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Abstract
As the parameter scale of large language mod-001
els (LLMs) grows, jointly training knowledge002
graph (KG) embeddings with model parameters003
to enhance LLM capabilities becomes increas-004
ingly costly. Consequently, the community has005
shown interest in developing prompt strategies006
that effectively integrate KG information into007
LLMs. However, the format for incorporating008
KGs into LLMs lacks standardization; for in-009
stance, KGs can be transformed into linearized010
triples or natural language (NL) text. Current011
prompting methods often rely on a trial-and-012
error approach, leaving researchers with an in-013
complete understanding of which KG input for-014
mat best facilitates LLM comprehension of KG015
content. To elucidate this, we design a series016
of experiments to explore LLMs’ understand-017
ing of different KG input formats within the018
context of prompt engineering. Our analysis019
examines both literal and attention distribution020
levels. Through extensive experiments, we indi-021
cate a counter-intuitive phenomenon: when ad-022
dressing fact-related questions, unordered lin-023
earized triples are more effective for LLMs’ un-024
derstanding of KGs compared to fluent NL text.025
Furthermore, noisy, incomplete, or marginally026
relevant subgraphs can still enhance LLM per-027
formance. Finally, different LLMs have distinct028
preferences for different formats of organizing029
unordered triples.030

1 Introduction031

Currently, researchers commonly utilize databases032

containing extensive factual knowledge, such as033

knowledge graphs (KGs), to reduce hallucination034

in language models and enhance the quality of their035

generated content (Pan et al., 2023). In the era036

of pre-trained language models (PLMs), integrat-037

ing KGs during the training process has garnered038

significant interest within the community (Zhang039

et al., 2019; Xiong et al., 2019; Su et al., 2021;040

Arora et al., 2022; Chen et al., 2022). As lan-041

guage models evolve, training large-scale language042
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Figure 1: KG is processed into different input formats
to provide knowledge to LLM.

models (LLMs) with billions of parameters using 043

KG data may encounter limitations, such as se- 044

vere resource constraints or lack of public access 045

to model architectures, training data, or training 046

methods (Ufuk, 2023). To address these problems, 047

recent researches increasingly focus on injecting 048

external knowledge into LLMs through prompt en- 049

gineering techniques (Sorensen et al., 2022; White 050

et al., 2023; Li et al., 2023; Wen et al., 2023). 051

This lightweight approach leverages KGs to en- 052

hance LLMs and demonstrates efficacy in address- 053

ing various challenges related to factual knowledge. 054

Some studies indicate that LLMs are highly sensi- 055

tive to input patterns, and different input formats 056

can impact model performance (Sclar et al., 2023; 057

Voronov et al., 2024; Zhan et al., 2024). 058

As a kind of highly structural knowledge, KG 059

can be input into LLM in various formats. As 060

shown in Figure 1, recent works process KGs into 061

unordered linearized triples and directly feed them 062

into LLMs (Baek et al., 2023; Sen et al., 2023). 063

Some other research employs KG-to-text genera- 064

tion approaches to convert structural knowledge 065

prompts into natural language (NL) text, aiming to 066

bridge the semantic gap between them (Ma et al., 067

2022; Xiong et al., 2022; Wu et al., 2023; Guo 068

et al., 2023). However, generating text from KGs 069

becomes a significant challenge when dealing with 070

subgraphs containing numerous triples (tens or 071
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even hundreds). Furthermore, in some tasks where072

factual accuracy is crucial, the necessity of narrow-073

ing the semantic gap between different formats of074

knowledge has not been further discussed, leaving075

researchers to rely solely on conjecture and experi-076

mentation. This situation underscores a significant077

opportunity in the field: comprehensing which in-078

put format is the most conducive to LLMs’ under-079

standing of KGs. Such advancements could pave080

the way for designing more reliable and efficient081

KG-related prompting strategies.082

In this study, we explore what KG input for-083

mats can help LLMs better understand structural084

knowledge in the context of prompt engineering085

(PE) (Sahoo et al., 2024). We ask LLMs (e.g., Chat-086

GPT1 and Vicuna (Zheng et al., 2024)) to answer087

complex questions based on different KG input for-088

mats. Compared to other KG-related tasks (such089

as KG-to-text generation and link prediction), the090

question-answering (QA) task is not only more dif-091

ficult but also offers a unique advantage in evalua-092

tion. Our questions encompass entity enumeration,093

counting, ranking, comparison, and truthfulness094

assessment, thereby offering a thorough evaluation095

of LLMs’ ability to comprehend externally injected096

KG. Moreover, the evaluation method for QA is097

objective, enabling a direct comparison of answers098

and thereby accurately assessing LLM responses.099

Specifically, we convert KG triples from multi-100

ple knowledge graph question answering (KGQA)101

datasets into NL text using a generative model.102

This transformation from triples to NL text is103

termed Triple-to-Text. This raises a concern: will104

the performance of LLMs in understanding KG105

affected by potential errors in the model-generated106

text? Therefore, leveraging a document relation ex-107

traction dataset DocRED (Yao et al., 2019), we also108

transform the organization of knowledge from NL109

text into unordered linearized triples, and dub the110

transformation Text-to-Triple. The results of these111

two complementary experiments highlight a critical112

insight: When addressing questions related to113

KG facts, compared to NL text, LLMs can bet-114

ter understand unordered structural knowledge115

and perform better.116

To elucidate this finding, we analyze LLMs at117

both literal and attention distribution levels. In-118

triguingly, our experiments reveal that providing119

noisy or incomplete subgraphs can still enhance120

LLM performance. Even when we remove all rea-121

1https://openai.com/chatgpt

soning paths directly related to the answer and only 122

provide adjacent subgraphs partially related to the 123

answer, we observe performance improvements. 124

Lastly, we observe that different LLMs show dis- 125

tinct preferences for prompt formats that are used 126

for organizing unordered triples. We hope these 127

findings provide the community with insights for 128

better designing KG-related prompt strategies to 129

enhance LLM performance. Our main findings are 130

as follows: 131

• When using external knowledge to answer 132

fact-intensive questions, LLMs prefer un- 133

ordered and abstract structural data over flu- 134

ent natural language text. Even in the absence 135

of apparent logical expressions, the model can 136

still identify key information relevant to the 137

answer. 138

• Noisy, incomplete and even marginally related 139

knowledge can still yield beneficial results in 140

model reasoning. When the knowledge does 141

not contain the key information necessary to 142

solve the question, but only a subgraph of 143

neighboring nodes to the key information, the 144

model’s reasoning ability can still be partially 145

enhanced. 146

• A prompt strategy that performs well on one 147

model may not be effective on another. This 148

suggests that researchers need to conduct 149

meticulous experiments for more universally 150

applicable knowledge injection prompts. 151

2 Related Works 152

Injecting KG knowledge into LLM during train- 153

ing. Injecting knowledge from KGs into LLMs 154

during training has been extensively researched. 155

This approach enables LLMs to grasp the seman- 156

tics of KG embeddings through collaborative train- 157

ing (Zhang et al., 2019; Xiong et al., 2019; Liu 158

et al., 2020; Su et al., 2021; Zha et al., 2022; Chen 159

et al., 2022). Although these methods have shown 160

progress in smaller LLMs, their applicability to 161

larger-scale LLMs (such as ChatGPT) presents 162

challenges that require careful consideration of 163

model architecture, training methods, and other 164

aspects. In addition, injecting knowledge within 165

training may result in insufficient and incorrect in- 166

ternalized knowledge in LLMs (Ji et al., 2023). 167

Integrating KG knowledge for LLM using 168

prompt engineering techniques. Integrating exter- 169

nal structural knowledge into prompts to enhance 170
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Figure 2: Six categories of our expansion method: (1) only providing core reasoning paths; (2) expanding each node
on each core path by 1 neighboring node, with a 50% probability of deleting this expansion node (deleted nodes are
represented by dashed lines); (3) expanding each node on each core path by 1 neighboring node and retaining all of
them; (4) expanding each node on each core path by 2 neighboring nodes and retaining all of them; (5) starting from
nodes on the core path, expanding to 2-hop neighboring nodes, expanding 1 node at a time; (6) starting from nodes
on the core path, expanding to 2-hop neighboring nodes, expanding 2 nodes at a time. According to this rule, (4)
and (5) contain the same number of nodes in the subgraph but exhibit different structures.

LLM capabilities has become a common strategy.171

Some studies (Baek et al., 2023; Sen et al., 2023)172

directly provide LLMs with linearized structural173

knowledge as part of the prompts. (Chen, 2023)174

linearizes structural data into unified table rows,175

inputting them into the LLM to generate answers176

based on contextual examples. StructGPT (Jiang177

et al., 2023) first selects entity and relation can-178

didates, then uses multiple rounds of retrieving179

interface calls and LLMs (such as ChatGPT) as180

rankers to obtain answers.181

However, other research suggests that inputs in182

NL format may more model-friendly. These stud-183

ies first convert structural knowledge into NL and184

then use it as prompts. UDT-QA (Ma et al., 2022)185

treats structural data as a form of knowledge ex-186

pansion, converting it into NL text and adding it187

to the document repository for retrieval. (Xiong188

et al., 2022) transform subgraphs extracted from189

SPARQL queries into NL paragraphs, incorporat-190

ing them into prompts to drive LLMs in generating191

NL questions. (Wu et al., 2023) believe that con-192

verting structural knowledge into high-quality NL193

text can substantially reduce the semantic gap be-194

tween them. They employ KG-to-text generation195

models to rewrite structural knowledge and use it to196

help LLMs answer questions. KnowledgeNaviga-197

tor (Guo et al., 2023) performs efficient reasoning198

on KGs and uses templates to convert structural199

reasoning paths into NL, guiding LLM reasoning.200

3 Methods201

We emphasize in Section 1 that QA tasks have202

unique advantages in evaluating LLM’s understand-203

ing of KGs. Thus, in our work, we define the perfor- 204

mance of LLMs in understanding KGs as: which 205

input format of KGs can better aid LLMs in accu- 206

rately answering questions? Thus, we introduce 207

two complementary analytical methods (Triple-to- 208

Text and Text-to-Triple) to examine how LLMs un- 209

derstand KG knowledge in different formats. In 210

Section 3.1, we gradually transform KGs into NL 211

text to test the LLMs’ understanding of knowledge 212

in various formats. In Section 3.2, we use human- 213

written documents to create KGs and conduct the 214

same evaluation to avoid potential errors from text 215

generated by KG-to-text models. 216

In Section 3.3, we further analyze this phe- 217

nomenon at both the literal level and attention dis- 218

tribution level to understand the reasons behind this 219

result. In Section 3.4, we assess how noisy, incom- 220

plete, subgraphs lacking reasoning paths impact 221

the performance of LLMs. Finally, in Section 3.5, 222

we explore various prompt strategies based on un- 223

ordered linearized triples to enhance LLMs. Our 224

objective is to observe whether different LLMs ex- 225

hibit consistent preferences for these methods. 226

3.1 LLM’s Understanding of Triple-to-Text 227

In this section, we aim to explore how LLM un- 228

derstands KG in different scales and input formats. 229

Therefore, during the experiments, we control two 230

variables: subgraph size and KG input format. 231

To quantitatively investigate the impact of the 232

subgraph scale for LLMs, we propose a control- 233

lable expansion method to regulate the scale of the 234

whole subgraph and the proportion of core reason- 235

ing paths within the subgraph. Specifically, we 236
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use the Wikidata terminal to retrieve all constraint237

variable IDs from the SPARQL corresponding to238

each question in the KGQA dataset. SPARQL, as a239

query language that can retrieve the exact answer to240

a question in the KG, can help us obtain all answers241

and corresponding multiple reasoning paths. More-242

over, to mitigate potential data leakage issues (Bal-243

loccu et al., 2024), we convert the retrieved vari-244

able IDs into English labels. As shown in Figure 2,245

the number of neighboring nodes expanded from246

the core reasoning path and the number of hops is247

controlled by the parameters expanded nodes and248

depth. We categorize our expansion method into249

six distinct types, which aid in evaluating the rea-250

soning performance of LLMs on these subgraphs251

with different structures. We describe more details252

in Appendix A.1 for core paths generation.253

To investigate the impact of different knowledge254

formats for LLMs, we refer to some intermedi-255

ate steps in recent works and devise five levels of256

KG injection methods: (1) Omitting KG subgraphs257

(Without Triples). (2) Providing unordered lin-258

earized triples (Unordered Triples). We randomly259

shuffle all triples in the KG. (3) Combining triples260

that share the same head or tail entities to form261

meta paths (Gao et al., 2020) (Meta Paths). (4) Uti-262

lizing heuristic rules to convert meta paths into NL263

texts (Wang et al., 2022) (Natural Language (By264

rules)). (5) Employing a text generation model to265

convert meta paths into NL texts (Tang et al., 2023)266

(Natural Language (By model)). Different combi-267

nations of extension and injection modes can form268

25 possible combinations (Omitting KG subgraphs269

is treated as one method, irrespective of the KG270

size). In the experimental section, we will analyze271

the outcomes of these combinations.272

3.2 LLM’s Understanding of Text-to-Triple273

The quality of NL text generated from KG may con-274

tain errors, potentially affecting the ability of LLMs275

to understand KGs in NL format. To eliminate such276

worry, it is essential to provide LLMs with human-277

written NL text and establish a mapping from text278

to KG. Thus, we utilize the document-level relation279

extraction dataset DocRED (Yao et al., 2019) as a280

basis to construct a dataset for evaluating LLMs’281

understanding of KGs. All documents in DocRED282

are human-written, and all mapped triples are man-283

ually annotated and aligned with entities and rela-284

tions in Wikidata. This dataset emphasizes cross-285

sentence reasoning, allowing the mapped triples286

within each document to form a complete, small-287

Documents

Completed KG

1-hop Question
2-hop Question
3-hop Question

Linearized KG / Documents +
LLM

+

1-hop Question
2-hop Question
3-hop Question Generate 

multi-hop 
questions

Figure 3: We employ a completed KG mapping with
a document for generating fact-related questions, and
evaluate the performance of LLM in answering these
questions with different knowledge formats.

scale KG. We consider this small-scale complete 288

KG as a complete structural representation of all en- 289

tities and relations involved in the document. Based 290

on these small-scale KGs, we can extract reasoning 291

paths of different hops to generate questions. 292

Specifically, to generate QA pairs from each 293

document, we refer to the dataset construction ap- 294

proach from LC-QuAD 2.0 (Dubey et al., 2019). 295

We first fill the triples into various multi-hop tem- 296

plates to construct template questions, then use 297

ChatGPT to paraphrase these questions to ensure di- 298

versity and complexity. We generate 1-hop, 2-hop, 299

and 3-hop questions to evaluate the LLM’s ability 300

based on a complete KG. As shown in Figure 3, 301

the input format for the KG is categorized into un- 302

ordered triples and human-written NL documents. 303

We separately provide the unordered triples and 304

human-written NL documents to the LLM to an- 305

swer the questions. We present some example ques- 306

tions generated from the dataset in Appendix A.2. 307

3.3 Analysis of LLM’s Understanding 308

To conduct a deeper analysis of this phenomenon, 309

we analyze LLM’s response at both the literal level 310

and the attention distribution level. 311

At the literal level, we directly inquire about 312

LLM’s preference for different types of knowledge. 313

For fact-related questions, LLM indicates a pref- 314

erence for choosing linear triples. In contrast, for 315

open-domain questions that require divergent think- 316

ing or more comprehensive descriptions, LLM may 317

exhibit a preference for textual knowledge. The 318

responses from LLMs suggest that they retrieve 319

facts more easily and provide accurate answers 320

from unordered triples compared to NL text. In Ap- 321

pendix A.3, we present a case of LLM’s response 322

to a fact-related question. 323

At the attention distribution level, we observe 324

the proportion of attention that the models allocate 325
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to the correct answers within the input. The in-326

put knowledge is divided into triples and NL text.327

In the final layer of the model, we sum the atten-328

tion between each token and the final token (i.e.,329

the model-generated prediction label q) across all330

heads, and normalized all values to obtain the at-331

tention proportion of q to each token.332

We focus on the attention proportion of q to-333

wards the answers within the distribution. It re-334

flects the extent to which the LLM concerns the335

answers in the provided knowledge. A higher pro-336

portion suggests a greater likelihood that the model337

will include the answer in its generated response.338

Considering that the number of answer occurrences339

may vary across different formats of knowledge,340

we calculate the average attention proportion for341

each answer to ensure fairness. The model’s av-342

erage attention proportion towards the answer is343

Att = 1
n

∑n
i=1Attansi,q, where Attansi,q repre-344

sents the attention proportion between the tokens345

in the answer i and the prediction label q, and n346

is the total number of occurrences of the answer347

tokens in the knowledge text. We employ two fair348

comparison knowledge prompting modes: (1) pro-349

viding the LLM with a single type of knowledge350

separately (triples or NL), and (2) providing the351

LLM with both types of knowledge simultaneously352

(triples and NL). These two prompting strategies353

are detailed in Appendix A.4.354

3.4 LLM’s Robustness to Noisy or Incomplete355

Sub-graphs356

In order to assess the capacity of LLM to com-357

prehend noisy sub-graphs, we systematically sab-358

otaged the external knowledge within the inject-359

ing sub-graphs. Specifically, we employ three ap-360

proaches to alter the sub-graphs: (1) Nodes are361

proportionally deleted randomly. (2) Nodes are362

proportionally replaced with random irrelevant KG363

nodes. (3) All core reasoning paths in the sub-364

graph are removed. To ensure a smooth transition365

when replacing and deleting elements based on per-366

centages, we employ the max expanded sub-graph367

(expanded nodes=2, depth=2, details can be found368

in Appendix A.1). The deletion and replacement369

ratio ranges from 10% to 90%.370

The way to delete the core reasoning path is to371

delete all the green nodes in Figure 3. Deleting the372

core reasoning path can be viewed as a complete373

destruction of the path from the start-point node to374

the target node, preventing LLM use other nodes375

as intermediate steps to reach the target.376

3.5 KG Prompt Strategies 377

Based on the findings of this study, we propose 378

some strategies that leverage KG information to 379

enhance the prompting of LLMs and evaluate 380

their impact on LLM performance. In practical 381

scenarios, triples serve as external data, which 382

can be utilized to provide relevant knowledge 383

to LLMs through retrieval-augmented generation 384

(RAG) techniques (Yu et al., 2023; Asai et al., 2023; 385

Tang and Yang, 2024). Consequently, we employ 386

BERT as a scorer to retrieve triples from KG. The 387

relevance score S of a triple t to a question q is 388

calculated as S = BERT (t, q). 389

In order to find a universal prompting strategy 390

suitable for LLMs, we select the top 100 triples 391

from the KG with the highest S as candidates and 392

perform the following operations on these triples: 393

1) Grouping: Triples are divided into three groups 394

based on two thresholds, namely most relevant, 395

moderately relevant, and least relevant triples. 2) 396

Ranking: We sort the candidate triples in descend- 397

ing order of S without displaying the scores. 3) 398

Scoring: We append the S to the triples to indicate 399

their related confidence to the question, providing 400

a reference for the LLM. Appendix A.5 illustrates 401

these three types of inputs and the training detail 402

of BERT-based scorer. 403

4 Experiment 404

In this section, we first set up the experiments, then 405

answer five questions about how LLM understands 406

KGs using the methods introduced in Section 3. 407

4.1 Experimental Setup 408

4.1.1 Evaluation metrics 409

We ask the LLMs to respond in a unified format 410

to facilitate evaluation, subsequently, we calcu- 411

late the string similarity between the predicted an- 412

swers and the gold standard answers. The accu- 413

racy of responses to each question is defined as: 414

Accuracy = Ncorrect/Ntotal. Detailed informa- 415

tion regarding the input format and metric settings 416

are discussed in Appendix A.6. 417

4.1.2 Datasets and LLMs 418

Wikidata (Vrandečić and Krötzsch, 2014) is a large- 419

scale, high-quality KG that is frequently updated. 420

We select three KGQA datasets based on Wikidata, 421

which include SPARQL queries: QALD-7 (Usbeck 422

et al., 2017), LC-QuAD 2.0 (Dubey et al., 2019), 423

and KQAPro (Cao et al., 2022). These datasets 424
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Knowledge Injection Method
Without Triples Unordered Triples Meta Paths Natural Language (By rules) Natural Language (By model)

Expanded
Node Ratio

Expanded
Nodes

Hop
ChatGPT Vicuna 7b Vicuna 13b ChatGPT Vicuna 7b Vicuna 13b ChatGPT Vicuna 7b Vicuna 13b ChatGPT Vicuna 7b Vicuna 13b ChatGPT Vicuna 7b Vicuna 13b

0% 0 0 71.45 14.35 60.82 84.01 74.59 78.02 84.01 70.00 73.29 75.07 60.71 71.44 73.62 60.33 65.65
33.33% 0.5 1 71.45 14.35 60.82 84.00 66.44 79.42 84.00 66.38 76.18 76.04 53.61 74.59 69.28 46.81 68.79

50% 1 1 71.45 14.35 60.82 84.01 72.41 79.90 84.01 72.19 73.14 71.21 39.76 61.54 57.68 38.60 52.85
66.67% 2 1 71.45 14.35 60.82 84.01 67.34 81.11 84.01 60.05 77.00 68.55 47.67 64.69 59.86 47.00 55.27
66.67% 1 2 71.45 14.35 60.82 84.01 58.65 78.21 84.01 58.55 73.14 68.31 48.26 57.68 54.54 38.84 52.76

QALD-7 (64)

85.72% 2 2 71.45 14.35 60.82 82.56 65.70 77.00 81.35 60.77 74.30 67.34 50.92 50.91 63.96 37.54 60.10
0% 0 0 16.42 2.60 13.47 50.80 36.76 46.62 50.29 33.47 39.53 23.28 11.32 17.34 21.12 10.04 16.88

33.33% 0.5 1 16.42 2.60 13.47 51.61 36.37 45.75 50.16 31.88 39.12 26.98 14.13 21.10 23.32 10.54 18.12
50% 1 1 16.42 2.60 13.47 51.71 35.95 42.43 48.55 30.73 38.22 24.47 12.12 20.47 20.49 10.79 17.70

66.67% 2 1 16.42 2.60 13.47 51.24 35.18 43.73 47.57 29.38 36.29 23.13 12.59 18.91 19.34 9.74 17.04
66.67% 1 2 16.42 2.60 13.47 51.35 33.97 44.96 48.82 30.11 37.66 23.85 11.52 19.69 21.00 9.44 17.27

LC-QuAD 2.0 (2000)

85.72% 2 2 16.42 2.60 13.47 50.60 32.84 42.98 47.23 28.53 36.20 21.80 10.80 18.03 17.94 8.92 15.14
0% 0 0 15.77 3.55 10.29 49.33 23.10 36.69 48.10 22.09 27.74 34.93 12.19 18.88 27.15 10.88 15.77

33.33% 0.5 1 15.77 3.55 10.29 51.45 25.39 33.33 49.97 23.35 28.61 29.89 12.08 18.79 23.57 10.68 15.54
50% 1 1 15.77 3.55 10.29 52.54 25.64 31.60 50.78 24.72 28.22 28.80 12.39 19.07 23.60 10.51 15.30

66.67% 2 1 15.77 3.55 10.29 52.46 28.47 31.04 50.00 25.42 27.24 28.19 12.36 18.93 22.54 9.70 14.77
66.67% 1 2 15.77 3.55 10.29 54.19 26.85 32.72 51.45 25.39 27.77 28.61 11.27 16.89 23.33 8.47 12.67

KQAPro (2000)

85.72% 2 2 15.77 3.55 10.29 54.03 27.63 32.75 51.51 25.70 28.58 22.60 10.23 15.30 17.20 7.49 11.49

Table 1: The understanding of KG subgraphs by LLMs.

serve as the foundation for generating our datasets.425

QALD-7 contains 215 training questions and 50426

test questions. LC-QuAD 2.0 comprises 24k train-427

ing questions and 6046 test questions. KQAPro428

includes 94k training questions and 10k test ques-429

tions. From these datasets, we use a SPARQL end-430

point to retrieve answers from Wikidata, filtering431

out questions with incorrect or unanswerable re-432

sults. We also delete the questions where the core433

reasoning path cannot be extended to two hops,434

such as when the path contains numerical or other435

attribute information. After filtering, QALD-7 re-436

tains 64 questions. For LC-QuAD 2.0 and KQAPro,437

considering the cost of calling the API, we ran-438

domly select 2000 questions from each dataset.439

To address concerns raised in Section 3.1 re-440

garding the decline in LLM performance due to441

the quality of text generated by models, we utilize442

human-written documents from the DocRED (Yao443

et al., 2019) as the NL representation of the KG.444

This dataset consists of 5053 Wikipedia documents,445

each associated with a set of manually annotated446

KG triples. We select 800 documents that contain447

at least 3-hop paths and generate 1-hop, 2-hop, and448

3-hop questions for each document.449

We employ ChatGPT, GPT-4o2, LLaMA33, Vi-450

cuna 7B and 13B (Zheng et al., 2024) to evaluate451

the data, with all model parameters fixed. Chat-452

GPT and Vicuna represent two mainstream series453

of LLMs, both demonstrating decent performance.454

Additionally, our hardware resources allow us to an-455

alyze attention distribution in Vicuna models with456

7B and 13B parameters, enabling a performance457

comparison of different scale models. GPT-4o and458

LLaMA3 are LLMs released after 2023. We con-459

2https://openai.com/index/hello-gpt-4o
3https://llama.meta.com/llama3

sider GPT-4o as the latest iteration of ChatGPT and 460

LLaMA3 as the newest iteration of Vicuna. Our 461

aim is to use these new models to observe whether 462

their ability to understand KGs of different input 463

formats has changed over time. 464

4.2 Does unordered structural knowledge 465

facilitate a better understanding of KG for 466

LLMs than fluent NL text? 467

We conduct a horizontal comparison of the data 468

in Table 1. The best results, highlighted in bold, 469

indicate that the unordered triples consistently out- 470

perform other methods. The limited size (only 471

64 questions) of the QALD-7 dataset initially ob- 472

scures the advantages of our method. However, as 473

the complexity of the questions and the scale of 474

the data increase (as seen in LC-QuAD 2.0 and 475

KQAPro), the unordered triples demonstrate better 476

performance in the knowledge prompt. Specifically, 477

ChatGPT, when using unordered triple knowledge 478

to answer questions, achieves over a 30% gain on 479

LC-QuAD 2.0 and at least a 20% gain on KQAPro 480

compared to using NL text. The Vicuna series mod- 481

els also exhibit significant gains. This suggests that 482

unordered triple knowledge can aid LLMs in better 483

answering multi-hop fact-intensive questions. 484

800 questions ChatGPT Vicuna 7b Vicuna 13b GPT4o LLaMA3

1-hop Text 25.25 14.88 27.62 29.16 34.58
1-hop Triple 73.38 50.13 73.26 73.38 78.97
2-hop Text 14.25 9.50 15.37 14.77 19.72
2-hop Triple 19.88 11.00 16.38 19.46 21.76
3-hop Text 14.00 8.63 13.87 12.67 17.45
3-hop Triple 18.25 10.50 14.75 19.38 25.71

Table 2: The performance of LLM in answering multi-
hop questions using complete KGs and NL text.

To dispel doubts about the quality of text gener- 485

ated by the model, we construct a QA dataset based 486

on DocRED. The data in Table 2 indicate that, com- 487
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pared to NL text, LLMs achieve significant gains488

when utilizing triples. Notably, ChatGPT achieves489

a remarkable 48.13% enhancement in 1-hop ques-490

tions by using linearized triple knowledge prompts.491

For 2-hop and 3-hop questions, the improvements492

are 5.63% and 4.25%, respectively.493

Furthermore, to dispel doubts that this phe-494

nomenon might change with the development of495

the models’ version, we further evaluate all data496

on GPT-4o and LLaMA3. Our findings reveal that497

the advantage of triple knowledge in understanding498

KGs by LLMs has not diminished with the ad-499

vancement of these models. This further eliminates500

our concern: the decline in performance on textual501

knowledge is not due to poor quality knowledge502

representation. Moreover, the benefits of triple503

knowledge for understanding KGs remain evident504

even in the latest LLMs.505

4.3 Does the scale of subgraphs affect the506

reasoning capabilities of LLMs in507

reasoning?508

We conduct a vertical comparison of the data in509

Table 1. The best results, underlined, represent510

the maximum values for each subgraph expan-511

sion within each dataset. We find that subgraphs512

with a lower proportion of core reasoning paths513

(i.e. larger subgraphs) do not necessarily result514

in the weakest model reasoning performance. For515

instance, on KQAPro, the performance of LLMs516

gradually decreases with the increase in the sub-517

graph scale for knowledge input in an NL format.518

However, this trend does not hold for LC-QuAD519

2.0. This indicates that within the permissible in-520

put length, LLMs can retrieve useful knowledge521

from the background to answer questions. Addi-522

tionally, although the configurations of ’expanded523

nodes=2’ with ’depth=1’ and ’expanded nodes=1’524

with ’depth=2’ expand different subgraph struc-525

tures, our results suggest LLM remains insensitive526

to the structure variation.527

4.4 Why do LLMs show a understanding528

preference for specific input formats of529

KG?530

We need to further analyze the underlying causes of531

this phenomenon. At the literal level, by querying532

the LLM itself, we observe that it has a clear prefer-533

ence for the type of knowledge input when solving534

fact-intensive questions. LLMs are capable of re-535

trieving answers in unordered triples. The model’s536

detiled responses are provided in Appendix A.3.537

Vicuna 7b Vicuna 13b

KQAPro LCQUAD 2.0 KQAPro LCQUAD 2.0

Triple Text Triple Text Triple Text Triple Text

Single 3.80 2.46 2.67 2.08 4.69 2.78 3.78 2.10

Double 1.31 1.12 2.38 0.89 2.72 1.62 2.57 1.40

Table 3: Average attention proportion to the answer for
all questions.

At the attention distribution level, the experi- 538

mental results of the method used in Section 3.3 539

are presented in Table 3. For each question, there 540

are two input modes: providing only one type of 541

knowledge in the prompt (Single) and providing 542

both types of knowledge simultaneously (Double). 543

The experimental results indicate that, regardless 544

of whether both types of knowledge are provided 545

simultaneously or separately, the model exhibits a 546

higher attention proportion to the answer in linear 547

triples. This indicates that the LLMs do not re- 548

ject less fluent knowledge prompts and are capable 549

of retrieving answers from unordered knowledge. 550

Therefore, utilizing linearized triples as knowledge 551

facilitates the appearance of the correct answer. 552

4.5 How do LLMs perform when handling 553

subgraphs of KGs that are noisy, 554

incomplete, or lack core reasoning paths? 555

We perform deletion and replacement operations 556

on subgraphs based on the parameters of expanded 557

nodes=2 and depth=2 from Section 3.1. The dele- 558

tion simulates an incomplete KG scenario, and the 559

replacement substitutes some nodes with unrelated 560

nodes in KG to generate false factual information, 561

thereby simulating noisy subgraphs. 562

Based on Table 4, we have two preliminary find- 563

ings: 1) The random replacement of nodes in KG 564

has a more significant impact on the inference per- 565

formance of LLM compared to the random dele- 566

tion. Incorrect facts are more likely to result in 567

erroneous model outputs. 2) Despite larger mod- 568

els demonstrating superior answering performance, 569

they exhibit a greater performance loss when sub- 570

jected to random replacement and deletion of KG 571

knowledge. There exists an inverse proportionality 572

between a model’s robustness and its size. 573

More importantly, we find that even when we 574

delete and replace up to 90% of the triples, the abil- 575

ity of the LLM to answer questions still improves 576

compared to having no information at all. Thus, in 577

Table 6, we specifically removed all core reasoning 578

paths within a subgraph and observed that as long 579
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ChatGPT Vicuna 7b Vicuna 13b
QALD-7 LC-QuAD 2.0 KQAPro QALD-7 LC-QuAD 2.0 KQAPro QALD-7 LC-QuAD 2.0 KQAPro

Ratio Delete Replace Delete Replace Delete Replace Delete Replace Delete Replace Delete Replace Delete Replace Delete Replace Delete Replace
0% 82.56 82.56 50.60 50.60 54.03 54.03 65.70 65.70 32.84 32.84 27.63 27.63 77.00 77.00 42.98 42.98 32.75 32.75

10% 82.08 80.62 47.84 47.74 51.57 52.04 64.44 58.89 31.07 32.20 26.12 26.23 72.85 78.21 41.66 40.55 31.32 31.24
20% 82.08 80.62 46.23 46.02 49.66 49.91 70.00 58.65 31.83 29.59 26.09 26.17 75.51 81.16 39.43 39.43 30.96 31.07
30% 80.39 79.90 44.18 43.60 46.95 46.87 62.95 59.08 29.51 28.10 23.52 24.58 74.59 78.70 38.57 38.85 28.94 29.81
40% 80.39 79.90 42.49 42.41 43.82 44.10 55.27 57.68 27.83 27.47 23.60 23.94 77.00 73.84 36.12 36.83 27.93 28.19
50% 80.39 80.39 40.78 40.28 41.02 41.33 66.86 59.66 27.78 26.03 21.95 21.87 76.52 74.35 34.57 35.09 26.26 27.88
60% 80.39 80.39 36.25 35.99 37.28 37.08 63.24 61.30 24.50 22.56 21.37 19.16 75.31 78.21 33.50 32.94 25.53 25.36
70% 75.56 75.56 31.87 31.72 32.33 32.02 63.00 48.74 21.82 19.44 18.06 16.69 73.62 68.07 30.54 27.36 23.01 23.38
80% 65.85 63.91 26.28 25.82 27.21 27.46 50.00 47.25 18.54 16.50 14.57 13.49 65.17 66.14 25.56 23.79 20.41 20.25
90% 62.42 54.30 19.16 17.64 19.91 19.77 46.64 45.02 13.21 11.98 10.49 9.82 57.51 56.23 18.48 17.51 14.15 14.90

Degradation
Ratio

20.14 28.26 31.44 32.96 34.12 34.26 19.06 20.68 19.63 20.86 17.14 17.81 19.49 20.77 24.50 25.47 18.60 17.85

Table 4: Randomly delete and replace nodes in the subgraph. The Degradation Ratio quantifies the discrepancy
between the model’s peak performance and its poorest performance. Values in bold denote the maximum, while
underlined values signify the second highest. Larger models exhibit the most performance degradation when faced
with attacks.

ChatGPT Vicuna 7b Vicuna 13b
Data Set

Grouping Ranking Scoring Grouping Ranking Scoring Grouping Ranking Scoring
QALD-7 84.11 84.11 84.11 63.84 64.54 53.64 75.52 77.81 72.4

LC-QuAD 2.0 48.71 50.01 52.48 33.49 35.72 26.14 45.1 45.13 42.57
KQAPro 50.25 52.29 54.03 27.74 31.32 24.92 36.05 37.64 35.12

Table 5: KG prompt engineering. Distinct models exhibit unique preferences towards various prompting methods.

Dataset ChatGPT Vicuna 7b Vicuna 13b
QALD-7 79.42 (71.45) 53.73 (14.35) 72.13 (60.82)

LC-QuAD 2.0 27.51 (16.42) 18.37 (2.60) 23.17 (13.47)
KQAPro 30.09 (15.77) 18.82 (3.55) 22.18 (10.29)

Table 6: LLMs use subgraph without reasoning path to
answer questions. In brackets are the performance of
the model without any knowledge (form Table 1).

as some triples were present (even if they weren’t580

particularly relevant), the QA performance of LLM581

remained superior to providing no information. We582

hypothesize that these triples still stimulate LLM583

thinking with question-related information, thus584

driving the model’s ability to generate accurate an-585

swers. Some cases are shown in the Appendix A.7.586

4.6 What factors should be considered when587

designing prompt frameworks that588

leverage KGs as external knowledge?589

The results of the knowledge prompt injection590

methods, designed in Section 3.5, are shown in591

Table 5. For grouping, we require the LLM to592

focus on higher relevant triples, thereby aiding in593

narrowing the search scope. For ranking, we expect594

the LLM to prioritize the foremost information in595

a sequence of triples. For scoring, we hope that the596

score will assist LLMs in retrieving relevant triples597

from the knowledge.598

We observed that the performance of various599

prompt strategies is inconsistent across different600

models. ChatGPT favors the knowledge injection601

method that incorporates confidence scores, while 602

the Vicuna series exhibits a preference for ranking 603

methods. This discrepancy may be attributed to 604

variations in the training data and inherent tenden- 605

cies of the respective models. This finding indicates 606

that when designing prompting methods, the appli- 607

cability of a given lightweight method across mul- 608

tiple models should be considered. Additionally, it 609

is essential to conduct comprehensive experiments 610

to demonstrate the effectiveness of the prompts. 611

5 Conclusion 612

In this study, we make an extensive study on var- 613

ious input formats of KG injecting into the LLM 614

and obtain key insights: for fact-intensive ques- 615

tions, LLMs prefer unordered linear triples over NL 616

text. Indeed, by filtering out irrelevant information 617

and focusing on details, LLMs can enhance accu- 618

racy beyond our initial expectations. Interestingly, 619

unordered linear triple inputs can improve model 620

performance even when the background knowl- 621

edge does not contain information that directly 622

aids reasoning. Moreover, the varying preferences 623

on KG-related prompt strategies among different 624

models should be a focal point for the commu- 625

nity, necessitating thorough experimental valida- 626

tion when proposing prompt frameworks. These 627

findings offer valuable guidance for refining KG- 628

related prompt strategies and underscore the impor- 629

tance of linear triple knowledge in LLMs handling 630

fact-related tasks. 631
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6 Limitations632

Despite extensive research on the understanding of633

LLMs to KGs, this study has some limitations.634

Due to the resource cost associated with API635

calls and constraints on the length of the paper, it636

is difficult for us to evaluate the dataset designed in637

Table 1 using the latest LLMs. Although Table 2638

suffices to illustrate the main arguments presented639

in this paper, a more granular subgraph expansion640

and KG input format would facilitate a deeper in-641

vestigation into the current versions of LLMs and642

their attention to KG knowledge. In future work,643

we plan to employ multiple versions of the models644

to evaluate all our experiments comprehensively.645

We utilize the QALD-7 dataset (Usbeck et al.,646

2017) in our research. However, the limited num-647

ber of questions in this dataset may introduce bias648

into the evaluation results. Moreover, our study is649

restricted to datasets based on Wikidata, inherently650

limiting the choice of KGQA datasets. Nonetheless,651

as the largest continuously updated and developed652

knowledge base, Wikidata remains the optimal653

choice. Other KGs, including DBpedia (Lehmann654

et al., 2015) and YAGO (Pellissier Tanon et al.,655

2020), have ceased updates. In future work, we656

will consider evaluating our model on different657

KG-based datasets.658
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A Appendix874

A.1 Core Reasoning Path Generation875

We first find all the reasoning paths in the "where"876

based on the SPARQL4 query corresponding to a877

question. Because there are variables in this rea-878

soning path, we assign values to all variables that879

meet the conditions through the SPARQL query. If880

the answer to a question is an entity, then accord-881

ing to our query assignment method, the answer882

must exist in the reasoning path. For example, for883

the question "Who are the actors in The Big Bang884

Theory?" we will get multiple reasoning paths (be-885

cause it is a simple question, there is only one triple886

in the reasoning path): (The Big Bang Theory, cast887

member, Jim Parsons), (The Big Bang Theory, cast888

member, Johnny Galecki), (The Big Bang Theory,889

cast member, Kaley Cuoco), etc. These answers890

exist in the reasoning path.891

We employ a multi-hop question to demonstrate892

our approach. For the question: "Which is the893

island nation for the country of pound sterling?"894

The corresponding SPARQL query is articulated as895

follows: select distinct ?obj where { wd:Q25224896

wdt:P17 ?obj . ?obj wdt:P31 wd:Q112099 }897

4https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial

In this query, "wd:Q25224" represents 898

"pound sterling," "wdt:P17" represents "coun- 899

try," "wdt:P31" represents "instance of," and 900

"wd:Q112099" represents "island country." 901

Thus, the query seeks to find entities that are 902

both countries using the pound sterling and 903

island nations. Upon execution, we extract all 904

pertinent variables from the query and assign them 905

appropriate values, such as attributing "United 906

Kingdom" to "?obj." Consequently, we derive the 907

logical sequence: [<pound sterling> <country> 908

<United Kingdom> , <United Kingdom> <instance 909

of> <island country>]. Then we can query the 910

neighbors and expand the entity nodes [<pound 911

sterling>, <United Kingdom>, <island country>] 912

in this reasoning path according to the method 913

described in Section 3.1. 914

A.2 Question Generation From DocRED 915

We employ ChatGPT to re-express (paraphrase) 916

all questions, which were initially devised using 917

manual templates. ChatGPT was not involve in the 918

direct generation of multi-hop questions or in an- 919

swering them during the dataset construction phase. 920

We construct some question templates for the multi- 921

hop scenario and designate the terminal node of the 922

multi-hop path as the answer, thereby establishing 923

the question-answer pair before ChatGPT’s involve- 924

ment. To guarantee the diversity and fluency of the 925

questions, ChatGPT is utilized to rephrase the pre- 926

generated template questions. Subsequently, we 927

conduct manual reviews of the paraphrased outputs 928

to ensure the high quality of the question-answer 929

pairs. An example is shown in Table 7. 930

A.3 Literal Level Analysis 931

We first asked ChatGPT about its preference for 932

knowledge type. 933

• Q: Which external knowledge would you 934

choose to help you accurately answer the ques- 935

tion: unordered structured triples or fluent 936

text? 937

• LLM Response: As an AI language model, 938

I don’t have personal preferences. However, 939

when it comes to accurately answering ques- 940

tions, both unordered structured triples and 941

fluent text can be useful sources of informa- 942

tion depending on the nature of the question 943

and the available data. When receiving struc- 944

tured triples, I can directly search for and re- 945

trieve the relationships between relevant en- 946
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Reasoning Path Template Question Answer Paraphrased Question
1-hop [Gaozong, date of death, 1187] What is the date of death of Gaozong? 1187 When did Gaozong die?

2-hop

[Lin’an, located in the administrative
territorial entity, China], [China,
contains administrative territorial
entity, Bianjing]

What administrative territorial entity are
contained in the administrative territorial
entity where Lin’an is located?

Bianjing
Which administrative territorial entities
are encompassed within the administrative
territorial entity that includes Lin’an?

3-hop
[Huizong, child, Qinzong],
[Qinzong, sibling, Gaozong],
[Gaozong, date of birth, 12 June 1107]

What is the date of birth which is the
sibling of the Huizong’s child?

12 June 1107 When was Huizong’s child’s sibling born?

Table 7: 1-hop, 2-hop, and 3-hop questions generated from a document.

tities and attributes, thereby providing more947

targeted answers. For instance, if I know a948

question pertains to a specific attribute of a949

particular entity, I can directly extract relevant950

information to answer the question. However,951

textual input has its own advantages. Text can952

contain more contextual information and se-953

mantic details, which might be more helpful954

for open-ended questions and those requiring955

a deeper understanding of the context. More-956

over, textual input can also include narratives,957

discourses, and descriptions, all of which are958

crucial for providing more comprehensive and959

detailed answers. Ultimately, the choice be-960

tween unordered structured triples and fluent961

text depends on the specific question and the962

type of information required.963

We gave ChatGPT the question and the related964

knowledge and asked it to choose one of the knowl-965

edge formats as the answer.966

• Q: I can provide you with two kinds of knowl-967

edge: unordered triple structured knowledge968

or more fluent textual knowledge. In order to969

accurately answer the question "Who lives in970

New York City and has ISNI 0000 0001 1475971

6720?" you must choose one of them and tell972

me why. (Knowledge...)973

• LLM Response: To accurately answer the974

question "Who lives in New York City and975

has ISNI 0000 0001 1475 6720?" the most976

suitable choice would be the unordered triple977

structured knowledge. This is because the978

question requires specific information about979

an individual’s residence in New York City980

and their associated ISNI (International Stan-981

dard Name Identifier) number. Unordered982

triple structured knowledge allows for precise983

retrieval of relevant facts, such as matching984

the ISNI with the individual’s location. Flu-985

ent textual knowledge, on the other hand, is986

more adept at generating coherent and con- 987

textually relevant responses based on a given 988

prompt. It excels at understanding and gen- 989

erating NL text but may not be as effective 990

in retrieving specific structured information 991

like the one required in this case. By utiliz- 992

ing unordered triple structured knowledge, we 993

can directly access the required information 994

about individuals residing in New York City 995

and cross-reference it with their associated 996

ISNI numbers to provide an accurate answer 997

to the question. 998

A.4 Attention Distribution Level Analysis 999

The last token of the input sequence is considered 1000

the model’s predicted label. As illustrated in fig- 1001

ure 4, we calculate the average attention proportion 1002

between the last token (i.e., the colon ":") and the 1003

answer words (highlighted in gray). We observe 1004

that, in both input modes, unordered triples exhibit 1005

a higher proportion of attention weight. In our ex- 1006

periments, we evaluate all data in the dataset and 1007

compute the average values, finding that the overall 1008

observations are consistent with this example. 1009

A.5 Scorer Training and Prompt Strategies 1010

We utilize the BERT-Base (Devlin et al., 2018) as 1011

the foundation for our model. The training data 1012

comprises triples and corresponding questions. We 1013

partition the dataset into training and test sets in 1014

an 8:2 ratio. Triples in the reasoning path linked 1015

to the question are labeled as positive examples; 1016

otherwise, they are designated as negative exam- 1017

ples. For the cross-encoder, the batch size is set 1018

at 50, we experimented with initial learning rates 1019

of {5e-4, 2e-5, 5e-5, 2e-5}, and the learning rate 1020

decays every 3 epochs. We set the multiplicative 1021

factor, gamma, for updating the learning rate to 0.2. 1022

Upon training the model, it exhibits an accuracy 1023

of 98.89% in determining whether triples are per- 1024

tinent to the question, i.e., whether they are part 1025

of the crucial reasoning path. This cross-encoder 1026

is employed to assign scores to the questions and 1027
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Question: Who lives in New York City and 
has ISNI 0000 0001 1475 6720?
Answer:

Refer to this information to better answer 
the question:

(Romeo & Juliet, nominated for, Satellite 
Award for Best Cinematography), (John 
Leguizamo, instance of, human), (John 
Leguizamo, residence, New York City)…

Question: Who lives in New York City and 
has ISNI 0000 0001 1475 6720?
Answer:

Refer to this information to better answer 
the question:

Romeo & Juliet was nominated for a 
Satellite Award for Best Cinematography. 
Romeo & Juliet stars John Leguizamo in 
the title role. John Leguizamo was born …

:

Last layer

Question: Who lives in New York City and has ISNI 0000 0001 1475 6720?
Answer:

(Romeo & Juliet, nominated for, Satellite Award for Best Cinematography), (John 
Leguizamo, instance of, human), (John Leguizamo, residence, New York City)…

Refer to this information to better answer the question:

Romeo & Juliet was nominated for a Satellite Award for Best Cinematography. 
Romeo & Juliet stars John Leguizamo in the title role. John Leguizamo was born …

:

Last layer

3.31% 2.85%

(b)

(a)

Figure 4: There are two input modes: in (a), we eliminate the interference between the two formats of knowledge
and provide the LLM with only one type of knowledge separately. In (b), we provide the LLM with both types of
knowledge simultaneously to observe the extent to which the LLM focuses on the answer words from different
types of knowledge.

their associated triples. By setting thresholds of1028

0.3 and 0.8 at either end to segment the triples, we1029

can categorize them into high, medium, and low1030

correlation groups relative to a question.1031

After the assignment of scores to triples by the1032

cross-encoder, Table 8 illustrates the organizational1033

format of the structured knowledge to the ques-1034

tion "What trade structure did Straight to the point1035

Gehry design?". This part is incorporated into the1036

prompt as knowledge. For details on the incorpora-1037

tion format, refer to Appendix A.6.1038

A.6 LLM Input and Metric Setting1039

As illustrated in Figure 5, the input to the LLM is1040

primarily divided into four components: task in-1041

struction, in-context learning examples, external1042

knowledge, and questions. Within the instruction1043

section, we impose constraints on the model’s out-1044

put mode, mandating that different questions must1045

be answered according to the prescribed format.1046

For example, if the answer pertains to an entity,1047

we stipulate that the answer should be presented1048

as a list of entities devoid of any explanations. For1049

counting questions, only numerical values are per-1050

missible. Unanswerable questions are indicated by1051

returning None. This specification ensures that the1052

format of the model’s responses consistently aligns1053

with our unified evaluation process.1054

During the experiment, we observed some cases1055

where the LLM’s replies still failed to meet our1056

Injection
Method

Knowledge Prompt

Grouping Here are some triples that are highly rel-
evant to the question: (DZ Bank building,
architect, Frank Gehry), (Gehry Tower, in-
stance of, office building), ... Here are some
triples that are likely relevant to the ques-
tion: (IAC Building, architect, Frank Gehry),
(Gehry Tower, architect, Frank Gehry) ...
Here are some triples that are less relevant
to the question: (Toledo Museum of Art, ar-
chitect, Frank Gehry), (Vlado Miluni, notable
work, Dancing House), ...

Ranking The triples are sorted from high to low ac-
cording to their relevance score to the ques-
tion for your reference: (DZ Bank building,
architect, Frank Gehry), (Dancing House, in-
stance of, office building),(Gehry Tower, ar-
chitect, Frank Gehry), (Dancing House, archi-
tect, Frank Gehry), (IAC Building, instance
of, office building), ...

Scoring You can refer to these information to bet-
ter answer the question. Each triple is
followed by a confidence score of its rel-
evance to the question, which helps in solv-
ing the question: {(DZ Bank building, ar-
chitect, Frank Gehry) | 0.9981}, {(Toledo
Museum of Art, architect, Frank Gehry) |
0.0019}, {(Gehry Tower, instance of, office
building) | 0.998}, {(Vlado Miluni, notable
work, Dancing House) | 0.0023}...

Table 8: Prompt organization.
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You need to give me answers to the question I ask you. 
When answering, you don't need to give a detailed 
explanation, just provide the answers. If a question has 
multiple answers, they can be separated by commas. If you 
can't understand the question or give the exact answers, you 
can just reply "None". Here are some examples:

You can refer to these information in brace to better answer 
the question: {(Seaview, located in the administrative 

territorial entity, New Jersey), …}

Question: What is the country club with the lowest slope 
settled down in New Jersey?
Answer:

Question: Who is the daughter of Robert Kennedy married to?
Answer: Paul Hill, Andrew Cuomo.
Question: What was the first Queen album?
Answer: Queen.
Question: N / A N / A
Answer: None.

Task 
Instruction

In-context
Learning
Examples

External
Knowledge

Question

Figure 5: The structure of the input. The knowledge
component is provided in triple format, and alternative
formats (such as meta path or sentence) can be used to
represent the knowledge.

criteria, occasionally returning sentences or blocks1057

of text. To address this issue, we refer to the con-1058

cept of in-context learning, wherein we provided1059

multiple examples resembling the question to guide1060

the model towards producing responses in the de-1061

sired format. Regarding the knowledge injection1062

method, we augmented the prompt with text de-1063

rived from the KG, encompassing various formats,1064

and supplied it to the LLM as additional knowl-1065

edge. Finally, we appended the NL question that1066

requires answers at the end of the model input.1067

In evaluation, our approach employs in-context1068

learning within prompts, mandating that the LLM1069

responses adhere to a strict format, such as provid-1070

ing only entity names. This requirement signifi-1071

cantly streamlines our evaluation process. There-1072

fore, we re-evaluated the answers of some samples1073

based on experience and found that using the dif-1074

flib.SequenceMatcher() function in the Python li-1075

brary under the threshold of 0.7 can better complete1076

the answer validation.1077

A.7 Qualitative Example Study1078

We employ ChatGPT as our baseline model to elu-1079

cidate the influence of external knowledge on the1080

reasoning capability of the model. As shown in1081

the first and second rows of Table 9, the model1082

tends to commit errors when directly responding1083

to the questions. Nevertheless, upon integrating1084

a sub-graph devoid of inference paths, the model1085

succeeds in providing correct responses. This is at-1086

tributable to the model’s capacity to draw analogies1087

from similar knowledge, even though the external 1088

knowledge does not proffer direct answers. As il- 1089

lustrated in rows three and four of Table 9, 90% 1090

of the triples in the knowledge we gave have been 1091

replaced by wrong entities, which contain a lot of 1092

noisy knowledge. The model can provide correct 1093

answers when responding directly, however, the 1094

introduction of erroneous external knowledge leads 1095

to incorrect responses from the model. This indi- 1096

cates that the model lacks robustness against noisy 1097

information and is significantly influenced by the 1098

introduction of external inaccuracies. 1099
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Question Knowledge Without
Knowl-
edge
Answer

With
Knowl-
edge
Answer

Correct
Answer

Which is the calling for
the field of occupation
of manga?

without reason path: (Jack Bauer, occupation, field
agent), (field agent, instance of, profession), (Comic
Gum, intended public, seinen), (manga, subclass of,
manga), (seinen, subclass of, manga), (comedian, occu-
pation, comedian), (Son Gokb, creator, Akira Toriyama),
(field agent, occupation, field agent), (Nozomu Tamaki,
occupation, mangaka), (Dragon Ball GT, after a work
by, Akira Toriyama), (Akira Toriyama, occupation,
mangaka), (seinen, intended public, seinen), (Douglas
Adams, occupation, comedian), (comedian, instance of,
profession)

Illustration,
story-
telling,
comic art.

mangaka mangaka

Is it true that David Ko-
resh’s given name was
David or Wayne?

without reason path: (Waco siege, instance of, religious
persecution), (Wayne Shorter, given name, Wayne),
(David Bowie, given name, David), (Dave Arneson,
given name, David), (religious persecution, statement
supported by, David Koresh)

False. True. True.

Which is the island
country for the nation of
pound sterling?

90% replace: (Germany, diplomatic relation, Bahrain),
(South Holland, contains the administrative territorial
entity, Nieuw-Lekkerland), (Antwerp, twinned adminis-
trative body, Rotterdam), (Nieuw-Lekkerland, contains
the: administrative territorial entity, Nieuw-Lekkerland),
(Nieuw-Lekkerland, contains the administrative terri-
torial entity, Nieuw-Lekkerland), (Nieuw-Lekkerland,
instance of, village), (Antwerp, twinned administra-
tive body, Rotterdam), (South Holland, contains the
administrative territorial entity, Spijkenisse), (Nieuw-
Lekkerland, instance of, village), (South Holland, con-
tains the administrative territorial entity, Rijnsburg),
(South Holland, contains the administrative territorial
entity, Nieuw-Lekkerland), (South Holland, contains the
administrative territorial entity, Rijnsburg), (Rijnsburg,
contains the administrative territorial entity, Rijnsburg),
(Nieuw-Lekkerland, instance of, village), (Rijnsburg, in-
stance of, village), (European Netherlands, has part(s),
South Holland)

United
Kingdom.

None. United
Kingdom.

What is the inverse class
for fiction?

90% replace: (The Night Watch, genre, historical fic-
tion), (Gerry Adams, position held, Mary Lou McDon-
ald), (Sinn Fin, chairperson, Mary Lou McDonald),
(Sinn Fin, chairperson, Mary Lou McDonald), (Gerry
Adams, position held, Mary Lou McDonald), (Mar-
tin McGuinness, member of political party, Sinn Fin),
(Gerry Adams, position held, Mary Lou McDonald),
(Sinn Fin, chairperson, Mary Lou McDonald), (Lynn
Boylan, member of political party, Sinn Fin), (2001
United Kingdom general election, followed by, 2005
United Kingdom general election), (Martin McGuin-
ness, candidacy in election, 2005 United Kingdom gen-
eral election), (Martin McGuinness, member of political
party, Sinn Fin), (2005 United Kingdom general election,
candidate, Sinn Fin), (Mary Lou McDonald, replaced by,
Mary Lou McDonald), (Martin McGuinness, member
of political party, Sinn Fin), (Lynn Boylan, member of
political party, Sinn Fin), (Martin McGuinness, mem-
ber of political party, Sinn Fin), (Martin McGuinness,
member of political party, Sinn Fin), (Gerry Adams, po-
sition held, Mary Lou McDonald), (Martin McGuinness,
member of political party, Sinn Fin)

nonfiction. historical
fiction.

Non-
fiction.

Table 9: The impact of external knowledge on LLM inference performance.
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