametrization only allows crude
approximations of the TP distribution (MacKay, 2003; Cremer et al., 2018).

(I2) Optimization of the Variational Parameters. (i) Naive gradients of Eq. (5), ignoring the
information geometry of qϕ, with (ii) direct step size control are employed for optimization,
yielding brittle convergence at suboptimal rates (Khan & Nielsen, 2018; Arenz et al., 2022).

(I3) Optimization of the Model Parameters. Due to the suboptimal VI scheme (I1,I2), the TP
approximation is poor, resulting in a loose ELBO Eq. (5). In effect, optimization w.r.t. the
model parameters θ is inefficient, cf. App. A.1.4 for a detailed discussion.

Armed with these insights, we develop a novel BML model algorithm that is close in spirit to the
NP but solves (I1-I3) through TRNG-VI with GMM TP approximations.

Model. Our algorithm builds on the standard multi-task CLV architecture Eq. (2) and retains the
likelihood parametrization using a decoder DNN, decµθ (x, z), as this allows for expressive BML
models. Under this parametrization, the log marginal likelihood for a single task reads

log pθ (yℓ,1:N |xℓ,1:N ) = log

∫ ∏
n

pθ (yℓ,n|xℓ,n, zℓ) p (zℓ) dzℓ ≡ logZℓ (θ) , (6)

where Zℓ (θ) is the normalization constant of the TP pθ (zℓ|Dℓ) = p̃ℓ (zℓ) /Zℓ (θ) with p̃(zℓ) ≡∏
n pθ (yℓ,n|xℓ,n, zℓ) p (zℓ). In contrast to Eq. (4), we do not condition the left hand side on a

context set Dc
ℓ , which yields a tractable integrand p̃(zℓ) that does not require further approximation.

To tackle (I1), we approximate pθ (zℓ|Dℓ) by an expressive variational GMM of the form

qϕℓ
(zℓ) ≡

∑
k

wℓ,kqϕℓ
(zℓ|k) ≡

∑
k

wℓ,kN (zℓ|µℓ,k,Σℓ,k) ,
∑
k

wℓ,k = 1, (7)

where we train individual GMMs with parameters ϕℓ ≡ {wℓ,k,µℓ,k,Σℓ,k}, k ∈ {1, . . . ,K} for
each task ℓ, to not impair approximation quality by introducing inaccuracies through amortization.

Update Equations for the Variational Parameters. To ensure efficient and robust optimization of
ϕℓ (I2), we employ TRNG-VI as proposed by Arenz et al. (2022), with the update equations

Σℓ,k,new =

[
η

η + 1
Σ−1

ℓ,k,old −
1

η + 1
Rℓ,k

]−1

, (8a)

µℓ,k,new = Σℓ,k,new

[
η

η + 1
Σ−1

ℓ,k,oldµℓ,k,old +
1

η + 1

(
rℓ,k −Rℓ,kµℓ,k,old

)]
, (8b)

wℓ,k,new ∝ exp ρℓ,k, (8c)

where Rℓ,k, rℓ,k, and ρℓ,k are defined as expectations that can be approximated from per-component
samples using MC and require at most first-order gradients of p̃ (zℓ), which are readily available us-
ing standard automatic differentiation software (Abadi et al., 2015; Paszke et al., 2019). Due to
space constraints, we move details to App. A.1.1. The optimal value for the trust region parame-
ter η ≥ 0 is defined by a scalar convex optimization problem that can be solved efficiently by a
bracketing search, which also ensures positive definiteness of the new covariance matrix Σℓ,k,new.

Updates for the Model Parameters. To optimize the model parameters θ, we decompose the log
marginal likelihood logZℓ (θ) according to Eq. (1) as

logZℓ (θ) = Eqϕℓ
(zℓ)

[∑
n

log pθ (yℓ,n|xℓ,n, zℓ) + log
p (zℓ)

qϕℓ
(zℓ|Dℓ)

]
+KL [qϕℓ

(·) || pθ (·|Dℓ)] ,

(9)
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Figure 2: Panels (a), (b): LMLHD and MSE on two synthetic function classes. Panels (c) – (f): func-
tion samples of models trained on the affine-sinusoidal class (b), given one context example (red)
from a sinusoidal instance (black). GMM-NP outperforms the baselines, as it accurately quantifies
epistemic uncertainty through diverse samples. BA-NP also shows variability in its samples, but
does not achieve competitive performance due to its inaccurate TP approximation. ANP and BANP
produce essentially deterministic predictions that fail to give reasonable estimates of the predictive
distribution. Cf. also Figs. 10, 11 in App. A.5.4.

where the first term on the right hand side is the ELBO w.r.t. logZℓ (θ), which we denote by L (θ).
We expect L (θ) to be comparably tight, as our inference scheme allows accurate GMM TP approx-
imations qϕℓ

, s.t., the KL term will be small. Consequently, maximization of Zℓ (θ) w.r.t. θ can be
performed efficiently by maximization of L (θ) (I3), cf. also App. A.1.4. As is standard, we use the
Adam optimizer (Kingma & Ba, 2015) to perform updates in θ, with MC gradient estimates from
samples zℓ,s ∼ qϕℓ

(zℓ): ∇θL (θ) ∝
∑

s,n ∇θ log pθ (yℓ,n|xℓ,n, zℓ,s) .

Meta-Training. The goal of any BML algorithm is to compute accurate predictions with well-
calibrated uncertainty estimates according to Eq. (4), based on samples from the approximate TP
qϕ∗ (z∗|Dc

∗) ≈ pθ (z|Dc
∗), conditioned on a context set Dc

∗ from a target task. During a meta-
training stage on meta-data D1:L, we aim to encode inductive biases in the model parameters θ,
s.t. small (few-shot) context sets Dc

∗ suffice for accurate predictions. To find versatile solutions that
work for variable context set sizes, it is necessary to emulate this during meta-training by evaluating
gradients for θ on samples zℓ,s from approximate TPs informed by a range of context set sizes.
Standard NPs achieve this by sampling a minibatch of auxiliary subtasks, with a random number
of datapoints, from D1:L for each step in the parameters Φ (cf. Sec. A.3.2). Our algorithm uses
a similar approach: starting from a fixed set of randomly initialized variational GMMs ϕℓ, and a
randomly initialized model θ, we iterate through the meta-data in minibatches of auxiliary subtasks,
and perform one update step in ϕℓ for all subtasks in the minibatch, according to Eqs. (8), followed
by one gradient step in θ. Thus, variational and model parameters evolve jointly in a similar fashion
as for standard NP, resulting in a meta-training stage with comparable computational complexity,
cf. App. A.5.6. As this approach retains a fixed set of variational GMMs over the whole course
of meta-training (one for each auxiliary subtask), we accordingly sample a fixed set of auxiliary
subtasks at the beginning of meta-training. We summarize our algorithm in App. A.1, Alg. 1.

Predictions. As our architecture does not amortize inference over tasks and, thus, does not learn
a set encoder architecture, the variational GMMs learned during meta-training are not required for
predictions on test tasks and can be discarded. To make predictions, we fix the model parameters
θ and fit a new variational GMM qϕ∗ to Dc

∗ by iterating Eqs. (8) until convergence. Afterwards,
we can cheaply generate arbitrarily many samples z∗,s ∼ qϕ∗ (z∗), and generate corresponding
function samples, evaluated at arbitrary input locations x∗, by a single forward pass through the
decoder DNN to approximate the predictive distribution according to Eq. (4), cf. App. A.1, Alg. 2.

5 EMPIRICAL EVALUATION

Our empirical evaluation aims to study the effect on the predictive performance of (i) our improved
TRNG-VI approach as well as of (ii) expressive variational GMM TP approximations in NP-based
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Figure 3: LMLHD and ELBO looseness over context set size for different versions of our algorithm
(blue). Our improved TRNG-VI inference scheme yields tighter ELBOs than standard SGD-VI
(orange) and, thus, improved performance (cf. text and App. A.1.4 for details).

BML, in (iii) comparison to the state-of-the-art on (iv) a range of practically relevant meta-learning
tasks. To this end, we evaluate our GMM-NP architecture on a diverse set of BML experiments, and
present comparisons to state-of-the-art BML algorithms, namely the original NP with mean context
aggregation (MA-NP) (Garnelo et al., 2018b), the NP with Bayesian context aggregation (BA-NP)
(Volpp et al., 2021), the Attentive NP (ANP) (Kim et al., 2019), as well as the Bootstrapping (At-
tentive) NP (B(A)NP) (Lee et al., 2020). Tab. 1 in App. A.2 gives an overview of the architectural
differences of these algorithms. We move details on data generation to App. A.4, and on the baseline
implementations to App. A.2. For a fair comparison, we employ a fixed experimental protocol for
all datasets and models: we first perform a Bayesian hyperparameter search (HPO) to determine
optimal algorithm settings, individually for each model-dataset combination. We then retrain the
best model with 8 different random seeds and report the median log marginal predictive likelihood
(LMLHD) as well as the median mean squared error (MSE), both in dependence of the context set
size. To foster reproducibility, we provide further details on our experimental protocol in App. A.3,
the resulting hyperparameters and architecture sizes in App. A.5.7, and publish our source code.1
Lastly, we include a detailed discussion of limitations and computational resources in App. A.5.6.

5.1 SYNTHETIC DATASETS

We first study two synthetic function classes (Finn et al., 2017; 2018) on which predictions can be
easily visualized: (i) sinusoidal functions with varying amplitudes and phases, as well as (ii) a mix
of these sinusoidal functions with affine functions with varying slopes and intercepts. Fig. 2 shows
that our GMM-NP outperforms all baselines by a large margin over the whole range of context
sizes, both in terms of LMLHD and MSE. This indicates that GMM-NP’s improved TP approx-
imation indeed yields improved epistemic uncertainty estimation (higher LMLHD). Interestingly,
GMM-NP also shows improved accuracy (lower MSE) and, notably, achieves this without any ad-
ditional architectural modifications like parallel deterministic paths with attention modules. This is
particularly pleasing, as the results show that such deterministic paths indeed improve accuracy, but
degrade epistemic uncertainty estimation massively: (B)ANP performs worst in terms of LMLHD.
This is further substantiated by (i) observing that MA-NP and BA-NP, both of which don’t employ
deterministic paths, are among the best baselines w.r.t. LMLHD, and (ii) by visualizing model pre-
dictions (Figs. 2, 10, 11), demonstrating that (B)ANP compute essentially deterministic function
samples that fail to correctly estimate the predictive distribution, while our GMM-NP yields esti-
mates uncertainty well through variable samples. BNP does not achieve competitive performance,
presumably because the bootstrapping approach does not work well for small context sets.

5.2 ABLATION: TASK POSTERIOR INFERENCE

We now demonstrate that GMM-NP’s improved performance can indeed be explained by the im-
proved TRNG-VI algorithm with accurate GMM TP approximation. To this end, we compare:
(i) BA-NP, i.e., amortized VI with reparameterized gradients and unimodal, factorized Gaussian TP
(SGD-VI, diag, K = 1), (ii) our GMM-NP, i.e., non-amortized TRNG-VI and full-covariance GMM
TP (TRNG-VI, full, K > 1), as well as two models employing TRNG-VI, but a unimodal Gaus-
sian TP with (iii) full, and (iv) diagonal covariance. The results are shown in Fig. 3. In addition,
we compare (v) an architecture with full-covariance GMM TP, but trained with iBayes-GMM (Lin
et al., 2020), i.e., with direct step size control instead of trust regions (Fig. 6, App. A.5.1).

1https://github.com/ALRhub/gmm_np
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Figure 4: Panels (a), (b): simple regret over iteration, when using BML models as Bayesian op-
timization (BO) surrogates (further results in App. A.5.2). As BO relies on well-calibrated uncer-
tainty predictions, the results demonstrate that GMM-NP provides superior uncertainty estimates.
Panel (c): log marginal likelihood (LMLHD) and MSE on one-step ahead predictions of 4D Furuta
pendulum dynamics. While GMM-NP generally performs best, BANP also shows strong results.

VI Algorithm. Considering the LMLHD metric, we observe a significant performance boost when
keeping the traditional factorized Gaussian approximation, but switching from SGD-VI to TRNG-
VI, indicating that the standard SGD-VI approach is indeed suboptimal for BML. To study this
further, we estimate the looseness of the ELBO (cf. App. A.3.3), i.e., the median (over tasks) value
of the KL divergence KL [qϕℓ

(·|Dℓ) || pθ (·|Dℓ)] between the true and approximate TPs. We observe
that TRNG-VI provides ELBOs that are tighter by at least one order of magnitude in comparison to
SGD-VI. As discussed above, this allows for more efficient optimization of the model parameters θ,
explaining the performance gain. Lastly, we find that trust regions yield tighter ELBOs than direct
step size control and, consequently, improve predictive performance, cf. Fig. 6, App. A.5.1

Posterior Expressivity. We now study the effect of increasing the expressiveness of the TP approxi-
mation. This discussion is supplemented by Fig. 1, where we visualize the TP and its approximation
for a dz = 2 dimensional latent space. First, we observe tighter ELBOs and improved performance
when considering full-covariance (but still unimodal) Gaussian TP approximations, and this effect
is particularly pronounced for small context sets. This is intuitive, as small context sizes leave a
lot of task ambiguity, leading to highly correlated latent dimensions (Fig. 1). If we now switch to
multimodal TP approximations, i.e., our full GMM-NP architecture with K > 1 components (K
optimized by HPO), we observe a further increase in performance, as the multimodality of the true
TP can be captured more accurately (Figs. 1,12). This effect is especially pronounced for the affine-
sinusoidal mix, but also present for the purely sinusoidal function class. As more complex function
classes exhibit stronger task ambiguity, the TP will likely exhibit multimodal, correlated structure
over wider ranges of context sizes, s.t. an accurate TP approximation will be even more important.

5.3 BAYESIAN OPTIMIZATION

One important application area for probabilistic regression models is as the surrogate model of
Bayesian optimization (BO), a global black-box optimization algorithm well-known for its sampling
efficiency (Shahriari et al., 2016). BO serves as an interesting experiment to benchmark Bayesian
models, as it relies on well-calibrated uncertainty estimates in order to trade-off exploration against
exploitation, which is crucial for efficient optimization. As proposed by Garnelo et al. (2018b),
we use Thompson sampling (Russo et al., 2018) as the BO acquisition function and present results
on four function classes: (i) 1D functions sampled from Gaussian process (GP) priors with RBF
kernels with varying lengthscales and signal variances (Kim et al., 2019), and parametrized ver-
sions of the global optimization benchmark functions (ii) Forrester (1D) (Forrester et al., 2008), (iii)
Branin (2D) (Picheny et al., 2013), and (iv) Hartmann-3 (3D) (Szego & Dixon, 1978) as proposed
by (Volpp et al., 2020). In Figs. 4a,4b,7, we report the median simple regret, i.e., the difference
of the current incumbent value to the function’s minimum, over BO iteration. We observe that our
GMM-NP model represents a more powerful BO surrogate compared to the baselines, providing fur-
ther evidence that TRNG-VI with GMM TP approximations yields superior epistemic uncertainty
estimates. We provide further results in App. A.5.2, Figs. 7, 8.

5.4 DYNAMICS MODELING

We further investigate a challenging dynamics modeling problem on a function class obtained by
simulating a Furuta pendulum (Furuta et al., 1992), a highly non-linear 4D dynamical system, as
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Figure 5: Results on 2D image completion on MNIST. Panels (b),(c) visualize predictions on an
unseen task showing the digit “6”. The first row shows the context pixels, the remaining rows
show five corresponding samples. The results are consistent with earlier observations (e.g., Fig. 2):
our GMM-NP model shows highly variable samples for small context sets, yielding an accurate
estimate of epistemic uncertainty, and contracts properly around the ground truth when more context
information is available. ANP yields crisp predictions but massively overfits to the noise, explaining
bad LMLHD and MSE scores. We provide further results in App. A.5.3, Fig. 9.

proposed by Volpp et al. (2021). The task is to predict the difference of the next system state
xnext ∈ R4 to the current system state x ∈ R4, i.e., we study one-step ahead dynamics predictions
x → y = ∆x ≡ xnext − x ∈ R4. The function class is generated by simulating L = 64 episodes of
N = 64 timesteps each (∆t = 0.1 s), where for each episode we randomly sample the 7 physical
parameters of the pendulum (3 lengths, 2 masses, 2 friction coefficients). The results (Fig. 4c) show
that GMM-NP outperforms the baselines in terms of LMLHD by a large margin, demonstrating its
applicability to complex dynamics prediction tasks where reliable uncertainty estimates are required,
e.g., in robotics applications (Deisenroth et al., 2011). Interestingly, while neither ANP nor BNP
can reliable solve this task, BANP performs strongly, reaching GMM-NPs asymptotic performance
in terms of LMLHD and yielding even slightly better MSE for small context sets.

5.5 IMAGE COMPLETION

To show that our architecture scales to large meta-datasets, we provide results on a 2D image com-
pletion experiment on the MNIST database of handwritten digits (LeCun & Cortes, 2010), as pro-
posed by Garnelo et al. (2018b). The task is to predict pixel intensities y ∈ R at 2D pixel locations
x ∈ R2, given a set of context pixels. To obtain a realistic regression task, we add Gaussian noise
to each context pixel. The meta-dataset consists of L = 60000 images with N = 784 pixels each.
The results (Fig. 5) are consistent with our previous findings: GMM-NP yields markedly improved
performance, outperforming the baselines over the whole range of context sizes. The architectures
with deterministic paths ((B)ANP) fail at properly estimating epistemic uncertainties, leading to low
LMLHD values, i.p., for large context sizes. Figs. 5b,5c,9 explain why this is the case: GMM-NP
(and also, to some extent, BA-NP) generate meaningful images of high variability, corresponding to
well-calibrated uncertainty estimates. In contrast, (B)ANP produce essentially deterministic sam-
ples that overfit the noise in the context data. While these samples might appear less blurry than
those of GMM-NP and BA-NP, they represent inferior solutions of the regression problem.

6 CONCLUSION AND OUTLOOK

We proposed GMM-NP, a novel BML algorithm inspired by the NP model architecture. Our
approach focuses on accurate task posterior inference, a central algorithmic building block that
until now has been treated by amortized inference with set encoders optimized using standard,
reparametrized gradients. We demonstrate that this approach leads to suboptimal task posterior ap-
proximations and, thus, inefficient optimization of model parameters. We apply modern TRNG-VI
techniques that enable expressive variational GMMs, which yields tight ELBOs, efficient optimiza-
tion, and markedly improved predictive performance in terms of both epistemic uncertainty esti-
mation and accuracy. Despite its simplicity, GMM-NP outperforms the state-of-the-art on a range
of experiments and demonstrates its applicability in practical settings, i.p., when meta and context
data is scarce. This demonstrates that complex architectural extensions, like Bayesian set encoders
or deterministic, attentive computation paths are not required – in fact, we observe that determin-
istic modules degrade epistemic uncertainty estimation. Therefore, we hope that our work inspires
further research on accurate task posterior inference as this turns out to suffice for accurate BML.
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REPRODUCIBILITY STATEMENT

We took great care to present a fair comparison of our GMM-NP algorithm with the baseline models,
with statistically reliable results that can be easily reproduced. In particular, we

• clearly state the hyperparameter settings and hyperparameter optimization procedure we
used (Sec. A.3.1),

• clearly state the generating process for the datasets on which we evaluated our algorithm
(Sec. A.4),

• concisely define the evaluation metrics we reported (Sec. A.3.3),
• made sure to evaluate these metrics on large test and sample sets, as well as on multiple (8)

random seeds, s.t., our results carry statistical significance (Sec. A.3),
• use source code from the original authors for all baselines (Sec. A.2),
• make the source code for our proposed algorithm available online (Sec. A.2).
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A APPENDIX

This appendix provides further details that supplement the main part of our paper.

A.1 ALGORITHMIC DETAILS

In this section we lay out the full set of variational update equations and provide pseudocode for our
GMM-NP algorithm.

A.1.1 VARIATIONAL UPDATE EQUATIONS

We provide the full set of equations required to compute the TRNG update for the variational pa-
rameters ϕℓ ≡ {wℓ,k,µℓ,k,Σℓ,k}, k ∈ {1, . . . ,K}, parametrizing our GMM TP approximation as

qϕℓ
(zℓ) ≡

∑
k

wℓ,kqϕℓ
(zℓ|k) ≡

∑
k

wℓ,kN (zℓ|µℓ,k,Σℓ,k) ,
∑
k

wℓ,k = 1. (10)

The TRNG-VI update equations, as proposed by Arenz et al. (2022), read

Σℓ,k,new =

[
η

η + 1
Σ−1

ℓ,k,old −
1

η + 1
Rℓ,k

]−1

, (11a)

µℓ,k,new = Σℓ,k,new

[
η

η + 1
Σ−1

ℓ,k,oldµℓ,k,old +
1

η + 1

(
rℓ,k −Rℓ,kµℓ,k,old

)]
, (11b)

wℓ,k,new ∝ exp ρℓ,k, (11c)

where Rℓ,k, rℓ,k, and ρℓ,k are defined as expectations that can be approximated from per-component
samples using MC:

Rℓ,k = Eqϕℓ,old (zℓ|k)

[
Σ−1

ℓ,k,old

(
zℓ − µℓ,k,old

)
∇T

zℓ
hℓ,k (zℓ)

]
, (12a)

rℓ,k = Eqϕℓ,old (zℓ|k)

[
∇zℓ

hℓ,k (zℓ)

]
, (12b)

ρℓ,k = Eqϕℓ,old (zℓ|k)

[
hℓ,k (zℓ)− log qϕℓ,old (zℓ|k)

]
. (12c)

Here, we defined

hℓ,k (zℓ) ≡ log p̃ℓ(zℓ) + log qϕℓ,old (zℓ|k)− log qϕℓ,old (zℓ) . (13)

The optimal value for the Lagrangean parameter η ≥ 0 that enforces the trust region constraint

KL [qϕ||qϕold ] ≤ ε, (14)

is defined by a scalar convex optimization problem that can be solved efficiently by a bracketing
search, which also ensures positive definiteness of the new covariance matrix Σℓ,k,new.

A.1.2 GMM INITIALIZATION

We provide details on the initialization of the variational GMMs before meta-training and testing.
As we use the same procedure for each task, we drop task indices ℓ to avoid clutter. Given a
number K of components for the GMM task posterior (TP) qϕ(z) Eq. (7), we use a prior p(z)
with K components. To initialize the means µk, covariances Σk, and mixture weights wk for
k ∈ {1, . . . ,K}, we use the same simple heuristic as Arenz et al. (2022):

• Draw the means µk from a dz-dimensional standard Normal distribution,
• The covariances Σk are initialized as diagonal matrices (with 1 on the diagonal),
• The weights are initialized uniformly as wk = 1/K.

A.1.3 ALGORITHM SUMMARY

We provide pseudocode for the meta-training stage of our GMM-NP algorithm in Alg. 1 and for the
prediction stage in Alg. 2.
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Algorithm 1 GMM-NP (Meta-Training)

Require: Meta-data Dℓ = {xℓ,1:N ,yℓ,1:N}, ℓ ∈ 1 : L

Sample variably-sized auxiliary tasks D̃ℓ̃ =
{
xℓ̃,1:Nℓ̃

,yℓ̃,1:Nℓ̃

}
, ℓ̃ ∈ 1 : L̃, cf. Sec. A.3.2

Initialize variational parameters ϕ1:L̃ =
{
w1:L̃,1:K ,µ1:L̃,1:K ,Σ1:L̃,1:K

}
Initialize model parameters θ
while not converged do

for each minibatch of tasks I ⊂
{
1, . . . , L̃

}
do

Sample zℓ,k,s ∼ qϕℓ
(zℓ|k) for ℓ ∈ I , k ∈ 1 : K, s ∈ 1 : S

Evaluate hℓ,k on zℓ,k,s and D̃ℓ for ℓ ∈ I , k ∈ 1 : K, s ∈ 1 : S, Eq. (13)
Update variational parameters ϕℓ for ℓ ∈ I , Eq. (8)
Sample zℓ,s ∼ qϕℓ

(zℓ) for ℓ ∈ I , s ∈ 1 : S
Estimate gradient of ELBO Eq. (9): ∇θL (θ) ∝

∑
s,n ∇θ log pθ (yℓ,n|xℓ,n, zℓ,s)

Perform step in θ using Adam
end for

end while
return Model parameters θ

Algorithm 2 GMM-NP (Prediction)

Require: Context data Dc
∗ =

{
xc
∗,1:M∗

,yc
∗,1:M∗

}
, model parameters θ, target inputs xt

∗,1:N∗

Initialize variational parameters ϕ∗ = {w∗,1:K ,µ∗,1:K ,Σ∗,1:K}
while not converged do

Sample z∗,k,s ∼ qϕ∗ (z∗|k) for k ∈ 1 : K, s ∈ 1 : S
Evaluate h∗,k on z∗,k,s and Dc

∗ for k ∈ 1 : K, s ∈ 1 : S, Eq. (13)
Update variational parameters ϕ∗, Eq. (8)

end while
Sample z∗ ∼ qϕ∗ (z∗)
return Predictions yt

∗,n = decθ
(
xt
∗,n, z∗

)
, n ∈ 1 : N∗
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A.1.4 DISCUSSION OF CONVERGENCE PROPERTIES

Convergence of the ELBO. Our algorithm inherits the convergence guarantee of the variational
Bayes algorithm as discussed, e.g., in Bishop (2006). In general, convergence of variational Bayes
is independent of the concrete optimization strategy used for (ϕ,θ): as long as both the E-step (step
in ϕ) and the M-step (step in θ) increase the ELBO objective (first term in Eq. (9)), the algorithm
is guaranteed to converge to a local optimum of the ELBO. While in standard, reparametrized,
variational Bayes (as employed by the baseline methods studied in Sec. 5) (ϕ,θ) are optimized
jointly using, e.g., Adam (Kingma & Ba, 2015), our method alternates between a step in ϕ using
TRNG-VI (Arenz et al., 2022) and a step in θ using Adam. Nevertheless, both steps increase the
ELBO, so our algorithm will converge.

Convergence of the Marginal Likelihood. As discussed in Sec. 4, our GMM-NP algorithm is
designed to improve the convergence behaviour w.r.t. the marginal likelihood Eq. (9) in compari-
son to existing NP-based BML approaches. Recall that the convergence guarantee of the classical
expectation-maximization (EM) algorithm w.r.t. the marginal likelihood is lost as soon as the E-step
becomes intractable, i.e., as soon as the posterior distribution cannot be computed exactly, and, thus,
has to be approximated by a variational distribution, cf., e.g., Bishop (2006). This is the case for
most models of reasonable complexity, e.g., for the variational autoencoder (Kingma & Welling,
2013) or the NP model family (Garnelo et al., 2018b). Our GMM-NP model is no exception here, as
we build on the NP model for which the TP distribution cannot be computed analytically. Conver-
gence of the marginal likelihood when using the ELBO (first term in Eq. (9)) as a surrogate objective
is guaranteed if the ELBO is tight after the E-step, which is the setting of the aforementioned EM
algorithm and only the case for a perfect TP approximation, i.e., if KL(qϕ(z)||pθ(z|Dc)) = 0,
cf. also App. A.3.3. For imperfect approximations, the tightness of the bound is controlled by the
variational gap KL(qϕ(z)||pθ(z|Dc)) > 0. A better approximate posterior qϕ(z) yields a tighter
ELBO, which in turn brings us closer to the EM setting, i.e., typically improves convergence. Our
GMM-NP algorithm builds exactly on this insight: we use an expressive TP approximation by a full-
covariance GMM and a powerful optimizer for ϕ (TRNG-VI, (Arenz et al., 2022)) to obtain a tighter
ELBO than existing BML approaches in order to achieve optimization of the model parameters in a
way that efficiently maximizes the marginal likelihood.
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A.2 BASELINE ALGORITHMS

Tab. 1 gives an overview of the architectural differences of the BML approaches we compared in
our empirical evaluation (Sec. 5).

Table 1: Comparison of state-of-the-art approaches for Bayesian meta-learning (TRNGD = trust re-
gion natural gradient descent, RSGD = reparametrized stochastic gradient descent, SGD = stochastic
gradient descent, SE = set encoder, MA = mean aggregation, BA = Bayesian aggregation, SA = self
attention, CA = cross attention).

TP Approx. VI Approach Amortization Det. Path

GMM-NP (ours) Full-cov. GMM TRNGD none none
MA-NP (Garnelo et al., 2018b) Diag. Gaussian RSGD SE + MA none

BA-NP (Volpp et al., 2021) Diag. Gaussian RSGD SE + BA none
BNP (Lee et al., 2020) Non-parametric SGD SE + MA none
ANP (Kim et al., 2019) Diag. Gaussian RSGD SA + SE + MA CA
BANP (Lee et al., 2020) Non-parametric SGD SA + SE + MA CA

To compute our results, we consistently use code by the original authors. We also provide source
code for our proposed GMM-NP algorithm:

• Source code four our GMM-NP algorithm:
https://github.com/ALRhub/gmm_np

• MA-NP, ANP:
https://github.com/deepmind/neural-processes,

• BA-NP:
https://github.com/boschresearch/bayesian-context-aggregation,

• BNP, BANP:
https://github.com/juho-lee/bnp.

18

https://github.com/ALRhub/gmm_np
https://github.com/deepmind/neural-processes
https://github.com/boschresearch/bayesian-context-aggregation
https://github.com/juho-lee/bnp


Published as a conference paper at ICLR 2023

A.3 EXPERIMENTAL PROTOCOL

To foster reproducibility, we provide details on our experimental protocol.

A.3.1 MODEL HYPERPARAMETERS

To arrive at a fair comparison of our GMM-NP model with the baseline approaches, we optimize
model hyperparameters individually for each model-dataset combination presented in Sec. 5. Con-
cretely, we perform a Bayesian hyperparameter sweep with 256 trials for each model-dataset com-
bination over the parameters detailed below. For the image completion experiment on MNIST, we
employ a grid search with fewer trials to keep the computational effort manageable. For hyper-
parameters not mentioned below, we consistently use standard settings proposed by the original
authors. To implement the hyperparameter search, we use the wandb sweep functionality (Biewald,
2020).

Observation Noise Parametrization. As detailed in Sec. 3.2, all compared models (including our
GMM-NP) employ a Gaussian likelihood of the form

pθ (y|x, z) ≡ N
(
y|decµθ (x, z) , diag

(
σ2

n

))
, (15)

where the mean is computed by a decoder DNN decµθ receiving the input location x and a latent
sample z. However, different parametrizations of the observation noise variance σ2

n are used in the
literature. As it is not clear which setting is fairest, we also treat the observation noise parametriza-
tion as a hyperparameter. Concretely, for each model-dataset combination, we test the following
settings for the observation noise (with individual hyperparameter sweeps) and report the best per-
forming one:

1. σ2
n = σ2

n,true with σ2
n,true being the true noise variance on the data,

2. σ2
n ∈ R is a single float value, optimized jointly with θ,

3. σ2
n = decσθ (x), i.e., observation noise is parametrized by a second decoder network, opti-

mized jointly with decµθ , but receiving only the input location,

4. σ2
n = decσθ (x, z), i.e., observation noise is parametrized by a second decoder network, op-

timized jointly with decµθ , and also receiving both the input location and the latent sample.

For all compared models, and regardless of the parametrization, we bound the observation noise
from below using a softplus transformation s.t. σn ≥ σn,min = 0.1, as proposed by (Garnelo et al.,
2018b; Kim et al., 2019; Lee et al., 2020).

DNN Architectures. For all experiments and all baseline models, we use encoder and decoder
DNNs with two hidden layers. Likewise, our GMM-NP model uses a decoder DNN with two hidden
layers. We optimize the number of hidden units per layer within the bounds {8, . . . , 64}.

Latent Dimensionalities. For baseline models with parametric latent distributions (all except
B(A)NP), we optimize the latent dimension dz within the bounds {1, . . . , 64}. As our GMM-NP
algorithm employs full covariance matrices, we restrict the bounds for dz to {1, . . . , 8} for a fair
comparison.

Number of GMM components. For our GMM-NP algorithm, as well as for iBayes-GMM (Lin
et al., 2020) used for the comparison in Sec. A.5.1, we optimize the number of GMM components
within the bounds {1, . . . , 10}.

Learning Rates and Trust Region Bounds. All algorithms use the Adam optimizer with standard
settings to update DNN weights. We optimize the corresponding learning rates on a log-uniform
scale within the bounds

[
10−5, 10−1

]
. We use the same settings to optimize the step size for the

GMM updates of the variational parameters of the iBayes-GMM algorithm (Lin et al., 2020) used
for the comparison in Sec. A.5.1. As proposed by Arenz et al. (2022), we optimize the Lagrangean
parameter η of our GMM-NP algorithm using a bracketing search on the interval

[
10−3, 10−1

]
.
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A.3.2 AUXILIARY SUBTASK GENERATION FOR META-TRAINING

We describe the procedure to sample auxiliary subtasks during meta-training in more detail,
cf. Sec. 4.

Nomenclature. Recall from Sec. 3.2 that we define a meta-task as the set of all available (noisy)
evaluations Dℓ, ℓ ∈ {1, . . . , L} from an unknown function fℓ and that each meta-task contains N
examples. Thus, a meta-task Dℓ is all data a BML algorithm has available to learn about fℓ during
meta-training. A subtask of meta-task Dℓ is defined as an arbitrary subset of Dℓ.

Auxiliary Subtask Sampling. As described in Sec. 4, standard NP meta-training samples auxil-
iary subtasks from the metadata for each minibatch step in order to provide the decoder with sam-
ples from task posterior approximations informed by a range of context sizes. We use the following
standard procedure (Garnelo et al., 2018b; Kim et al., 2019; Lee et al., 2020) to sample auxiliary
subtasks to evaluate the optimization objectives of the baseline approaches (e.g., Eq. 5 for standard
NP). Given a minibatch I ⊂ {1, . . . , L} of meta-tasks Dℓ, ℓ ∈ I , we first sample auxiliary subtasks
D̃ℓ with a size Ñ drawn uniformly from Ñ ∈ {Nmin + 1, . . . , Nmax} with Nmin ≥ 1 and Nmax ≤ N .
Then, we sample context sets D̃c

ℓ ⊂ D̃ℓ of size M , drawn uniformly from M ∈
{
1, . . . , Ñ

}
. D̃c

ℓ

and D̃ℓ are then used in Eq. 5 to compute the ELBO objective for the current minibatch.

As described in Sec. 4, our GMM-NP algorithm uses a similar approach: we employ auxiliary
subtasks with sizes Ñ drawn uniformly from Ñ ∈ {Nmin, . . . , Nmax} to evaluate the updates for the
variational GMM parameters and the model parameters. Note that our algorithm does not require
to sample context sets during meta training from the auxiliary subtasks. Furthermore, recall that we
train one variational GMM for each auxiliary subtask and retain those GMMs over the whole course
of meta training, so we fix a set of L̃ auxiliary subtasks at the beginning of meta-training (in contrast
to standard NPs, which sample new subtasks for each minibatch).

We use the following settings for Nmin, Nmax in our experiments: Nmin = 1, Nmax = N , except for
MNIST image completion where we use Nmax = N/2.

Further, we use L̃ = 32L, except for MNIST image completion where we use L̃ = 8.

A.3.3 METRICS

For each model-dataset combination, we retrain the best hyperparameter setting determined accord-
ing to Sec. A.3.1 with 8 different random seeds used for model initialization, and report the median
value together with (5%, 95%) percentiles of the metrics computed according to the formulae pro-
vided below. For all experiments (except the MNIST image completion experiment), we evaluate
all metrics on L = 256 unseen test tasks D1:L with Dℓ = {yℓ,1:N ,xℓ,1:N} and N = 64, from which
we sample context sets Dc

ℓ ⊂ Dℓ. For the image completion experiment we use L = 1024 and
N = 784 (the number of pixels per image). We report the results in dependence of the context set
size.

Log Marginal Predictive Likelihood (LMLHD). For a given task ℓ the LMLHD is defined by
Eq. (4), which we restate here for convenience:

log qθ (yℓ,1:N |xℓ,1:N ,Dc
ℓ) ≡ log

∫ ∏
n

pθ (yℓ,n|xℓ,n, zℓ) q (zℓ|Dc
ℓ) dzℓ. (16)

Here, we use the generic notation q (zℓ|Dc
ℓ) to denote the task posterior TP approximation, the

concrete form of which depends on the BML model under consideration. As the integral is analyt-
ically intractable, we resort to an MC approximation. To this end, we sample S = 1024 samples
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zℓ,s ∼ q (zℓ|Dc
ℓ) in the test set and compute (Volpp et al., 2021)

log qθ (yℓ,1:N |xℓ,1:N ,Dc
ℓ) ≡ log

∫ N∏
n=1

pθ (yℓ,n|xℓ,n, zℓ) q (zℓ|Dc
ℓ) dzℓ (17)

≈ log
1

S

S∑
s=1

N∏
n=1

pθ (yℓ,n|xℓ,n, zℓ,s) (18)

= − logS +
S

logsumexp
s=1

N∑
n=1

log pθ (yℓ,n|xℓ,n, zℓ,s) . (19)

where logsumexp denotes the numerically stable implementation of the function log
∑

s exp(xs),
available in any scientific computing framework. We then compute the median of this expression
over all tasks of the test set.

Mean Squared Error (MSE). We report the MSE w.r.t. the mean prediction. That is, for a given
task ℓ, we again draw S = 1024 samples zℓ,s ∼ q (zℓ|Dc

ℓ) and compute

MSE (yℓ,1:N ,xℓ,1:N ) ≡ 1

N

N∑
n=1

(
1

S

S∑
s=1

decµθ (xℓ,n, zℓ,s)− yℓ,n

)2

. (20)

We then compute the median of this expression over all tasks of the test set.

ELBO Looseness. For a given task ℓ, we define the ELBO looseness as the KL-divergence be-
tween the approximate and true task posteriors. According to Eq. (4), this decomposes as

KL [q (zℓ|Dℓ) ||pθ (zℓ|Dℓ)] = log qθ (yℓ,1:N |xℓ,1:N ,Dc
ℓ) (21)

− Eq(zℓ|Dℓ)

[
N∑

n=1

log pθ (yℓ,n|xℓ,n, zℓ) + log
q (zℓ|Dc

ℓ)

q (zℓ|Dℓ)

]
, (22)

with log qθ (yℓ,1:N |xℓ,1:N ,Dc
ℓ) defined by Eq. (16). The second term is the ELBO,

L (θ,Dc
ℓ ,Dℓ) ≡ Eq(zℓ|Dℓ)

[
N∑

n=1

log pθ (yℓ,n|xℓ,n, zℓ) + log
q (zℓ|Dc

ℓ)

q (zℓ|Dℓ)

]
, (23)

where we made its dependence on both the test set Dℓ and the context set Dc
ℓ ⊂ Dℓ explicit (in

contrast to our notation in the main part of this paper). We say the ELBO is tight if its looseness is
zero. Then, log qθ (yℓ,1:N |xℓ,1:N ,Dc

ℓ) = L (θ,Dc
ℓ ,Dℓ), and optimization of the ELBO w.r.t. θ is

equivalent to optimization of the LMLHD.

For our ablation study (Sec. 5.2), we estimate the looseness of the ELBO by computing the differ-
ence of an importance-weighted MC estimate with proposal distribution q (zℓ|Dℓ) of the LMLHD
and an MC estimate of the ELBO Eq. (23) with S = 1024 samples zℓ,s ∼ q (zℓ|Dℓ).
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A.4 DATA GENERATION

We provide details on the meta-datasets we use to train the models we compare in Sec. 5. Concretely,
we provide

• the dimension dx of inputs xℓ,n ∈ Rdx ,

• the domain C ⊂ Rdx from which we uniformly sample xℓ,n,

• the dimension dy of targets yℓ,n ∈ Rdy ,

• an expression for the function fℓ : Rdx → Rdy , s.t., yℓ,n = fℓ (xℓ,n) + εn,

• the noise standard deviation σ, s.t., εn ∼ N
(
0, σ2

)
,

• the number L of meta-tasks and the number N of datapoints for each meta-task.

We denote the uniform distribution on (a, b)d ⊂ Rd by U(a, b)
d.

Sinusoidal Functions.

• dx = 1

• C = [−5.0, 5.0]

• dy = 1

• fℓ (x) = Aℓ sin (x− ϕℓ), Aℓ ∼ U(0.1, 5.0), ϕℓ ∼ U(0.0, π)

• σ = 0.25

• L = 64, N = 16

Mix of Affine and Sinusoidal Functions.

• dx = 1

• C = [−5.0, 5.0]

• dy = 1

• f1
ℓ (x) = aℓx+ bℓ, aℓ ∼ U(−3.0, 3.0), bℓ ∼ U(−3.0, 3.0),
f2
ℓ (x) = Aℓ sin (x− ϕℓ), Aℓ ∼ U(0.1, 5.0), ϕℓ ∼ U(0.0, π)
fℓ is given either by f1

ℓ or f2
ℓ with probability 0.5.

• σ = 0.25

• L = 64, N = 16

RBF-GP samples.

• dx = 1

• C = [−2.0, 2.0]

• dy = 1

• fℓ is drawn from a Gaussian process prior with RBF kernel with lengthscale
lℓ ∼ U(0.5, 1.0) and signal variance sℓ ∼ U(0.5, 1.0).

• σ = 0.1

• L = 64, N = 16

Forrester 1D.

• dx = 1

• dy = 1

• We use the parametrized Forrester function Forrester et al. (2008) as defined on
https://www.sfu.ca/˜ssurjano/forretal08.html.

• σ = 0.25

• L = 64, N = 16
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Branin 2D.

• dx = 2

• dy = 1

• We use the definition given on https://www.sfu.ca/˜ssurjano/branin.html
and apply translations τℓ ∼ U(−0.25, 0.25)

2 to x, and scale the function values by
sℓ ∼ U(0.75, 1.25).

• σ = 0.25

• L = 64, N = 16

Hartmann 3D.

• dx = 3

• dy = 1

• We use the definition given on https://www.sfu.ca/˜ssurjano/hart3.html
and apply translations τℓ ∼ U(−0.25, 0.25)

3 to x, and scale the function values by
sℓ ∼ U(0.75, 1.25).

• σ = 0.1

• L = 64, N = 16

4D Furuta Dynamics Prediction.

• dx = 4

• dy = 4

• We use the dynamics equations given in Cazzolato & Prime (2011) to simulate episodes,
starting from the pendulum balancing in the upright position. The input is the current
system state x ∈ R4, the target is the difference to the next system state xnext ∈ R4, i.e.,
y = ∆x ≡ xnext − x ∈ R4.

• Noise is generated by random actions on the joints.
• L = 64, N = 64

2D MNIST Image Completion.

• dx = 2

• dy = 1

• We use the MNIST handwritten image database (LeCun & Cortes, 2010). Each image
corresponds to one task. The input x is the pixel location, the target y is the pixel intensity.

• σ = 0.25

• L = 60000, N = 784
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A.5 FURTHER EXPERIMENTAL RESULTS

We provide further experimental results for the experiments presented in Sec. 5.

A.5.1 ABLATION: TRUST REGIONS

In Fig. 6 we compare two methods for step size control for natural gradient VI, namely direct step
size control as proposed by (Lin et al., 2020) and trust region step size control (Arenz et al., 2022),
as used by our GMM-NP algorithm. We observe that trust regions lead to more robust optimization
of the variational parameters, and, thus, to tighter ELBOs. This allows more efficient optimization
of the model parameters, leading to improved predictive performance.
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LMLHD
GMM-NP (ours): TRNG-VI, full, K>1 NG-VI, full, K>1
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(b) Mix of affine and sinusoidal functions.

Figure 6: Log marginal predictive likelihood (LMLHD) and ELBO looseness over context size for
our trust region natural gradient VI (TRNG-VI)-based (Arenz et al., 2022) GMM-NP algorithm
in comparison to iBayes-GMM (Lin et al., 2020) that uses direct step size control instead of trust
regions (NG-VI). Trust regions improve variational optimization, leading to tighter ELBOs, and,
consequently, to improved predictive performance.
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A.5.2 BAYESIAN OPTIMIZATION EXPERIMENTS

We provide the full set of results for our Bayesian optimzation experiments, cf. Sec. 5.3: Fig. 7
shows the optimization regret for all four evaluated function classes, and Fig. 8 the corresponding
results for LMLHD and MSE.
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Figure 7: Simple regret over optimization iteration, when using BML models as Bayesian Opti-
mization (BO) surrogates on various function classes. As BO relies on well-calibrated uncertainty
predictions, the results demonstrate that GMM-NP provides superior uncertainty estimates.
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Figure 8: Log marginal predictive likelihood (LMLHD) and mean squared error (MSE) over context
size on various function classes. GMM-NP generally performs favorably, showing accurate predic-
tions with well-calibrated uncertainties.
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A.5.3 2D IMAGE COMPLETION ON MNIST

Fig. 9 shows the full set of predictions on the 2D image completion experiment on MNIST.

(a) GMM-NP (ours). (b) BA-NP. (c) ANP. (d) BANP.

Figure 9: Predictions on an unseen instance of the MNIST 2D image completion task, showing the
digit “6”. The first row of each panel shows the context pixels (ranging from zero pixels in the left
column to the full image in the right column). The remaining rows show five samples from the
BML models, conditioned on the context pixels shown in the first row. The results are consistent
with observations from the other experiments (e.g., Fig. 10): our GMM-NP model shows highly
variable samples for small context sets, yielding an accurate estimate of epistemic uncertainty, and
contracts properly around the ground truth when more context information is available. BA-NP
also shows variable samples, albeit of lower quality. ANP and BANP yield crisp predictions but
massively overfit to the noise, explaining their low LMLHD scores. Note also that BANP does not
allow predictions for empty context sets.
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A.5.4 VISUALIZATION OF MODEL PREDICTIONS

Figs. 10 and 11 show further visualization of predictions of models trained on the mix of affine and
sinusoidal functions.
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(c) ANP.

5 0 5
x

2.5
0.0
2.5

y

5 0 5
x

0

5

y

5 0 5
x

5

0

5

y

(d) BANP.

Figure 10: Function samples computed by various BML models (columns), trained on a function
class consisting of a mix of affine and sinusoidal functions (cf. Sec. 5.1), when provided with in-
creasing amounts of context examples (red crosses, rows) from an unseen sinusoidal representative
function. We observe that our GMM-NP model accurately quantifies epistemic uncertainty through
the variability of its function samples. BA-NP also shows variable samples, but does not achieve the
same predictive performance due to its inaccurate approximation of the task posterior distribution.
ANP and BANP, both of which employ deterministic computation paths with attention modules,
produce essentially deterministic predictions that massively overfit the context data and fail to give
a reasonable estimate of the predictive distribution. Therefore, these models have to quantify epis-
temic uncertainty through the likelihood noise variance, which is ineffective, cf. Fig. 11. Note also
that BANP does not provide predictions for empty context sets.
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(b) BA-NP.
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Figure 11: This figure shows the same data as Fig. 10, but for each function sample we also show a
band of ±1 standard deviation of the observation noise, as computed by the decoder DNN. GMM-
NP quantifies epistemic uncertainty correctly through its task posterior approximation, and thus
does not have to rely on the decoder DNN to quantify epistemic uncertainty through the observation
noise. In contrast, ANP and BANP fail to produce variable function samples, and have to make
up for that by quantifying epistemic uncertainty through the observation noise, which is ineffective.
Note also that BANP does not provide predictions for empty context sets.
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A.5.5 VISUALIZATION OF LATENT SPACE STRUCTURE

We provide further visualizations similar to Fig. 1 of the task posterior approximation and corre-
sponding function samples of our GMM-NP, when trained on the sinusoidal function class.
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(a) A small context set (one single example indicated by the red cross) yields a highly correlated, multi-modal
task posterior distribution. Our GMM approximation correctly captures this, s.t., amplitudes and phases of the
predicted sinusoidal functions are in accordance with the observed context data point.
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(b) A second example on another instance of the sinusoidal function class, where the task posterior shows
pronounced multimodality, which translates into a bimodal predictive distribution.
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(c) Larger context sizes (three examples, red crosses) leave less task ambiguity, resulting in a unimodal and
nearly isotropic task posterior distribution. Our GMM approximation again correctly approximates this distri-
bution, making use of only two of the K = 3 mixture components (the mixture weight of the orange component
is close to zero, so no samples from this component are observed).

Figure 12: Visualization of our GMM-NP model for a dz = 2 dimensional latent space, trained on
sinusoidal functions with varying amplitudes and phases, cf. Sec. 5.1. Left panels: unnormalized
task posterior distribution (contours) and variational GMM approximation with K = 3 components
(ellipses, mixture weights in %). Right panels: corresponding samples from our model (blue lines),
when having observed a context data set (red crosses), together with unobserved ground truth data
(black dots). The visualizations show that (i) the true task posterior distribution can be highly cor-
related and multimodal, i.p., for small context sets (panels a,b), (ii) our variational task posterior
approximation correctly approximates this distribution, which (iii) leads to expressive predictive
distributions that incorporate both the inductive priors learned from the meta-dataset (all samples
are sinusoidal in shape) and the additional information contained in the context set (all samples pass
close to the context data).
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A.5.6 RUNTIME COMPARISON

Discussion of Limitations. As the meta-training stage of GMM-NP requires computational effort
comparable to standard NP (cf. Sec. 4), the only computational overhead of our algorithm occurs at
test time, due to the optimization loop required to fit a variational GMM to Dc

∗. While this can be
trivially parallelized for multiple test tasks, it incurs a higher computational burden in comparison
to the single forward pass through NP’s set encoder (we provide an evaluation of the runtime of
our algorithm on the synthetic tasks studied in Sec. 5.1 below). We leave a detailed examination for
future work, but mention two possible remedies: (i) for problems where test data arrives sequentially,
we expect that a few update steps in ϕ∗ suffice to reach convergence, and (ii) it might be possible to
find amortized approximations to Eqs. (8), similar in spirit to standard NP, that retain the advantages
of TRNG-VI.

Meta-Training. Fig. 13 shows the learning curves for meta-training corresponding to the results
presented in the main part of this paper. As discussed in Sec. 4, GMM-NP incurs a computational
cost comparable to the baseline methods.
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(a) Learning curves on the sinusoidal function class.
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(b) Learning curves on the mix of affine and sinusoidal function class.

Figure 13: Learning curves for meta-training on the synthetic datasets, cf. Sec. 5.1. For each method,
we show the learning curves for the 8 seeds used to compute the results presented in the main text.
For GMM-NP, we show the loss for the decoder parameters θ, for the other methods we show the
joint loss for the encoder and decoder parameters (ϕ,θ). Note that for GMM-NP, convergence of
θ implies convergence of the variational parameters ϕ. As discussed in Sec. 4, GMM-NP incurs a
computational cost comparable to the baseline methods.

Test-time Adaptation. As discussed in Sec. 4, GMM-NP does not amortize TP inference, i.e., it
does not learn a set encoder architecture, but adapts new variational GMMs at test time. Naturally,
this incurs a higher computational cost in comparison to amortized architectures, which compute
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predictions on test tasks in a single forward pass through their set-encoder – decoder architecture. In
Fig. 14, we show the learning curves for fitting variational GMMs (by iterating Eqs. (8)) to the test
tasks and for the range of context sizes used to compute the results presented in Sec. 5.1. GMM-
NP’s TRNG-VI optimization converges in approx. 0.1 s – 1 s per test task (depending on the context
set size).
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Figure 14: Learning curves for fitting variational GMMs to the test tasks by TRNG-VI (Arenz et al.,
2022), as used by our GMM-NP (Sec. 4), on the synthetic datasets (Sec. 5.1). The quantity labelled
“Loss (adapt)” is the expected negative log density of the unnormalized TP under the GMM TP
approximation. Note that this is not the loss function optimized by iterating Eqs. (8), but it serves as
a proxy to judge convergence. We show results in terms of wall clock time per test task (left panels)
and in terms of TRNG-VI steps (right panels), for the range of context sizes used to compute the
results in the main text. GMM-NP’s TRNG-VI optimization converges in approx. 0.1 s – 1 s per test
task (depending on the context set size).
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A.5.7 ANALYSIS OF HPO RESULTS

As discussed in Secs. 5 and A.3, we optimized architectural hyperparameters individually for each
model-dataset combination presented in our empirical evaluation, in order to arrive at a fair com-
parison of our GMM-NP with the baseline methods. In Tab. 2, we provide the resulting settings
for the latent dimensionality dz , and the number of parameters of the BML models compared in
Sec. 5.1. While the number of variational parameters during meta-training is naturally comparably
high for non-amortizing methods such as GMM-NP, we observe that the expressive GMM-NP TP
approximation allows comparably lightweight decoders and small latent dimensions. This is intu-
itive, as simple TP approximations require (i) large latent dimensions to encode relevant information
in the latent space, together with (ii) expressive decoder architectures to transform the simple latent
distribution into an expressive predictive distribution. Note further that the variational parameters
belonging to different tasks are not coupled in non-amortizing architectures such as ours, which al-
lows trivial parallelization of the variational optimization between tasks, explaining why the compu-
tational cost is easily managable, cf. Sec. A.5.6. Note also that the number of variational parameters
one has to store and adapt for GMM-NP to make predictions on unseen test tasks is comparably
small because the variational GMMs learned during meta-training can be discarded as they are not
required for predictions at test time.

Table 2: Results of our hyperparameter optimization on the sinusoidal function class and on the
mix of affine and sinusoidal functions. We provide the settings for the latent dimensionality dz and
the number of parameters of the BML models compared in Sec. 5.1 (i.e., the number of decoder
parameters |θ| as well as the number of encoder / variational parameters |ϕ|). If attentive modules
are present, their parameters are counted as being part of the encoder. For our GMM-NP, we also
provide the number of GMM-components K. Furthermore, as GMM-NP does not amortize TP-
inference but learns separate variational GMMs for each subtask generated from the meta-dataset
(cf. Secs. 4 and A.3.2), we also provide the total number of variational GMM parameters during
meta-training. Note that these variational GMMs are decoupled and can be optimized in parallel.
Furthermore they are not required for predictions at test time and can be discarded after meta-
training.

dz K |θ| |ϕ| (per task) |ϕ| (meta-training)

Sinusoid GMM-NP (ours) 3 4 121 39 79872
MA-NP 10 - 2298 2595 2595
BA-NP 27 - 7334 7386 7386

BNP 56 - 12770 19488 19488
ANP 19 - 4096 10335 10335

BANP 40 - 6562 28320 28320

Line-Sine GMM-NP (ours) 4 4 2289 59 120832
MA-NP 19 - 2562 3679 3679
BA-NP 30 - 11592 11650 11650

BNP 54 - 11882 18144 18144
ANP 30 - 4496 14448 14448

BANP 32 - 4226 18304 18304
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