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ABSTRACT

Large Language Models (LLMs) have showcased impressive capabilities in han-
dling straightforward programming tasks. However, their performance tends to
falter when confronted with more challenging programming problems. We ob-
serve that conventional models often generate solutions as monolithic code blocks,
restricting their effectiveness in tackling intricate questions. To overcome this
limitation, we present Module-of-Thought Coder (MoTCoder). We introduce a
framework for MoT instruction tuning, designed to promote the decomposition
of tasks into logical sub-tasks and sub-modules. Our investigations reveal that,
through the cultivation and utilization of sub-modules, MoTCoder significantly
improves both the modularity and correctness of the generated solutions, leading
to substantial pass@ I improvements of 5.8% on APPS and 5.9% on CodeContests.
MoTCoder also achieved significant improvements in self-correction capabilities,
surpassing the current SOTA by 3.3%. Additionally, we provide an analysis of
between problem complexity and optimal module decomposition and evaluate the
maintainability index, confirming that the code generated by MoTCoder is easier
to understand and modify, which can be beneficial for long-term code maintenance
and evolution. Our code will be released.

1 INTRODUCTION

Developing systems that can generate executable and functionally correct computer programs has long
been sought after in artificial intelligence (Manna & Waldinger, [1971). Recently, Large Language
Models (LLMs) (Brown et al., 2020; |OpenAll [2023aj; (Chowdhery et al., 2022 |Anil et al., 2023}
Hoffmann et al.| 2022; Rae et al., 2021} |Zeng et al., [2022; [Touvron et al., 2023} |Zhang et al., 2022)
have showcased remarkable success in many problem domains beyond natural language processing,
and is poised as a promising approach to tackle code modeling and generation (as well as other
coding related tasks) (Roziere et al., 2023} Black et al., | 2021; |Chen et al.,2021). Through instruction
fine-tuning (L1 et al.| 2023b; |Luo et al., 2023b; (Wang et al., 2023b; |L1 et al.| 2022} |[Nijkamp et al.,
2023} Zheng et al.| 2023} [Fried et al.,2022; |Chen et al.| 2021}/ Wang et al., 2021, LLMs have achieved
impressive performance on code generation benchmarks like HumanEval (Chen et al., 2021) and
MBPP (Austin et al.| 2021).

Yet, when confronted with intricate coding problems such as APPS (Hendrycks et al.,[2021b) and
CodeContests (L1 et al.,[2022)), Current models struggle to match seasoned developers (Hendrycks
et al., 2021b; |L1 et al.| [2022; Shinn et al., [2023). The main culprit is their overly simplistic generation
approach. Current models produce the code solution as a single monolithic block in an attempt to
solve the problem in one shot. While feasible for simple tasks, this approach becomes increasingly
inefficient to tackle a complex task which entails solving multiple sub-tasks. In contrast, adept
developers often devise modularized solutions by breaking down the original problem into more
approachable components that can be individually and more efficiently solved.

Following this intuition, recent works (Jiang et al., [2023a} [Le et al.| [2023) propose iterative code
inference for code generation. They, however, come with added inference costs and offer only
marginal performance gains. In this work, we propose to more efficiently improve the modularization
capability of coding LLMs using Module-of-Thought (MoT) instruction fine-tuning. Our approach
guides LLMs to break down their solution into modular components, each representing an abstract
function dedicated to a logical sub-task. To train the model to adhere to the MoT prompt, we
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generate instructional data using a process termed MoT Code Instruction Transformation. In this
process, LLMs are instructed to outline necessary modules, generating only their function headers
and docstrings that describe their intended usage. Subsequently, the instruction guides the model
to implement these modules and eventually combine them into the final solution. After that, we
fine-tune the LLM with our MoT instruction fune-tuning, resulting in our MoTCoder model.

Our experiments demonstrate that MoTCoder establishes new SOTA results on challenging code
generation benchmarks such as APPS and CodeContests. Specifically, MoTCoder improves the
pass@ ] performance by significant margins, exemplified by improvements over existing metrics
by 5.8% on APPS and 5.9% on CodeContests, as illustrated in Fig.[I] MoTCoder also achieved
significant improvements in self-correction capabilities, surpassing the current SOTA by 3.3%.
Beyond the pass @k metric, we have conducted a detailed analysis and comprehensive evaluation
of MoTCoder. Furthermore, we analyze the relationship between problem complexity and optimal
module decomposition, confirming that finer modular decomposition is beneficial for enhancing
model performance in complex problems. This helps explain why the MoT approach is more effective
than traditional methods for complex programming challenges. We also perform a quantitative
analysis on the time and memory usage across different problem scales, verifying that our approach
can reduce memory consumption. Moreover, through the evaluation of the maintainability index,
we confirm that the code generated by MoTCoder is easier to understand and modify, which can be
beneficial for long-term code maintenance and evolution.
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2 RELATED WORKS

General LLMs. In recent times, Large Language Models (LLMs) have exhibited remarkable prowess
across a wide array of tasks. Leading technology companies have made significant advancements in
developing highly proficient closed-source LLMs, including OpenAl’s GPT3 (Brown et al.| 2020)
and GPT4 (OpenAl, 2023a), Google’s PaLM (Chowdhery et al.l 2022} |Anil et al., [2023)), Bard,
DeepMind’s Chinchilla (Hoffmann et al., 2022)), and Gopher (Rae et al.,|2021), as well as Anthropic’s
Claude. The AI community has also observed the release of several open-source LLMs, where
model weights are made publicly available. EleutherAl has contributed GPT-NeoX-20B (Black et al.}
2022) and GPT-J-6B (Wang & Komatsuzaki, |[2021). Google has released UL2-20B (Tay et al., 2022).
Tsinghua University has introduced GLM-130B (Zeng et al.| 2022). Meta has released OPT (Zhang
et al.,|2022) and LLaMA (Touvron et al., 2023). Recently, the Qwen series (Bai et al., 2023 Yang
et al.||2024;|Qwen et al., | 2025) and DeepSeek series (DeepSeek-Al et al.| [2024a7b; |2025) models have
emerged as significant contributors, achieving SOTA performance across a variety of benchmarks.

Coding LLMs. Recent research has introduced a significant number of LLMs tailored for code-
related tasks to address the challenges of code understanding and generation. Closed-source models
include OpenAI’s Codex (Chen et al., [2021) and Code-Davinci (Microsoft, 2023). Google has
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proposed PaLM-Coder (Chowdhery et al.|[2022)). These models excel on popular code completion
benchmarks such as HumanEval (Chen et al.,|2021) and MBPP (Austin et al., 2021)). On the open-
source front, Salesforce has introduced CodeGen (Nijkamp et al., 2023), CodeT5 (Wang et al., [2021)),
and CodeT5+ (Wang et al.| [2023a). Tsinghua University has contributed CodeGeeX (Zheng et al.,
2023)), and the BigCode Project has developed StarCoder (L1 et al.,[2023b). Furthermore, the latest
DeepSeek-Coder series (Guo et al.||2024; DeepSeek-Al et al.| 2024b) and Qwen-Coder (Hui et al.,
2024) models have set new standards by achieving SOTA results on multiple coding benchmarks.

General Instruction Tuning. In its early stages, the core aim of instruction fine-tuning was to
amplify the cross-task generalization capabilities of Language Models (LMs). This was accomplished
by subjecting LMs to fine-tuning using an extensive corpus of public Natural Language Processing
(NLP) tasks. Pioneering this approach, TS (Raffel et al.,2020) underwent training on a diverse set of
supervised text-to-text tasks. Subsequent endeavors like FLAN (Wei et al., [2022a)), ExT5 (Aribandi
et al.| 2022), TO (Sanh et al.,[2022), and UnifiedQA (Khashabi et al.,|2020) broadened the spectrum
of tasks, fortifying the overall generalization capability of LMs. Noteworthy contributions from
ZeroPrompt (Xu et al.|[2022) and FLAN-TS5 (Chung et al.,|2022)) pushed boundaries by incorporating
thousands of tasks into their training pipelines. OpenAl has taken an alternative route by enlisting
human annotators to contribute an extensive corpus of human instructions, encompassing diverse
formats and a broad spectrum of task types. Building upon this dataset, OpenAl trained its GPT-
3 (Brown et al., 2020) model to create InstructGPT (Ouyang et al.| 2022)), which better aligns with
users’ inputs. This developmental trajectory has given rise to notable works such as ChatGPT. In the
open-source realm, Alpaca (Taori et al., [2023) adopts the self-instruct method (Wang et al., [2022),
leveraging ChatGPT to generate data for training. Vicuna (Chiang et al.,2023)) utilizes user-shared
conversations collected from ShareGPT.com to train its models. Introducing the Evol-Instruct method,
WizardLM (Xu et al., 2023) involves evolving existing instruction data to generate more intricate and
diverse datasets.

Chain-of-Thought Instruction Tuning. Contrary to general methods, recent research (Luo et al.,
2023bj |Yue et al., 2023; (Chen et al., 2022bj |(Gunasekar et al., 2023; Haluptzok et al., [2023)) employs
instruction tuning in various domains such as common-sense reasoning (West et al., 2022)), text-
summarization (Sclar et al.| 2022)), and mathematical reasoning (Luo et al.,[2023a; |Yue et al., [2023)).
It’s also applied in tool use (Patil et al.,2023)), coding (Luo et al.,[2023b)), and universal reasoning (L1
et al.,2023a; Zelikman et al.| 2022). Among them, (Yue et al.,[2023)) offers a diverse math problem
corpus with annotations similar to our module-of-thought, using chain-of-thought or program-of-
thought (Chen et al., 2022b). |(Gunasekar et al.| (2023)) suggests pre-training models on artificially
created programming textbooks from GPT3.5. In a similar vein, (Haluptzok et al.,2023) generates
coding puzzles and their solutions using language models.

Prompting Techniques. The Chain of Thought (CoT) technique (Wei et al.| 2022b)) introduces an
approach for language reasoning tasks by generating intermediate reasoning steps before providing the
final answer. Subsequent approach least-to-most prompting (Zhou et al., [2022), simplifies a complex
problem into a sequence of smaller sub-problems, solving them sequentially and incorporating the
solution of each preceding sub-problem into the prompt for the next. Furthermore, PAL (Gao et al.,
2022) and PoT (Chen et al., [2022a) use code generation to create intermediate reasoning steps.
Similar methods are proposed for simple mathematical (Lewkowycz et al.,[2022} [Wu et al.,|2022),
commonsense (Sanh et al.| 2022; Madaan et al.,|2022), symbolic reasoning (Yao et al., 2023) and
code generation problems (Jiang et al., |2023bj |Le et al.l 2023). However, these works can only
plan code during generation. In comparison, our approach introduces a guided module-of-thought
framework during training, making it more intrinsic. Our investigations reveal that, through the
cultivation and utilization of sub-modules, MoTCoder significantly enhances both the modularity and
correctness of the generated solutions.

3 METHODS

In this section, we first detail the module-of-thought instruction transformation in Sec. [3.1]and then
introduce the module-of-thought instruction tuning strategy for our MoTCoder in Sec. 3.2
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You are given three strings s1, s2, and s3. You have to perform the following operation on these three strings as many times as you want.
In one operation you can choose one of these three strings such that its length is at least 2 and delete the rightmost character of it.
Return the minimum number of operations you need to perform to make the three strings equal if there is a way to make them equal,

otherwise, return -1.

Input: s1 = "abc", s2 = "abb", s3 = "ab"

Example 1:
Output: 2
if _name__ =='_main_"
s = input()
if s == s[::-1]:
print(s)
else:

start,end =0, 0
for i in range(len(s)):
left, right =1, i
while left >= 0 and right <
len(s) and s[left] == s[right]:
left-=1
right += 1
if right - left - 1 > end - start:
start =left + 1
end =right- 1
left, right =1,i+ 1
while left >= 0 and right <
len(s) and s[left] == s[right]:
left-=1
right += 1
if right - left - 1 > end - start:
start = left + 1
end =right- 1
print(s[start:end+1])

Example 2:

Output: -1

def expandAroundCenter(s, left, right):

Expands around the center given by indices
'left" and 'right’ while the characters at 'left’
and 'right’ are the same.

Args:

s (str): Input string.

left (int): Left index of the expanding range.
right (int): Right index of the expanding
range.

Returns:

tuple: A tuple containing the updated left
and right indices of the expanding range.

def expandAroundCenter(
s, left, right):
while left >= 0 and right < len(s) and s[left]
== s[right]:
left-=1
right+= 1
return left, right

def update_indices_if_longer(
left, right, start, end):
if right - left - 1 > end - start:
start = left + 1
end =right- 1
return start, end

Input: s1 = "dac", s2 = "bac", s3 = "cac"

def update_indices_if_longer(left, right, start,
end):

Updates start and end indices if the current
palindrome is longer.

Args:

left (int): Left index of the expanding range.
right (int): Right index of the expanding
range.

start (int): Current start index of the longest
palindrome.

end (int): Current end index of the longest
palindrome.

Returns:

tuple: A tuple containing the updated start
and end indices of the longest palindrome.

def longestPalindrome(s):
if s ==s[::-1]:
return s
start,end =0, 0
for i in range(len(s)):
left, right = expandAroundCenter(s, i, i)
start, end = update_indices_if_longer(left,
right, start, end)
left, right = expandAroundCenter(s, i, i+1)
start, end = update_indices_if_longer(left,
right, start, end)
return s[start:end+1]

Figure 2: Illustration of our 2-step Module-of-Thought Instruction Transformation: Plain code
utilizes a single module to directly generate code. In contrast, our Module-of-Thought Instruction
Transformation first instructs LLMs to outline necessary sub-modules, generating only their function
headers and docstrings that describe their intended usage. Subsequently, the instructions guide the
model in implementing these sub-modules and eventually combining them into a comprehensive final
solution.

3.1 MOT INSTRUCTION TRANSFORMATION

In this section, we first introduce the normal instruction, followed by our module-of-thought instruc-
tion and its assessment.

Normal Instruction. In general, a code sequence generated by a language model 6 through the
autoregressive sampling of tokens 0, is from the parameterized conditional distribution:

O¢ Np@(-|01:t7171)7 (1)

where [ represents the input instruction and o, is the ¢-th token of the flattened output sequence.

Module-of-Thought Instruction. According to previous researches (Jain et al., 2023, straightfor-
ward and unambiguous, detailed instructions enhance the model’s efficacy and precision in executing
the desired tasks. Hence, for intricate data transformation tasks, decomposing the task into simpler,
sequential steps yields better outcomes. Therefore, our proposed methodology aims to transform nor-
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mal instructions into a sequential code generation process by leading the models through a two-step
procedure, as illustrated in Fig. .

1. Sub-modules. Initially, the models are instructed to outline the required sub-modules, generating
only their function headers and docstrings describing their intended usage.

Si ~ po(.|S1i 1, 1), 2)

where S; represents the i-th sub-module outlined by the model and I represents the input instruc-
tion.

2. Final solution. The subsequent instruction guides the model to implement these sub-modules
and eventually combine them into a comprehensive final solution.

o1 ~ o611, {Si}, ), )

where 0, is the ¢-th of the flattened output sequence.

The instruction is supplemented with a one-shot example, serving to prompt the model to adhere to
the MoT instruction generation strategy. An illustration of the instruction prompt is presented in the
appendix. The instruction encourages the model to decompose a program into sub-modules. This
mirrors the methodology commonly employed by developers when addressing intricate coding tasks,
where they systematically break down solutions into modular components.

Instruction Assessment. Throughout these transformations, we introduce guidelines for reviewing
our transformed module-of-thought code. We identify the situations below as markers of instruction
refinement failure:

1. The refined instruction diverges from the module-of-thought generation strategy, not adhering to
the protocol of initial sub-module creation followed by the main code development.

2. At the sub-module creation phase, if no sub-modules are formed or if overarching code is
developed instead.

3. During the main code development phase, the absence of main code creation or the emergence of
multiple main code blocks indicates a problem.

4. The presence of test cases in the dataset that the transformed program fails to pass. This criterion
ensures the transformed programs preserve functional equivalence with the original codes.

3.2 MODULE-OF-THOUGHT INSTRUCTION TUNING

MoT Dataset. Our queries are sourced from the training sets of APPS (Hendrycks et al.,[2021b)
and CodeContests (Li et al.,[2022). There is overlap between the CodeContests training set and the
APPS test set, so we performed detailed deduplication to prevent test data leakage. For each problem,
we take at most 100 answers. We then use GPT4o to generate transformed instructions. We include
two types of data: clean and Module-of-Thought (MoT). The goals for clean data are: 1. Optimize
variable names to better reflect their purpose. 2. Add comments. 3. Follow the instructions and the
meaning of the original code without changing its functionality. MOT data additionally uses functions
if there are code segments that are functionally clear and reusable. All generated data are tested using
input-output examples from the training set, and any data not passing the test are discarded. As a
result, we have collected a total of 183K clean code data and 174K MoT data for our final training
dataset. Detailed statistics of the data are shown in the Appendix.

MoT Instruction Tuning. Our MoTCoder underwent instruction tuning utilizing the SOTA coding
model Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) across one epoch on our proposed MoT instruc-
tion dataset, and the best-performing model during the training process was selected. The model’s
maximum input length was 2048 tokens. We used a training batch size of 16 and an evaluation batch
size of 4 per device, with gradient accumulation steps set to 4. The learning rate was initialized at
2 x 1075, with a warmup ratio of 0.03 steps to gradually adapt the learning rate, following a cosine
learning rate scheduler for optimization. Additionally, our model was configured with the AdamW
optimizer and utilized the WarmupLR scheduler to manage the learning rate adjustments effectively.
To optimize memory and compute resources, we employed a third-stage zero optimization setting
and enable communication overlap, contiguous gradients, and large sub group size of 1 x 10° to
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Model Size | Introductory Interview Competition  All

Qwen2.5-Coder-Instruct 7B 50.58 30.32 19.49 32.21
Normal Finetuning 7B 45.36 25.74 15.92 27.70
MoT Finetuning 7B 54.26 32.63 21.18 34.67

Table 1: APPs test results by pass@1 (%) of the ablation experiment on training datasets comparing
MoT and normal finetuning.

Model Size | Introductory Interview Competition  All
CodeT5 770M 6.60 1.03 0.30 2.00
CodeRL+CodeT5 770M 7.08 1.86 0.75 2.69
text-davinci-002 - - - - 7.48
Self-edit+text-davinci-002 - - - - 7.94
GPT-2 0.1B 5.64 6.93 4.37 6.16
1.5B 7.40 9.11 5.05 7.96
GPT-Neo 2.7B 14.68 9.85 6.54 10.15
GPT-3 175B 0.57 0.65 0.21 0.55
StarCoder 15B 7.25 6.89 4.08 6.40
WizardCoder 15B 26.04 4.21 0.81 7.90
CodeChain+WizardCoder 15B 26.29 7.49 3.75 10.50
Octocoder 16B 16.50 7.92 4.61 8.97
CodeLlama 7B 14.15 6.63 4.00 7.61
13B 23.94 13.50 9.80 14.85
34B 32.01 18.61 10.19 19.61
CodeLlama-Python 7B 18.83 8.62 4.47 9.83
13B 26.40 13.44 6.86 14.72
34B 26.45 16.61 8.77 17.01
CodeLlama-Instruct 7B 14.20 6.63 4.43 7.70
13B 22.41 14.34 6.62 15.21
34B 28.64 16.80 10.51 1791
Deepseek-Coder-Base 6.7B 40.23 22.12 13.04 23.92
Deepseek-Coder-Instruct 6.7B 44.65 23.86 12.89 25.83
Qwen2.5-Coder 7B 51.33 29.37 17.54 31.40
32B 61.00 37.47 21.50 38.98
Qwen2.5-Coder-Instruct 7B 50.58 30.32 19.49 32.21
32B 60.72 38.60 24.11 40.13
MoTCoder 7B 54.26 32.63 21.18 34.67
32B 68.44 44.49 27.84 45.95
GPT4o - 78.53 55.57 31.46 55.34

Table 2: APPS test results by pass@k (%).

streamline the training process. In addition, the maximum live parameters, maximum reuse distance,
and the parameter settings for gathering 16-bit weights during model saving were all set to 1 x 10°.

4 EXPERIMENTS

We demonstrate the efficacy of MoTCoder in tackling intricate code-generation tasks, rather than
those that can be solved with just a few lines, as exemplified by HumanEval (Chen et al.}|2021) and
MBPP (Austin et al.,[2021). Specifically, we focus on the following prominent benchmarks.

1. APPS (Hendrycks et al.|2021b)) is a description-to-code generation benchmark from competi-
tive programming platforms Codewars, AtCoder, Kattis, Codeforces, etc. Building upon prior
research (Hendrycks et al.,[2021b;|Chen et al.| 2021} Li et al., 2022), we conducted an assessment
of the models using the passing rate metric pass@k. This metric is defined as the proportion of
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Model Size \ Test Validation All
WizardCoder 15B 0.44 0.17 0.33
CodeLlama-Instruct 7B 5.57 2.26 4.20
13B 5.52 3.80 4.81
34B 5.57 3.87 4.86
CodeLlama-Python 7B 1.80 1.24 1.57
13B 4.33 0.92 2.89
34B 3.88 1.50 2.92
CodeLlama 7B 0.13 0.00 0.08
13B 7.62 2.80 4.18
34B 5.13 2.85 5.62
Deepseek-Coder-Base 6.7B 11.48 5.78 9.12
Deepseek-Coder-Instruct 6.7B 15.25 10.10 13.11
Qwen2.5-Coder 7B 16.41 13.49 15.20
32B 20.41 14.41 17.92
Qwen2.5-Coder-Instruct 7B 15.45 13.42 14.61
32B 12.67 14.40 13.39
MoTCoder 7B 20.77 16.72 19.09
32B 26.34 20.35 23.85
GPT4o - 29.76 30.42 30.03

Table 3: CodeContests test and validation (valid) results by pass @k (%).

Model Size \ Validation = Test All

Qwen2.5-Coder-Instruct 7B 13.42 1545 14.61
Qwen2.5-Coder-Instruct + Self-Reflection 7B 19.88 19.74 19.80
MoTCoder 7B 16.72 20.77 19.09
MoTCoder + Self-Reflection 7B 21.63 24.10 23.08

Table 4: Model performance comparing with self-reflection on CodeContests.

problems successfully solved by employing k generated programs for each problem. More details
are in the appendix.

2. CodeContests (Li et al.,|2022)) is a competitive programming dataset sourced from Aizu, AtCoder,
CodeChef, Codeforces, HackerEarth, etc. Building upon prior research (Hendrycks et al.,[2021b;
Chen et al.| 2021} |Li et al.| [2022), we conducted an assessment of the models using the passing
rate metric pass@k.

4.1 ABLATION EXPERIMENTS

In this section, we conduct ablation experiments to investigate the effects of MoT and normal
finetuning. We use the Qwen2.5-Coder-7B-Instruct model as the base model. To control variables,
we apply the same parameters and instructions during finetuning for both approaches. For ground
truth, we use our constructed MoT code for the MoT finetuning, and standard code from the APPS
and CodeContests training datasets for the normal finetuning. The results of these experiments are
presented in Tab. [I] It is intriguing to note that, for a well-trained model like Qwen2.5-Coder-7B-
Instruct, finetuning with uncurated normal data does not further enhance performance; rather, it leads
to a decline, with scores dropping from 32.21 to 27.70 in terms of pass@ ] accuracy. In contrast,
when performed with our MoT finetune, the model exhibits significant improvements across all
levels, as evidenced by the enhanced scores. Overall, the application of MoT finetuning results in an
improvement from 32.21% to 34.67% in the overall pass@ I accuracy. This increase highlights the
capacity of our MoT method to further augment the proficiency of a well-trained model.

Results on APPS. We conducted a comparison of our approach with existing large language model
baselines on APPs (Hendrycks et al.| [2021a). All outcomes are computed using raw predictions
without being filtered by the test cases provided in the prompt. Our analysis includes a comparison
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Figure 3: (a) Relationship between the number of functions and accuracy for solutions generated by
MoTCoder across different difficulty levels in the APPS dataset. (b) Average time and memory con-
sumption for the passed output for MoT (pink) and Normal (blue). (c) Average maintainability index
for MoT finetuning, normal finetuning and baseline models. Valid and test are from CodeContests.
Interview, introductory and competition are from APPS test set.

with open-sourced approaches such as CodeT5 (Wang et al.,|2021)), fine-tuned GPT-Neo (Hendrycks
et al 2021a), GPT-2 (Cheng et al. 2024), GPT-3 (Brown et al.l 2020), one-shot StarCoder (Li
et al.,[2023b), WizardCoder (Luo et al.,|2023b), CodeLlama series (Roziere et al.,|2023), Deepseek-
Coder (Guo et al., 2024)), and Qwen2.5-Coder (Hui et al., [2024). Additionally, we present results
from SOTA closed-source model GPT40 (OpenAll 2023b). As depicted in the results from the APPS
shown in Tab. [2| we notice that the module-of-thought training approach leads to an enhancement in
code generation capabilities compared with previous instruction finetuning models. Our MoTCoder
exhibits improved performance across all difficulty levels and demonstrates more substantial gains in
the interview and competition-level problems with more intricate solutions. To provide specifics, the
pass @[ performance of MoTCoder-6.7B surprisingly outperformed the closed-source model GPT-4
by an impressive margin of 12.61%. This outcome serves as compelling evidence of the efficacy of
our approach in addressing competitive programming problems.

We also conduct a comparative analysis of our approach against previous LLM baselines with code-
revision methods as well. Our included baselines contain Codex (Chen et al.| [2021)), CodeT5 (Wang
et al., 2021)), code-davinci, StarCoder (L1 et al., [2023b)), and WizardCoder (Luo et al., 2023b) and
code-revision methods contain Self-edit (Zhang et al.| 2023), CodeRL (Wang et al.,[2021}|Le et al.,
2022)), Self-repair (Olausson et al., [2023)), and CodeChain (Le et al.,[2023)). The results presented
in Tab. 2] illustrate that MoTCoder exhibits notable performance improvements. MoTCoder demon-
strates superior performance across all categories compared to Qwen2.5-Coder-Instruct, achieving
higher scores on the all of difficulty levels. MoTCoder-7B achieves an average score of 34.67%,
surpassing Qwen2.5-Coder-Instruct-7B by 2.46%. MoTCoder-32B reaches an average score of
45.95%, surpassing the baseline model by 5.82%. This improvement highlights the effectiveness of
MoTCoder’s guided module-of-thought framework.

Results on CodeContests We conduct an evaluation of our approach on CodeContests (L1 et al.,
2022), benchmarking it against current coding models, including StarCoder (L1 et al.,2023b), Wiz-
ardCoder (Luo et al 2023b)), CodeLlama series models (Roziere et al.,|2023)), Deepseek-Coder (Guo
et al.| 2024), Qwen2.5-Coder (Hui et al., 2024)). Furthermore, we present results from SOTA closed-
source model GPT4o (OpenAll[2023b)). The results, as depicted in Tab. [3} reveal notable performance
enhancements achieved by MoTCoder. Specifically, MoTCoder-7B achieves the performance of
19.09% compared to Qwen2.5-Coder (+3.89%), and MoTCoder-32B reaches 23.85% (+5.93%).
These results demonstrate MoTCoder’s superior capability in generating accurate code solutions.

Results on Self-Reflection To further explore our model’s interactive and self-corrective capa-
bilities, we constructed a multi-turn dialogue task. For cases in the CodeContests (Li et al., [2022)
where the model did not succeed in passing all test cases, we prompted the model to self-reflect and
regenerate the solutions. There is up to 5 rounds of reflection. The results in Tab. @ demonstrate that
our models achieved significant improvements in both code accuracy and self-correction capabilities.
Specifically, the Qwen2.5-Coder-Instruct model with self-reflection showed an increase from 14.61%
to 19.80% in the overall score. Moreover, the MoTCoder-7B model achieved comparable perfor-
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mance to Qwen2.5-Coder-Instruct without the need for reflection. With self-reflection, MoTCoder-7B
improved from 19.09% to 23.08%, surpassing Qwen2.5-Coder-Instruct by 3.28%.

5 FURTHER ANALYSIS

Influence of modules on Accuracy. We conducted an analysis using the code generated by
MoTCoder to evaluate the number of functions in the solution codes and their impact on accuracy
across different difficulty levels. We focus on the relationship between problem complexity and
optimal modular decomposition. The difficulty levels are categorized as introductory, interview, and
competition, moving from easiest to hardest, as depicted in Fig.[3[a). The results reveal distinct trends
across difficulty levels. For introductory problems, the accuracy generally declines as the number of
functions increases, suggesting that simpler solutions benefit from minimal modularity. In contrast,
the interview level maintains relatively stable accuracy across different function counts. Notably,
for competition-level problems, there is an upward trend in accuracy with an increase in the number
of functions.This observation indicates that while simpler problems are best addressed using fewer,
singular modules, more complex problems benefit from being broken down into modular functions.
This aligns with our intuition: for straightforward problems that can be solved with just a few lines of
code, excessive modularization adds unnecessary complexity. Conversely, for challenging problems,
decomposing them into submodules facilitates a more effective solution process, reflecting human
strategies for tackling difficult issues.

Time and Memory Consumption. In Fig.[3(b), we analyze the average time and memory consump-
tion for the generated MoT code and normal code, which are produced by the MoT finetuning and
normal finetuning models, respectively. We collected data on samples from APPS and CodeContests
where both MoT and normal code passed. It is evident that while the time consumption for the MoT
model is comparable to that of the normal model, MoT finetuning consistently shows significantly
lower memory consumption at all levels. This indicates that MoT finetuning is more memory efficient,
as it is able to efficiently release unused memory by distinguishing between global variables and
local variables that are only used within functions. Therefore, it is advantageous for scenarios with
memory constraints.

Maintainability Analysis. In Fig.[3[c), we explore the maintainability metrics of the models. We
compare the models after MoT finetuning and normal finetuning, as well as the baseline model
Qwen2.5-Coder-7B-Instruct. We collected statistics on the generated passing code of these models
on APPS and CodeContest, using the radon (Lacchia, 2014)) tool to calculate their maintainability
index. More details are in the Appendix. High maintainability index values generally indicate that
the code is easier to maintain, usually due to lower complexity, fewer lines of code, and adequate
documentation. The results show that for all levels, MoT code consistently demonstrates significantly
higher maintainability compared to normal finetuning and the baseline. This suggests that MoT
finetuning leads to code that is easier to understand and modify, which can be particularly beneficial
in scenarios requiring long-term code maintenance and evolution.

6 CONCLUSION

This study highlights the limitations of Large Language Models (LLMs) in solving complex pro-
gramming tasks due to their tendency to generate monolithic code blocks. In response, we developed
Module-of-Thought Coder (MoTCoder), a framework that encourages the breakdown of tasks into
manageable sub-tasks and sub-modules. Our results demonstrate that MoTCoder’s approach signifi-
cantly enhances the modularity and accuracy of solutions, as evidenced by considerable improvements
in pass@ [ rates on both APPS and CodeContests benchmarks. Through the process of MoT in-
struction tuning, MoTCoder also achieved notable advancements in self-correction capabilities.
Additionally, our analysis shows that MoTCoder improves the maintainability index of the generated
code, thereby making it easier to comprehend and modify. We believe the introduction of MoT
instruction tuning as a method to cultivate and leverage sub-modules paves the path for a promising
direction for future research.
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