
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OFFLINE MODEL-BASED OPTIMIZATION BY LEARNING
TO RANK

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline model-based optimization (MBO) aims to identify a design that maximizes
a black-box function using only a fixed, pre-collected dataset of designs and their
corresponding scores. This problem has garnered significant attention from both
scientific and industrial domains. A common approach in offline MBO is to train a
regression-based surrogate model by minimizing mean squared error (MSE) and
then find the best design within this surrogate model by different optimizers (e.g.,
gradient ascent). However, a critical challenge is the risk of out-of-distribution
errors, i.e., the surrogate model may typically overestimate the scores and mislead
the optimizers into suboptimal regions. Prior works have attempted to address
this issue in various ways, such as using regularization techniques and ensemble
learning to enhance the robustness of the model, but it still remains. In this
paper, we argue that regression models trained with MSE are not well-aligned
with the primary goal of offline MBO, which is to select promising designs rather
than to predict their scores precisely. Notably, if a surrogate model can maintain
the order of candidate designs based on their relative score relationships, it can
produce the best designs even without precise predictions. To validate it, we
conduct experiments to compare the relationship between the quality of the final
designs and MSE, finding that the correlation is really very weak. In contrast,
a metric that measures order-maintaining quality shows a significantly stronger
correlation. Based on this observation, we propose learning a ranking-based model
that leverages learning to rank techniques to prioritize promising designs based
on their relative scores. We show that the generalization error on ranking loss can
be well bounded. Empirical results across diverse tasks demonstrate the superior
performance of our proposed ranking-based models than twenty existing methods.

1 INTRODUCTION

The task of creating new designs to optimize specific properties represents a significant challenge
across scientific and industrial domains, including real-world engineering design (Tanabe & Ishibuchi,
2020; Kumar et al., 2022), protein design (Khan et al., 2023; Kolli, 2023; Chen et al., 2023b; Kim
et al., 2023), and molecule design (Gaulton et al., 2012; Stanton et al., 2022). Numerous methods
facilitate the generation of new designs by iteratively querying an unknown objective function
that correlates a design with its property score. Nonetheless, in practical scenarios, the evaluation
of the objective function can be time-consuming, costly, or even pose safety risks (Dara et al.,
2022). To identify the next candidate design using only accumulated data, offline model-based
optimization (MBO; Trabucco et al., 2022) has emerged as a widely adopted approach. This method
restricts access to an offline dataset and does not allow for iterative online evaluation, which, however,
also results in significant challenges. A common strategy, referred to as the forward method, entails
the development of a regression-based surrogate model by minimizing mean squared error (MSE),
which is subsequently utilized to identify the optimal designs by various ways (e.g., gradient ascent).

The main challenge of offline MBO is the risk of out-of-distribution (OOD) errors, i.e., the scores
in OOD regions may be overestimated and mislead the gradient-ascent optimizer into suboptimal
regions, as shown in Figure 1(a). Thus, overcoming the OOD issue has been the focus of recent
works, such as using regularization techniques (Trabucco et al., 2021; Fu & Levine, 2021; Yu et al.,
2021a; Chen et al., 2022; Qi et al., 2022; Dao et al., 2024) and ensemble learning (Yuan et al., 2023;
Chen et al., 2023a) to enhance the robustness of the model, but it still remains.
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Figure 1: Illustration of (a) OOD issue of regression-based models and (b) order-preserving ranking-
based models. In (a), the regression-based method searches into suboptimal regions. Prior works
focus on high OOD-MSE, while in this work, we point out that it is caused by the OOD error in
preserving order. In (b), although the surrogate model also has high OOD-MSE, it can maintain the
order, thus resulting in good design candidates.

Recent studies (Hoang et al., 2024) have pointed out that value matching alone is inadequate for
offline MBO. In this paper, we conduct a more thorough and systematic analysis on this view. We aim
to answer the key question: “Is MSE a good metric for offline MBO?” Consequently, we find through
experiments that the relationship between the quality of the final designs and MSE in the OOD region
(denoted as OOD-MSE) is weak, which underscores the need for a more reliable evaluation metric.

Next, we reconsider the primary goal of offline MBO, which seeks to identify the optimal design x∗

over the entire design space. Intuitively, this process does not require exact score predictions from
the surrogate model; rather, it demands that the model accurately discerns the partial ordering of
designs. As shown in Figure 1(b), if a surrogate model can maintain the order of candidate designs
based on their relative score relationships, it can produce the best designs even without precise
predictions. We prove the equivalence of optima for order-preserving surrogates, and introduce a
ranking-related metric, Area Under the Precision-Coverage Curve (AUPCC), for offline BBO, which
shows a significantly stronger correlation with the final performance.

Based on this observation, we propose learning a Ranking-based Model (RaM) that leverages
learning to rank (LTR) techniques to prioritize promising designs based on their relative scores. Our
proposed method has three components: 1) data augmentation to make the offline dataset align
with LTR techniques; 2) LTR loss learning to train the RaM; 3) output adaptation to make gradient
ascent optimizers work well in RaM. We show that the generalization error on ranking loss can be
well bounded, and conduct experiments on the widely used benchmark Design-Bench (Trabucco
et al., 2022). Equipped with two popular ranking losses, i.e., RankCosine (Qin et al., 2008) and
ListNet (Cao et al., 2007), our proposed method, RaM, performs better than state-of-the-art offline
MBO methods. Ablation studies highlight the effectiveness of the main modules of RaM. We also
examine the influence of different ranking loss, and demonstrate the versatility of ranking loss,
bringing improvement even by simply replacing the MSE loss of existing methods with ranking loss.

The contributions of this work are highlighted in three key points:

1) To the best of our knowledge, we are the first to indicate that MSE is not suitable for offline MBO.
2) We show that the ranking-related metric AUPCC is well-aligned with the primary goal of offline
MBO, and propose a ranking-based model for offline MBO.
3) We conduct comprehensive experiments across diverse tasks, showing the superiority of our
proposed ranking-based model over a large variety of state-of-the-art offline MBO methods.

2 BACKGROUND

2.1 OFFLINE MODEL-BASED OPTIMIZATION

Given the design space X ⊆ Rd, where d is the design dimension, offline MBO (Trabucco et al.,
2022; Xue et al., 2024) aims to find a design x∗ that maximizes a black-box objective function
f , i.e., x∗ = argmaxx∈X f(x), using only a pre-collected offline dataset D, without access to
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online evaluations. That is, an offline MBO algorithm is provided only access to the static dataset
D = {(xi, yi)}Ni=1, where xi represents a specific design (e.g., a superconductor material), and
yi = f(xi) represents the target property score that needs to be maximized (e.g., the critical
temperature of the superconductor material).

The mainstream approach for offline MBO is the forward approach, which fits a surrogate model,
typically a deep neural network f̂θ : X → R, parameterized by θ, to approximate the objective
function f in a supervised manner. Prior works (Trabucco et al., 2021; Fu & Levine, 2021; Yu et al.,
2021a; Qi et al., 2022; Chen et al., 2022; Yuan et al., 2023; Chen et al., 2023a; Chemingui et al., 2024;
Hoang et al., 2024; Dao et al., 2024) learn the surrogate model by minimizing the MSE between the
predictions and the true scores:

argmin
θ

∑N

i=1

(
f̂θ(xi)− yi

)2

/N.

With the trained model f̂θ , the final design can be obtained by various ways, typically gradient ascent:

xt+1 = xt + η ∇xf̂θ(x)
∣∣∣
x=xt

, for t ∈ {0, 1, . . . , T − 1}, (1)

where η is the search step size, T is the number of steps, and xT serves as the final design candidate
to output. However, this method is limited by its poor performance in out-of-distribution (OOD)
regions, where the surrogate model f̂θ may erroneously overestimate objective scores and mislead the
gradient-ascent optimizer into sub-optimal regions. There have been many recent efforts devoted to
addressing this issue, such as using regularization techniques(Trabucco et al., 2021; Dao et al., 2024)
and ensemble learning (Yuan et al., 2023; Chen et al., 2023a) to enhance the robustness of the model.

Another type of approach for offline MBO is the backward approach, which typically involves
training a conditioned generative model pθ(x|y) and sampling from it conditioned on a high score.
For example, MINs (Kumar & Levine, 2020) trains an inverse mapping using a conditioned GAN-like
model (Goodfellow et al., 2014); DDOM (Krishnamoorthy et al., 2023b) directly parameterizes the
inverse mapping with a conditional diffusion model (Ho et al., 2020); BONET (Krishnamoorthy
et al., 2023a) uses trajectories to train an autoregressive model, and samples them using a heuristic.

A comprehensive review of offline MBO methods is provided in Appendix A.1 due to space limitation.
Although MSE is not bad for optimization, since a model that can predict well on the OOD region is
quite good to search inside it, prior works have pointed out that OOD-MSE is naturally difficult to
minimize (Trabucco et al., 2021; 2022). Besides, Match-OPT (Hoang et al., 2024) has indicated that
value matching is insufficient for offline MBO. In this work, we further argue that regression-based
models trained with MSE are not well-aligned with offline MBO’s primary goal of selecting promising
designs rather than predicting exact scores. Intuitively, offline MBO does not require exact score
predictions from the surrogate model; rather, it demands the model accurately discerns the partial
ordering of designs, which naturally aligns with the learning to rank (LTR) framework in Section 2.2.

2.2 LEARNING TO RANK

LTR aims to learn an optimal ordering for a given set of objects (e.g., designs in offline MBO),
and has applications across various domains, including information retrieval (Liu, 2010; Li, 2011),
recommendation systems (Karatzoglou et al., 2013), and language model alignment (Song et al.,
2024; Liu et al., 2024). It is typically formulated as a supervised learning task. Given the training
data DR = {(X,y) | (X,y) ∈ Xm × Rm}, where X is the object space, X is a list of n objects to
be ranked, each denoted by xi ∈ X , and y is a list of n corresponding relevance labels yi ∈ R, the
goal of LTR is to learn a ranking function that assigns scores to individual objects and then arranges
these scores in descending order to produce a ranking. Formally, LTR aims to identify a ranking
score function sθ : X → R, parameterized by θ. Let sθ(X) = [sθ(x1), sθ(x2), . . . , sθ(xm)]⊤, and
we can optimize the model by minimizing the empirical loss:

L(sθ) =
∑

(X,y)∈DR
l (y, sθ(X)) /|DR|,

where l(·) is the loss function applied to each list of objects. Depending on their approach to handling
ranking loss, LTR algorithms are generally categorized into three paradigms: 1) Pointwise (Crammer
& Singer, 2001): Treat ranking as a regression or classification problem on individual objects;
2) Pairwise (Köppel et al., 2019): Transform ranking into a binary classification problem on object
pairs; 3) Listwise (Xia et al., 2008): Directly optimize the ranking of the entire list of objects.
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3 METHOD

In this section, we introduce our ranking-based surrogate models for offline MBO. We first analyze in
detail the goal of offline MBO and aim to answer the critical question, “Is MSE a good metric for
offline MBO?” in Section 3.1. Consequently, we find that MSE is not a suitable metric, and thus
introduce a better one in Section 3.2, i.e., Area Under the Precision-Coverage Curve (AUPCC) which
is related to ranking. This motivates us to propose a framework based on LTR to solve offline MBO
in Section 3.3. Furthermore, we show that the surrogate model based on LTR methods can have a
good generalization error bound, which will be shown in Section 3.4.

3.1 IS MSE A GOOD METRIC FOR OFFLINE MBO?

An ideal metric should be able to accurately assess the goodness of a surrogate model, i.e., the better
the metric, the better the quality of the final design obtained using the surrogate model. As shown
in Eq. (1), xT , which approximately maximizes the surrogate model f̂θ by gradient ascent, serves
as the final design to output. During the optimization process, it will inevitably traverse the OOD
region. Therefore, the performance of the surrogate model in the OOD region will significantly
impact the performance of offline MBO. Unfortunately, previous works (Trabucco et al., 2021; 2022)
have shown that the regression-based models optimized using MSE often result in poor predictions
in the OOD region, i.e., the MSE value in the OOD region (denoted as OOD-MSE) can be very
high, and thus many methods have been proposed to decrease OOD-MSE (Fu & Levine, 2021; Chen
et al., 2023a; Yuan et al., 2023) or avoid getting into OOD regions (Trabucco et al., 2021; Yu et al.,
2021a; Qi et al., 2022). In this paper, however, we indicate that even if OOD-MSE is small, the final
performance of offline MBO can still be bad. That is, the relationship between the quality of the final
designs and OOD-MSE is weak. In the following, we will validate this through experiments.

To analyze the correlation between the OOD-MSE of a surrogate model and the score of the final de-
sign candidate obtained by conducting gradient ascent on the surrogate model, we select five surrogate
models: a gradient-ascent baseline and four state-of-the-art forward approaches, COMs (Trabucco
et al., 2021), IOM (Qi et al., 2022), ICT (Yuan et al., 2023), and Tri-Mentoring (Chen et al., 2023a).
We follow the default setting as in Chen et al. (2023a); Yuan et al. (2023) for data preparation and
model-internal search procedures. To construct an OOD dataset, we follow the approach outlined
in Chen et al. (2023a), selecting high-scoring designs that are excluded from the training data in
Design-Bench (Trabucco et al., 2022). Detailed information regarding model selection, training and
search configurations, and OOD dataset construction can be found in Appendix E.1. We train the
surrogate models, evaluate their performance using various metrics (e.g., MSE) on the OOD dataset,
and obtain the final design with its corresponding ground-truth score under eight different seeds.
Subsequently, we rank the OOD-MSE values in ascending order, and rank the 100th percentile scores
of the final designs in descending order. To show the correlation between OOD-MSE and the final
score, we create scatter plots of the two rankings and calculate their Spearman correlation coefficient.

The left two subfigures of Figure 2 show the scatter plots on a continuous task, D’Kitty (Ahn et al.,
2020), and a discrete task, TF-Bind-8 (Barrera et al., 2016). Both scatter plots exhibit highly dispersed
data points, with no clear overall trend or strong clustering, showing no consistent pattern in their
distribution. This scattered nature of the data points is also reflected in the low Spearman correlation
coefficients (0.23 for D’Kitty and −0.24 for TF-Bind-8), indicating weak correlations between
OOD-MSE rank and score rank in both tasks. These results demonstrate that OOD-MSE is not a
good metric for offline MBO, underscoring the need for a more reliable evaluation metric.

3.2 WHAT IS THE APPROPRIATE METRIC FOR OFFLINE MBO?

As we mentioned before, an intuition of offline MBO is that the goodness of a surrogate model may
depend on its ability to preserve the score ordering of designs dictated by the ground-truth function.
We substantiate this intuition through the following theorem.

Theorem 1 (Equivalence of Optima for Order-Preserving Surrogates). Let f̂θ be a surrogate model
and f the ground-truth function. A function h : R→ R is order-preserving, if ∀y1, y2 ∈ R, y1 < y2
iff h(y1) < h(y2). If there exists an order-preserving h such that f̂θ(x) = h(f(x))∀x, then finding
the maximum of f is equivalent to finding that of f̂θ, i.e., argmaxx∈X f(x) = argmaxx∈X f̂θ(x).
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Figure 2: Scatter plots of five surrogate models (each trained using eight seeds) on the two tasks
of D’Kitty and TF-Bind-8, where the y-axis denotes the rank of the 100th percentile score, and the
x-axis denotes the rank of the metric in the OOD region, i.e., OOD-MSE or OOD-AUPCC. The
Spearman correlation coefficients are also calculated, as shown in the top of each subfigure.

Proof. Suppose x∗ ∈ argmaxx f(x). For any x, we have f(x∗) ≥ f(x). Since h is order-
preserving, we have h(f(x∗)) ≥ h(f(x)) for all x. Thus, given f̂θ(x) = h(f(x)), we have
f̂θ(x

∗) ≥ f̂θ(x) for all x. Therefore, x∗ ∈ argmaxx f̂θ(x), i.e., argmaxx f(x) ⊆ argmaxx f̂θ(x).
Note that since h is strictly increasing, it is bijective and thus has an inverse function h−1, which is also
strictly increasing. With h−1, the reverse implication follows similarly, proving the equivalence.

Theorem 1 shows that a good surrogate model needs to maintain an order-preserving mapping from
the ground-truth model. Besides, in the practical setting of offline MBO, the standard procedure is
to select the top-k designs (e.g., k = 128), which maximize the surrogate model’s predictions, for
evaluation (Trabucco et al., 2022). Thus, we introduce a novel metric, Area Under the Precision-
Coverage Curve (AUPCC) in Definition 1, for offline MBO to assess the model’s capability in
identifying the top-k ones from a set of candidate designs.

Definition 1 (AUPCC for Offline MBO). Consider a surrogate model f̂θ and a ground-truth function
f . Given a dataset D0 = {(xi, yi)}Ni=1, denote {f̂θ(xi)}Ni=1 as f̂θ(D0), and {f(xi)}Ni=1 as f(D0).
Let topk(S) denote the set of the k largest elements in set S. For each k ∈ {1, 2, ..., N},

Precision@k =
| topk(f̂θ(D0)) ∩ topk(f(D0))|

| topk(f(D0))|
=
| topk(f̂θ(D0)) ∩ topk(f(D0))|

k
,

Coverage@k = | topk(f̂θ(D0)) ∩ D0|/|D0| = k/N.

The Precision-Coverage curve is obtained by plotting Precision@k against Coverage@k for all
values of k. Then, the AUPCC is defined as the area under this curve:

AUPCC ≈
N−1∑
k=1

(Coverage@(k + 1)− Coverage@k) · Precision@(k + 1) + Precision@k

2
.

The AUPCC metric for offline MBO can effectively evaluate a model’s ability to identify top-k
designs with varying k and thus the ability to preserve order across the entire design space, so it
naturally serves as a ranking-related metric. A higher AUPCC value indicates better performance in
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ranking and selecting better designs. We visualize the correlation between OOD-AUPCC (i.e., the
AUPCC value in the OOD region) rank and score rank in the right two subfigures of Figure 2, where
the rank of OOD-AUPCC is obtained in descending order. In contrast to the OOD-MSE results, the
scatter plots of OOD-AUPCC exhibit clear upward trends, with data points clustered more tightly
around the diagonal compared to their OOD-MSE counterparts. This improved correlation is also
verified by the substantially higher Spearman correlation coefficients, 0.64 for D’Kitty and 0.52 for
TF-Bind-8.

To further validate the reliability of AUPCC compared to MSE, we conduct a quantitative analysis,
incorporating another three tasks, Superconductor (Hamidieh, 2018) and Ant (Brockman et al., 2016)
in continuous space, and TF-Bind-10 (Barrera et al., 2016) in discrete space. We evaluate the metrics
in the OOD regions and the final scores, and calculate Spearman correlation coefficients between
the two rankings, following the same approach as in our previous analysis. The results in Table 1
demonstrate the superior performance of OOD-AUPCC compared to OOD-MSE in correlating with
the 100th percentile score across various offline MBO tasks. OOD-AUPCC consistently shows
stronger correlations than OOD-MSE, with an average improvement of 0.364 in correlation strength.
Notably, OOD-AUPCC achieves positive or significantly improved correlations even in the tasks
where OOD-MSE shows negative correlations, such as Superconductor and TF-Bind-8 tasks. Coupled
with Theorem 1, which establishes the relationship between a model’s order-preserving capability
and its final performance, the consistently stronger empirical correlations confirm that OOD-AUPCC
is indeed a more effective and reliable metric than OOD-MSE for evaluating the performance of a
surrogate model in offline MBO. In the next section, we will discuss how to use LTR techniques to
optimize the AUPCC, thus to obtain high-scoring designs.

Table 1: Comparison between Spearman correlation coefficients of OOD-MSE and OOD-AUPCC
with respect to the 100th percentile score.

OOD-Metric Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10

Coef. Gain Coef. Gain Coef. Gain Coef. Gain Coef. Gain

OOD-MSE 0.161 0.243 -0.116 -0.239 -0.573
OOD-AUPCC 0.257 +0.096 0.503 +0.260 0.101 +0.217 0.520 +0.759 -0.087 +0.486

3.3 OFFLINE MBO BY LEARNING TO RANK: A PRACTICAL ALGORITHM

In this section, in order to optimize AUPCC for the surrogate model, we design a novel framework
for offline MBO based on LTR, as shown in Algorithm 1, which consists of three parts: 1) data
augmentation; 2) LTR loss learning; 3) output adaptation.

Data augmentation. In LTR tasks, the training set DR typically requires a list of designs as features.
However, the offline dataset D in offline MBO is not directly structured in this manner, thus the
LTR loss functions cannot be directly applied. A naı̈ve approach to address this issue is to treat each
batch of training data as a list of designs to be ranked, with the batch size determining the list length.
However, this method has its limitation since each design in the training data appears in only one list
during one single epoch, which is unable to analyze its relationship with other designs that are not in
the list. To address this limitation, we propose a simple yet effective data augmentation method. We
randomly sample m design-score pairs {(xi, yi)}mi=1 from D, and concatenate them to form a design
list X = [x1,x2, . . . ,xm]⊤ and its score list y = [y1, y2, . . . , ym]⊤; then repeat this step for n times
to construct a dataset DR = {(Xi,yi)}ni=1 for LTR modeling. We will discuss the setting of n and
m in Section 4.1, and show the benefit of data augmentation over the naı̈ve approach in Section 4.2.

LTR loss learning. In Section 3.2, we have discussed that AUPCC is a listwise metric for ranking,
and thus we can use the well-studied ranking loss (Li, 2011) from the field of LTR to optimize the
AUPCC on the training distribution, so as to generalize to the OOD regions. We study a wide range
of ranking losses, including pointwise (Crammer & Singer, 2001), pairwise (Köppel et al., 2019),
and listwise (Xia et al., 2008) losses. Here we take RankCosine (Qin et al., 2008), a pairwise loss,
and ListNet (Cao et al., 2007), a listwise loss, for example. The idea of RankCosine is to measure
the difference between predicted and true rankings using cosine similarity, operating directly in the
score space. Formally, given a list X of designs and the list y of their corresponding scores, let
f̂θ(X) = [f̂θ(x1), f̂θ(x2), . . . , f̂θ(xm)]⊤ be the predicted scores. The RankCosine loss function is:

lRankCosine(y, f̂θ(X)) = 1− y · f̂θ(X)/(∥y∥ · ∥f̂θ(X)∥).
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Algorithm 1 Offline MBO by Learning to Rank
Input: Offline dataset D, number n of lists in the training data, length m of each list, training steps
N0, ranking loss l, learning rate λ, search steps T , search step size η.
Output: The final high-scoring design candidate.

1: Initialize f̂θ. Initialize x0 as the design with the highest score in D.
2: /* Construct training data via data augmentation */
3: Initialize DR ← ∅.
4: for i = 1 to n do
5: Randomly sample m design-score pairs (x, y) from D.
6: Add (X,y) to DR, where X = [x1,x2, . . . ,xm]⊤ and y = [y1, y2, . . . , ym]⊤.
7: end for
8: /* Use LTR loss to train the surrogate model */
9: for i = 1 to N0 do

10: Calculate the ranking loss: L(θ) = 1
|DR|

∑
(X,y)∈DR

l(y, f̂θ(X)),

where f̂θ(X) = [f̂θ(x1), f̂θ(x2), . . . , f̂θ(xm)]⊤.
11: Minimize L(θ) with respect to θ using gradient update: θ ← θ − λ∇θL(θ).
12: end for
13: /* Conduct gradient ascent via output adaptation */
14: Calculate the in-distribution predictions ỹ = {ỹ | ỹ = f̂θ(x), (x, y) ∈ D}.
15: Obtain statistics of the in-distribution predictions: µ̃ = mean(ỹ), σ̃ = std(ỹ).
16: for t = 0 to T − 1 do
17: Update xt+1 via gradient ascent: xt+1 = xt + η∇xLopt(x)|x=xt

,

where Lopt(x) := (f̂θ(x)− µ̃)/σ̃.
18: end for
19: Return xT .

The idea of ListNet is to minimize the cross-entropy between the predicted ranking distribution and
the true ranking distribution, which is defined as:

lListNet(y, f̂θ(X)) = −
m∑
j=1

exp(yj)∑m
i=1 exp(yi)

log
exp(f̂θ(xj))∑m
i=1 exp(f̂θ(xi))

.

We provide detailed description of other ranking losses in Appendix D, and compare their effectiveness
for offline MBO in Section 4.2. We also provide detailed information of model training in Section 4.1.

Output adaptation. The surrogate model trained with ranking loss has a crucial issue for the hyper-
parameter setting of gradient-ascent optimizers. Unlike MSE, which aims for accurate prediction of
target scores, ranking losses do not require precise estimation of target scores. This shift in objective
may lead to significant changes in the scale of model predictions, and thus impact the magnitude of
gradients, making it challenging to determine appropriate values for the search step size η and the
number T of search steps in Eq. (1). Moreover, different ranking losses can result in different output
scales, which necessitate careful hyper-parameter tuning for a specific loss.

Notably, the scores in the training data for regression-based models have a statistical characteristic of
zero mean and unit standard deviation after z-score normalization (Trabucco et al., 2021; 2022), and
the trained regression-based model will try to preserve these statistical properties within the training
distribution. Consequently, to mitigate the impact of varying scales across different loss functions and
to ensure a fair comparison with the regression-based models, we normalize the predictions of the
ranking model after it is trained. Specifically, we first apply the trained model to the entire training set
and calculate the mean value µ̃ and standard deviation σ̃ of the resulting predictions. Subsequently,
we use µ̃ and σ̃ to apply z-score normalization to the model’s prediction. Such normalization enables
us to directly use the setting of η and T as in regression-based models. That is, we compute the
gradient of the normalized predictions with respect to x, and use the default hyper-parameters in Chen
et al. (2023a); Yuan et al. (2023) to search for the final design candidate. We will examine the
effectiveness of using output adaptation in Section 4.2.
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3.4 THEORETICAL ANALYSIS

In the previous subsections, we have indicated the importance of preserving the score order of designs,
and proposed to learn a surrogate model by optimizing ranking losses. Here, we further point out
that the generalization error can be well bounded in the context of LTR. Note that the generalization
of LTR has been well studied (Agarwal et al., 2005; Lan et al., 2009; Chen et al., 2010; Tewari &
Chaudhuri, 2015), which is mainly analyzed by the Probably Approximately Correct (PAC) learning
theory (Cucker & Smale, 2001) and Rademacher Complexity (Bartlett & Mendelson, 2003). By
leveraging these existing generalization error bounds, we provide theoretical support for our approach
of applying LTR techniques for offline MBO.

Formally, assume that we have an i.i.d. training data DR = {(Xi,yi)}ni=1 where Xi ∈ Xm,
consisting of m designs, and yi ∈ Rm. Given a ranking algorithm A (e.g., RankCosine or
ListNet), its loss function lA(f ;X,y) is normalized by lA(f ;X,y)/ZA, where ZA is a normal-
ization constant (e.g., ZRankCosine = 1). The expected risk with respect to the algorithm A
is defined as RlA(f) =

∫
Xm×Rm lA(f ;X,y)P (dX,dy), and the empirical risk is defined as

R̂lA(f ;DR) =
1
n

∑n
i=1 lA(f ;Xi,yi). Let F be the ranking function class, and Theorem 2 gives an

upper bound on the generalization error supf∈F (RlA(f)− R̂lA(f ;DR)).
Theorem 2 (Generalization Error Bound for LTR (Lan et al., 2009)). Let ϕ be an increasing and
strictly positive transformation function (e.g., ϕ(z) = exp(z)). Assume that: 1) ∀x ∈ X , ∥x∥ ≤M ;
2) the ranking model f to be learned is from the linear function class F = {x→ w⊤x | ∥w∥ ≤ B}.
Then with probability 1− δ, the following inequality holds:

supf∈F
(
RlA(f)− R̂lA(f ;DR)

)
≤ 4BM · CA(ϕ)N(ϕ)/

√
n+

√
2 ln (2/δ)/n,

where: 1) A stands for a specific LTR algorithm; 2) N(ϕ) = supz∈[−BM,BM ] ϕ
′(z), which is an

algorithm-independent factor measuring the smoothness of ϕ; 3) CA(ϕ) is an algorithm-dependent
factor, e.g., CRankCosine(ϕ) =

√
m/(2ϕ(−BM)).

We will introduce some settings of ϕ and the corresponding N(ϕ) and CA(ϕ) in Appendix B. We
can observe from the inequality in Theorem 2 that the generalization error bound vanishes at the rate
O(1/

√
n), because CA(ϕ) and N(ϕ) are independent of the size n of training set. In Appendix C, we

discuss probable approaches and difficulties in extending the theoretical analysis, identify a special
case where the pairwise ranking loss is more robust than MSE, and analyze it via experiments.

4 EXPERIMENTS

In this section, we empirically compare the proposed method with a large variety of previous offline
MBO methods on various tasks. First, we introduce our experimental settings, including five tasks,
twenty compared methods, training settings, and evaluation metrics. Then, we present the results
to show the superiority of our method. We also examine the influence of using different ranking
losses, and conduct ablation studies to investigate the effectiveness of each module of our method.
Furthermore, we simply replace MSE of existing methods with the best-performing ranking loss, to
demonstrate the versatility of the ranking loss for offline MBO. Finally, we provide the metrics, OOD-
MSE and OOD-AUPCC, in the OOD regions to validate their relationship with the final performance.
Our implementation is available at https://anonymous.4open.science/r/Offline-RaM-7FB1.

4.1 EXPERIMENTAL SETTINGS

Benchmark and tasks. We benchmark our method on Design-Bench tasks (Trabucco et al., 2022),
including three continuous tasks and two discrete tasks 1. The continuous tasks include: 1) Ant
Morphology (Brockman et al., 2016): identify an ant morphology with 60 parameters to crawl quickly.
2) D’Kitty Morphology (Ahn et al., 2020): optimize a D’Kitty morphology with 56 parameters to
crawl quickly. 3) Superconductor (Hamidieh, 2018): design a 86-dimensional superconducting
material to maximize the critical temperature. The two discrete tasks are TF-Bind-8 and TF-Bind-
10 (Barrera et al., 2016): find a DNA sequence of length 8 and 10, respectively, maximizing binding
affinity with a particular transcription factor.

1Following recent works (Yun et al., 2024; Yu et al., 2024), we exclude three tasks from Design-Bench, and
provide detailed explanations in Appendix E.2.
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Compared methods. We mainly consider three categories of methods to solve offline MBO. The first
category involves baselines that optimize a trained regression-based model, such as BO-qEI (Garnett,
2023; Shahriari et al., 2016), CMA-ES (Hansen, 2006), REINFORCE (Williams, 1992), Gradient
Ascent and its variants of mean ensemble and min ensemble. The second category encompasses
backward approaches, including CbAS (Brookes et al., 2019), MINs (Kumar & Levine, 2020),
DDOM (Krishnamoorthy et al., 2023b), BONET (Krishnamoorthy et al., 2023a), and GTG (Yun
et al., 2024). The third category comprises recently proposed forward approaches, which contain
COMs (Trabucco et al., 2021), RoMA (Yu et al., 2021a), IOM (Qi et al., 2022), BDI (Chen et al.,
2022), ICT (Yuan et al., 2023), Tri-Mentoring (Chen et al., 2023a), PGS (Chemingui et al., 2024),
FGM (Grudzien et al., 2024), and Match-OPT (Hoang et al., 2024) 2.

Training settings. We set the size n of training dataset to 10000, and following LETOR 4.0 (Qin
& Liu, 2013; Qin et al., 2010b), a prevalent benchmark for LTR, we set the list length m = 1000.
To make a fair comparison to regression-based methods, following Trabucco et al. (2021; 2022);
Chen et al. (2023a); Yuan et al. (2023), we model the surrogate model f̂θ as a simple multilayer
perceptron with two hidden layers of size 2048 using PyTorch (Paszke et al., 2019). We use ReLU as
activation functions. RankCosine (Qin et al., 2008) and ListNet (Cao et al., 2007) will be used as
two main loss functions in our experiments. The model is optimized using Adam (Kingma & Ba,
2015) with a learning rate of 3× 10−4 and a weight decay coefficient of 1× 10−5. After the model
is trained, following Chen et al. (2023a); Yuan et al. (2023), we set η = 1× 10−3 and T = 200 for
continuous tasks, and η = 1× 10−1 and T = 100 for discrete tasks to search for the final design. All
experiments are conducted using eight different seeds. Additional training details are provided in
Appendix E.4.

Evaluation and metrics. For evaluation, we use the oracle from Design-Bench and follow the
protocol of prior works (Trabucco et al., 2021; 2022). That is, we identify k = 128 most promising
designs selected by an algorithm and report the 100th percentile normalized ground-truth score. A
design score y is normalized via computing (y− ymin)/(ymin − ymax), where ymin and ymax denote
the lowest and the highest scores in the full unobserved dataset from Design-Bench. We also provide
the 50th percentile normalized ground-truth results in Appendix F.1.

4.2 EXPERIMENTAL RESULTS

Main results. In Table 2, we report the results of our experiments, where our method based on
Ranking Model is denoted as RaM appended with the name of the employed ranking loss. Among
the compared 22 methods, RaM-RankCosine and RaM-ListNet achieve the two best average ranks,
2.7 and 2.2, respectively, while the third best method, BDI, only obtains an average rank of 5.9. We
can observe that RaM-RankCosine performs best on one task, TF-Bind-10, and is runner-up on two
tasks, Superconductor and TF-Bind-8; and RaM-ListNet performs best on two tasks, D’Kitty and
Superconductor. These results clearly demonstrate the superior performance of our proposed method.

Influence of different ranking loss. We compare RaM with various ranking losses: Sigmoid-
CrossEntropy (SCE), BinaryCrossEntropy (BCE), and MSE 3 for pointwise loss; RankNet (Burges
et al., 2005), LambdaRank (Burges et al., 2006; Wang et al., 2018), and RankCosine (Qin et al.,
2008) for pairwise loss; Softmax (Cao et al., 2007; Bruch et al., 2019a), ListNet (Cao et al., 2007),
ListMLE (Xia et al., 2008), and ApproxNDCG (Qin et al., 2010a; Bruch et al., 2019b) for listwise
loss. The results in Table 6 in Appendix F.2 show that ListNet is the best-performing loss with an
average rank of 2.0 over 10 losses, and RankCosine is the runner-up with an average rank of 3.2.

Ablation of main modules. To better validate the effectiveness of the two moduels, data augmenta-
tion and output adaptation, of our method, we perform ablation studies based on the top-performing
loss functions shown in Table 6: MSE for pointwise loss, RankCosine for pairwise loss, and ListNet
for listwise loss. The results in Table 7 in Appendix F.3 show that for each considered loss, RaM
with data augmentation performs better than the naı̈ve approach which treats a batch of the dataset as
a list to rank. The results in Table 8 show the benefit of using output adaptation. We also examine the
influence of the list length m, which are illustrated in Appendix F.4.

2Due to the lack of open-source implementations or inapplicability for comparison, we exclude NEMO (Fu
& Levine, 2021), BOSS (Dao et al., 2024), DEMO (Yuan et al., 2024) and LEO (Yu et al., 2024). Detailed
explanations are provided in Appendix E.3.

3Note that MSE is a regression loss, thus it can be viewed as a pointwise ranking loss.
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Table 2: 100th percentile normalized score in Design-Bench, where the best and runner-up results on
each task are Blue and Violet. D(best) denotes the best score in the offline dataset.

Method Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Mean Rank

D(best) 0.565 0.884 0.400 0.439 0.467 /

BO-qEI 0.812 ± 0.000 0.896 ± 0.000 0.382 ± 0.013 0.802 ± 0.081 0.628 ± 0.036 18.0 / 22
CMA-ES 1.712 ± 0.754 0.725 ± 0.002 0.463 ± 0.042 0.944 ± 0.017 0.641 ± 0.036 11.4 / 22

REINFORCE 0.248 ± 0.039 0.541 ± 0.196 0.478 ± 0.017 0.935 ± 0.049 0.673 ± 0.074 14.0 / 22
Grad. Ascent 0.273 ± 0.023 0.853 ± 0.018 0.510 ± 0.028 0.969 ± 0.021 0.646 ± 0.037 11.6 / 22

Grad. Ascent Mean 0.306 ± 0.053 0.875 ± 0.024 0.508 ± 0.019 0.985 ± 0.008 0.633 ± 0.030 11.2 / 22
Grad. Ascent Min 0.282 ± 0.033 0.884 ± 0.018 0.514 ± 0.020 0.979 ± 0.014 0.632 ± 0.027 11.5 / 22

CbAS 0.846 ± 0.032 0.896 ± 0.009 0.421 ± 0.049 0.921 ± 0.046 0.630 ± 0.039 15.5 / 22
MINs 0.906 ± 0.024 0.939 ± 0.007 0.464 ± 0.023 0.910 ± 0.051 0.633 ± 0.034 13.0 / 22

DDOM 0.908 ± 0.024 0.930 ± 0.005 0.452 ± 0.028 0.913 ± 0.047 0.616 ± 0.018 14.6 / 22
BONET 0.921 ± 0.031 0.949 ± 0.016 0.390 ± 0.022 0.798 ± 0.123 0.575 ± 0.039 15.1 / 22

GTG 0.855 ± 0.044 0.942 ± 0.017 0.480 ± 0.055 0.910 ± 0.040 0.619 ± 0.029 13.9 / 22

COMs 0.916 ± 0.026 0.949 ± 0.016 0.460 ± 0.040 0.953 ± 0.038 0.644 ± 0.052 9.5 / 22
RoMA 0.430 ± 0.048 0.767 ± 0.031 0.494 ± 0.025 0.665 ± 0.000 0.553 ± 0.000 18.3 / 22
IOM 0.889 ± 0.034 0.928 ± 0.008 0.491 ± 0.034 0.925 ± 0.054 0.628 ± 0.036 13.1 / 22
BDI 0.963 ± 0.000 0.941 ± 0.000 0.508 ± 0.013 0.973 ± 0.000 0.658 ± 0.000 5.9 / 22
ICT 0.915 ± 0.024 0.947 ± 0.009 0.494 ± 0.026 0.897 ± 0.050 0.659 ± 0.024 9.4 / 22

Tri-Mentoring 0.891 ± 0.011 0.947 ± 0.005 0.503 ± 0.013 0.956 ± 0.000 0.662 ± 0.012 7.7 / 22
PGS 0.715 ± 0.046 0.954 ± 0.022 0.444 ± 0.020 0.889 ± 0.061 0.634 ± 0.040 13.2 / 22
FGM 0.923 ± 0.023 0.944 ± 0.014 0.481 ± 0.024 0.811 ± 0.079 0.611 ± 0.008 13.2 / 22

Match-OPT 0.933 ± 0.016 0.952 ± 0.008 0.504 ± 0.021 0.824 ± 0.067 0.655 ± 0.050 8.0 / 22

RaM-RankCosine (Ours) 0.940 ± 0.028 0.951 ± 0.017 0.514 ± 0.026 0.982 ± 0.012 0.675 ± 0.049 2.7 / 22
RaM-ListNet (Ours) 0.949 ± 0.025 0.962 ± 0.015 0.517 ± 0.029 0.981 ± 0.012 0.670 ± 0.035 2.2 / 22

Table 3: 100th percentile normalized score of different methods combined with the MSE or ListNet
loss in Design-Bench, where positive and negative gain rates are Blue and Red.

Method Type Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10

Score Gain Score Gain Score Gain Score Gain Score Gain

BO-qEI MSE 0.812 ± 0.000 0.896 ± 0.000 0.382 ± 0.013 0.802 ± 0.081 0.628 ± 0.036
ListNet 0.812 ± 0.000 +0.0% 0.896 ± 0.000 +0.0% 0.509 ± 0.013 +33.2% 0.912 ± 0.032 +13.7% 0.653 ± 0.056 +4.0%

CMA-ES MSE 1.712 ± 0.705 0.722 ± 0.001 0.463 ± 0.042 0.944 ± 0.017 0.641 ± 0.036
ListNet 1.923 ± 0.773 +12.3% 0.723 ± 0.002 +0.1% 0.486 ± 0.020 +5.0% 0.960 ± 0.008 +1.7% 0.661 ± 0.044 +3.1%

REINFORCE MSE 0.248 ± 0.039 0.344 ± 0.091 0.478 ± 0.017 0.935 ± 0.049 0.673 ± 0.074
ListNet 0.318 ± 0.056 +28.2% 0.359 ± 0.139 +4.3% 0.501 ± 0.013 +4.8% 0.935 ± 0.049 +0.0% 0.673 ± 0.074 +0.0%

Grad. Ascent MSE 0.273 ± 0.022 0.853 ± 0.017 0.510 ± 0.028 0.969 ± 0.020 0.646 ± 0.037
ListNet 0.280 ± 0.021 +2.6% 0.890 ± 0.019 +4.3% 0.521 ± 0.012 +2.0% 0.985 ± 0.011 +1.7% 0.660 ± 0.049 +2.2%

CbAS MSE 0.846 ± 0.030 0.896 ± 0.009 0.421 ± 0.046 0.921 ± 0.046 0.630 ± 0.039
ListNet 0.854 ± 0.037 +0.9% 0.898 ± 0.009 +0.2% 0.425 ± 0.036 +1.0% 0.956 ± 0.033 +3.8% 0.642 ± 0.034 +1.9%

MINs MSE 0.906 ± 0.024 0.939 ± 0.007 0.464 ± 0.023 0.910 ± 0.051 0.633 ± 0.032
ListNet 0.911 ± 0.025 +0.5% 0.941 ± 0.009 +0.2% 0.477 ± 0.019 +2.8% 0.910 ± 0.029 +0.0% 0.638 ± 0.037 +0.8%

Tri-Mentoring MSE 0.891 ± 0.011 0.947 ± 0.005 0.503 ± 0.013 0.956 ± 0.000 0.662 ± 0.012
ListNet 0.915 ± 0.024 +2.7% 0.943 ± 0.004 -0.4% 0.503 ± 0.010 +0.0% 0.971 ± 0.005 +1.7% 0.710 ± 0.020 +7.3%

PGS MSE 0.715 ± 0.046 0.954 ± 0.022 0.444 ± 0.020 0.889 ± 0.061 0.634 ± 0.040
ListNet 0.723 ± 0.032 +1.1% 0.962 ± 0.018 +0.8% 0.452 ± 0.042 +1.8% 0.886 ± 0.003 -0.3% 0.643 ± 0.030 +1.4%

Match-OPT MSE 0.933 ± 0.016 0.952 ± 0.008 0.504 ± 0.021 0.824 ± 0.067 0.655 ± 0.050
ListNet 0.936 ± 0.027 +0.3% 0.956 ± 0.018 +0.4% 0.513 ± 0.011 +1.8% 0.829 ± 0.009 +0.6% 0.659 ± 0.037 +0.6%

Versatility of ranking loss. We examine whether simply replacing the MSE loss of some regression-
based methods with a ranking loss can even bring improvement. Specifically, we substitute MSE with
the best-performing ranking loss, ListNet, and incorporate output adaptation. The results in Table 3
show that the gains are always positive except two cases, clearly demonstrating the versatility of
ranking loss. Details regarding method selection and implementation are provided in Appendix E.5.

Results on OOD-MSE and OOD-AUPCC. We also present the OOD-MSE and OOD-AUPCC
values of some methods in Appendix F.5, where RaM performs well in OOD-AUPCC while poor in
OOD-MSE, further demonstrating that ranking loss is more suitable than MSE for offline MBO.

5 CONCLUSION

Offline MBO methods often learn a surrogate model by minimizing MSE. In this paper, we question
this practice. We empirically show that MSE has a low correlation with the final performance of
the surrogate model. Instead, we show that the ranking-related metric AUPCC is well-aligned with
the primary goal of offline MBO, and propose a ranking-based model for offline MBO. Extensive
experimental results show the superiority of our proposed ranking-based model over a large variety
of state-of-the-art offline MBO methods. We hope this work can open a new line of offline MBO.
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A RELATED WORK

A.1 OFFLINE MODEL-BASED OPTIMIZATION

Offline MBO methods (Trabucco et al., 2022; Xue et al., 2024) can be generally categorized into
two types of approaches. The mainstream approach for offline MBO is the forward approach,
which first trains a forward surrogate model f̂θ : X → R and then employs gradient ascent to
optimize the learned surrogate to output candidate solutions, as introduced in Section 2. A crucial
challenge of this approach is how to improve the surrogate model’s generalization ability in the OOD
regions, which can significantly affect the performance. Prior works of forward approach mainly
add regularization items to: 1) regulate the nature of the surrogate model: NEMO (Fu & Levine,
2021) optimizes the gap between the surrogate model and the ground-truth function via normalized
maximum likelihood, while RoMA (Yu et al., 2021a) enhances the smoothness of the model in a
pre-trained and adaptation manner, and BOSS (Dao et al., 2024) directly regulates the sensitivity
of the surrogate model; 2) regulate surrogate model’s predictions directly: COMs (Yu et al., 2021b;
Trabucco et al., 2021) penalize identified outliers via a GAN-like procedure (Goodfellow et al., 2014),
whereas IOM (Qi et al., 2022) maintains representation invariance between the training dataset and
design candidate. Given that an ensemble of surrogate models can bring an improvement (Trabucco
et al., 2022), ICT (Yuan et al., 2023) and Tri-Mentoring (Chen et al., 2023a) train three symmetric
surrogate models and ensemble them, where ICT uses a semi-supervised learning via pseudo-label
procedure (Verma et al., 2022) and Tri-Mentoring employs a strategy similar to Tri-training (Zhou
& Li, 2005) from a pairwise perspective. Recent works also consider uncovering the structural
information of the dataset for better learning. BDI (Chen et al., 2022) utilizes both forward and
backward mappings to distill knowledge from the offline dataset to the design. FGM (Grudzien et al.,
2024) considers a novel modeling, which splits the design space into cliques on dimension-level,
to approximate scores. Both PGS (Chemingui et al., 2024) and Match-OPT (Hoang et al., 2024)
construct trajectories from the dataset, while PGS uses offline reinforcement learning to learn a policy
that predicts the search step size of the gradient ascent optimizer and Match-OPT enforces the model
to match the ground-truth gradient. Recent works also consider editing the final designs directly. For
example, DEMO (Yuan et al., 2024) edit the designs obtained by gradient ascent via a diffusion prior.
Recently, Match-OPT (Hoang et al., 2024) points out that model trained with value matching solely
is inadequate for offline MBO. Based on their observation, in this paper, we conduct a more thorough
and systematic analysis, providing empirical evidence that OOD-MSE is not closely related to the
final design quality in offline MBO (in Figure 2 and Table 1) and demonstrating the significance of
training an order-preserving surrogate model (in Theorem 1). However, all prior works in forward
approach train the surrogate model based on a regression-based model using MSE as a base term in
the loss function. In this work, we train the surrogate model in a ranking suite, obtaining superior
performance as shown in Section 4.

Another type of approach for offline MBO is the backward approach, which typically involves
training a conditioned generative model pθ(x|y) and sampling from it conditioned on a high score,
for example, MINs (Kumar & Levine, 2020) trains an inverse mapping using a conditioned GAN-
like model (Goodfellow et al., 2014; Mirza & Osindero, 2014), while CbAS (Brookes et al., 2019;
Fannjiang & Listgarten, 2020) models it as a zero-sum game via a VAE (Kingma & Welling,
2014). Note that generative models show powerful expressiveness and have achieved huge success.
DDOM (Krishnamoorthy et al., 2023b) directly parameterizes the inverse mapping with a conditional
diffusion model (Ho et al., 2020) in the design space. LEO (Yu et al., 2024) constructs a latent space
through an energy-based model that does not require MCMC sampling. Recent works in this category
also focus on generating designs via constructed trajectories. For example, BONET (Krishnamoorthy
et al., 2023a) uses trajectories to mimic a black-box optimizer, thus to train an autoregressive model
and sample designs using a heuristic; GTG (Yun et al., 2024) considers improving the quality of
trajectories via local search, and then directly generate trajectories using a context conditioning
diffusion model.

In the field of offline MBO, some studies are related to the idea of ranking designs or implicitly use
the ranking information: 1) Match-OPT (Hoang et al., 2024). The idea of gradient matching in this
paper is related to ranking samples, since a model with proper gradient could reflect the relationship
in a small neighborhood. 2) Tri-Mentoring (Chen et al., 2023a). In Tri-Mentoring, each proxy uses
weak semi-supervised pairwise-ranking-based voting signals provided by other proxies to fix its
predictions and finetune its weights. 3) BONET (Krishnamoorthy et al., 2023a). The trajectories used
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in BONET are constructed by ranking the collected samples, from which the model may capture
some ranking information. Although these methods capture ranking information in some ways, in
this work, we explicitly identify the idea of ranking samples, and conduct a systematic analysis
on this view. After that, we reformulate the objective of the training process by replacing the core
MSE loss with a ranking loss, and apply data augmentation and output adaptation for model training
and solution search, respectively. The superior experimental results in Section 4 also indicate the
significance to focus on ranking information in offline MBO. In Appendix A.2, we also discuss some
related works that leverage LTR techniques into their respective fields to make advances.

A.2 LEVERAGING LTR TECHNIQUES INTO SPECIFIC DOMAINS

In this subsection, we also briefly introduce some works in three fields that share a similar motivation
to leverage LTR techniques to advance their respective domains.

Decision-focused learning (DFL; Mandi et al., 2024). DFL, also termed as “predict-then-optimize”,
aims to predict unknown parameters for an optimization problem using ML model in an end-to-
end paradigm. A recent popular work of this field is Mandi et al. (2022), which utilizes LTR
losses that preserve the correct order of solutions in the discrete feasible space to train a better
parameter-predicting model.

Preference-based reinforcement learning (PbRL; Christiano et al., 2017). The goal of PbRL is to
infer reward functions from human feedback in the form of preferences or rankings over demonstrated
behaviors. Memarian et al. (2021) define a preference oracle to measure the total order equivalency
and use pairwise ranking loss to train a reward model for the sparse-reward environments.

Language model alignment (Shen et al., 2023). The objective of language model alignment is to let
the models align with human preferences. Song et al. (2024) adopt LTR techniques to process human
preference rankings of varying lengths, while Liu et al. (2024) formulate the problem as a listwise
ranking problem, which can learn more efficiently from a given ranked list of response.

However, our work differs from these works in both motivation and methodology. We focus on
offline MBO and investigate the root cause of the OOD issue, which is widely-studied in this field
but still remains. We provide a systematic analysis of the OOD issue, propose the AUPCC metric for
quantification, develop a ranking-based framework, and verify its effectiveness through theoretical
analysis and comprehensive experiments.

B PREVALENT SETTINGS OF ϕ, N(ϕ), AND CA(ϕ) IN THEOREM 2

In this section, we introduce some settings of ϕ, N(ϕ), and CA(ϕ) in Theorem 2, as shown in Lan
et al. (2009).

In Theorem 2, ϕ is an increasing and strictly positive transformation function, which maps the output
of the surrogate model or the score to a positive real number. Recall that B represents the upper
bound of the weight norm ∥w∥ of the linear function class F = {x → w⊤x | ∥w∥ ≤ B} where
the ranking model f to be learned is from, and M is the upper bound of the norm of designs ∥x∥ in
design space X . It is usually represented as a:

• Linear function: ϕL(z) = az + b, z ∈ [−BM,BM ], where a > 0 and b > aBM ;

• Exponential function: ϕE(z) = exp(az), z ∈ [−BM,BM ], where a > 0;

• Sigmoid function: ϕS(z) =
1

1+exp(−az) , z ∈ [−BM,BM ], where a > 0.

Following Lan et al. (2009), we introduce some settings based on the above definition of ϕ in Table 4.
For detailed derivation for CA(ϕ), please refer to Lan et al. (2009).

C PROBABLE APPROACHES AND DIFFICULTIES FOR THEORETICAL ANALYSIS

In this section, we first further discuss the probable approaches and difficulties for direct theoretical
analysis for ranking-based framework for offline MBO. Although it is challenging, we still find a
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Table 4: N(ϕ) and CA(ϕ) for LTR algorithmsA (e.g., RankCosine (Qin et al., 2008) or ListNet (Cao
et al., 2007)) on different definitions of ϕ.

ϕ N(ϕ) CRankCosine(ϕ) CListNet(ϕ)

ϕL(z) = az + b a
√
m

2(b−aBM)
2m!

(b−aBM)(logm+log b+aBM
b−aBM )

ϕE(z) = exp(az) a exp(aBM)
√
m exp(aBM)

2
2m! exp(aBM)
logm+2aBM

ϕS(z) =
1

1+exp(−az)
a(1+exp(aBM))
(1+exp(−aBM))2

√
m(1+exp(aBM))

2
2m!(1+exp(aBM))

logm+aBM

counterexample that shows the robustness of LTR losses over MSE. Then, to enhance understanding
of the counterexample, we conduct a quantitative experiment to demonstrate this.

C.1 PROBABLE APPROACHES AND DIFFICULTIES

In this subsection, firstly, we revisit our motivation to leverage LTR techniques for offline MBO.
Then, we propose some probable approaches and difficulties for theoretical analysis.

Note that learning to rank samples correctly is a weaker condition than learning to minimize MSE,
since MSE commands for both order preserving and value matching. Besides, the equivalence in
Theorem 1 shows that the weaker condition, order preserving, is sufficient for offline MBO, which
motivates the proposal of directly learn the ranking information by leveraging LTR techniques.

Thus, a intuitive question according to generalization analysis for offline MBO is: In which scenarios
does the model learned with LTR generalize better on some ranking measures than that learned with
MSE on OOD regions? Unfortunately, such theoretical support or evidence cannot be found even in
the field of LTR, which is also illustrated in Section 1 of Chapelle et al. (2010). Below we briefly
present the most promising approach we explored and the difficulties we face.

• Try to find a special function class F , from which the ranking model f̂ to be learned is,
such that models learned with LTR techniques have an upper bound guarantee on some
ranking measure while models trained with MSE do not. Formally, let R be a ranking
measure (which can be the expected risk of a specific ranking loss or a ranking metric, e.g.,
NDCG), and denote the empirical risk of model trained with LTR and that trained with MSE
as R̂LTR and R̂MSE , respectively. For ease of exposition, R here refers to the expected
risk in Theorem 2. From Theorem 2, the upper bound of R and R̂LTR has a convergence
rate of O( 1√

n
). Then, if we could find a function class F such that R− R̂MSE always has

a slower convergence rate, i.e., R − R̂MSE ≥ O( 1√
n
), we can show that models learned

with MSE are worse than that learned with LTR. However, such an analysis can be difficult
because: 1) There is no theoretical evidence to show the generalization bound on ranking by
optimizing MSE. 2) Most generalization bound analysis in LTR assume i.i.d (as Theorem 2
in our paper), while OOD analysis in LTR is quite limited.

• Identify a special case that supports this intuition. Assume that the function class F is
a linear function class and the offline data is drawn from a ground-truth function f with
long-tailed noise on the objective value. Models trained with MSE are susceptible to heavy-
tailed noise, as the mean of y is heavily influenced in regions with such noise. In contrast,
models trained with pairwise ranking loss demonstrate greater stability in such scenarios. An
illustrative example could be as follows. Assume that the ground-truth function is f(x) = x2

and the offline dataset D = {(1, 1), (1.9, 3.7), (2.1, 4.5), (2,−12)} where (2,−12) suffers
from the heavy-tailed noise. Models trained with MSE and a representative of the pairwise
ranking loss, RankCosine (Qin et al., 2008), are shown in Figure 3. From Figure 3, the
model trained with MSE would exhibit negative correlation, while that trained with LTR
would demonstrate positive correlation, which shows that the model trained with LTR is
more robust. However, such counterexamples are still based on strong assumptions. A
well-constructed example with theoretical support remains unexplored.

C.2 ADDITIONAL EXPERIMENTS IN HEAVY-TAILED NOISY SCENARIOS
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Linear model obtained by different losses under heavy-tailed noise

Ground Truth: f(x) = x²
Training Data
MSE: y = -2.10x + 2.98
RankCosine: y = 0.79x - 0.85

Figure 3: Plot of the ground-truth function f(x) = x2, the training data suffered from heavy-tailed
noise, the linear model learned with MSE (green), and the linear model learned with RankCosine. Here
the model trained with MSE exhibits negative correlation, while that trained with LTR demonstrates
positive correlation, which shows that the model trained with LTR is more robust.

In this subsection, we conduct additional quantitative experiments to support the counterexample
mentioned in the above subsection.

Following the assumption in Appendix C.1, the ranking model f̂ to be learned is from the linear
function class. Specifically, given a dataset D = {(xi, yi)}Ni=1, we want to train a linear model
f̂(x) = wx + b based on two loss functions, e.g., MSE and RankCosine (Qin et al., 2008), the
representative of pairwise ranking losses. Details of how to obtain the linear model trained with these
two losses are as follows.

• MSE. The linear model trained with MSE has a closed-formed solution using the Least
Squares Method. Formally, let an augmented matrix X = [1, [x1, x2, · · · , xN ]⊤], y =
[y1, y2, · · · , yN ]⊤, and θ = [w, b]⊤, and we can obtain that θ = (X⊤X)−1X⊤y (see
Chapter 3.1.1 in Bishop (2006)).

• RankCosine: There is no closed-formed solution due to non-linear operations (vector normal-
ization operator when calculating RankCosine). Hence, we use Adam optimizer (Kingma &
Ba, 2015) with a learning rate 1× 10−3 to search 1000 epochs for the optimal value for w
and b.

We set the ground-truth function to be a quadratic function f(x) = x2 for ease of demonstration,
which is increasing and requires f̂ having a positive w. We assume that the training data is drawn from
[0, 3] for better visualization. As for the noise, we initiate the heavy-tailed noises from a Student’s

t-distribution g(t) =
Γ( ν+1

2 )√
νπ Γ( ν

2 )

(
1 + t2

ν

)− ν+1
2

with the degrees of freedom ν = 2, and change their
magnitude controlled by a scale α = 15. Besides, to influence the increasing trend, we assume that
the heavy-tailed noise is positive for points with x ∈ [0, 1.5] and negative for points with x ∈ (1.5, 3].
Each training point has a probability of p = 0.2 to suffer from the noise.

We first present the detailed results of the illustrative example mentioned in Appendix C.1. In Figure 3,
we visualize the ground-truth function, training data, and the linear models trained with MSE and
RankCosine. We can observe that the model learned from MSE exhibits a negative correlation, but
the model learned from RankCosine can demonstrate a positive correlation.
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To further verify the robustness of ranking losses, we increase the dataset size to 100, and vary the
scale of noise α ∈ {10, 15, 20, 50, 100} while the probability of adding noise is fixed at p = 0.2.
We report the calculated values of w learned with MSE (denoted as wMSE) and that learned with
RankCosine (denoted as wRankCosine) according to different αs in Table R1. From Table R1, all

Table R1: Values of weight w obtained by learning MSE (denoted as wMSE) and those obtained by
learning RankCosine (denoted as wRankCosine) with varying noise scale α. Here, Violet denote
positive weights, which satisfies the requirements of the ground-truth function f(x) = x2 for a
increasing linear ranking model.

Noise scale α wMSE wRankCosine

10 -1.68 0.88
15 -0.75 0.90
20 -2.98 0.74
50 -14.99 0.94

100 -10.05 0.98
values of wRankCosine are positive while those of wMSE are all negative and become substantially
worse when the scale of noise α goes larger, which demonstrates the stronger stability of the LTR
loss against heavy-tailed noise with different strengths.

We also vary the probability of adding noise p ∈ {0.1, 0.2, · · · , 1.0} while the scale of noise is fixed
at α = 15. The corresponding values of w are shown in Table R2.

Table R2: Values of weight w obtained by learning MSE (denoted as wMSE) and those obtained by
learning RankCosine (denoted as wRankCosine) with varying noise probability p. Here, Violet
denote positive weights, which satisfies the requirements of the ground-truth function f(x) = x2 for
a increasing linear ranking model.

Noise probability p wMSE wRankCosine

0.1 1.61 0.86
0.2 -0.75 0.90
0.3 -4.53 1.01
0.4 -8.46 0.88
0.5 -7.76 1.02
0.6 -10.73 0.95
0.7 -12.87 0.84
0.8 -17.28 0.98
0.9 -20.21 0.98
1.0 -22.66 0.95

From the results in Table R2, only when the noise probability p = 0.1, wMSE is positive, while
in other situations it is negative and it becomes quite bad as p increases. In contrast, wRankCosine

remains a positive value near 1 as the noise probability p increases from 0.1 to 1, showing impressive
robustness against such heavy-tailed noise with wide coverage.

Results from both Table R1 and Table R2 strongly demonstrate the robustness of pairwise ranking
loss (i.e., RankCosine) over MSE on the ranking performance in a scenario where y suffers from a
heavy-tailed noise, which delivers a better understanding on the advantage of LTR losses in OOD
ranking performance. Combining with the stated equivalence of an order-preserving surrogate model
shown in Theorem 1, the ranking loss is suitable for offline MBO due to its more robust ranking
performance.

D DETAILS OF DIFFERENT RANKING LOSSES

In this section, we introduce details of the different ranking losses in this paper, including traditional
and recently prevalent losses. We study different types of ranking losses in this paper, including
pointwise (Crammer & Singer, 2001), pairwise (Köppel et al., 2019), and listwise losses (Xia
et al., 2008). Formally, given a list X of designs and the list y of their corresponding scores, let
f̂θ(X) = [f̂θ(x1), f̂θ(x2), . . . , f̂θ(xm)]⊤ be the predicted scores.
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For the pointwise losses, we consider:

• SigmoidCrossEntropy (SCE): a widely used pointwise loss: l(y, f̂θ(X)) =∑m
i=1

(
−yif̂θ(xi) + log(1 + exp(f̂θ(xi)))

)
.

• BinaryCrossEntropy (BCE): a common pointwise loss considering in a binary clas-
sification manner, and we consider its variant with a logits input: l(y, f̂θ(X)) =

−
∑m

i=1

[
yi · log(σ(f̂θ(xi))) + (1− yi) · log(1− σ(f̂θ(xi)))

]
, where σ(·) is the sigmoid

function.

• Mean Square Error (MSE): a popular pointwise loss aiming to fit the target values:
l(y, f̂θ(X)) =

∑m
i=1(yi − f̂θ(xi))

2. Note that the difference of RaM combined with
MSE from the regression-based model mainly reflects in the different modeling of the
training data.

For the pairwise losses, we consider:

• RankNet (Burges et al., 2005): a popular pairwise loss: l(y, f̂θ(X)) =∑
yi>yj

log
(
1 + exp(f̂θ(xi)− f̂θ(xj))

)
.

• LambdaRank (Burges et al., 2006; Wang et al., 2018): a pairwise loss with ∆NDCG weight:
l(y, f̂θ(X)) =

∑
yi>yj

∆NDCG(i, j) log2

(
1 + exp(−α(f̂θ(xi)− f̂θ(xj)))

)
, where α

is a smooth parameter and ∆NDCG is the absolute difference between the values of the
Normalized Discounted Cumulative Gain (NDCG), a widely used metric in LTR (Järvelin &
Kekäläinen, 2000; 2002), when the surrogate model swap the predictions of the two designs,
xi and xj , and thus swap their positions in the ranked list.

• RankCosine (Qin et al., 2008): a classical pairwise loss based on cosine similarity:
l(y, f̂θ(X)) = 1− y · f̂θ(X)/(∥y∥ · ∥f̂θ(X)∥).

For the pairwise losses, we consider:

• Softmax (Cao et al., 2007; Bruch et al., 2019a): a popular listwise loss: l(y, f̂θ(X)) =

−
∑m

i=1 yi log
exp(f̂θ(xi))∑m

j=1 exp(f̂θ(xi))
.

• ListNet (Cao et al., 2007): a classical listwise loss minimizing the cross-entropy be-
tween the predicted ranking distribution and the true ranking distribution: l(y, f̂θ(X)) =

−
∑m

j=1
exp(yj)∑m
i=1 exp(yi)

log
exp(f̂θ(xj))∑m
i=1 exp(f̂θ(xi))

.

• ListMLE (Xia et al., 2008): a widely used listwise loss based on the Plackett-Luce

model (Marden, 1995): l(y, f̂θ(X)) = −
∑m

i=1 log
exp(f̂θ(xπ(i)))∑m

j=i exp(f̂θ(xπ(j)))
, where π is the

permutation derived from the true ranking labels y, xπ(i) represents the item at the i-th
position in the true ranking.

• ApproxNDCG (Qin et al., 2010a; Bruch et al., 2019b): a listwise that is a differentiable
approximation of NDCG: l(y, f̂θ(X)) = − 1

DCG(π∗,y)

∑m
i,r=1

2yi−1
log2(1+πf̂θ

(i)) , where π∗ is

the optimal permutation that ranks items by y, DCG(π∗,y) represents the Discounted
Cumulative Gain (DCG; Järvelin & Kekäläinen, 2000; 2002) of the ideal ranking given y,
and πf̂θ

(i) = 1
2 +

∑
j Sigmoid(

f̂θ(xi)−f̂θ(xj)
T ) with T a smooth parameter.

We excluded NeuralNDCG (Pobrotyn & Bialobrzeski, 2021), a recently proposed listwise loss using
neural sort techniques to approximate NDCG, due to its high memory requirements.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E DETAILED EXPERIMENTAL SETTINGS

E.1 DETAILED EXPERIMENTAL SETTINGS OF FIGURE 2

In this experiment, we select five surrogate models: a gradient-ascent baseline and four state-of-the-
art approaches, COMs (Trabucco et al., 2021), IOM (Qi et al., 2022), ICT (Yuan et al., 2023), and
Tri-Mentoring (Chen et al., 2023a). These models are chosen due to their common characteristic of
employing standard gradient-ascent to obtain the final design. While BDI (Chen et al., 2022) and
Match-OPT (Hoang et al., 2024) also utilize gradient-ascent for design generation, we exclude BDI
for its intractable model, which is built with JAX (Bradbury et al., 2018), and Match-OPT for its
time-intensive training procedure.

We follow the default setting as in Chen et al. (2023a); Yuan et al. (2023) to prepare training data and
set the hyper-parameters in Equation 1 to search inside the model. For discrete tasks, in order to map
the design space to a continuous one, we transform the discrete designs into real-valued logits of a
categorical distribution, which is provided in Trabucco et al. (2021; 2022). We use z-score method to
normalize both the designs and scores for a better training. After the model is trained, we use Adam
optimizer (Kingma & Ba, 2015) to conduct gradient ascent. For discrete tasks, we set η = 1× 10−1

and T = 100, and for continuous tasks, we set η = 1× 10−3 and T = 200.

Following Chen et al. (2023a), we construct an OOD dataset by selecting the high-scoring designs
that are excluded for the training data in Design-Bench (Trabucco et al., 2022). In Design-Bench,
the training dataset is selected as the bottom performing x% in the entire collected dataset, (i.e.,
x = 40, 50, 60). Note that the open-source repository4 provides an API to access the entire dataset.
We identify the excluded (100− x)% high-scoring data to comprise the OOD dataset for analysis,
except for TF-Bind-10 (Barrera et al., 2016) task, whose excluded (100 − x)% high-scoring data
contains 4161482 samples and is too large for AUPRC evaluation. Thus, we randomly sample 30000
samples from the (100− x)% data to construct the OOD dataset for TF-Bind-10 task.

E.2 EXCLUDED DESIGN-BENCH TASKS

Following prior works (Krishnamoorthy et al., 2023b;a; Yun et al., 2024; Yu et al., 2024), we exclude
three tasks in Design-Bench (Trabucco et al., 2022) for evaluation, including Hopper (Brockman
et al., 2016), ChEMBL (Gaulton et al., 2012), and synthetic NAS tasks on CIFAR10 (Hinton et al.,
2012). As noted in prior works and this link, this is a bug for the implementation of Hopper in
Design-Bench. For the ChEMBL task, we exclude it because almost all methods produce the same
results, as shown in Krishnamoorthy et al. (2023a;b), which is not suitable for comparison. We also
exclude NAS due to its high computation cost for exact evaluation over multiple seeds, which is
beyond our budget.

E.3 EXCLUDED OFFLINE MBO ALGORITHMS

We exclude NEMO (Fu & Levine, 2021) since there is no open-source implementation. We also
exclude concurrent works, DEMO (Yuan et al., 2024) and LEO (Yu et al., 2024), since they are
not yet peer-reviewed and lack an open-source implementation at the time of our initial submission.
For BOSS (Dao et al., 2024), we exclude it since it is a general trick that can be applied to any
regression-based forward method, instead of a single proposed methods.

E.4 DETAILED EXPERIMENTAL SETTINGS OF MAIN RESULTS IN TABLE 2

We set the size n of training dataset to 10000, and the list length m = 1000. To make a fair
comparison to regression-based methods, following Trabucco et al. (2021; 2022); Chen et al. (2023a);
Yuan et al. (2023), we model the surrogate model f̂θ as a simple multilayer perceptron (MLP) with
two hidden layers of size 2048 using PyTorch (Paszke et al., 2019). We use ReLU as activation
functions. RankCosine (Qin et al., 2008) and ListNet (Cao et al., 2007) is used as two main loss
functions in our experiments. Our implementation of different loss functions is either inherited
from Pobrotyn et al. (2020)5 or implemented by ourselves.

4https://github.com/brandontrabucco/design-bench
5https://github.com/allegro/allRank
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We split the dataset into a training set and a validation set of the ratio 8 : 2. The model is trained
for N0 = 200 epochs and is optimized using Adam (Kingma & Ba, 2015) with a learning rate of
3× 10−4 and a weight decay coefficient of 1× 10−5, and the model with minimal validation loss
among N0 epochs serves as the final model.

After the model is trained, we fix the model parameters and normalize the output values, then
following Chen et al. (2023a); Yuan et al. (2023), we set η = 1× 10−3 and T = 200 for continuous
tasks, and η = 1× 10−1 and T = 100 for discrete tasks to search for the final design.

For baselines methods and CbAS (Brookes et al., 2019), MINs (Kumar & Levine, 2020), COMs (Tra-
bucco et al., 2021) in Table 2, we use the open-source baselines implementations from the source
code of Design-Bench6. For other offline MBO methods (DDOM (Krishnamoorthy et al., 2023b)7,
BONET (Krishnamoorthy et al., 2023a)8, GTG (Yun et al., 2024)9, RoMA (Yu et al., 2021a)10,
IOM (Qi et al., 2022)11, BDI (Chen et al., 2022)12, ICT (Yuan et al., 2023)13, Tri-Mentoring (Chen
et al., 2023a)14, PGS (Chemingui et al., 2024)15, FGM (Grudzien et al., 2024)16, Match-OPT (Hoang
et al., 2024)17), we use the open-source implementation provided in their papers and use their hyper-
parameter settings, except for DDOM and BONET, where we modify the evaluation budget k from
256 to 128 following the protocol of other works. A brief review of offline MBO methods is also
provided in Appendix A.1.

E.5 DETAILED EXPERIMENTAL SETTINGS OF TABLE 3

In this experiment, for a fair comparison of MSE and ListNet, we do not adopt the data augmentation
method, instead, we use the naı̈ve approach introduced in Section 3.3, viewing a batch of designs as a
list to be ranked.

We choose baselines methods that optimize a trained model, BO-qEI (Garnett, 2023), CMA-
ES (Hansen, 2006), REINFORCE (Williams, 1992), and Gradient Ascent, two backward approach
provided in Trabucco et al. (2022), CbAS (Brookes et al., 2019) and MINs (Kumar & Levine, 2020),
and three state-of-the-art forward methods that can replace MSE with ListNet, Tri-Mentoring (Chen
et al., 2023a), PGS (Chemingui et al., 2024), and Match-OPT (Hoang et al., 2024). Note that the
model trained with ranking loss has different prediction scales as regression-based models, as dis-
cussed in 3.3. We exclude many forward methods due to the inapplicability of directly replacing
MSE with ListNet. For example, COMs (Trabucco et al., 2021), RoMA (Yu et al., 2021a), IOM (Qi
et al., 2022) use the prediction values to calculate the loss function, where the changing scales of
predictions could influence the scales of the loss values, while BDI (Chen et al., 2022) and ICT (Yuan
et al., 2023) assign weight to each sample, thus MSE in these methods cannot be directly replaced
with a ranking loss like ListNet.

In order to adapt the same parameters of the online optimizers (e.g., BO-qEI, Gradient Ascent)
that optimize the trained model for a fair comparison, we also perform an output adaptation for
ranking-based model after it is trained.

All the replacements are conducted fixing their open-source codes by replacing MSE with ListNet
when training the forward model.

6https://github.com/brandontrabucco/design-baselines
7https://github.com/siddarthk97/ddom
8https://github.com/siddarthk97/bonet
9https://github.com/dbsxodud-11/GTG

10https://github.com/sihyun-yu/RoMA
11https://anonymous.4open.science/r/IOMsubmit-265E
12https://github.com/GGchen1997/BDI
13https://github.com/mila-iqia/Importance-aware-Co-teaching
14https://github.com/GGchen1997/parallel mentoring
15https://github.com/yassineCh/PGS
16https://colab.research.google.com/drive/1qt4M3C35bvjRHPIpBxE3zPc5zvX6AAU4?usp=sharing
17https://github.com/azzafadhel/MatchOpt

24

https://github.com/brandontrabucco/design-baselines
https://github.com/siddarthk97/ddom
https://github.com/siddarthk97/bonet
https://github.com/dbsxodud-11/GTG
https://github.com/sihyun-yu/RoMA
https://anonymous.4open.science/r/IOMsubmit-265E
https://github.com/GGchen1997/BDI
https://github.com/mila-iqia/Importance-aware-Co-teaching
https://github.com/GGchen1997/parallel_mentoring
https://github.com/yassineCh/PGS
https://colab.research.google.com/drive/1qt4M3C35bvjRHPIpBxE3zPc5zvX6AAU4?usp=sharing
https://github.com/azzafadhel/MatchOpt


1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 5: 50th percentile normalized score in Design-Bench, where the best and runner-up results on
each task are Blue and Violet. D(best) denotes the best score in the offline dataset.

Method Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Mean Rank

D(best) 0.565 0.884 0.400 0.439 0.467 /

BO-qEI 0.568 ± 0.000 0.883 ± 0.000 0.311 ± 0.019 0.439 ± 0.000 0.467 ± 0.000 12.6 / 22
CMA-ES -0.041 ± 0.004 0.684 ± 0.017 0.377 ± 0.009 0.539 ± 0.017 0.482 ± 0.009 12.6 / 22

REINFORCE 0.124 ± 0.042 0.460 ± 0.209 0.457 ± 0.020 0.466 ± 0.023 0.464 ± 0.009 15.7 / 22
Grad. Ascent 0.136 ± 0.016 0.581 ± 0.128 0.471 ± 0.017 0.582 ± 0.027 0.470 ± 0.004 11.2 / 22

Grad. Ascent Mean 0.185 ± 0.012 0.718 ± 0.037 0.481 ± 0.023 0.630 ± 0.033 0.470 ± 0.005 9.2 / 22
Grad. Ascent Min 0.187 ± 0.012 0.714 ± 0.040 0.480 ± 0.022 0.628 ± 0.025 0.470 ± 0.004 9.6 / 22

CbAS 0.385 ± 0.027 0.740 ± 0.023 0.121 ± 0.014 0.422 ± 0.022 0.457 ± 0.006 18.4 / 22
MINs 0.640 ± 0.029 0.886 ± 0.006 0.332 ± 0.014 0.407 ± 0.014 0.465 ± 0.006 12.0 / 22

DDOM 0.598 ± 0.030 0.829 ± 0.050 0.313 ± 0.017 0.416 ± 0.023 0.464 ± 0.006 14.4 / 22
BONET 0.795 ± 0.039 0.906 ± 0.008 0.334 ± 0.032 0.476 ± 0.149 0.452 ± 0.050 10.6 / 22

GTG 0.593 ± 0.022 0.889 ± 0.002 0.350 ± 0.023 0.542 ± 0.038 0.458 ± 0.008 9.4 / 22

COMs 0.532 ± 0.020 0.882 ± 0.002 0.376 ± 0.067 0.513 ± 0.019 0.474 ± 0.014 9.3 / 22
RoMA 0.193 ± 0.017 0.344 ± 0.097 0.368 ± 0.012 0.520 ± 0.074 0.516 ± 0.004 12.0 / 22
IOM 0.459 ± 0.024 0.829 ± 0.022 0.291 ± 0.059 0.490 ± 0.055 0.467 ± 0.000 14.9 / 22
BDI 0.569 ± 0.000 0.876 ± 0.000 0.389 ± 0.022 0.595 ± 0.000 0.429 ± 0.000 9.4 / 22
ICT 0.550 ± 0.028 0.875 ± 0.006 0.333 ± 0.018 0.547 ± 0.041 0.499 ± 0.012 9.2 / 22

Tri-Mentoring 0.548 ± 0.013 0.870 ± 0.002 0.363 ± 0.019 0.619 ± 0.009 0.491 ± 0.001 8.0 / 22
PGS 0.190 ± 0.030 0.885 ± 0.001 0.233 ± 0.033 0.503 ± 0.041 0.386 ± 0.177 16.0 / 22
FGM 0.532 ± 0.039 0.871 ± 0.017 0.353 ± 0.058 0.540 ± 0.117 0.466 ± 0.004 12.1 / 22

Match-OPT 0.587 ± 0.008 0.887 ± 0.001 0.381 ± 0.038 0.435 ± 0.017 0.471 ± 0.013 8.0 / 22
RaM-RankCosine (Ours) 0.566 ± 0.012 0.881 ± 0.003 0.356 ± 0.013 0.544 ± 0.043 0.462 ± 0.006 11.0 / 22

RaM-ListNet (Ours) 0.579 ± 0.014 0.888 ± 0.003 0.359 ± 0.013 0.552 ± 0.032 0.467 ± 0.009 7.4 / 22

F ADDITIONAL EXPERIMENTS

In this section, we provide additional experimental results mentioned in Section 4.

F.1 50TH PERCENTILE RESULTS ON DESIGN-BENCH

Following the evaluation protocol in Trabucco et al. (2022), to validate the robustness of our proposed
method, we also provide the detailed results of 50th percentile results in Table 5.

In Table 5, we can observe although RaM combined with RankCosine performs not so well on 50th

percentile results, RaM combined with ListNet, which is the best methods in our main experimental
results (Table 2), also obtains a best average rank of 7.4 among 22 methods.

F.2 RESULTS OF DIFFERENT RANKING LOSSES

We compare a wide range of ranking losses that combined with RaM in the context of offline
MBO, including three types of pointwise, pairwise, and listwise losses. Details of these ranking
losses are provided in Appendix D, and experimental results of 100th percentile normalized score in
Design-Bench are provided in Table 6.

Table 6: 100th percentile normalized score of RaM combined with different ranking losses in Design-
Bench. The best and runner-up results on each task are Blue and Violet. D(best) denotes the best
score in the offline dataset.

Type Method Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Mean Rank

/ D(best) 0.565 0.884 0.400 0.439 0.467 /

Pointwise
RaM-SCE 0.928 ± 0.012 0.953 ± 0.012 0.502 ± 0.013 0.820 ± 0.065 0.662 ± 0.026 6.9 / 10
RaM-BCE 0.925 ± 0.014 0.950 ± 0.009 0.501 ± 0.012 0.825 ± 0.065 0.656 ± 0.021 8.3 / 10
RaM-MSE 0.933 ± 0.032 0.957 ± 0.013 0.507 ± 0.028 0.962 ± 0.031 0.674 ± 0.044 3.9 / 10

Pairwise
RaM-RankNet 0.921 ± 0.033 0.955 ± 0.008 0.510 ± 0.032 0.962 ± 0.030 0.676 ± 0.037 4.4 / 10

RaM-LambdaRank 0.918 ± 0.020 0.949 ± 0.010 0.528 ± 0.020 0.962 ± 0.020 0.650 ± 0.039 6.8 / 10
RaM-RankCosine 0.940 ± 0.028 0.951 ± 0.017 0.514 ± 0.026 0.982 ± 0.012 0.675 ± 0.049 3.2 / 10

Listwise

RaM-Softmax 0.932 ± 0.014 0.954 ± 0.011 0.509 ± 0.028 0.918 ± 0.039 0.489 ± 0.115 6.2 / 10
RaM-ListNet 0.949 ± 0.025 0.962 ± 0.015 0.517 ± 0.029 0.981 ± 0.012 0.670 ± 0.035 2.0 / 10

RaM-ListMLE 0.930 ± 0.032 0.953 ± 0.012 0.484 ± 0.022 0.966 ± 0.020 0.656 ± 0.041 6.0 / 10
RaM-ApproxNDCG 0.926 ± 0.031 0.952 ± 0.004 0.507 ± 0.010 0.936 ± 0.069 0.551 ± 0.058 7.3 / 10
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We find that MSE performs the best in all of 3 pointwise losses, RankCosine (Qin et al., 2008)
outperforms other pairwise losses, and ListNet (Cao et al., 2007) obtains the highest average rank
among listwise losses. Note that prevalent ranking losses such as ApproxNDCG (Bruch et al., 2019b)
do not perform well in RaM. This might due to the simplicity of MLP, which cannot absorb complex
information of conveyed by the trending powerful loss functions (Qin et al., 2021; Pobrotyn et al.,
2020). However in this work, we parameterize the surrogate model as a simple MLP for a fair
comparison to the regression-based methods, and we will consider more complex modeling in our
future work.

F.3 ABLATION STUDIES RESULTS ON MAIN MODULES

To better validate the effectiveness of the two moduels, data augmentation and output adaptation,
of our method, we perform ablation studies based on the top-performing loss functions shown in
Table 6: MSE for pointwise loss, RankCosine for pairwise loss, and ListNet for listwise loss. The
results in Table 7 show that for each considered loss, RaM with data augmentation performs better
than the naı̈ve approach which treats a batch of the dataset as a list to rank. The results in Table 8
show the benefit of using output adaptation. All of these ablation studies provide strongly positive
support to the effectiveness of these two modules.

Table 7: Ablation studies on data augmentation, considering learning with MSE, RankCosine, and
ListNet, which are the best-performing pointwise, pairwise, and listwise loss, respectively, as shown
in Table 6. For each combination of loss and task, the better performance is Bolded. D(best) denotes
the best score in the offline dataset.

Method Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Mean Rank

D(best) 0.565 0.884 0.400 0.439 0.467 /

RaM-MSE (w/ Aug.) 0.933 ± 0.032 0.957 ± 0.013 0.507 ± 0.028 0.962 ± 0.031 0.674 ± 0.044 3.7 / 6
RaM-MSE (w/o Aug.) 0.928 ± 0.022 0.944 ± 0.017 0.502 ± 0.015 0.983 ± 0.012 0.652 ± 0.045 4.7 / 6

RaM-RankCosine (w/ Aug.) 0.940 ± 0.028 0.951 ± 0.017 0.514 ± 0.026 0.982 ± 0.012 0.675 ± 0.049 2.2 / 6
RaM-RankCosine (w/o Aug.) 0.929 ± 0.019 0.944 ± 0.005 0.504 ± 0.018 0.980 ± 0.016 0.654 ± 0.038 4.7 / 6

RaM-ListNet (w/ Aug.) 0.949 ± 0.025 0.962 ± 0.015 0.517 ± 0.029 0.981 ± 0.012 0.670 ± 0.035 2.0 / 6
RaM-ListNet (w/o Aug.) 0.938 ± 0.025 0.964 ± 0.011 0.507 ± 0.007 0.975 ± 0.010 0.640 ± 0.037 3.7 / 6

Table 8: Ablation studies on output adaptation, considering learning with MSE, RankCosine, and
ListNet, which are the best-performing pointwise, pairwise, and listwise loss, respectively, as shown
in Table 6. For each combination of loss and task, the better performance is Bolded. D(best) denotes
the best score in the offline dataset.

Method Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Mean Rank

D(best) 0.565 0.884 0.400 0.439 0.467 /

RaM-MSE (w/ Adapt.) 0.933 ± 0.032 0.957 ± 0.013 0.507 ± 0.028 0.962 ± 0.031 0.674 ± 0.044 3.8 / 6
RaM-MSE (w/o Adapt.) 0.913 ± 0.028 0.953 ± 0.012 0.506 ± 0.024 0.966 ± 0.023 0.653 ± 0.030 5.2 / 6

RaM-RankCosine (w/ Adapt.) 0.940 ± 0.028 0.951 ± 0.017 0.514 ± 0.026 0.982 ± 0.012 0.675 ± 0.049 2.7 / 6
RaM-RankCosine (w/o Adapt.) 0.908 ± 0.023 0.955 ± 0.015 0.514 ± 0.025 0.970 ± 0.016 0.649 ± 0.019 4.5 / 6

RaM-ListNet (w/ Adapt.) 0.949 ± 0.025 0.962 ± 0.015 0.517 ± 0.029 0.981 ± 0.012 0.670 ± 0.035 1.6 / 6
RaM-ListNet (w/o Adapt.) 0.932 ± 0.034 0.961 ± 0.013 0.516 ± 0.029 0.968 ± 0.016 0.655 ± 0.015 3.2 / 6

F.4 ABLATION OF THE LIST LENGTH m

Note that the list length m in the training data could have a impact on the generalization ability of the
model (Lan et al., 2009; Tewari & Chaudhuri, 2015) and its impact on OOD generalization ability of
LTR algorithms is undiscovered (Chapelle et al., 2010). Besides, popular benchmarks in LTR (Qin
et al., 2010b; Qin & Liu, 2013; Chapelle & Chang, 2011; Dato et al., 2016) have different settings of
the list length, ranging from 5 to 1000.

Hence, to meet the settings of different LTR benchmarks and to better understand the sensitivity of
RaM-ListNet with respect to m, we conduct a careful ablation study of the setting of list length m,
with values varying in {10, 20, 50, 100, 200, 500, 1000, 1500, 2000}, as shown in Table 9.
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Table 9: 100th percentile normalized score in Design-Bench of RaM-ListNet with varying values of
m, where the best and runner-up results on each task are Blue and Violet. D(best) denotes the best
score in the offline dataset.

m Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Mean Rank

D(best) 0.565 0.884 0.400 0.439 0.467 /

10 0.916 ± 0.014 0.953 ± 0.016 0.508 ± 0.017 0.984 ± 0.007 0.655 ± 0.063 6.6 / 9
20 0.913 ± 0.026 0.954 ± 0.011 0.518 ± 0.022 0.972 ± 0.016 0.670 ± 0.043 6.2 / 9
50 0.930 ± 0.035 0.963 ± 0.014 0.524 ± 0.021 0.978 ± 0.014 0.653 ± 0.046 3.5 / 9

100 0.922 ± 0.024 0.963 ± 0.015 0.525 ± 0.020 0.967 ± 0.016 0.702 ± 0.129 3.4 / 9
200 0.927 ± 0.023 0.960 ± 0.017 0.526 ± 0.020 0.977 ± 0.015 0.650 ± 0.015 4.6 / 9
500 0.920 ± 0.028 0.962 ± 0.007 0.518 ± 0.028 0.975 ± 0.011 0.699 ± 0.128 4.0 / 9

1000 0.949 ± 0.025 0.962 ± 0.015 0.517 ± 0.029 0.981 ± 0.012 0.670 ± 0.035 3.4 / 9
1500 0.918 ± 0.030 0.961 ± 0.012 0.511 ± 0.025 0.971 ± 0.019 0.691 ± 0.127 5.8 / 9
2000 0.905 ± 0.035 0.958 ± 0.016 0.515 ± 0.027 0.967 ± 0.020 0.664 ± 0.043 7.5 / 9

From the results in Table 9, we observe that RaM-ListNet obtains the best performance when m = 100
or m = 1000, and it will undergo a score drop as m gets relatively large, which demonstrates the
need for a careful tuning of the list length.

F.5 RESULTS ON OOD METRICS

In this subsection, we also present the OOD-MSE results in Table 10 and OOD-AUPCC values
in Table 11. As the results deliver, RaM combined with RankCosine or ListNet perform poor in
OOD-MSE, while they rank the best two in OOD-AUPCC. Coupled with the fact that RaM obtains
the best performance in our main results (Table 2), results on OOD-MSE and OOD-AUPCC further
demonstrate that: 1) an algorithm with better OOD-AUPCC could result in better performance in
offline MBO, no matter what its OOD-MSE is; 2) ranking loss is more suitable than MSE for offline
MBO, since RaM obtains a better OOD-AUPCC compared to other regression-based methods.

Table 10: OOD-MSE of different methods in Design-Bench, where the best and runner-up results on
each task are Blue and Violet.

Method Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Mean Rank

Grad. Ascent 9.134 ± 0.821 0.444 ± 0.123 1.054 ± 0.229 5.543 ± 0.263 2.930 ± 0.171 3.6 / 7
COMs 9.084 ± 0.514 0.303 ± 0.104 0.930 ± 0.043 5.941 ± 0.201 2.541 ± 0.047 2.6 / 7
IOM 9.520 ± 0.948 0.299 ± 0.062 0.798 ± 0.041 8.779 ± 0.364 2.594 ± 0.069 3.0 / 7
ICT 160468.083 ± 354.495 71634.341 ± 101.262 8444.529 ± 60.098 0.163 ± 0.037 0.352 ± 0.060 4.6 / 7

Tri-Mentoring 160641.446 ± 111.371 71557.860 ± 25.979 8190.870 ± 1.785 0.115 ± 0.000 0.381 ± 0.030 4.4 / 7

RaM-RankCosine (Ours) 17.113 ± 0.174 1.503 ± 0.092 11.170 ± 0.293 18.799 ± 1.345 2.632 ± 0.129 5.2 / 7
RaM-ListNet (Ours) 25.011 ± 0.824 2.689 ± 0.249 8.999 ± 2.449 11.546 ± 3.295 2.408 ± 0.315 4.6 / 7

Table 11: OOD-AUPCC of different methods in Design-Bench, where the best and runner-up results
on each task are Blue and Violet.

Method Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Mean Rank

Grad. Ascent 0.363 ± 0.028 0.403 ± 0.002 0.731 ± 0.006 0.670 ± 0.017 0.518 ± 0.009 4.7 / 7
COMs 0.744 ± 0.015 0.727 ± 0.005 0.391 ± 0.028 0.433 ± 0.002 0.505 ± 0.001 4.4 / 7
IOM 0.649 ± 0.044 0.648 ± 0.085 0.436 ± 0.057 0.428 ± 0.007 0.515 ± 0.056 4.6 / 7
ICT 0.443 ± 0.095 0.549 ± 0.089 0.596 ± 0.100 0.658 ± 0.015 0.545 ± 0.023 4.6 / 7

Tri-Mentoring 0.346 ± 0.000 0.403 ± 0.000 0.740 ± 0.003 0.690 ± 0.000 0.571 ± 0.000 3.7 / 7

RaM-RankCosine (Ours) 0.492 ± 0.013 0.437 ± 0.013 0.713 ± 0.003 0.714 ± 0.004 0.551 ± 0.009 3.2 / 7
RaM-ListNet (Ours) 0.474 ± 0.045 0.628 ± 0.017 0.723 ± 0.004 0.709 ± 0.005 0.562 ± 0.008 2.8 / 7
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