
Under review as submission to TMLR

Improved rate for Locally Differentially Private Linear Bandits

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we propose a stochastic linear contextual bandit algorithm that ensures
local differential privacy (LDP). Our algorithm is (ϵ, δ)−Locally Differentially Private and
guarantees Õ

(√
dT 3/4

)
regret with high probability . This is a factor of d1/4 improvement

over the previous state-of-the-art (Zheng et al., 2020). Furthermore, our regret guarantee
improves to Õ

(√
dT
)

when the action space is well-conditioned. This regret bound matches
the optimal non-private asymptotic bound, thus demonstrating that we can achieve privacy
for free even in the stringent LDP model. Our algorithm is the first algorithm that achieves
Õ(
√
T) regret in a privacy setting that is stronger than the central settings.

1 Introduction

The stochastic linear contextual bandit problem consists of a sequence of T “rounds” of interaction between
a learner and an environment. In the tth round, a learner receives context ct, which determines a decision
set Dt := {ϕ(ct, a)|a ∈ A} ⊂ Rd where A is a set of possible actions and ϕ(·, ·) is a function that maps
context-action pairs to Rd. Then the learner chooses an “action” at ∈ A which corresponds to a “decision”
xt := ϕ(ct, at) ∈ Dt, and receives a reward yt such that E[yt|ct, at] = ⟨θ⋆, xt⟩ for some unknown θ⋆ ∈ Rd.
Similar to other bandit settings, we measure the performance of our algorithm by evaluating the regret,
defined as the gap between the cumulative rewards of our algorithm and the best possible cumulative reward:

RegretT =
T∑
t=1

[
max
a∈A
⟨θ⋆, ϕ(ct, a)⟩ − ⟨θ⋆, ϕ(ct, at)⟩

]

=
T∑
t=1

[
max
x∈Dt

⟨θ⋆, x⟩ − ⟨θ⋆, xt⟩
]

Our goal is to come up with an algorithm that achieves sublinear regret (RT ≤ o(T)), which means that on
average we are doing as well as the best possible actions in hindsight. This problem has been well-studied in
the literature, and the asymptotically optimal regret is O(d

√
T) (Lattimore & Szepesvári, 2020; Li et al.,

2019). Furthermore, we want to ensure that our algorithm enforces a privacy guarantee - which we will
quantify via the framework of local differential privacy (LDP).

To motivate this contextual bandit setting and the need to ensure privacy, consider a personalized medical
app where each user has their own treatment plan based on their medical history and the weekly data
they provide to the central server (app provider). This application can be modeled as a contextual bandit
problem by letting the medical history/weekly data be the context, the treatment plan be the action, and
the user’s health outcome be the reward. Another example usage of the linear contextual bandit setting
is the personalized recommendation system in streaming services. In this example, the context could be a
feature vector that contains the user’s personal information (age, demography, past activities), the action is
the movie the system recommends, and the reward could be the rating the user gives. It is clear in these
scenarios that the context/action and the reward are sensitive information that the user wishes to protect.
Thus, in order to maximize outcomes and user’s experience, we need a contextual bandit algorithm, while in
order to protect sensitive information we need a differential private algorithm to ensure privacy.

1

Under review as submission to TMLR

Our work will ensure a “local” model of privacy, in contrast to a weaker “central” model. In a central privacy
model, the users send their raw data to the central server that will be responsible for making decisions. Then
the server would inject sufficient noise into its decisions so that potential attackers cannot tell if a particular
user’s data is used by the server or not. Even though this central model provides protection from outside
attackers, it requires the user to have complete trust in the server. Another way to protect users’ privacy is
the local model, which is the model that we consider in this paper. In this model, before sending their data
to the server, each user would inject noise into their own data. Thus, the local model ensures that every
user’s data is safe without relying on any external sources. Consider a framework with T local users, each
holding their private data, and a central server that collects information from these users. Each user applies
a randomized mechanism to their data before sending it to the server. The system satisfies (ϵ, δ)−Locally
Differential Privacy (LDP) if the following condition holds:

Definition 1.1. (Local Differential Privacy (Dwork & Roth, 2014)) A randomized algorithm M : X 7→ S
satisfies (ϵ, δ)− local differential privacy ((ϵ, δ)-LDP) if for any pair of users x, x′ ∈ X and any event E ⊆ S,
it holds that:

P [M(x) ∈ E] ≤ exp(ϵ)P [M(x′) ∈ E] + δ

Roughly speaking, LDP ensures that the output of a randomized algorithm on any pair of users would
be almost indistinguishable with high probability. This local model is a stronger notion of privacy than
regular DP in the sense that any algorithm that satisfies LDP also satisfies regular DP (Dwork et al., 2010).
Furthermore, LDP is also a more user-friendly notion of privacy than regular DP since it allows the user
to protect their own data without relying on a trusted server, making it appealing for real-life application
(Cormode et al., 2018). However, it is also a lot more difficult to recover the asymptotically optimal Õ(

√
T)

regret guarantee since the private mechanism in the central model (Shariff & Sheffet, 2018) fails in the local
model. Indeed, the current best regret guarantee for LDP is only Õ

(
(dT)3/4/

√
ϵ+ d

√
T
)

(Zheng et al.,
2020). Another line of work on private stochastic contextual linear bandit is the shuffle model (Erlingsson
et al., 2019; Cheu et al., 2019). In this model, there exists a trusted shuffler between the users and the server.
The shuffler receives noisy data from the users, and permutes them before sending the data to the server.
This shuffling step adds another layer of protection which allows for finer privacy-utility trade-offs compared
to the local model. In this model, recent works by (Chowdhury & Zhou, 2022) and (Garcelon et al., 2022)
achieve the regret of Õ(dT 3/5) and Õ(dT 2/3) respectively. However, both of these works fail to achieve the
Õ
(√

T
)

regret in any setting. Furthermore, since both works rely on privacy amplification by shuffling, their
guarantees only work for ϵ ≤ O(1/T 3/10) and ϵ ≤ O(1/T 1/4) respectively, which are a lot smaller than what
is used in practice (which is typically O(1)). Therefore, a question naturally arises:

Is it possible to achieve Õ
(√

T
)

regret in a stronger privacy setting than the central model?

In this paper, we will provide sufficient conditions under which the answer to the above question is yes.

Contributions. We introduce a new private variant of the LinUCB algorithm (Chu et al., 2011; Abbasi-
yadkori et al., 2011) where the confidence set is constructed using the predictions of an online learner
(Abbasi-Yadkori et al., 2012). By carefully choosing the online learner and the loss function, this new
approach allows us to construct tighter confidence sets for the unknown parameter θ⋆ which results in a
O
(√

dT 3/4/ϵ
)

regret with high probability, improving the best known bound of Õ
(
(dT)3/4/

√
ϵ
)

(Zheng
et al., 2020) whenever ϵ ≥ 1√

d
. Further, when the minimum eigenvalue of the expected gram matrix Et[xtxTt]

is bounded from below, the regret guarantee of the new algorithm improves to Õ
(√

dT/ϵ
)

, recovering the
asymptotic regret guarantee of the central model while guaranteeing LDP. This regret, to the best of our
knowledge, is the first Õ(

√
T) regret guarantee for LDP stochastic contextual linear bandit in any setting.

Finally, we test our algorithm in the same experiments as in (Chowdhury & Zhou, 2022) and show that our
algorithm has empirical improvements over previous works.

2

Under review as submission to TMLR

Algorithm 1 Private (Contextual) Online LinUCB

1: Input: Privacy parameters ϵ, δ, failure parameter α, covariance matrix Σ = E[ηx,tηTx,t], minimum
eigenvalue λmin of E[xtxTt], domain diameter D, time horizon T , threshold λ̄.

2: Initialize θ1 = 0, Ṽ0 = Id×d, ũ0 = 0, σ = 2
√

2 log(1.25/δ)/ϵ, ∆2 = 0.
3: if λmin ≤ λ̄ then
4: ∆2 = λ̄
5: end if
6: for t = 1 . . . T do
7: Local step performed by user t:
8: Receive θt, Ṽt−1, ũt−1 from the server. Construct the confidence set Ct−1 using Lemma 3.3.
9: (xt, θ̃t) = arg max(x,θ)∈Dt×Ct−1⟨x, θ⟩

10: Play xt and observe reward yt
11: Perturb xt with a small amount of noise: x̄t ← xt + ζt where ζt ∼ N

(
0,∆2Id

)
.

12: Update x̃t = x̄t + ηx,t, ỹt = yt + ηy,t where ηx,t ∼ N(0, σ2Id), ηy,t ∼ N(0, σ2).
13: Get the loss lt(θ) = (⟨x̃t, θt⟩ − ỹt)2 − ∥θ∥2

Σ
14: Compute gt = 2x̃t (⟨x̃t, θt⟩ − ỹt)− 2Σθt
15: Send x̃t, ỹt, and gt to the server.
16: Server step:
17: Sent θt, x̃t, ỹt, and gt to Maler (Algorithm 5) and get back θt+1.
18: Update the history {θ1, . . . , θt} ∪ {θt+1}
19: Update Ṽt = Ṽt−1 + x̃tx̃

T
t , ũt = ũt−1 + ⟨θt, x̃t⟩x̃t

20: end for
21: return x̃1, . . . , x̃T and ỹ1, . . . , ỹT

2 Problem Setup

Let A be an action space and C a context space. In the stochastic contextual linear bandit setting that we
are considering, in every round t ∈ [T], the learner receives an i.i.d random context ct ∈ C and a function
ϕ(·, ·) : C ×A 7→ Rd, and picks an action at corresponding to xt := ϕ(ct, at) ∈ Dt. The learner then receives a
random reward yt = ⟨θ⋆, xt⟩+ ηt where ηt is a zero-mean and independent R2− subgaussian random variable
where R is a positive constant. Then we define the regret as:

RegretT =
T∑
t=1

[
max
x∈Dt

⟨θ⋆, x⟩ − ⟨θ⋆, xt⟩
]

Our goal is to design an algorithm that achieves sublinear regret bound and guarantees that the actions and
rewards sequences {(x1, y1), . . . , (xT , yT)} are LDP. For n ∈ N, we denote the set {1, . . . , n} as [n]. We use
the standard big-O notation to hide constants and Õ to hide additional logarithmic factors. Throughout
the paper, ∥ · ∥ is used to indicate the Euclidean norm unless specified otherwise. A symmetric matrix
M ∈ Rd×d is a positive-semidefinite matrix if xTMx ≥ 0 for any x ∈ Rd and we define its associated norm as
∥x∥M =

√
xTMx. We also define Ex[·] as the expectation over the randomness of some random variable x

and log(x) as the natural logarithm of x.

Assumption: We assume the reward, and the norm of the parameter θ⋆ and feature map xt = ϕ(ct, at) are all
bounded: ∥xt∥ ≤ 1, |yt| ≤ 1, |⟨xt, θ⋆⟩| ≤ 1 for all t ∈ [T], and ∥θ⋆∥ ≤ 1. We also assume that we have access
to T unique users. Note that these are all standard assumptions from the literature (Shariff & Sheffet, 2018;
Chowdhury & Zhou, 2022).

3

Under review as submission to TMLR

3 Online LDP LinUCB

Our private method described in Algorithm 1 is a private variant of the LinUCB algorithm (Chu et al., 2011;
Abbasi-yadkori et al., 2011). The main task of the algorithm is to derive an ellipsoid confidence set defined as

Ct−1 :=
{
θ ∈ Rd : ∥θ − V −1

t−1ut−1∥Vt−1 ≤ βt
}

(1)

where Vt =
∑t
i=1 xtx

T
t , βt is the width of the confidence set, and ut−1 =

∑t−1
i=1 xiyi. Our goal is to pick an

appropriate βt such that the optimal parameter θ⋆ is inside the ellipsoid with high probability for all t ∈ [T].
LinUCB identifies xt ∈ Dt and θt ∈ Ct−1 that maximizes ⟨x, θ⟩ and plays xt. Overall, LinUCB guarantees
the following regret:

RegretT ≤ Õ
(

max
t
βt
√
dT
)

Thus, as long as we can design a tight confidence ellipsoid (small βt), our linear bandit algorithm will have a
small regret.

To ensure privacy, we unfortunately cannot update our algorithm with the true value of Vt and ut. Instead, we
have to use private approximations Ṽt and ũt to define an analogous C̃t−1. Let Ṽt = Vt +Ht and ũt = ut +ht.
Assuming ∥Ht∥ ≤ ρmax, ∥ht∥H−1

t
≤ ν for some ρmax, ν ≥ 0, then from (Shariff & Sheffet, 2018), we know

that the confidence width is bounded by:

βt ≤ Õ
(√

d+√ρmax + ν
)

(2)

Since higher βt leads to higher regret, we would like to minimize the error measures ρmax and ν introduced
by the private approximations.

We can now shed light on why the regret guarantees for local models are worse than for the central model.
In the central model, since the server is allowed to see the raw data xt and yt, the server can compute
Ṽt and ũt privately using the tree-aggregation mechanism (Chan et al., 2011; Dwork et al., 2010). Then,
we have ρmax ≤ Õ(

√
d/ϵ) and RegretT ≤ Õ(d

√
T + d3/4

√
T/
√
ϵ). However, in the local model, since each

user perturbs their data before sending them to the server, applying tree-aggregation is off the table. If we
naively apply the Gaussian Mechanism with T rounds of compositions, ρmax now is Õ(

√
dT/ϵ) and the regret

becomes Õ(d
√
T + d3/4T 3/4/

√
ϵ).

In this section, we propose a new approach for designing the confidence sets LDP LinUCB. Our approach
is based on the online-to-confidence-set conversion in (Abbasi-Yadkori et al., 2012) where the main idea is
that the predictions of any online algorithm that predicts the responses of the chosen inputs in a sequential
manner can be “converted” to a confidence set. In each round t, the online algorithm will receive xt, yt,
predict θt, and suffer the loss lt(θt) = (⟨θt, xt⟩ − yt)2. The goal of the online learner is to discover the “true”
value θ⋆. We measure its performance via its own notion of regret (RegretOL), and we define MT to be a
known upper-bound on RegretOL.

RegretOL ≜
T∑
t=1

lt(θt)− lt(θ⋆) (3)

MT ≥ RegretOL (4)

Intuitively, a low regret means that the online learner is able to predict a good approximate of the optimal
θ⋆. Now, (Abbasi-Yadkori et al., 2012) show how to use the bound MT to construct a confidence set with the
width bounded by:

βT ≤ Õ
(√

MT

)
Since the width of the confidence ellipsoid depends on the regret of the online learner, one could hope
that with carefully designed online learner and loss function, the confidence width would be small and we

4

Under review as submission to TMLR

can see improvements in the final regret bound for LinUCB. We will now show that this is indeed the
case and Algorithm 1 using this approach can achieve Õ(

√
dT) regret when the second-moment matrix

E[xtxTt] ⪰ λminI for some λmin ≈ O (1) (refer to Remark 3.7 for more details).

Algorithm 1 is based on the Online LinUCB algorithm (Abbasi-Yadkori et al., 2012) (for more details, refer
to Section A.2). In every round t, a unique local user t receives some private information from the server
that they can use to construct the confidence set Ct. Then the user chooses xt that maximizes the upper
confidence bound maxθ∈Ct−1⟨x, θ⟩ (step 9) and receives reward yt. If xt is not well-conditioned (λmin is
smaller than some threshold λ̄ in step 3), the user perturbs xt with a small amount of noise in step 11 to
make sure the loss lt(θ) that is sent to the online learner is strongly-convex in expectation. Finally, user t
perturbs xt, yt with Gaussian noise to maintain LDP, computes the gradient using private information, and
sends x̃t, ỹt, and gt to the server. The server then uses this new information to update the prediction of the
online learner (θt+1), and the history Ṽt+1 and ũt so that the next user can make a better decision.

Our algorithm elaborates on this Online LinUCB strategy with two key ideas. First, instead of using the
intuitive squared loss lt(θ) = (⟨θ, xt⟩ − yt)2, we use the more peculiar choice lt(θ) = (⟨x̃t, θt⟩ − ỹt)2 − ∥θ∥2

Σ
for some to-be-specified Σ. Second, we employ the advanced online learning algorithm Maler (Wang et al.,
2020b) as the online learner.

The reason for the choice of the loss is a bit technical. Intuitively, if we want the online learner to accurately
approximate θ⋆, we want θ⋆ to be the minimizer of the loss lt(θ). However, due to the noise in xt and yt, θ⋆
is not the minimizer of the square loss (⟨x̃t, θt⟩ − ỹt)2. To counteract this issue, we incorporate a negative
regularizer term, −∥θ∥2

Σ, which serves to neutralize the variance introduced by the privacy noise in xt. Now,
with the added regularizer, θ⋆ becomes the minimizer of E [lt(θ)]. At first glance, this new loss appears to be
intractable because it is non-convex. However, it is convex in expectation, which is sufficient to guarantee an
O(
√
T) regret. This in turn translates to Õ(T 3/4) for the final regret bound.

The online learner can potentially do even better than O(
√
T) regret in certain favorable settings. Specifically,

when E[xtxTt] ⪰ λminI for λmin > 0, lt(θ) is strongly convex in expectation, despite not being convex. This
necessitates the use of an online learner capable of adapting to such advantageous scenarios and refining
the regret to O(log T). This is precisely the scenario where Maler proves invaluable. Maler (described in
Algorithm 5) is an online learner that adjusts to achieve the optimal regret across various types of loss
functions, including convex, strongly convex, and exp-concave. We demonstrate that implementing Maler
with our loss function yields a dimension-independent regret of O(log T) with high probability. This allows us
to attain a regret of Õ(

√
dT),which is not only asymptotically optimal but also improves upon the non-private

worst-case regret guarantee for general settings by an order of O(
√
d) (see Section 3.2 for more discussion).

Remark 3.1. Let us discuss one specific example when the condition E[xtxTt] ⪰ λminI is satisfied, giving
our algorithm the optimal regret guarantee of Õ(

√
dT). Assuming we have k available actions, and let each

action be xi ∼ N(0, σ2Id). Then, for the condition E
[
xtx

T
t

]
⪰ λminI for some λmin ≈ O(1) to be true,

we need to show that E
[
vTxtx

T
t v
]
≥ C where C is a positive constant and v is a unit vector. Notice that

E
[
vTxtx

T
t v
]
≥ E

[
min1≤i≤k v

Txix
T
i v
]
, thus if we can show a constant lower bound for E

[
min1≤i≤k v

Txix
T
i v
]

then we are done. We have vTxi ∼ N(0, σ2) (since v is a unit vector) for every i ∈ [k], thus by Lemma
H.15, P [|xi| ≤ t] ≤

√
2

σ
√
π
t for t > 0. Then, we can apply Theorem H.14 to get E

[
min1≤i≤k v

Txix
T
i v
]

=
E
[
min1≤i≤k |⟨v, xi⟩|2

]
≥ σ2π

6k2 . Thus, as long as the number of actions is not too large, this example would
fall under our favorable setting.

Before we prove the utility guarantee of Algorithm 1, let us first show that Algorithm 1 is (ϵ, δ)−LDP.

Theorem 3.2. (Privacy Guarantee) Algorithm 1 guarantees (ϵ, δ)−LDP.

Proof. Let us define the local step of Algorithm 1 as the local mechanism Mt. Let x′
t and y′

t be the action
and reward of a new user at time t. By the boundedness assumption, we have maxxt,x′

t∈X ∥xt − x′
t∥ ≤ 2 and

maxyt,y′
t∈Y |yt − y′

t| ≤ 2 for all t ∈ [T]. Thus, by the classic Gaussian Mechanism in (Dwork et al., 2010), the
outputs x̃t and ỹt of the local mechanism Mt satisfy (ϵ, δ)−LDP for all t. Further, since θt and gt are computed
using a sequence of private parameters x̃1, ỹ1, . . . , x̃t−1, ỹt−1 and no other sensitive information (we only

5

Under review as submission to TMLR

want to protect {(x1, y1), . . . , (xt, yt)}), θt and gt also satisfy (ϵ, δ)−LDP by post-processing. Consequently,
Algorithm 1 guarantees (ϵ, δ)−LDP for every user t ∈ [T], as each local mechanism Mt is (ϵ, δ)−LDP.

To make the analysis more succinct and easier to follow, let us define the “good event” E as in Section B in the
Appendix. Roughly speaking, E is the event in which a small number of standard martingale concentration
bounds hold simultaneously. Then, from Lemma B.1, we know that the good event E happens with high
probability. Now, we can show the following result on the confidence set.
Lemma 3.3. We define ṼN−1 =

∑N−1
t=1 x̃tx̃

T
t , ũN−1 =

∑N−1
t=1 ⟨θt, x̃t⟩x̃t (θt is the prediction of the online

learner), and θ̂N = Ṽ −1
N−1ũN−1. Assuming ∥θt∥ ≤ D, then under event E, the true parameter θ⋆ lies in the

set:

CN−1 =
{
θ ∈ Rd : ∥θ − θ̂N∥2

ṼN−1
≤MN +KN

}
for any N ≥ 1 and

KN = γD∆2 log(T/α)

√√√√N
N∑
t=1
∥θt − θ⋆∥2 + γ

(
R+

D
√

log(1/δ)
ϵ

+D∆
)2

log(T/α)

+ γ

(
log(1/δ)

ϵ2
+ ∆2

)
log(T/α)

N∑
t=1
∥θt − θ⋆∥2

for a sufficient large constant γ > 0.

We now provide a sketch of the proof of Lemma 3.3 below. For the full proof, refer to section D in the
appendix.

Proof. Our proof follows the proof of Theorem 1 in (Abbasi-Yadkori et al., 2012). From our definition of MN

and the loss lt, we have:

MN ≥
N∑
t=1

(⟨x̃t, θt⟩ − ỹt)2 − ∥θt∥2
Σ − (⟨x̃t, θ⋆⟩ − ỹt)2 + ∥θ⋆∥2

Σ

Plugging in ỹt = ⟨xt, θ⋆⟩+ rt + ηy,t and x̃t = xt + ζt + ηx,t:

=
N∑
t=1

(⟨xt, θt − θ⋆⟩+ ⟨ηx,t, θt⟩+ ⟨ζt, θt⟩ − rt − ηy,t)2 − ∥θt∥2
Σ − (⟨ηx,t, θ⋆⟩+ ⟨ζt, θ⋆⟩ − rt − ηy,t)2 + ∥θ⋆∥2

Σ

Let us denote zt = rt + ηy,t. Now expanding the squares and rearranging the terms we get:

N∑
t=1

(⟨xt, θt − θ⋆⟩)2 ≤MN +
N∑
t=1
−2(⟨ηx,t + ζt, θt⟩ − zt)⟨xt, θt − θ⋆⟩︸ ︷︷ ︸

At

+2zt⟨ηx,t + ζt, θt − θ⋆⟩︸ ︷︷ ︸
Bt

−⟨ζt, θt⟩2 + ⟨ζt, θ⋆⟩2︸ ︷︷ ︸
Ct

−2(⟨ζt, θt⟩⟨ηx,t, θt⟩ − ⟨ζt, θ⋆⟩⟨ηx,t, θ⋆⟩)︸ ︷︷ ︸
Dt

−(θt − θ⋆)T (ηx,tηTx,t − Σ)(θt + θ⋆)︸ ︷︷ ︸
Et

(5)

Under event E , we have

At +Bt =−
N∑
t=1

2(⟨ηx,t + ζt, θt⟩ − zt)⟨xt, θt − θ⋆⟩+ 2zt⟨ηx,t + ζt, θt − θ⋆⟩

≤ Õ


√√√√ N∑

t=1
(⟨xt, θt − θ⋆⟩)2 +

√√√√ N∑
t=1
⟨ηx,t + ζt, θt − θ⋆⟩2

 (6)

6

Under review as submission to TMLR

Notice that the first sum in the right-hand side of Eq.6 is exactly the sum in the left-hand side of Eq.5. Thus,
we can use Proposition H.8 and H.9 to bound this term. For the second term in the right-hand side of Eq.6,
we can again use the fact that we are under the good event E to control the sum.

The sum of Ct and Dt can be written as follows:
N∑
t=1
⟨ζt, θ⋆⟩2 − ⟨ζt, θt⟩2 + 2(⟨ζt, θ⋆⟩⟨ηx,t, θ⋆⟩ − ⟨ζt, θt⟩⟨ηx,t, θt⟩) =

N∑
t=1
⟨ζt, θ⋆ − θt⟩⟨ζt, θ⋆ + θt⟩

+ 2(θ⋆ − θt)T ζtηTx,t(θ⋆ − θt) + 2θTt ζtrTt (θ⋆ − θt) + 2(θ⋆ − θt)T ζtrTt θt

Using norm bound of Gaussian random vector and corollary H.12:

Ct +Dt ≤ O

D∆2 log(T/α)

√√√√N

N∑
t=1
∥θt − θ⋆∥2

+O

D∆
√

log(1/δ)
ϵ

√√√√log(T/α)
T∑
t=1
∥θt − θ⋆∥2


For the term Et in Eq.5, since E

[
ηx,tη

T
x,t

]
= Σ, it is a Martingale difference sequence and by Theorem H.2

we have:

|
N∑
t=1

(θt − θ⋆)T (ηx,tηTx,t − Σ)(θt + θ⋆)| ≤ Õ

D log(1/δ) log(T/α)
ϵ2

√√√√ N∑
t=1
∥θt − θ⋆∥2


Now we can combine the bounds of all the terms and use Proposition H.8 to get:

N∑
t=1

(⟨x̃t, θt − θ⋆⟩)2 ≤MN +KN

Let us denote the set CN−1 as the ellipsoid underlying the covariance matrix ṼN−1 = I +
∑N−1
t=1 x̃tx̃

T
t and

centering at

θ̂N = arg min
θ∈Rd

(
∥θ∥2

2 +
N−1∑
t=1

(⟨x̃t, θt − θ⟩)2

)

= Ṽ −1
N−1

(
N−1∑
t=1
⟨θt, x̃t⟩x̃t

)
= Ṽ −1

N−1ũN−1

We can thus express the ellipsoid as:

ĈN−1 =
{
θ ∈ Rd : (θ − θ̂N)T ṼN−1(θ − θ̂N) + ∥θ̂N∥2

2 +
N−1∑
t=1

(⟨x̃t, θt − θ̂N ⟩)2 ≤MN +KN

}
The ellipsoid is contained in a larger ellipsoid

ĈN−1 ⊆ CN−1 =
{
θ ∈ Rd : ∥θ − θ̂N∥2

Ṽn−1
≤MN +KN

}
Thus, θ⋆ lies in CN−1 with high probability.

With Lemma 3.3 in hand, we can show a general regret bound:
Theorem 3.4. (Utility guarantee) Recall that MT is the regret of our online learner (see equation (4)), and
KT is as defined in Lemma 3.3. Under event E, the regret of Algorithm 1 is:

RegretT ≤ Õ

(√
MT +KT

√
2Td log

(
1 + T

d

))

7

Under review as submission to TMLR

As we can see, this regret bound is quite similar to the regret bound of its non-private counterpart assuming
MT and KT can be controlled. Now we show that at worst, this bound is Õ

(√
dT 3/4/ϵ

)
which is O

(
d1/4)

improvement over the current best known bound for LDP Stochastic Linear Bandit whenever ϵ ≥ 1√
d
. Then,

we show that in certain settings, this bound becomes Õ(
√
dT), which to the best of our knowledge, is the

new state-of-the-art bounds for any stronger privacy model than the central model.

3.1 Õ(
√
dT) regret bound

From Theorem 3.4, it is clear that if we want to have Õ(
√
T) regret, we need our online learner to have

logarithmic regret i.e MT = O (log T). However, for this to be true, one might think that we need our loss to
be either strongly convex or exp-concave with a sufficiently large strong-convexity/exp-concavity constant.
Unfortunately, the loss lt(θ) = (⟨x̃t, θt⟩ − ỹt)2 − ∥θ∥2

Σ does not fall into either of these family of functions.
Surprisingly, it may still be possible to guarantee low regret with high probability using lt(θt). Denote
L(θt) = E[lt(θt)]. Then:

∇L(θt) = E [2(x̄t + ηx,t)(⟨x̄t, θt⟩+ ⟨ηx,t, θt⟩ − yt − ηy,t)− 2Σθt]

Since ηx,t, ηy,t are zero-mean and x̄t, ηx,t, ηy,t are independent:

∇L(θt) = E[2x̄t(⟨x̄t, θt⟩ − yt) + 2ηx,t⟨ηx,t, θt⟩ − 2Σθt]
⇒ ∇2L(θt) = E[2x̄tx̄Tt] = E[2xtxTt + 2ζtζTt]

Since xtxTt is a positive semi-definite matrix for all t ∈ [T], we have E[xtxTt] ⪰ λminId for some λmin ≥ 0.
Thus, lt(θt) is µ−strongly convex in expectation where µ = 2

(
λmin + ∆2). This is great news since even

though lt(θt) is not strongly convex, we can still show that the online learner Maler guarantees logarithmic
regret with high probability using the following lemma:
Lemma 3.5. (Strongly convex regret) Assuming L(θ) = E[lt(θt)] is µ−strongly convex and maxt,t′ ∥θt−θ′

t∥ ≤
2D. Then w.p at least 1− α, Maler (Algorithm 5) under the event E guarantees:

T∑
t=1

lt(θt)− lt(θ⋆) ≤ O
((

G2

µ
+GD

)
log T + G2

µ
log(1/α)

)
Furthermore, we have:

T∑
t=1
∥θt − θ⋆∥2 ≤ O

((
G2

µ2 + GD

µ

)
log T + G2

µ2 log(1/α)
)

The proof for Lemma 3.5 is provided in Section C in the Appendix. Notice that from this lemma, we
immediately have a high probability bound for the confidence ellipsoid in Lemma 3.3. Specifically, with
α ≥ 1

T , we have:

MT ≤ O
((

G2

λmin + ∆2 +GD

)
log T

)
And,

KT = O

(
D∆2 log(T/α)

√
T log T

(
G2

(λmin + ∆2)2 + GD

λmin + ∆2

))

+O

(R+
D
√

log(1/δ)
ϵ

+D∆
)2

log(T/α)


+O

(
log2 T

(
log(1/δ)

ϵ2
+ ∆2

)(
G2

(λmin + ∆2)2 + GD

λmin + ∆2

))

8

Under review as submission to TMLR

Let H = G2

(λmin+∆2)2 + GD
λmin+∆2 . Then:

KT ≤ O

D∆2 log(T/α)
√
TH log T +

(
R+

D
√

log(1/δ)
ϵ

)2

log(T/α) + H log(1/δ)
ϵ2

log2 T


Now plugging KT and MT into Theorem 3.4 we get the following corollary:
Corollary 3.6. Assuming ∥θt∥ ≤ D. Under event E, for any λmin ≥ 0 such that E[xtxTt] ⪰ λminId×d and
α ≥ 1/T , the regret of Algorithm 1 with Maler as the online learner and with threshold λ̄ = 1

T 1/4 is upper
bounded by

O

(((
R+

D
√

log(1/δ)
ϵ

)√
log(T/α) +

√
D∆2 log(T/α)

√
TH log T +

log T
√
H log(1/δ)
ϵ

)
×
√
dT log(T/d)

)
≤ Õ

(
min

{√
dT 3/4

ϵ
,

√
dT

ϵλmin

})

where H = G2

(λmin+∆2)2 + GD
λmin+∆2 .

Let us discuss the implication of the regret bound in Corollary 3.6. Consider the best-case scenario, which
is when λmin = O(1) (e.g. xt follows some random distribution with constant variance). Then, ∆2 = 0
and Algorithm 1 is (ϵ, δ)−LDP and guarantees Õ(

√
dT/ϵ) regret with high probability. Thus, Algorithm 1

guarantees the same regret bound asymptotically of non-private LinUCB. Further, by running our online
learner on a bounded domain, our online regret depends on the radius D of the domain (which is set by the
user) rather than the dimension d of the feature vector xt. As a result, we are able to improve the dimension
dependence from O(d3/4) in previous works to O(

√
d). Our regret bound would get worse as λmin decreases.

However, when λmin ≤ 1
T 1/4 , notice that now ∆2 = 1

T 1/4 and Algorithm 1 guarantees Õ(
√
dT 3/4/ϵ) regret,

which is the same asymptotic regret as the current best regret for LDP (contextual) linear bandit (Shariff &
Sheffet, 2018) but with improved dimension dependence. Overall, the regret of Algorithm 1 is always between
Õ(
√
dT/ϵ) and Õ(

√
dT 3/4/ϵ).

Remark 3.7. Since the regret in (Chowdhury & Zhou, 2022) is Õ(dT 3/5), Algorithm 1 has a better regret as
long as λmin ≥ Ω

(1
T 1/10

)
while also providing stronger privacy guarantee and having no restriction on ϵ.

3.2 Comparisons with previous results

In the worst-case scenario (λmin ≤ 1
T 1/4), Algorithm 1 provides a regret bound of Õ(

√
dT 3/4/ϵ +

√
dT)

with high probability. This surpasses the state-of-the-art result for LDP stochastic linear bandit, which is
Õ((dT)3/4/

√
ϵ+ d

√
T) whenever ϵ ≥ 1√

d
(which covers many practical scenarios where ϵ is typically larger

than 1). Although both exhibit the same asymptotic regret of Õ(T 3/4), Algorithm 1 demonstrates superior
dimension dependence in both private and non-private terms. The key to this improvement lies in the
unique approach of Algorithm 1 concerning noise injection and the employment of an online learner with a
dimension-free regret. In (Zheng et al., 2020), the privacy guarantee is achieved by adding a Gaussian matrix
Ht to Vt and a Gaussian vector ht to ut. From the concentration inequality of the Gaussian matrices, ∥Ht∥
is bounded by Õ(

√
dT/ϵ) with high probability. Thus, plugging this back in Eq. 1 and Eq. 2 yields the

Õ((dT)3/4/
√
ϵ+ d

√
T) regret. On the other hand, Algorithm 1 injects noise directly to xt and yt, instead of

Vt and ut. Thus, we are not restricted by the
√
d factor that comes from the concentration bound of the

Gaussian matrix. The regret now hinges on the performance of the online learner Maler, which is O(D
√
T)

where D is the user-set bound for θt. As a result, we are able to improve the dimension dependence to O(
√
d).

In the favorable settings (λmin is O(1)), the regret of Algorithm 1 is improved to O(
√
dT). Comparatively, this

shows a notable advancement over other private algorithms. Specifically, Algorithm 1 outperforms the shuffle
model (Chowdhury & Zhou, 2022), which has a regret of Õ(dT 3/5), and matches the asymptotic regret of the
central model. However, our algorithm demonstrates a more favorable dimension dependence, attributable to

9

Under review as submission to TMLR

Algorithm 2 Private Bandits Combiner
1: Input: Receive base learner 1 (Algorithm 9) and base learners i for i ∈ (1,M](Algorithm 1). Constants
L1, . . . , LM , α1, . . . , αM , R1, . . . , RM , T users, failure probability α, universal constant p, privacy noise
variance σ2, privacy parameters ϵ, δ, covariance matrix Σ, domain diamater D, power constant k.

2: Initialize base learner 1 with ϵ, δ, α, Σ, D, λmin = 1
T 1/8 and k = 1/8.

3: Initialize each base learner i with ϵ, δ, α, Σ, D, λmin = λi = 2i−1

T 1/8 for i ∈ (1,M], and λ̄ = 1/T 1/8.
4: Set T (i, 0) = 0 and µ̂i0 = 0 for all i, and set I1 = {1, . . . ,M}.
5: Initialize θi1 = 0, Ṽ i0 = Id×d, ũi0 = 0 for all i ∈ [M].
6:
7: for t = 1 . . . T do
8: For the server:

9: Set U(i, t− 1) = µ̂iT (i,t−1) + min

1,
LiT (i,t−1)αi +p

√
T (i,t)(1+σ2) log

(
T 3M log T (i,t)(1+σ2)

α

)
T (i,t−1)

− Ri

T for all i.

10: Set it = arg maxi∈It
U(i, t− 1).

11: For the local user t:
12: Receive the base learner index it and θitt , Ṽ itt−1, ũitt−1 from the server.
13: User t follows the policy of the base learner it and play xitt , receive reward yitt , and θt+1.
14: Send the noisy feature vector x̃itt , noisy reward ỹitt , and parameter θt+1 to the server.

15: For the server:
16: Update T (it, t) = T (it, t− 1) + 1 and T (j, t) = T (j, t− 1) for j ̸= it.
17: Update θitt+1 = θt+1, Ṽ it = Ṽ it−1 + x̃itt (x̃itt)T , ũitt = ũitt−1 + ⟨θitt , x̃

it
t ⟩x̃

it
t .

18: Update θit+1 = θit, Ṽ it = Ṽ it−1, ũit = ũit−1 for all i ̸= it.
19: Update µ̂itT (it,t) = 1

T (it,t)
∑T (it,t)
τ=1 ỹitt .

20: if
∑T (it,t)
τ=1 µ̂itτ−1 − t̂itτ ≥ LitT (it, t)αit + p

√
T (i, t)(1 + σ2) log

(
T 3M logT (i,t)(1+σ2)

α

)
then

21: It = It−1 − {it}
22: else
23: It = It−1
24: end if
25: end for

the same reasons discussed in relation to (Zheng et al., 2020). Interestingly, Algorithm 1 also exhibits better
dimension dependence than even non-private algorithms (Abbasi-Yadkori et al., 2012; Abbasi-yadkori et al.,
2011) in this specific setting. This is because the non-private models consider worst-case bounds universally,
suggesting that these bounds might be further optimized under certain favorable conditions.

4 Online model selection for LDP LinUCB

From the previous section, we show that Algorithm 1 achieves Õ(
√
dT/ϵ) regret when λmin ≈ O(1) and

degrades to Õ(
√
dT 3/4/ϵ) when λmin ≤ 1

T 1/4 . However, to run Algorithm 1, we need to know the minimum
eigenvalue λmin of E[xtxTt] (the online learner does not need to know λmin but we still need λmin to set the
confidence width). One might think that we can run a grid search through a range of values for λmin to
find the one that works the best. However, running the algorithm multiple times using the same dataset
can degrade our privacy guarantee (though in practice people still tune their algorithms). Moreover, in a
truly online setting it may be that the minimum eigenvalue observed during this “training” period does not
capture the later values. In this section, we present a new algorithm that bypasses this problem.

Algorithm 2 is built around a meta-learner that has access to M distinct base learners (which are M − 1
copies of Algorithm 1 and 1 copy of Algorithm 9 initialized with different guesses of λmin = λi for i ∈ [M]).

10

Under review as submission to TMLR

The reason we have to use two different types of base learners is that model selection algorithms usually
require anytime regret guarantees, which Algorithm 1 satisfies only under the condition where perturbation
of xt is unnecessary (i.e., ∆2 = 0). Thus, in scenarios where the actual λmin is small, necessitating the
perturbation of xt, we instead utilize the anytime variant of Algorithm 1, which is obtained by applying the
classic “doubling trick” to Algorithm 1, as described in Algorithm 9. This variant serves as the first base
learner of Algorithm 2. Then, by setting λi = 2i−1

T 1/8 for i ∈ [M], we can guarantee that at least one of our
guesses would be at most a constant factor away from the actual λmin if λmin ≥ 1

T 1/8 . In the scenario where
λmin <

1
T 1/8 , the actual value of λmin is not as important. This is due to our setting of the threshold λ̄ at

1
T 1/8 . Under this condition, the base learner with the smallest λ estimate automatically ensures a regret of
Õ(
√
dT 3/4). The goal of the meta-learner is to “combine” the outputs of M base learners into one output in

such a way that the final regret is not much worse than if we had selected the best base learner in hindsight.

We employ the Bandit Combiner Algorithm in (Cutkosky et al., 2020) as our meta-learner. We note that
there are more recent meta-learners with more refined guarantees and techniques (Pacchiano et al., 2023;
Cutkosky et al., 2021), as well as techniques that work even in the fully adversarial setting (Agarwal et al.,
2017; Pacchiano et al., 2020). However, (Cutkosky et al., 2020) is somewhat easier to use in our setting
because it applies out-of-the-box to combine base learners whose individual regret bounds have different
asymptotic rates.

The Bandit Combiner Algorithm (Algorithm 2) employs the use of the Upper Confidence Bound (UCB)
strategy by treating each base learner as an arm in a multi-armed bandit setup. This approach involves using
the average reward received by each base learner and their respective regret to establish the upper-confidence
bound. Through this method, the algorithm sequentially identifies the most effective learner. Overall,
Algorithm 2 guarantees O(RJT) regret where RJT is the regret of the best base learner. For a more detailed
discussion of the algorithm, refer to (Cutkosky et al., 2020). We have the following guarantee for Algorithm
2:
Theorem 4.1. (see Corollary 2 (Cutkosky et al., 2020)) Let η1 = ϵT 1/8

√
dT (P log3/2(T)ϵT 1/8+1) and ηi =

ϵ
P ′ log3/2(T)

√
dT

, L1 = P log3/2(T)
√
d
(
ϵT 1/8+1
ϵT 1/8

)
and Li = P ′ log3/2(T)

√
d

ϵλi
for positive constants P and P ′,

α1 = 3
4 and αi = 1

2 for i ∈ [2,M], and set Ri via:

Ri = LiT
αi + (1− αi)

1−αi
αi (1 + αi)

1
αi

α
1−αi

αi
i

L
1

αi
i Tη

1−αi
αi

i + 288 log(T 3N/α)Tηi +
∑
k ̸=i

1
ηk

for all i. Let j be the index of the base learner with the smallest regret. If λmin ≥ 1
T 1/8 , then w.p at least

1− 3α, the regret of Algorithm 2 under event E satisfies:

RegretT ≤ Õ

(√
dT

ϵλ2
min

)

If 0 ≤ λmin < 1
T 1/8 , then w.p at least 1− 3α, the regret of Algorithm 2 under event E satisfies:

RegretT ≤ Õ

(
√
dT 5/6 +

√
dT 17/24

ϵ

)

Overall, Algorithm 2 guarantees Õ(
√
dT/ϵ) regret when λmin is O(1) without requiring the knowledge of

λmin. The guarantee then degrades with a rate of O(1/λ2
min), yet it remains below Õ

(√
dT 5/6 +

√
dT 17/24

ϵ

)
.

This result reveals the trade-offs involved when combining base learners that have different asymptotic

regret guarantees. Since the general regret guarantee of Algorithm 2 is Õ
(
L

1
aj

j Tη

1−αj
αj

j +
∑
k ̸=i

1
ηk

)
, different

asymptotic rate with different aj requires different settings of ηj for the final rate to be optimal. Thus, to
adapt to the Õ(

√
dT) rate, we suffer the worst case rate of Õ(

√
dT 5/6) instead of Õ(

√
dT 3/4) as in Algorithm

11

Under review as submission to TMLR

1. However, if we have a reason to believe that we are not in the favorable setting or if we want to preserve
the worst-case rate of Algorithm 1, we can instead run Algorithm 1 with λmin = 0 and λ̄ = 1

T 1/4 to always
guarantee Õ(

√
dT 3/4/ϵ) regret.

5 Experiments

In this section, we will compare the empirical performance of Algorithm 1 to that of previous works.
Specifically, we compare our algorithm to Shuffle Private LinUCB (SDP) (Chowdhury & Zhou, 2022), Joint
Differentially Private LinUCB (JDP) (Shariff & Sheffet, 2018), Locally Private LinUCB (LDP) (Zheng et al.,
2020), and the Non-private LinUCB (LinUCB) (Abbasi-yadkori et al., 2011). For our algorithm (OnlineUCB),
we implement Algorithm 1 with Maler as the online learner. In our experiment, we consider 100 arms with
dimension d = 5. We run our algorithm over T = 20000 rounds and average the regrets over 50 trials. We
generate the optimal parameter θ⋆ and the feature vector xt by sampling a (d− 1)−dimensional vector of
norm 1/

√
2 uniformly at random and append it with a 1/

√
2 entry. We also use Bernoulli rewards to ensure

boundedness. This is the same exact setting as in (Chowdhury & Zhou, 2022). As we can see from Figure 1,

Figure 1: (a) ϵ = 0.2 (b) ϵ = 1 (c) ϵ = 10

in the low-privacy domain (ϵ = 1 and ϵ = 10), our OnlineUCB algorithm significantly outperforms not only
the previous best-known LDP algorithm but also SDP and JDP (which use the weaker shuffle and central
models of differential privacy respectively) while having stronger privacy guarantee. This result is consistent
with the theory since when there exists a λmin = O(1) such that Et

[
xtx

T
t

]
⪰ λminI (which is our experiment

settings), OnlineUCB has a better regret guarantee than all of the previous private stochastic linear bandits

12

Under review as submission to TMLR

algorithms. In the high privacy domain (ϵ = 0.2), OnlineUCB does not do as well but still outperforms LDP
LinUCB and has comparable performance to Shuffle LinUCB. We also note that even though we use Maler
to be consistent with the theory, one could also use Online Gradient Descent (which runs a lot faster than
Maler) as the online learner to get the same empirical performance.

6 Conclusions

In this paper, we present a new algorithm for differentially private linear (contextual) stochastic bandit
in the local settings that uses an online learner to construct the confidence set. By carefully choosing the
online learner as well as the loss function sent to the online learner, our algorithm guarantees the regret
Õ
(

min
{√

dT 3/4

ϵ ,
√
dT

ϵλmin

})
with high probability where λmin is the lower bound on Et[xtxTt]. Thus, when

λmin ≈ O(1), our algorithm is the first algorithm that guarantees Õ(
√
T) for the LDP setting. Further,

by running the online learner on a bounded domain, we are able to improve the regret dependence on the
dimension d of the feature vector xt from O(d3/4) to O(

√
d). There are several limitations that one could

further explore to improve the results of this paper. The most natural question is if it is possible to guarantee
Õ
(√

T
)

for the local model without any further assumption. In our current result, we still rely heavily on

the fact that Et[xtxTt] ⪰ λminId to get Õ
(√

T
)

regret. If that is not possible, what are other settings that

allow us to achieve Õ
(√

T
)

regret? One could hope that by further exploiting the properties of specific
online learners from the rich literature of online optimization, we can find other favorable domains as well.

References
Yasin Abbasi-yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits.

In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.), Advances in Neural
Information Processing Systems, volume 24. Curran Associates, Inc., 2011. URL https://proceedings.
neurips.cc/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf.

Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-confidence-set conversions and ap-
plication to sparse stochastic bandits. In Neil D. Lawrence and Mark Girolami (eds.), Proceedings of
the Fifteenth International Conference on Artificial Intelligence and Statistics, volume 22 of Proceed-
ings of Machine Learning Research, pp. 1–9, La Palma, Canary Islands, 21–23 Apr 2012. PMLR. URL
https://proceedings.mlr.press/v22/abbasi-yadkori12.html.

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band of bandit
algorithms. In Conference on Learning Theory, pp. 12–38. PMLR, 2017.

T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM Trans. Inf.
Syst. Secur., 14(3), nov 2011. ISSN 1094-9224. doi: 10.1145/2043621.2043626. URL https://doi.org/10.
1145/2043621.2043626.

Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed differential
privacy via shuffling. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 375–403. Springer, 2019.

Sayak Ray Chowdhury and Xingyu Zhou. Shuffle private linear contextual bandits. arXiv preprint
arXiv:2202.05567, 2022.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions. In
Geoffrey Gordon, David Dunson, and Miroslav Dudík (eds.), Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research,
pp. 208–214, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL https://proceedings.mlr.press/
v15/chu11a.html.

13

https://proceedings.neurips.cc/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://proceedings.mlr.press/v22/abbasi-yadkori12.html
https://doi.org/10.1145/2043621.2043626
https://doi.org/10.1145/2043621.2043626
https://proceedings.mlr.press/v15/chu11a.html
https://proceedings.mlr.press/v15/chu11a.html

Under review as submission to TMLR

Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava, and Tianhao Wang. Privacy
at scale: Local differential privacy in practice. In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, pp. 1655–1658, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450347037. doi: 10.1145/3183713.3197390. URL https://doi.org/10.1145/
3183713.3197390.

Ashok Cutkosky, Abhimanyu Das, and Manish Purohit. Upper confidence bounds for combining stochastic
bandits. arXiv preprint arXiv:2012.13115, 2020.

Ashok Cutkosky, Christoph Dann, Abhimanyu Das, Claudio Gentile, Aldo Pacchiano, and Manish Purohit.
Dynamic balancing for model selection in bandits and rl. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 2276–2285. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/cutkosky21a.html.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3–4):211–407, aug 2014. ISSN 1551-305X. doi: 10.1561/0400000042. URL
https://doi.org/10.1561/0400000042.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under continual
observation. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC ’10, pp.
715–724, New York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781450300506. doi:
10.1145/1806689.1806787. URL https://doi.org/10.1145/1806689.1806787.

Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2468–2479. SIAM,
2019.

Evrard Garcelon, Kamalika Chaudhuri, Vianney Perchet, and Matteo Pirotta. Privacy amplification via
shuffling for linear contextual bandits. In International Conference on Algorithmic Learning Theory, pp.
381–407. PMLR, 2022.

Y. Gordon, Alexander Litvak, Carsten Schuett, and Elisabeth Werner. On the minimum of several random
variables. Proceedings of the American Mathematical Society, 134:3665–3675, 12 2006. doi: 10.2307/4098204.

Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform, nonparametric,
nonasymptotic confidence sequences. 2021.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

Yingkai Li, Yining Wang, and Yuan Zhou. Nearly minimax-optimal regret for linearly parameterized bandits.
In Conference on Learning Theory, pp. 2173–2174. PMLR, 2019.

Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore, and Csaba
Szepesvari. Model selection in contextual stochastic bandit problems. Advances in Neural Information
Processing Systems, 33:10328–10337, 2020.

Aldo Pacchiano, Christoph Dann, and Claudio Gentile. Data-driven regret balancing for online model selection
in bandits. arXiv preprint arXiv:2306.02869, 2023.

Roshan Shariff and Or Sheffet. Differentially private contextual linear bandits. Advances in Neural Information
Processing Systems, 31, 2018.

Roman Vershynin. High-dimensional probability. 2018.

Guanghui Wang, Shiyin Lu, and Lijun Zhang. Adaptivity and optimality: A universal algorithm for online
convex optimization. In Ryan P. Adams and Vibhav Gogate (eds.), Proceedings of The 35th Uncertainty in
Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning Research, pp. 659–668.
PMLR, 22–25 Jul 2020a. URL https://proceedings.mlr.press/v115/wang20e.html.

14

https://doi.org/10.1145/3183713.3197390
https://doi.org/10.1145/3183713.3197390
https://proceedings.mlr.press/v139/cutkosky21a.html
https://proceedings.mlr.press/v139/cutkosky21a.html
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/1806689.1806787
https://proceedings.mlr.press/v115/wang20e.html

Under review as submission to TMLR

Guanghui Wang, Shiyin Lu, and Lijun Zhang. Adaptivity and optimality: A universal algorithm for online
convex optimization. In Uncertainty in Artificial Intelligence, pp. 659–668. PMLR, 2020b.

Jiujia Zhang and Ashok Cutkosky. Parameter-free regret in high probability with heavy tails. arXiv preprint
arXiv:2210.14355, 2022.

Kai Zheng, Tianle Cai, Weiran Huang, Zhenguo Li, and Liwei Wang. Locally differentially private (contextual)
bandits learning. Advances in Neural Information Processing Systems, 33:12300–12310, 2020.

15

Under review as submission to TMLR

A Backgrounds on LinUCB

A.1 LinUCB

Algorithm 3 LinUCB
1: for t = 1 . . . T do
2: (xt, θ̃t) = arg max(x,θ)∈Dt×Ct−1⟨x, θ⟩
3: Play xt and observe reward yt
4: Update Ct
5: end for

At its core, our algorithm is simply the private version of LinUCB (Algorithm 3). Since its introduction
in 2011 (Chu et al., 2011; Abbasi-yadkori et al., 2011), LinUCB has been the method of choice for linear
bandit problems due to its good theoretical guarantee and its effectiveness in practice. LinUCB is based on
the idea of optimisim-in-the-face-of-uncertainty (OFU). The OFU principle elegantly solves the exploration-
exploitation dilemma of bandit problems. The basic idea of this principle is to maintain a confidence set for
the vector of coefficients of the linear function. At every round t, LinUCB constructs a confidence set Ct that
contains the optimal parameter θ⋆ with high probability. It then computes an upper confidence bound on
the reward of each action in the decision set Dt, then chooses the action with the highest upper confidence
bound: xt ← arg maxx∈Dt

(maxθ∈Ct
⟨θ, x⟩). Let Vt =

∑t
i=1 xix

T
i +λI, ut =

∑t
i=1 xiyi, X<t ∈ R(t−1)×d where

X<t,s = xTs for s < t, and Y<t ∈ Rt−1 be the vector of rewards up to round t. Since in our setting, the
rewards are linear functions of the actions with subgaussian noises, it is natural to center the confidence set
Ct on the linear regression estimate:

θ̂t = arg min
θ∈Rd

∥θX<tθ − Y<t∥2 + ∥θ∥2

= V −1
t ut

Whenever we get a new reward yt, it gives us information about the projection of θ⋆ onto the action space,
thus θ̂ is closer to θ⋆ along the directions where many actions have been taken. This motivates the use of
ellipsoid confidence set that is smaller in such directions. LinUCB defines the confidence set as follows:

Ct =
{
θ ∈ Rd : ∥θ − θ̂t∥Vt

≤ βt
}

(7)

where βt is the width of the confidence set. (Abbasi-yadkori et al., 2011) then shows that the optimal θ⋆ is
inside Ct with high probability with appropriate βt by bounding the difference between the actual rewards
and the predicted rewards using Algorithm 3.
Theorem A.1. (Theorem 2 in (Abbasi-yadkori et al., 2011)) Define yt = ⟨xt, θ⋆⟩ + ηt where ηt is
R−subgaussian noise and assume that ∥θ⋆∥ ≤ S. Then for any δ > 0, with probability at least 1 − δ,
for all t ≥ 1, θ⋆ lies in the set:

Ct =
{
θ ∈ Rd : ∥θ − θ̂t∥Vt ≤ βt

}
where βt = R

√
2 log

(
det(Vt)1/2det(λI)−1/2

δ

)
+ λ1/2S.

Finally, (Abbasi-yadkori et al., 2011) proves the following regret bound:

RegretT ≤ Õ(βt
√
dn)

Now, we can plug in the value of βt in Theorem A.1 and use the fact that log(det(Vt)) ≤ O(d) (Lemma 10 in
(Abbasi-yadkori et al., 2011)) to get the Õ(d

√
T) regret of non-private LinUCB.

16

Under review as submission to TMLR

A.2 LinUCB with online-to-confidence conversion

Algorithm 4 Online LinUCB
1: for t = 1 . . . T do
2: Construct confidence set Ct−1
3: (xt, θ̃t) = arg max(x,θ)∈Dt×Ct−1⟨x, θ⟩
4: Get prediction ŷt from online learner M
5: Play xt and observe reward yt
6: Update Ct
7: end for

Building on the original LinUCB algorithm, (Abbasi-Yadkori et al., 2012) introduces a new variant of LinUCB
where we construct the confidence set using the predictions from an online optimization algorithm. The main
procedure is described in Algorithm 4. In every round t, Algorithm 4 sends the action xt, the reward yt to an
online learner M and gets back some predictions ŷt. The online learner then suffers a loss lt(ŷt) (e.g: the
squared loss lt(ŷt) = (ŷt − yt)2). Then, if we define Mn as the upper bound on the regret at time n of the
online learner M (Mn ≥

∑N
t=1 lt(θt)− lt(θ⋆)), (Abbasi-Yadkori et al., 2012) shows that we can construct a

confidence set that depends on Mn where θ⋆ is inside the confidence set with high probability.

Theorem A.2. (Corollary 2 in (Abbasi-Yadkori et al., 2012)) Assume ∥θ⋆∥ ≤ S. Then for any δ ∈ (0, 1/4],
with probability at least 1− δ, the true parameter θ⋆ lies in the intersections of the sets

Cn =
{
∥θ∥2 +

n∑
t=1

(ŷt − ⟨θ, xt⟩)2 ≤ β2
n

}

where β2
n = S2 + 1 + 2Mn + 32R2 log

(
R

√
8+

√
1+Mn

δ

)
For a more detailed analysis, please refer to (Abbasi-Yadkori et al., 2012) or our proofs of Lemma 3.3. Since
Algorithm 1 is based on LinUCB with online-to-confidence conversion, the analysis of Algorithm 1 and
Algorithm 4 are very similar. We have the final regret bound for Algorithm 4 as follows:

RegretT ≤ Õ
(

max
1≤t≤T

βt
√
dT

)

At first glance, this regret bound is exactly the same as the regret bound of the original LinUCB discussed
in Section A.1. However, notice that the confidence width of the original LinUCB in Section A.1 is always
O(
√
d) due to its dependence on log(det(Vt)) while Online LinUCB depends on the regret of the online

learner M instead. Though the worst case bound of both algorithms are Õ(d
√
T), Online LinUCB allows

us the flexibility of choosing our own online optimization algorithms to adapt to different problem settings.
Specifically, (Abbasi-Yadkori et al., 2012) shows that when θ⋆ is a sparse vector, Online LinUCB guarantees
Õ(
√
dT∥θ⋆∥0) which is better than the worst-case bound Õ(d

√
T). This is the reason why we chose Online

LinUCB as the base algorithm for our private method since it allows us to potentially improve the final regret
bound for favorable scenarios.

17

Under review as submission to TMLR

B Good Event and High-confidence Argument

Let zt = rt + ηy,t, θt is the prediction of the online learner in Algorithm 1, lt(θt) is the loss we sent to the
online learner, L(θt) = E [lt(θt)], and G is the clipping constant. We define the following good events:

E1 =
{
∀t ∈ [T] : ∥ηx,t∥ ≤ σ

√
2 log(2T/α)

}
E2 =

{
∀t ∈ [T] : ∥ηy,t∥ ≤ σ

√
2 log(2T/α)

}
E3 =

{
∀t ∈ [T] : ∥ζt∥ ≤ ∆

√
2 log(2T/α)

}
E4 =

{
∀t ∈ [T] :

∥∥ηx,tηTx,t − Σ
∥∥
op
≤ 2DCσ2(d+ log(2T/α))

}
E5 =

{
∀N ∈ [T] : |

N∑
t=1

(zt − ⟨ηx,t + ζt, θt⟩)⟨xt, θt − θ⋆⟩|

≤

(
R+

2(D + 1)
√

2 log(1.25/δ)
ϵ

+D∆
)√√√√2

(
1 +

N∑
t=1
⟨xt, θt − θ⋆⟩2

)√√√√√log


√

1 +
∑N
t=1⟨xt, θt − θ⋆⟩2

α




E6 =

∀N ∈ [T] : |
N∑
t=1

zt⟨ηx,t + ζt, θt − θ⋆⟩| ≤

(
R+

2
√

2 log(1.25/δ)
ϵ

)√√√√2
(

1 +
N∑
t=1
⟨ηx,t + ζt, θt − θ⋆⟩2

)
E7 =

{
∀N ∈ [T] :

∣∣∣∣∣
N∑
t=1

(θ⋆ − θt)T ζtηTx,t(θ⋆ − θt)

∣∣∣∣∣
≤ ∆∥θt − θ⋆∥

√√√√√2
(

1 +
N∑
t=1
⟨ηx,t, θ⋆ − θt⟩2

)
log


√

1 +
∑N
t=1⟨ηx,t, θ⋆ − θt⟩2

α




E8 =
{
∀N ∈ [T] :

∣∣∣∣∣
N∑
t=1

θTt ζtr
T
t (θ⋆ − θt)

∣∣∣∣∣+

∣∣∣∣∣
N∑
t=1

(θ⋆ − θt)T ζtrTt θt

∣∣∣∣∣
≤ ∆∥θt∥

√√√√√2
(

1 +
N∑
t=1
⟨ηx,t, θ⋆ − θt⟩2

)
log


√

1 +
∑N
t=1⟨ηx,t, θ⋆ − θt⟩2

α



+σ∥θt∥

√√√√√2
(

1 +
N∑
t=1
⟨ζt, θ⋆ − θt⟩2

)
log


√

1 +
∑N
t=1⟨ζt, θ⋆ − θt⟩2

α




E9 =
{
∀N ∈ [T] :

∥∥∥∥∥
N∑
t=1

(θ⋆ − θt)T (ηx,tηTx,t − Σ)(θt + θ⋆)

∥∥∥∥∥
≤ 20σ2(D + 1) log(2T/α)

√√√√√√ N∑
t=1
∥θ⋆ − θt∥2 log

16
α

log

e2


√√√√ N∑

t=1

16(D + 1)2σ4 log2 (2T
α

)
∥θ⋆ − θt∥2

ν2


1

2
+23 max(ν,max

t
4(D + 1)σ2 log

(
2T
α

)
∥θ⋆ − θt∥) log

224
α

[
log
(

2e2 max(ν,maxt 4(D + 1)σ2 log
(2T
α

)
∥θ⋆ − θt∥)

ν

)]2


18

Under review as submission to TMLR

for some arbitrary constant ν ≥ 0 and [x]1 := max(1, x).

E10 =


T∑
t=1
⟨∇L(θt)−∇lt(θt), θt − θ⋆⟩ ≤ 2

√√√√2G2 log(1/α)
T∑
t=1
∥θt − θ⋆∥2


E =

10⋃
i=1
Ei

Lemma B.1. Event E happens with probability at least 1− 11α.

Proof. Since ηx,t ∼ N(0, σ2
X), from Theorem H.10, w.p at least 1− α/T :

∥ηx,t∥ ≤ σ
√

2 log(2T/α)

Using the union bound over all t ∈ [T] to get that event E1 happens w.p at least 1− α. Now repeat the same
argument with ηy,t ∼ N(0, σ2) and ζt ∼ N(0,∆2) to get the high probability bound for E2 and E3.

For E4, we can use Theorem H.7 to get w.p at least 1− α for every t ∈ [T]:∥∥ηx,tηTx,t − Σ
∥∥
op
≤ 2DC (d+ log(2T/α)) ∥Σ∥op
= 2DCσ2 (d+ log(2T/α))

for an universal constant C > 0.

E5: It’s easy to see that {
∑N
t=1(zt−⟨ηx,t+ζt, θt⟩)⟨xt, θt−θ⋆⟩}∞

N=0 is a martingale sequence and zt−⟨ηx,t+ζt, θt⟩
is
√
R2 + σ2 + (σ2 + ∆2) ∥θt∥2− subgaussian. Then using corollary H.12,w.p at least 1− α we have:

|
N∑
t=1

(zt − ⟨ηx,t + ζt, θt⟩)⟨xt, θt − θ⋆⟩| ≤
(
R+

2(D + 1)
√

2 log(1.25/δ)
ϵ

+D∆
)√√√√2

(
1 +

N∑
t=1
⟨xt, θt − θ⋆⟩2

)

×

√√√√√log


√

1 +
∑N
t=1⟨xt, θt − θ⋆⟩2

α


E6: Similarly, we can apply corollary H.12 to get E6. W.p at least 1− α:

|
N∑
t=1

zt⟨ηx,t + ζt, θt − θ⋆⟩| ≤

(
R+

2
√

2 log(1.25/δ)
ϵ

)√√√√2
(

1 +
N∑
t=1
⟨ηx,t + ζt, θt − θ⋆⟩2

)

×

√√√√√log


√

1 +
∑N
t=1⟨ηx,t + ζt, θt − θ⋆⟩2

α


E7:

{∑N
t=1(θ⋆ − θt)T ζtηTx,t(θ⋆ − θt)

}∞

N=0
is a martingale sequence and (θ⋆−θt)T ζt is ∆∥θt−θ⋆∥−subgaussian.

Using corollary H.12, w.p 1− α we get:

∣∣∣∣∣
N∑
t=1

(θ⋆ − θt)T ζtηTx,t(θ⋆ − θt)

∣∣∣∣∣ ≤ ∆∥θt − θ⋆∥

√√√√√2
(

1 +
N∑
t=1
⟨ηx,t, θ⋆ − θt⟩2

)
log


√

1 +
∑N
t=1⟨ηx,t, θ⋆ − θt⟩2

α



19

Under review as submission to TMLR

E8: Both
{∑N

t=1 θ
T
t ζtη

T
x,t(θ⋆ − θt)

}∞

N=0
and

{∑N
t=1(θ⋆ − θt)T ζtηTx,tθt

}∞

N=0
are martingale sequences. Thus

we can again apply corollary H.12 w.p at least 1− 2α:∣∣∣∣∣
N∑
t=1

θTt ζtη
T
x,t(θ⋆ − θt)

∣∣∣∣∣+

∣∣∣∣∣
N∑
t=1

(θ⋆ − θt)T ζtηTx,tθt

∣∣∣∣∣
≤ ∆∥θt∥

√√√√√2
(

1 +
N∑
t=1
⟨ηx,t, θ⋆ − θt⟩2

)
log


√

1 +
∑N
t=1⟨ηx,t, θ⋆ − θt⟩2

α



+ σ∥θt∥

√√√√√2
(

1 +
N∑
t=1
⟨ζt, θ⋆ − θt⟩2

)
log


√

1 +
∑N
t=1⟨ζt, θ⋆ − θt⟩2

α


E9: We have w.p at least 1 − α, ∥(θt − θ⋆)T ηx,tηTx,t(θt + θ⋆)∥ ≤ 2σ2∥θt − θ⋆∥∥θt + θ⋆∥ log(2T/α) and
∥(θt − θ⋆)TΣ(θt + θ⋆)∥ ≤ 2σ2∥θt − θ⋆∥∥θt + θ⋆∥ log(2T/α). Thus:

∥(θ⋆ − θt)T (ηx,tηTx,t − Σ)(θt + θ⋆)∥2 ≤ 2∥(θ⋆ − θt)T ηx,tηTx,t(θt + θ⋆)∥2 + 2∥(θ⋆ − θt)TΣ(θt + θ⋆)∥2

≤ 16σ4 log2(2T/α)∥θ⋆ − θt∥2∥θ⋆ + θt∥2

≤ 16(D + 1)2σ4 log2(2T/α)∥θ⋆ − θt∥2

Let Xt = (θt − θ⋆)T (ηx,tηTx,t − Σ)(θt + θ⋆)⇒ E[Xt|ηx,1, θ1, ..., ηx,t−1, xt−1] = 0. Thus, Xt is a martingale dif-
ference sequence and Xt is

(
4(D + 1)σ2 log(2T/α)∥θ⋆ − θt∥, 8(D + 1)σ2 log(2T/α)∥θ⋆ − θt∥

)
sub-exponential

by Proposition H.1. Now applying Theorem H.2, w.p at least 1− 2α we get∥∥∥∥∥
N∑
t=1

(θ⋆ − θt)T (ηx,tηTx,t − Σ)(θt + θ⋆)

∥∥∥∥∥
≤ 5

√√√√√√ N∑
t=1

16(D + 1)2σ4 log2
(

2T
α

)
∥θ⋆ − θt∥2 log

16
α

log


√√√√ N∑

t=1

16(D + 1)2σ4 log2 (2T
α

)
∥θ⋆ − θt∥2

ν2


1

+ 2

2
+ 23 max(ν,max

t
4(D + 1)σ2 log

(
2T
α

)
∥θ⋆ − θt∥) log

224
α

[
log
(

2 max(ν,maxt 4(D + 1)σ2 log
(2T
α

)
∥θ⋆ − θt∥)

ν

)
+ 2
]2


= 20σ2(D + 1) log(2T/α)

√√√√√√ N∑
t=1
∥θ⋆ − θt∥2 log

16
α

log

e2


√√√√ N∑

t=1

16(D + 1)2σ4 log2 (2T
α

)
∥θ⋆ − θt∥2

ν2


1

2
+ 23 max(ν,max

t
4(D + 1)σ2 log

(
2T
α

)
∥θ⋆ − θt∥) log

224
α

[
log
(

2e2 max(ν,maxt 4(D + 1)σ2 log
(2T
α

)
∥θ⋆ − θt∥)

ν

)]2


for some arbitrary constant ν ≥ 0 and [x]1 := max(1, x).

E10: Since {⟨∇L(θt)−∇lt(θt), θt − θ⋆⟩}Tt=1 is a martingale difference sequence and −2G∥θt−θ⋆∥ ≤ ⟨∇L(θt)−
∇lt(θt), θt − θ⋆⟩ ≤ 2G∥θt − θ⋆∥, applying Azuma-Hoeffding inequality (Theorem H.16), we have w.p at least
1− α:

T∑
t=1
⟨∇L(θt)−∇lt(θt), θt − θ⋆⟩ ≤ 2

√√√√2G2 log(1/α)
T∑
t=1
∥θt − θ⋆∥2

Now we can use the union bound over all events to conclude the result.

20

Under review as submission to TMLR

C Maler Optimizer (Wang et al., 2020a)

We denote our loss as lt(θt) and L(θt) = E[lt(θt)]. We have the following lemma on the Lipschitz constant of
lt(θt) under the good event E .
Corollary C.1. Under the event E we have:

max
t
∥∇lt(θt)∥ ≤ G

where G = 2
√

2 log(2T/α)(2Dσ+2σ+D∆+∆)+2 log(2T/α)(2D∆2 +4D∆σ+2∆σ+2Dσ2 +2σ2 +DCσ2)+
2D + 2.

Proof. We have:

∇lt(θt) = 2x̃t(⟨x̃t, θt⟩ − ỹt)− 2Σθt
= 2(xt + ζt + ηx,t))(⟨xt + ζt + ηx,t, θt⟩ − ỹt)− 2Σθt

Then,

∥∇lt(θt)∥ ≤ 2
(
∥xt∥2∥θt∥+ 2∥xt∥∥ηx,t∥∥θt∥+ ∥xt∥|yt|+ ∥xt∥∥ηy,t∥+ 2∥xt∥∥ζt∥∥θt∥+ ∥ζt∥2∥θt∥+ 2∥ζt∥∥ηt∥∥θt∥

+∥ζt∥|yt|+ ∥ζt∥∥ηy,t∥+ ∥ηx,t∥2∥θt∥+ ∥ηx,t∥∥ηy,t∥+ ∥ηx,t∥|yt|+ ∥(ηx,tηTx,t − Σ)θt∥
)

Thus, under the event E :

max
t
∥∇lt(θt)∥ ≤ G

Using the result of the above Corollary we have ∥∇lt(θt)∥ ≤ G and the domain D of θt is bounded by 2D for
all t ∈ [T]. To run Maler, we need to define the surrogate loss as follows:

srt (θ) = −η(θt − θ)T gt + η2G2∥θt − θ∥2

lrt (θ) = −η(θt − θ)T gt + η2(θ − θt)T gtgTt (θ − θt)
ct(θ) = −ηc(θt − θ)T gt + (2ηcGD)2

We present the Maler algorithm in Algorithm 5:
Theorem C.2. Assuming L(θt) = E[lt(θt)] is µ−strongly convex and maxt,t′ ∥θt − θ′

t∥ ≤ 2D. Maler
(Algorithm 5) under the event E guarantees:

T∑
t=1

L(θt)− L(θ⋆) ≤
(

40GD + 18G2

µ

)(
2ln

(√
3
(

1
2 log2 T + 3

))
+ 1 + log T

)
+ 32G2 log(1/α)

µ

≤ O
((

G2

µ
+GD

)
log T + G2

µ
log(1/α)

)
Furthermore, we have:

T∑
t=1
∥θt − θ⋆∥2 ≤

(
80GD
µ

+ 36G2

µ2

)(
2ln

(√
3
(

1
2 log2 T + 3

))
+ 1 + log T

)
+ 64G2 log(1/α)

µ2

≤ O
((

G2

µ2 + GD

µ

)
log T + G2

µ2 log(1/α)
)

21

Under review as submission to TMLR

Algorithm 5 Maler

1: Input: Learning rate ηc, η1, η2, . . . , prior weights πc1, π
η1,s
1 , πη2,s

1 , . . . and πη1,l
1 , πη2,l

1 , . . .
2: for t = 1, . . . , T do
3: Get predictions θct from Algorithm 6, θη,ℓt from Algorithm 7, and θη,st from Algorithm 8 for all η.

4: Play θt =
πc

tη
cθc

t +
∑

η
πη,s

t ηθη,s
t +πη,ℓ

t ηθη,ℓ
t

πc
tη

c+
∑

η
πη,s

t η+πη,ℓ
t η

5: Observe gradient gt and send it to the experts
6: Update weights:

πct+1 = πct e
−ct(θc

t)

ϕt

πη,st+1 = πη,st e−sη
t (θη,s

t)

ϕt

πη,ℓt+1 = πη,ℓt e−lηt (θη,ℓ
t)

ϕt

where:

ϕt = πct e
−ct(θc

t) +
∑
η

πη,st e−sη
t (θη,s

t) + πη,ℓt e−lηt (θη,ℓ
t)

7: end for

Algorithm 6 Convex Expert Algorithm
1: Initialize θc1 = 0
2: for t = 1, . . . , T do
3: Send θct to Algorithm 5
4: Receive gradient gt from Algorithm 5
5: Update θct+1 = ΠId

D

(
θct − 2D

ηcG
√
t
∇ct(θct)

)
6: end for

Proof. Our analysis follows the analysis of Maler which in turn follows the analysis of Metagrad. We have:
T∑
t=1

L(θt)− L(θ⋆) ≤
T∑
t=1
⟨∇L(θt), θt − θ⋆⟩ −

µ

2 ∥θt − θ
⋆∥2

=
T∑
t=1
⟨∇lt(θt), θt − θ⋆⟩ −

µ

2 ∥θt − θ
⋆∥2 + ⟨∇L(θt)−∇lt(θt), θt − θ⋆⟩

=
T∑
t=1
⟨gt, θt − θ⋆⟩ −

µ

2 ∥θt − θ
⋆∥2 + ⟨∇L(θt)−∇lt(θt), θt − θ⋆⟩+ ⟨∇lt(θt)− gt, θt − θ⋆⟩

Under event E , gt = ∇lt(θt):

=
T∑
t=1
⟨gt, θt − θ⋆⟩ −

µ

2 ∥θt − θ
⋆∥2 + ⟨∇L(θt)−∇lt(θt), θt − θ⋆⟩

=
∑T
t=1−srt (θ⋆) + η2G2∥θ⋆ − θt∥2

η
− µ

2 ∥θt − θ
⋆∥2 + ⟨∇L(θt)−∇lt(θt), θt − θ⋆⟩

Using Lemma H.6, we get

≤
(

10GD + 9G2

2µ

)(
2ln

(√
3
(

1
2 log2 T + 3

))
+ 1 + log T

)
+ ⟨∇L(θt)−∇lt(θt), θt − θ⋆⟩

22

Under review as submission to TMLR

Algorithm 7 Exp-concave Expert Algorithm
1: Input: Learning rate η
2: θη,l1 = 0, α = 1

2 min{ 2
GℓD

, 1} where Gℓ = 7
50D , Σ1 = 1

4α2D2 Id
3: for t = 1, . . . , T do
4: Send θη,ℓ to Algorithm 5
5: Receive gradient gt from Algorithm 5
6: Update

Σt+1 = Σt +∇lηt
(
θη,lt

)(
∇lηt

(
θη,lt

))T
θη,lt+1 = ΠΣt+1

D

(
θη,lt −

1
α

Σ−1
t+1∇l

η
t

(
θη,lt

))
7: end for

Algorithm 8 Strongly-convex Expert Algorithm
1: Input: Learning rate η
2: θη,s1 = 0
3: for t = 1, . . . , T do
4: Send θη,s to Algorithm 5
5: Receive gradient gt from Algorithm 5
6: Update

θη,st+1 = ΠId

D

(
θη,st −

1
2η2G2t

∇sηt (θη,st)
)

7: end for

We have:

T∑
t=1

L(θt)− L(θ⋆) ≤
(

20GD + 9G2

2µ

)(
2ln

(√
3
(

1
2 log2 T + 3

))
+ 1 + log T

)
+ 2

√√√√2G2 log(1/α)
T∑
t=1
∥θt − θ⋆∥2

≤
(

20GD + 9G2

2µ

)(
2ln

(√
3
(

1
2 log2 T + 3

))
+ 1 + log T

)
+ 4

√√√√G2

µ
log(1/α)

T∑
t=1

L(θt)− L(θ⋆)

Applying Proposition H.8:

T∑
t=1

L(θt)− L(θ⋆) ≤
(

40GD + 18G2

µ

)(
2ln

(√
3
(

1
2 log2 T + 3

))
+ 1 + log T

)
+ 32G2 log(1/α)

µ

Furthermore, from strong convexity, we have: ∥θt − θ⋆∥2 ≤ 2(L(θt)−L(θ⋆))
µ , thus:

T∑
t=1
∥θt − θ⋆∥2 ≤

(
80GD
µ

+ 36G2

µ2

)(
2ln

(√
3
(

1
2 log2 T + 3

))
+ 1 + log T

)
+ 64G2 log(1/α)

µ2

Theorem C.3. (Strongly convex regret) Assuming L(θ) = E[lt(θt)] is µ−SC and maxt,t′ ∥θt − θ′
t∥ ≤ 2D.

Then w.p at least 1− α, Maler under the event E guarantees:

T∑
t=1

lt(θt)− lt(θ⋆) ≤ O
((

G2

µ
+GD

)
log T + G2

µ
log(1/α)

)

23

Under review as submission to TMLR

Proof. Let us define At = lt(θt)− lt(θ⋆)− (L(θt)− L(θ⋆)). It’s easy to see that E[At|A1, . . . , At−1] = 0 and
E[At] ≤ ∞. Thus the sequence {At}Tt=1 is a Martingale difference sequence. Furthermore, we have

E[∥At∥2|A1, . . . , At] = E[∥lt(θt)− lt(θ⋆)− (L(θt)− L(θ⋆))∥2]
≤ E[2∥lt(θt)− lt(θ⋆)∥2 + 2∥(L(θt)− L(θ⋆))∥2]
≤ 4G2∥θt − θ⋆∥2

where the last inequality comes from lipschitz assumption. Similarly, we also have ∥At∥ ≤ 2G∥θt − θ⋆∥. Thus
by Proposition H.1, Xt is (2G∥θt − θ⋆∥, 4G∥θt − θ⋆∥) sub-exponential. Now applying Theorem H.2, for some
arbitrary constant ν ≥ 0, we have:

∥
T∑
t=1

lt(θt)− lt(θ⋆)− (L(θt)− L(θ⋆))∥ ≤ 5

√√√√√√4G2
T∑
t=1
∥θt − θ⋆∥2 log

16
α

log


√√√√4G2

T∑
t=1
∥θt − θ⋆∥2/ν2


1

+ 2

2
+ 23 max(ν,max

i≤t
bi) log

(
224
α

[
log
(

2 max(ν,maxi≤t bi)
ν

)
+ 2
]2
)

where [x]1 = max(1, x). Now let M1 = 23 max(ν,maxi≤t bi) log
(

224
α

[
log
(

2 max(ν,maxi≤t bi)
ν

)
+ 2
]2
)

and

denote RegretSC
T =

∑T
t=1 L(θt)− L(θ⋆) we get:

∥∥∥∥∥
T∑
t=1

lt(θt)− lt(θ⋆)− (L(θt)− L(θ⋆))

∥∥∥∥∥ ≤ 5

√√√√√√8G2RegretSC
T

µ
log

16
α

log

√8G2RegretSC
T

µν2


1

+ 2

2
+M1

Thus w.p at least 1− 2α

T∑
t=1

lt(θt)− lt(θ⋆) ≤ RegretSC
T + 5

√√√√√√8G2RegretSC
T

µ
log

16
α

log

√8G2RegretSC
T

µν2


1

+ 2

2
+M1

Plug in RegretSC
T from Theorem C.2:

T∑
t=1

lt(θt)− lt(θ⋆) ≤ O
((

G2

µ
+GD

)
log T + G2

µ
log(1/α)

)

D Proofs of section 3

D.1 Proofs of general results

Lemma 3.3. We define ṼN−1 =
∑N−1
t=1 x̃tx̃

T
t , ũN−1 =

∑N−1
t=1 ⟨θt, x̃t⟩x̃t (θt is the prediction of the online

learner), and θ̂N = Ṽ −1
N−1ũN−1. Assuming ∥θt∥ ≤ D, then under event E, the true parameter θ⋆ lies in the

set:

CN−1 =
{
θ ∈ Rd : ∥θ − θ̂N∥2

ṼN−1
≤MN +KN

}

24

Under review as submission to TMLR

for any N ≥ 1 and

KN = γD∆2 log(T/α)

√√√√N

N∑
t=1
∥θt − θ⋆∥2 + γ

(
R+

D
√

log(1/δ)
ϵ

+D∆
)2

log(T/α)

+ γ

(
log(1/δ)

ϵ2
+ ∆2

)
log(T/α)

N∑
t=1
∥θt − θ⋆∥2

for a sufficient large constant γ > 0.

Proof. We have:

Mn ≥
N∑
t=1

(⟨x̃t, θt⟩ − ỹt)2 − ∥θt∥2
Σ − (⟨x̃t, θ⋆⟩ − ỹt)2 + ∥θ⋆∥2

Σ

=
N∑
t=1

(⟨xt, θt − θ⋆⟩+ ⟨ηx,t, θt⟩+ ⟨ζt, θt⟩ − rt − ηy,t)2 − ∥θt∥2
Σ − (⟨ηx,t, θ⋆⟩+ ⟨ζt, θ⋆⟩ − rt − ηy,t)2 + ∥θ⋆∥2

Σ

Let zt = rt + ηy,t:

MN ≥
N∑
t=1

(⟨xt, θt − θ⋆⟩)2 + 2⟨xt, θt − θ⋆⟩⟨ηx,t, θt⟩+ (⟨ηx,t, θt⟩)2 + 2 (⟨ζt, θt⟩ − zt) (⟨xt, θt − θ⋆⟩+ ⟨ηx,t, θt⟩)

+ ⟨ζt, θt⟩2 − 2zt⟨ζt, θt⟩+ z2
t − ∥θt∥2

Σ − (⟨ηx,t, θ⋆⟩)2 − 2(⟨ζt, θ⋆⟩ − zt)⟨ηx,t, θ⋆⟩ − ⟨ζt, θ⋆⟩2

+ 2zt⟨ζt, θ⋆⟩ − z2
t + ∥θ⋆∥2

Σ

=
N∑
t=1

(⟨xt, θt − θ⋆⟩)2 + 2(⟨ηx,t + ζt, θt⟩ − zt)⟨xt, θt − θ⋆⟩ − 2zt⟨ηx,t, θt − θ⋆⟩+ ⟨ζt, θt⟩2 − ⟨ζt, θ⋆⟩2

+ 2(⟨ζt, θt⟩⟨ηx,t, θt⟩ − ⟨ζt, θ⋆⟩⟨ηx,t, θ⋆⟩)− 2zt⟨ζt, θt − θ⋆⟩+ θTt (ηx,tηTx,t − Σ)θt − (θ⋆)T (ηx,tηTx,t − Σ)θ⋆

=
N∑
t=1

(⟨xt, θt − θ⋆⟩)2 + 2(⟨ηx,t + ζt, θt⟩ − zt)⟨xt, θt − θ⋆⟩ − 2zt⟨ηx,t, θt − θ⋆⟩+ ⟨ζt, θt⟩2 − ⟨ζt, θ⋆⟩2

+ 2(⟨ζt, θt⟩⟨ηx,t, θt⟩ − ⟨ζt, θ⋆⟩⟨ηx,t, θ⋆⟩)− 2zt⟨ζt, θt − θ⋆⟩+ (θt − θ⋆)T (ηx,tηTx,t − Σ)(θt + θ⋆)

Rearrange the terms:
N∑
t=1

(⟨xt, θt − θ⋆⟩)2 ≤MN

N∑
t=1
−2(⟨ηx,t + ζt, θt⟩ − zt)⟨xt, θt − θ⋆⟩︸ ︷︷ ︸

At

+2zt⟨ηx,t + ζt, θt − θ⋆⟩︸ ︷︷ ︸
Bt

−⟨ζt, θt⟩2 + ⟨ζt, θ⋆⟩2︸ ︷︷ ︸
Ct

−2(⟨ζt, θt⟩⟨ηx,t, θt⟩ − ⟨ζt, θ⋆⟩⟨ηx,t, θ⋆⟩)︸ ︷︷ ︸
Dt

−(θt − θ⋆)T (ηx,tηTx,t − Σ)(θt + θ⋆)︸ ︷︷ ︸
Et

Bounding
∑N
t=1 At: Using the result from E5:

|
N∑
t=1

(zt − ⟨ηx,t + ζt, θt⟩)⟨xt, θt − θ⋆⟩| ≤
(
R+

2(D + 1)
√

2 log(1.25/δ)
ϵ

+D∆
)√√√√2

(
1 +

N∑
t=1
⟨xt, θt − θ⋆⟩2

)

×

√√√√√log


√

1 +
∑N
t=1⟨xt, θt − θ⋆⟩2

α


≤ Õ

(R+
D
√

log(1/δ)
ϵ

+D∆
)√√√√log(N/α)

N∑
t=1
⟨xt, θt − θ⋆⟩2



25

Under review as submission to TMLR

Bounding
∑N
t=1 Bt: From E6,

|
N∑
t=1

zt⟨ηx,t + ζt, θt − θ⋆⟩| ≤

(
R+

2
√

2 log(1.25/δ)
ϵ

)√√√√2
(

1 +
N∑
t=1
⟨ηx,t + ζt, θt − θ⋆⟩2

)

×

√√√√√log


√

1 +
∑N
t=1⟨ηx,t + ζt, θt − θ⋆⟩2

α


Since we’re under good event E :

≤

(
R+

2
√

2 log(1.25/δ)
ϵ

)√√√√2
(

1 + 2 log(2T/α)
N∑
t=1

(σ2 + ∆2) ∥θt − θ⋆∥2

)

×

√√√√√log


√

1 + 2 log(2T/α)
∑N
t=1 (σ2 + ∆2) ∥θt − θ⋆∥2

α


≤ O

(R+
√

log(1/δ)
ϵ

)√√√√log2(2T/α)
N∑
t=1

(
log(1/δ)

ϵ2
+ ∆2

)
∥θt − θ⋆∥2


Bounding

∑N
t=1 Ct: We have:

N∑
t=1
⟨ζt, θ⋆⟩2 − ⟨ζt, θt⟩2 =

N∑
t=1
⟨ζt, θ⋆ − θt⟩⟨ζt, θt + θ⋆⟩

Using ∥θt + θ⋆∥ ≤ D + 1,

N∑
t=1
⟨ζt, θ⋆⟩2 − ⟨ζt, θt⟩2 ≤ ∆(D + 1)

√
2 log(2T/α)

N∑
t=1
|⟨ζt, θ⋆ − θt⟩|

≤ ∆(D + 1)
√

2 log(2T/α)

√√√√N

N∑
t=1
⟨ζt, θ⋆ − θt⟩2

≤ ∆(D + 1)
√

2 log(2T/α)

√√√√2N log(2T/α)∆2
N∑
t=1
∥θt − θ⋆∥2

≤ O

D∆2 log(T/α)

√√√√N

N∑
t=1
∥θt − θ⋆∥2


Bounding

∑N
t=1 Dt: We have

N∑
t=1
⟨ζt, θ⋆⟩⟨ηx,t, θ⋆⟩ − ⟨ζt, θt⟩⟨ηx,t, θt⟩ = (θ⋆ − θt)T ζtηTx,t(θ⋆ − θt) + θTt ζtη

T
x,tθ

⋆ + (θ⋆)T ζtηTx,tθt − 2θTt ζtηTx,tθt

= (θ⋆ − θt)T ζtηTx,t(θ⋆ − θt) + θTt ζtη
T
x,t(θ⋆ − θt) + (θ⋆ − θt)T ζtηTx,tθt

26

Under review as submission to TMLR

From E7:

∣∣∣∣∣
N∑
t=1

(θ⋆ − θt)T ζtηTx,t(θ⋆ − θt)

∣∣∣∣∣ ≤ ∆∥θt − θ⋆∥

√√√√√2
(

1 +
N∑
t=1
⟨ηx,t, θ⋆ − θt⟩2

)
log


√

1 +
∑N
t=1⟨ηx,t, θ⋆ − θt⟩2

α


≤ O

D∆

√√√√log(T/α)
N∑
t=1

σ2∥θt − θ⋆∥2


= O

D∆
√

log(1/δ)
ϵ

√√√√log(T/α)
N∑
t=1
∥θt − θ⋆∥2



Since E8 ⊂ E :

∣∣∣∣∣
N∑
t=1

θTt ζtη
T
x,t(θ⋆ − θt)

∣∣∣∣∣+

∣∣∣∣∣
N∑
t=1

(θ⋆ − θt)T ζtηTx,tθt

∣∣∣∣∣
≤ ∆∥θt∥

√√√√√2
(

1 +
N∑
t=1
⟨ηx,t, θ⋆ − θt⟩2

)
log


√

1 +
∑N
t=1⟨ηx,t, θ⋆ − θt⟩2

α



+ σ∥θt∥

√√√√√2
(

1 +
N∑
t=1
⟨ζt, θ⋆ − θt⟩2

)
log


√

1 +
∑N
t=1⟨ζt, θ⋆ − θt⟩2

α


≤ O

D∆

√√√√ N∑
t=1
⟨ηx,t, θ⋆ − θt⟩2 log (T/α) +Dσ

√√√√ N∑
t=1
⟨ζt, θ⋆ − θt⟩2 log (T/α)



Plugging in σ:

≤ O

D∆
√

log(1/δ)
ϵ

√√√√log(T/α)
N∑
t=1
∥θ⋆ − θt∥2



Overall,

N∑
t=1
⟨ζt, θ⋆⟩⟨ηx,t, θ⋆⟩ − ⟨ζt, θt⟩⟨ηx,t, θt⟩ ≤ O

D∆
√

log(1/δ)
ϵ

√√√√log(T/α)
N∑
t=1
∥θt − θ⋆∥2



Bounding
∑N
t=1 Et: From E9:

27

Under review as submission to TMLR

∥∥∥∥∥
N∑
t=1

(θ⋆ − θt)T (ηx,tηTx,t − Σ)(θt + θ⋆)

∥∥∥∥∥
≤ 20σ2(D + 1) log(2T/α)

√√√√√√ N∑
t=1
∥θ⋆ − θt∥2 log

16
α

log

e2


√√√√ N∑

t=1

16(D + 1)2σ4 log2 (2T
α

)
∥θ⋆ − θt∥2

ν2


1

2
+ 23 max(ν,max

t
4(D + 1)σ2 log

(
2T
α

)
∥θ⋆ − θt∥) log

224
α

[
log
(

2e2 max(ν,maxt 4(D + 1)σ2 log
(2T
α

)
∥θ⋆ − θt∥)

ν

)]2


≤ Õ

D log(1/δ) log(T/α)
ϵ2

√√√√ N∑
t=1
∥θt − θ⋆∥2


Now combine all the bounds we get:

N∑
t=1

(⟨xt, θt − θ⋆⟩)2 ≤MN +O

(R+
D
√

log(1/δ)
ϵ

+D∆
)√√√√log(T/α)

N∑
t=1
⟨xt, θt − θ⋆⟩2


+O

(R+
√

log(1/δ)
ϵ

)√√√√log2(T/α)
N∑
t=1

(
log(1/δ)

ϵ2
+ ∆2

)
∥θt − θ⋆∥2


+O

D∆2 log(T/α)

√√√√N

N∑
t=1
∥θt − θ⋆∥2


+O

D∆
√

log(1/δ)
ϵ

√√√√log(T/α)
N∑
t=1
∥θt − θ⋆∥2

+ Õ

D log(1/δ) log(T/α)
ϵ2

√√√√ N∑
t=1
∥θt − θ⋆∥2


≤MN +O

(R+
D
√

log(1/δ)
ϵ

+D∆
)√√√√log(T/α)

N∑
t=1
⟨xt, θt − θ⋆⟩2


+O

(R+
√

log(1/δ)
ϵ

)√√√√log2(T/α)
N∑
t=1

(
log(1/δ)

ϵ2
+ ∆2

)
∥θt − θ⋆∥2


+O

D∆2 log(T/α)

√√√√N

N∑
t=1
∥θt − θ⋆∥2

+ Õ

D log(1/δ) log(T/α)
ϵ2

√√√√ N∑
t=1
∥θt − θ⋆∥2


Applying Proposition H.9 and Proposition H.8 to get:

N∑
t=1

(⟨xt, θt − θ⋆⟩)2 ≤ O

MN +
(
R+

√
log(1/δ)
ϵ

)√√√√log2(T/α)
N∑
t=1

(
log(1/δ)

ϵ2
+ ∆2

)
∥θt − θ⋆∥2


+O

D∆2 log(T/α)

√√√√N

N∑
t=1
∥θt − θ⋆∥2

+ Õ

D log(1/δ) log(T/α)
ϵ2

√√√√ N∑
t=1
∥θt − θ⋆∥2


+O

(R+
D
√

log(1/δ)
ϵ

+D∆
)2

log(T/α)



28

Under review as submission to TMLR

Further:

N∑
t=1

(⟨x̃t, θt − θ⋆⟩)2 =
N∑
t=1

(⟨xt, θt − θ⋆⟩+ ⟨ηx,t + ζt, θt − θ⋆⟩)2

≤
N∑
t=1

2(⟨xt, θt − θ⋆⟩)2 + 2(⟨ηx,t + ζt, θt − θ⋆⟩)2

≤
N∑
t=1

2(⟨xt, θt − θ⋆⟩)2 + 4
(

8 log(1.25/δ)
ϵ2

+ ∆2
)

log(2T/α)
N∑
t=1
∥θt − θ⋆∥2

≤ O

D∆2 log(T/α)

√√√√N

N∑
t=1
∥θt − θ⋆∥2 +

(
R+

D
√

log(1/δ)
ϵ

+D∆
)2

log(T/α)


+O

((
log(1/δ)

ϵ2
+ ∆2

)
log(T/α)

N∑
t=1
∥θt − θ⋆∥2

)
+MN

Let γ be a sufficiently large positive constant and

KN = γD∆2 log(T/α)

√√√√N

N∑
t=1
∥θt − θ⋆∥2 + γ

(
R+

D
√

log(1/δ)
ϵ

+D∆
)2

log(T/α)

+ γ

(
log(1/δ)

ϵ2
+ ∆2

)
log(T/α)

N∑
t=1
∥θt − θ⋆∥2

Then,

N∑
t=1

(⟨x̃t, θt − θ⋆⟩)2 ≤MN +KN

Let us denote the set Cn−1 as an ellipsoid underlying the covariance matrix ṼN−1 = I +
∑N−1
t=1 x̃tx̃

T
t and

centering at

θ̂N = arg min
θ∈Rd

(
∥θ∥2

2 +
N−1∑
t=1

(⟨x̃t, θt − θ⟩)2

)

= Ṽ −1
N−1

(
N−1∑
t=1
⟨θt, x̃t⟩x̃t

)
= Ṽ −1

N−1ũN−1

We can thus express the ellipsoid as:

ĈN−1 =
{
θ ∈ Rd : (θ − θ̂n)T Ṽn−1(θ − θ̂N) + ∥θ̂N∥2

2 +
N−1∑
t=1

(⟨x̃t, θt − θ̂N ⟩)2 ≤MN +KN

}

The ellipsoid is contained in a larger ellipsoid

ĈN−1 ⊆ CN−1 =
{
θ ∈ Rd : ∥θ − θ̂N∥2

ṼN−1
≤MN +KN

}
Thus, θ⋆ lies in CN−1 with high probability.

29

Under review as submission to TMLR

Theorem 3.4. (Utility guarantee) Recall that MT is the regret of our online learner (see equation (4)), and
KT is as defined in Lemma 3.3. Under event E, the regret of Algorithm 1 is:

RegretT ≤ Õ

(√
MT +KT

√
2Td log

(
1 + T

d

))

Proof. First we bound the instantaneous regret using (xt, θ̃t) = arg max(x,θ)∈Dt×Ct−1⟨x, θ⟩:

⟨x⋆, θ⋆⟩ − ⟨xt, θ⋆⟩ ≤ ⟨xt, θ̃t⟩ − ⟨xt, θ⋆⟩
= ⟨xt, θ̃t − θ⋆⟩
= ⟨xt, θ̃t − θ̂t⟩+ ⟨xt, θ̂t − θ⋆⟩
≤ ∥xt∥Ṽ −1

t−1
∥θ̃t − θ̂t∥Ṽt−1

+ ∥xt∥Ṽ −1
t−1
∥θ̂t − θ⋆∥Ṽt−1

≤ Õ
(√

Mt−1 +Kt−1

)
× ∥xt∥Ṽ −1

t−1

Use the assumption |⟨x, θ⋆⟩| ≤ 1 and sum over all t to get the regret:

RegretT =
T∑
t=1
⟨x⋆ − xt, θ⋆⟩

≤
T∑
t=1

Õ
(√

MT +KT

)
min{1, ∥xt∥Ṽ −1

t−1
}

≤ Õ
(√

MT +KT

)
×

√√√√T ×
T∑
t=1

min{1, ∥xt∥2
Ṽ −1

t−1
}

Applying Lemma H.3, we get:

RegretT ≤ Õ

(√
MT +KT

√
2Td log

(
1 + T

d

))

E Anytime version of Algorithm 1

Since the Bandit Combiner Algorithm (Algorithm 2) requires the base learner to have anytime guarantee, we
can not directly use Algorithm 1 for all the base learners since the regret of Algorithm 1 depends on the
total iterations T when ∆2 ̸= 0. Fortunately, we can easily convert any non-anytime algorithm to an anytime
algorithm using the doubling trick. We will describe the anytime version of Algorithm 1 in Algorithm 9: We

Algorithm 9 Anytime Private (Contextual) Online LinUCB

Input: Privacy parameters ϵ, δ, failure parameter α, covariance matrix Σ = E[ηx,tηTx,t], minimum eigenvalue
λmin of E[xtxTt], domain diameter D, universal constant C, power k.
for m = 0, 1, 2, . . . do

Initialize Algorithm 1 with ϵ, δ, α, Σ, λmin, D, C, and set λ̄ = ∆2
m = 1

(2m)k .
Run Algorithm 1 for [2m, 2m+1 − 1] rounds.
Reset Algorithm 1.

end for

have the following guarantee:

30

Under review as submission to TMLR

Theorem E.1. Let T be the maximum number of iterations and P > 0 be an absolute constant. For any
t ∈ [T], under event E, Algorithm 9 guarantees:

Regrett ≤ P log3/2(t)×
(
√
dt3/4 +

√
dt5/8

ϵ

)

Proof. In Algorithm 9, in each round m, each copy of Algorithm 1 runs at most Tm = 2m iterations. From
Corollary 3.6, we have the regret of Algorithm 1 after Tm iterations is upper bounded by:

O

(((
R+

D
√

log(1/δ)
ϵ

)√
log(Tm/α) +

√
D∆2

m log(Tm/α)
√
TmHm log Tm +

log Tm
√
Hm log(1/δ)
ϵ

)
×
√
dTm log(Tm/d)

)
where Hm = G2

(λmin+∆2
m)2 + GD

λmin+∆2
m

. Thus, there exists absolute constant K > 0 such that the regret of
Algorithm 1 of round m ∈ [⌈log2 t⌉] is:

Regretm ≤ K log3/2(Tm)×
(√

∆2
m

√
Hm

√
dT 3/4

m +
√
Hm

ϵ

√
dTm

)

Denote M = ⌊log2 t⌋, then the total regret of Algorithm 9 at any iteration t ∈ [T] is:

Regrett ≤
M∑
m=0

Regretm

≤
M∑
m=0

K log3/2(Tm)×
(√

∆2
m

√
Hm

√
dT 3/4

m +
√
Hm

ϵ

√
dTm

)

Since log(·) is monotonically increasing and Tm ≤ t,

≤ K log3/2(t)
M∑
m=0

(√
∆2
m

√
Hm

√
dT 3/4

m +
√
Hm

ϵ

√
dTm

)

We have for every m ∈ [M] that:

√
∆2
m

√
Hm ≤

√√√√∆2
m

(
G

λmin + ∆2
m

+
√
GD√

λmin + ∆2
m

)

≤

√√√√∆2
m

(
G

∆2
m

+
√
GD√
∆2
m

)

=
√
G+ λm

√
GD

Since λm ≤ 1,

≤
√
G+

√
GD

31

Under review as submission to TMLR

Since λm decreases as m increases, Hm ≤ HM ≤ Ht = G2

(λmin+∆2
t)2 + GD

λmin+∆2
t

where ∆2
t = 1

tk
, then:

Regrett ≤ K log3/2(t)
(√

d(G+
√
GD)

(
M∑
m=0

T 3/4
m

)
+
√
dHt

ϵ

(
M∑
m=1

√
Tm

))

≤ K log3/2(t)

√d(G+
√
GD)

⌊log2 t⌋∑
m=0

(23/4)m)

+
√
dHt

ϵ

⌊log2 t⌋∑
m=0

(
√

2)m


= K log3/2(t)
(√

d(G+
√
GD) (23/4)⌊log2 t⌋+1 − 1

23/4 − 1
+
√
dHt

ϵ

(21/2)⌊log2 t⌋+1 − 1
21/2 − 1

)
≤ K log3/2(t)

(
3
√
d(G+

√
GD)t3/4 + 4

√
dHt

ϵ

√
t

)
Now we can choose an absolute constant P sufficiently large to conclude the result.

F Proofs of section 4

The result of Algorithm 2 is simply a straightforward application of the result of Algorithm 1 in (Cutkosky
et al., 2020). The only difference is the concentration result in Lemma 8 (Cutkosky et al., 2020) since the
reward ỹt is not bounded by [−1, 1] due to the added noise to ensure privacy. We will prove a modified result
of Lemma 8 below. For ease of analysis, let us redefine some notations used in (Cutkosky et al., 2020). Let
r(a, c) := ⟨θ⋆, ϕ(c, a)⟩ and r̂(c, a, η) := ⟨θ⋆, ϕ(c, a)⟩+ η. We also use the shorthand notations rit = r(ait, ct) and
r̂t = r̂(ait, ct, ηt) to denote the random reward and the expected reward that the base learner i receives at
round t. Thus Eηt,ct [r̂t] = rt and r̂t = ỹt. We have the following lemma:
Lemma F.1. For all rounds t ∈ [T] and base learner i ∈ [M], the following inequalities hold

−k

√
T (i, t)(1 + σ2) log

(
T 3M log T (i, t)(1 + σ2)

α

)
≤
T (i,t)∑
τ=1

r̂it − rit ≤ k

√
T (i, t)(1 + σ2) log

(
T 3M log T (i, t)(1 + σ2)

α

)

w.p at least 1− α/(T 3M)

Proof. The proof is based on the proof of Lemma B.2 in (Pacchiano et al., 2023). Let Ft be
the sigma-field induced by all variables up to round t before the reward is revealed, i.e., Ft =
σ
(
{al, cl, il, ηl}l∈[t−1] ∪ {at, ct, it, ηt}

)
. Since ηy,t is mean zero Gaussian noise for all t ∈ [T], {Xt =

r̂it − rit}
T (i,t)
t=1 is a martingale difference sequence w.r.t Ft. Using the terminology and definition in (Howard

et al., 2021), the process ST (i,t) =
∑T (i,t)
t=1 Xt is a sub-ψN with variance process VT (i,t) = T (i, t)(σ2 + 1). Thus

using the boundary choice in Eq.11 of (Howard et al., 2021), we get:

ST (i,t) ≤ 1.7
√
VT (i,t)(log log(2VT (i,t))) + 0.72 log(5.2/α)

= 1.7
√
T (i, t)(σ2 + 1)(log log(2T (i, t)(σ2 + 1)) + 0.72 log(5.2/α)

Applying the same argument to −ST (i,t) gives that:

|ST (i,t)| ≤ 3 ∨ 1.7
√
T (i, t)(σ2 + 1)(log log(2T (i, t)(σ2 + 1)) + 0.72 log(10.4/α)

Now, set α = α/(T 3M), and pick the absolute constant k sufficiently large to conclude the proof.

The rest of the analysis follows the analysis in (Cutkosky et al., 2020). We have the following general regret
guarantee for UCB combiner algorithm.

32

Under review as submission to TMLR

Theorem F.2. (Corollary 2 (Cutkosky et al., 2020)) Suppose j is the index of the best base learner and w.p
at least 1− α, we have

∑τ
t=1 maxx∈Dt⟨θ⋆, x⟩ − ⟨θ⋆, xjτ ⟩ ≤ Ljt

αj . Further, suppose we are given M positive
real numbers η1, . . . , ηM . Set Ri via:

Ri = LiT
αi + (1− αi)

1−αi
αi (1 + αi)

1
αi

α
1−αi

αi
i

L
1

αi
i Tη

1−αi
αi

i + 288 log(T 3N/α)Tηi +
∑
k ̸=i

1
ηk

Then, w.p at least 1− 3α, the regret of Algorithm 2 satisfies:

RegretT ≤ Õ

LjTαj + L
1

aj

j Tη

1−αj
αj

j + Tηj +
∑
k ̸=i

1
ηk


Before we state the regret of Algorithm 2, let us first show that with our settings of λi, we are guaranteed to
have at least a base learner that has a regret bound that is the same up to some constant factor as the regret
bound of a base learner that is initialized with the correct value of λmin.
Lemma F.3. Let λ⋆min be the actual minimum eigenvalue of E[xtxTt] and Regret⋆T be the regret of an instance
of Algorithm 1 using the correct minimum eigenvalue. Let λi = 2i−1

T 1/8 for i ∈ [M] be the λmin of the base
learner i in Algorithm 2. If M = ⌈ 1

8 log2 T ⌉+1, then there exists at least a base learner i with regret guarantee
RegretiT such that:

RegretiT = KRegret⋆T

for some constant K > 0.

Proof. Let us consider the case where λ⋆min ≥ 1
T 1/8 . Since ∥xt∥ ≤ 1 for all xt ∈ Dt and λ⋆min is the minimum

eigenvalue of E[xtxTt], 1
T 1/8 ≤ λ⋆min ≤ 1. Thus,

20

T 1/8 ≤ λ
⋆
min ≤

2(1/8 log2 T+1−1)

T 1/8

⇔ λ1 ≤ λ⋆min ≤ λM

In other words, the actual minimum eigenvalue λ⋆min is always within the range covered by our guess of λmin.
If λ⋆min = λ1 or λ⋆min = λM , then the first statement of the lemma is true with K = 1. If this is not the case,
that means there exist a learner k such that λk ≤ λ⋆min ≤ λk+1. We have:

λ⋆min
λk
≤ λk+1

λk
= 2

Since the regret of any instance of Algorithm 2 that uses λ ≤ λ⋆min as the input is Õ
(√

dT
λ

)
, the regret of the

base learner k with λk is at most a constant factor worse than Regret⋆T .

When λ⋆min < 1
T 1/8 , since we also set the threshold λ̄ = 1

T 1/8 , from Theorem E.1, we know that the first base
learner guarantees:

Regrett ≤ P log3/2(T)×
(
√
dT 3/4 +

√
dT 5/8

ϵ

)

for a sufficiently large positive constant P . Since we also have R1
T ≤ Õ

(
log3/2(T)×

(√
dT 3/4 +

√
dT 5/8

ϵ

))
,

Regret1T = O(Regret⋆T).

We are now ready to state our guarantee for Algorithm 2.

33

Under review as submission to TMLR

Theorem 4.1. (see Corollary 2 (Cutkosky et al., 2020)) Let η1 = ϵT 1/8
√
dT (P log3/2(T)ϵT 1/8+1) and ηi =

ϵ
P ′ log3/2(T)

√
dT

, L1 = P log3/2(T)
√
d
(
ϵT 1/8+1
ϵT 1/8

)
and Li = P ′ log3/2(T)

√
d

ϵλi
for positive constants P and P ′,

α1 = 3
4 and αi = 1

2 for i ∈ [2,M], and set Ri via:

Ri = LiT
αi + (1− αi)

1−αi
αi (1 + αi)

1
αi

α
1−αi

αi
i

L
1

αi
i Tη

1−αi
αi

i + 288 log(T 3N/α)Tηi +
∑
k ̸=i

1
ηk

for all i. Let j be the index of the base learner with the smallest regret. If λmin ≥ 1
T 1/8 , then w.p at least

1− 3α, the regret of Algorithm 2 under event E satisfies:

RegretT ≤ Õ

(√
dT

ϵλ2
min

)
If 0 ≤ λmin < 1

T 1/8 , then w.p at least 1− 3α, the regret of Algorithm 2 under event E satisfies:

RegretT ≤ Õ

(
√
dT 5/6 +

√
dT 17/24

ϵ

)

Proof. Let us first prove the first statement of Theorem 4.1. If 1
T 1/8 ≤ λmin, then from Lemma F.3, there

exists at least a base learner j such that, RegretjT ≤ Õ
(√

dT
ϵλj

)
. Then, plug in ηi, Ci, and αi we have

RegretT ≤ Õ

√dT
ϵλj

+ (
√
d)2

(ϵλj)2T
ϵ√
dT

+ T
ϵ√
dT

+
∑

k ̸={1,j}

√
dT

ϵ
+
√
dT

(
1 + 1

ϵT 1/8

)
≤ Õ

(√
dT

ϵλ2
j

)
= Õ

(√
dT

ϵλ2
min

)
If λmin < 1

T 1/8 , then the regret of an instance of Algorithm 1 that uses the correct λmin is
Õ
(√

dT 3/4 +
√
dT 5/8

ϵ

)
. From Lemma F.3, we know that the regret of the first base learner is also

Õ
(√

dT 3/4 +
√
dT 5/8

ϵ

)
. Thus,

RegretT ≤ Õ

(
√
d

(
ϵT 1/8 + 1
ϵT 1/8

)
T 3/4 +

(√
d

(
ϵT 1/8 + 1
ϵT 1/8

))4/3

T

(
ϵT 1/8

√
dT (ϵT 1/8 + 1)

)1/3

+T ϵT 1/8
√
dT (ϵT 1/8 + 1)

+
∑
k ̸=1

√
dT

ϵ


≤ Õ

(
√
dT 5/6 +

√
dT 17/24

ϵ

)

G Extra experiments details

In this section, we compute the empirical minimum eigenvalue of xtxTt where each x ∈ Dt is uniformly
sampled from a sphere as in Section 5. We compute this value over multiple settings of k ∈ {5, 25, 100} and
T ∈ {200, 2000, 20000} where k is the number of arms and T is the number of iterations. For all experiments,
the dimension of the arm d = 5 and we compute the minimum eigenvalue using the non-private LinUCB. We
report the portion of training where the minimum eigenvalue is O(1) in the table below:

As we can see from Table 1, our experiments in Section 5 is in the favorable settings for Algorithm 1 with
high probability, especially when the number of iterations is significantly larger than the number of arms.

34

Under review as submission to TMLR

T=200 T=2000 T=20000
k=5 99.5% 100% 100%
k=25 97% 97.7% 99.9%
k=100 88% 89.1% 99.8%

Table 1: Percentage of iterations where the minimum eigenvalue of 1
M

∑M
m=1 xt,mx

T
t,m (M is the number of

repeated experiments, xt,m is the arm played at iteration t and sampled at experiment m) is O(1) for multiple
settings of k and T

H Technical results

Proposition H.1. (Proposition 17 in (Zhang & Cutkosky, 2022)) Suppose {Xt, Ft} is a Martingale difference
sequence such that E[X2

t |Ft] ≤ σ2
t and |Xt| ≤ bt almost everywhere for all t for some sequence of random

variable {σt, bt} such that σt, bt is Ft−1− measurable. Then Xt is (σt, 2bt) sub-exponential.
Theorem H.2. (Theorem 19 in (Zhang & Cutkosky, 2022)) Suppose that {Xt, Ft} is a vector-valued
martingale difference sequence such that E[∥Xt∥2|Ft−1] ≤ σ2

t and ∥Xt∥ ≤ bt almost everywhere for some
sequence {σt, bt} such that σt, bt is Ft−1-measurable. Let ν ≥ 0 be an arbitrary constant. Then with probability
at least 1− α, for all t we have:

∥∥∥∥∥
t∑
i=1

Xi

∥∥∥∥∥ ≤ 5

√√√√√√ t∑
i=1

σ2
i log

16
α

log


√√√√ t∑

i=1
σ2
i /ν

2


1

+ 2

2
+ 23 max(ν,max

i≤t
bi) log

(
224
α

[
log
(

2 max(ν,maxi≤t bi)
ν

)
+ 2
]2
)

where [x]1 = max(1, x).
Lemma H.3. (Lemma 11 in (Abbasi-Yadkori et al., 2012)) Let x1, . . . , xn ∈ Rd and let Vt = I +

∑t
s=1 xsx

T
s ,

then it holds that

T∑
t=1

min
{

1, ∥xt∥2
V −1

t−1

}
≤ 2 log(det(VT))

Furthermore, if ∥xt∥2 ≤ X for all t then

log(det(VT)) ≤ d log
(

1 + TX2

d

)
Lemma H.4. (Lemma 1 in (Wang et al., 2020a)) Define srt (x) = η(xt − x)T gt + η2G2∥xt − x∥2. For every
grid point η, we have:

T∑
t=1

srt (xt)− srt (x
η,s
t) ≤ 2ln

(√
3
(

1
2 log2 T + 3

))

Lemma H.5. (Lemma 2 in (Wang et al., 2020a)) Define srt (x) = η(xt − x)T gt + η2G2∥xt − x∥2. For every
grid point η and any u ∈ Rd, we have:

T∑
t=1

srt (x
η,s
t))− sηt (u) ≤ 1 + log T

35

Under review as submission to TMLR

Lemma H.6. (Corollary 2 and Theorem 1 in (Wang et al., 2020a)) Suppose the loss function is G−Lipschitz
and the diameter of domain is bounded by D. For µ−SC functions, the regret of Maler is upper bounded by

R(T) ≤
(

10GD + 9G2

2µ

)(
2ln

(√
3
(

1
2 log2 T + 3

))
+ 1 + log T

)
≤ O

(
1
µ

log T
)

For general convex loss, the regret of Maler is bounded by:

R(T) ≤
(

2ln3 + 3
2

)
GD
√
T

Theorem H.7. (Exercise 4.7.3 - (Vershynin, 2018)) Let x1, . . . , xn be an i.i.d sequence of σ sub-gaussian
random vectors such that Σ = E[xixTi] for all i and Σ̂n = 1

n

∑n
i=1 xix

T
i be the emprical covariance matrix.

Then there exists a universal constant C > 0 such that for α ∈ (0, 1), w.p at least 1− α

∥Σ̂n − Σ∥op ≤ C max
{√

d+ log(2/α)
n

,
d+ log(2/α)

n

}
∥Σ∥op

Proposition H.8. (Square-root trick (Abbasi-Yadkori et al., 2012)) Let a, b ≥ 0. If z2 ≤ a + bz, then
z ≤ b+

√
a.

Proposition H.9. (Logarithmic Trick (Abbasi-Yadkori et al., 2012)) Let c ≥ 1, f > 0, α ∈ (0, 1/4]. If z ≥ 1,

and z ≤ c+ f
√

log(z/α) then z ≤ c+ f

√
2 log

(
c+f
α

)
Theorem H.10. Let X ∼ N(µ, σ2I) where µ ∈ Rd and σ2 ∈ R. Then:

P [∥X − µ∥2 > t] ≤ 2 exp
(
− t2

2dσ2

)
Theorem H.11. (Self-normalized bound for martingales (Abbasi-Yadkori et al., 2012)) Let {Ft}∞

t=1 be a
filtration. Let τ be a stopping time w.r.t the filtration {Ft+1}∞

t=1 i.e the event {τ ≤ t} belongs to Ft+1. Let
{Zt}∞

t=1 be a sequence of real-valued variables such that Zt is Ft−measurable. Let {rt}∞
t=1 be a sequence

of real-valued random variables such that rt is Ft+1−measurable and is continuously R−sub-Gaussian. Let
V > 0 be deterministic. Then, for any α > 0, with probability at least 1− α

(
∑τ
t=1 rtZt)

2

V +
∑τ
t=1 Z

2
t

≤ 2R2 log
(√

V +
∑τ
t=1 Z

2
t

α
√
V

)
Corollary H.12. (Uniform Bound (Abbasi-Yadkori et al., 2012)) Under the same assumptions as in Theorem
H.11, for any α > 0, w.p at least 1− α, for all n ≥ 0,∣∣∣∣∣

n∑
t=1

rtZt

∣∣∣∣∣ ≤ R
√√√√2

(
1 +

n∑
t=1

Z2
t

)
log
(√

1 +
∑τ
t=1 Z

2
t

α

)

Corollary H.13. ((Vershynin, 2018)) Let A be an n×n symmetric random matrix whose entries Aij on and
above the diagonal are independent, mean zero, sub-gaussian random variables. Then, for any t > 0 we have

∥A∥ ≤ CK
(√
n+ t

)
with probability at least 1− 4 exp(−t2). Here K = maxi,j ∥Aij∥ψ2 and ∥X∥ψ2 is defined as follows:

∥X∥ψ2 := inf
{
t > 0 : E

[
exp(X2/t2)

]
≤ 2
}

Specifically, if X ∼ N(0, σ2), then:

∥X∥ψ2 ≤ Cσ

for some C > 0.

36

Under review as submission to TMLR

Theorem H.14. (Theorem 5 in (Gordon et al., 2006)) Let (xi)ni=1 be a sequence of real numbers and
ζ1, . . . , ζn be random variables satisfying the following condition:

P [|ζi| ≤ t] ≤ αt ∀i ∈ [n]

where t ≥ 0 and α > 0. Let p > 0, then:

1
1 + p

α−p

(
n∑
i=1

1
|xi|

)−p

≤ E
[

min
1≤i≤n

|xiζi|p
]

Lemma H.15. If ζ ∼ N(0, σ2), then:

P [|ζ| ≤ t] ≤
√

2
σ
√
π
t

Proof. Using the CDF of Gaussian random variable we have:

P [|ζ| ≤ t] = Φ
(
t

σ

)
− Φ

(
−t
σ

)
= 1

2

[
1 + erf

(
t

σ
√

2

)]
− 1

2

[
1 + erf

(
−t
σ
√

2

)]
Since erf(·) is an odd function:

= erf
(

t

σ
√

2

)
= 2√

π

∫ t

σ
√

2

0
exp(−x2)dx

≤ 2t
σ
√

2π

= t
√

2
σ
√
π

Theorem H.16. (Azuma-Hoeffding Inequality) For a sequence of Martingale Difference Sequence random
variable {Dt}∞

t=1 with respect to some other sequence of random variable {Xt}∞
t=1, if we have Dt ∈ [at, bt]

almost surely for some constants at, bt and t = 1, 2, . . . , T , then:

P

[
T∑
t=1

Dt ≥ ϵ

]
≤ exp

(
−2ϵ2∑T

t=1(bt − at)2

)

37

	Introduction
	Problem Setup
	Online LDP LinUCB
	(dT) regret bound
	Comparisons with previous results

	Online model selection for LDP LinUCB
	Experiments
	Conclusions
	Backgrounds on LinUCB
	LinUCB
	LinUCB with online-to-confidence conversion

	Good Event and High-confidence Argument
	Maler Optimizer pmlr-v115-wang20e
	Proofs of section 3
	Proofs of general results

	Anytime version of Algorithm 1
	Proofs of section 4
	Extra experiments details
	Technical results

