
On Preemption and Learning in Stochastic Scheduling

Nadav Merlis∗
ENSAE, Paris

Hugo Richard∗

ENSAE, Paris
Criteo, Paris

Flore Sentenac∗
ENSAE, Paris

Corentin Odic
ENSAE, Paris

Mathieu Molina
ENSAE, Paris
Inria, France

Vianney Perchet
ENSAE, Paris
Criteo, Paris

Abstract

We study single-machine scheduling of jobs, each belonging to a job type that
determines its duration distribution. We start by analyzing the scenario where the
type characteristics are known and then move to two learning scenarios where
the types are unknown: non-preemptive problems, where each started job must
be completed before moving to another job; and preemptive problems, where
job execution can be paused in the favor of moving to a different job. In both
cases, we design algorithms that achieve sublinear excess cost, compared to the
performance with known types, and prove lower bounds for the non-preemptive
case. Notably, we demonstrate, both theoretically and through simulations, how
preemptive algorithms can greatly outperform non-preemptive ones when the
durations of different job types are far from one another, a phenomenon that does
not occur when the type durations are known.

1 Introduction

Single Machine Scheduling is a longstanding problem with many variants and applications (Pinedo,
2012). In this problem, a set of N jobs must be processed on one machine, each of a different ‘size’ –
processing time required for its completion. An algorithm is a policy assigning jobs to the machine,
and performance is usually measured by flow time – the sum of the times when jobs have finished. If
one has access to the size of each job, then scheduling the jobs by increasing size is optimal (Schrage,
1968). Unfortunately, for most applications, this knowledge is unavailable; yet, oftentimes, some
structure or knowledge on the jobs can still be leveraged.

In this paper, we focus on scheduling problems where jobs are grouped by types that determine
their duration distribution. This model approximates many real-world scenarios. For example, when
scheduling patients for surgery, patients may be grouped by expected procedure time (Magerlein &
Martin, 1978). The model is also relevant in computing problems, where jobs with similar features
are expected to have a similar processing time (Li et al., 2006). Lastly, in calendar learning, where an
agent advises the user on how to organize its day based on the tasks to be done, similar tasks can be
assumed to have a similar duration (White & Hassan Awadallah, 2019).

In practice, when encountering a new scheduling task, we usually know the type of each job, but have
little-to-no information on the expected duration under each type. Then, the scheduling algorithm
must learn the characteristics of each type to be able to utilize this information. This must be done
concurrently with the scheduling of tasks, which poses an extra challenge – to be useful, learning
must be done as early as possible; however, wrong scheduling allocation at the beginning delays all
jobs and causes large penalties.

∗Equal contribution

16th European Workshop on Reinforcement Learning (EWRL 2023).

In this work, we show how learning can be efficiently done in scheduling problems with job types,
characterized by exponential distributions, in two different settings – the non-preemptive setting,
where once a job started running, it must be completed, and the preemptive setting, where jobs can be
put on hold. We present two algorithms in each setting and show that the preemptive setting has a
clear advantage when the type durations have to be learned. This comes in contrast to the case of
known types, where under reasonable assumptions, the optimal algorithm is non-preemptive.

While our algorithms resemble classic bandit methods, the scheduling objective requires different
analysis approaches. In particular, in the context of scheduling, the quality of an algorithm is measured
by the ordering of jobs. In stark contrast, regret-minimization objectives measure the number of plays
from each arm (job type). Indeed, in scheduling problems, the number of pulls from each job type is
always the same – by the end of the interaction, we would finish all the jobs of all types. Thus, both
our algorithmic design and analysis will be comparative – focus on the number of jobs evaluations
from a bad type before the completion of jobs of a good type.

Our contributions are as follows. (1) We present the scheduling setting with unknown job types.
(2) We analyze the optimal algorithm for the case of known job types, called Follow-the-Perfect-
Prediction (FTPP), and bound its competitive ratio (CR). (3) We present explore-then-commit (ETC)
and upper confidence bound (UCB) algorithms for the preemptive and non-preemptive settings and
bound their performance, compared to FTPP. In particular, our bounds show that the non-preemptive
algorithms have worse dependence on the durations of the longest job types. (4) We complement
this by proving lower bounds to the non-preemptive case. (5) We end by simulating our suggested
algorithms and show that their empirical behavior is consistent with our theoretical findings.

2 Related Work

Scheduling problems. The scheduling problem zoology is large. We focus on static scheduling
on a single machine with the objective of minimizing flow time. Static scheduling (Motwani et al.,
1994) means that all scheduled tasks are given in advance before the scheduling starts. Possible gen-
eralizations include dynamic scheduling where scheduled tasks arrive online (Becchetti & Leonardi,
2004), weighted flow time (Bansal & Dhamdhere, 2007) where jobs have different weights, multiple
machines (Lawler & Labetoulle, 1978); and more (Dürr et al., 2020; Tsung-Chyan et al., 1997).

Clairvoyant and non-clairvoyant scheduling. In clairvoyant scheduling, job sizes are assumed to
be known, and scheduling the shortest jobs first gives the lowest flow time (Schrage, 1968). In
non-clairvoyant scheduling, job sizes are arbitrary and unknown. The Round Robin (RR) algorithm,
which gives the same amount of computing time to all jobs, is the best deterministic algorithm with a
competitive ratio of 2− 2

N+1 = 2 + o(N) (Motwani et al., 1994). The best randomized algorithm
has a competitive ratio of 2− 4

N+3 = 2 + o(N) (Motwani et al., 1994).

Stochastic scheduling. Stochastic scheduling covers a middle ground where job sizes are known
random variables. The field of optimal stochastic scheduling aims to design optimal algorithms for
stochastic scheduling (see Cai et al. 2014 for a review). When distributions have a non-decreasing
hazard rate, scheduling the shortest mean first is optimal (see Cai et al. 2014, Corollary 2.1).

In this work, we consider exponential job sizes (which have a non-decreasing hazard rate), as
frequently assumed in the scheduling literature (Kämpke, 1989; Hamada & Glazebrook, 1993;
Cunningham & Dutta, 1973; Cai & Zhou, 2000, 2005; Pinedo & Weiss, 1985; Glazebrook, 1979) and
similarly for the presence of different types of jobs (Mitzenmacher, 2020; Hamada & Glazebrook,
1993; Marbán et al., 2011). Yet, in contrast to most of the literature on stochastic scheduling, the
means of the exponential sizes are unknown to the scheduler and are learned as the algorithm runs.
Nonetheless, we later present algorithms whose CR asymptotically converges to the optimal value,
obtained in stochastic scheduling with known job means.

The problem of learning in scheduling has received some attention lately. Specifically, Levi et al.
(2019) consider a setting where it is possible to ‘test’ jobs to learn about their attributes, which comes
at a cost. In (Krishnasamy et al., 2018), the authors propose an algorithm to learn the cµ rule (a rule
to balance different holding costs per job) in the context of dynamic queues. Perhaps closest to our
setting, in (Lee & Vojnovic, 2021), job types are also considered, but the job lengths are assumed to
be known, and the goal is to deal with the uncertainty on the holding costs, which are noisily observed
at each iteration. In the last two papers, no exploration is needed, in contrast with our setting.

2

The problem we tackle was previously studied in a Bayesian setting (Marbán et al., 2011), under the
assumption of two job types, and a Bayesian algorithm, called LSEPT, was presented. When run
with an uninformative prior (the same for all job types), LSEPT is reduced to a greedy algorithm;
whenever a job finishes, it runs until completion a job whose type has the lowest expected belief on
its mean size (computed across jobs that have been processed so far). The author proved it has better
performance in expectation than fully non-adaptive methods, but provided no other guarantee. In
Appendix D, we empirically evaluate this algorithm and show it has a behavior typical of greedy
algorithms: it has a very large variance, and its CR does not converge to the optimal CR.

3 Setting and Notations

We consider scheduling problems of N jobs on a single machine, each belonging to one of K job
types. We assume that N = nK, i.e, there are n jobs of each type. The different sizes (also called
processing times) of the jobs of type k are denoted (P k

i)i∈[n],† where P k
i ∼ E(λk) are independent

samples from an exponential variable of parameter λk. By extension, E[P k
i] = λk, and we call λk

the mean size of type k. We assume without loss of generality that the mean sizes of the K types
are in an increasing order λ1 ≤ λ2 . . . ≤ λK and denote λ = (λ1, . . . , λK). With slight abuse of
notations, we sometimes ignore the job types and denote the job durations by Pi for i ∈ [N].

Next, denote bki and eki the beginning and end dates of the computation of the ith job of type k.
We define the cost of an algorithm ALG, also called flow time, as the sum of all completion times:
CALG =

∑K
k=1

∑
i∈n e

k
i . Given knowledge of the job size realizations, the cost is minimized by an

algorithm that computes them in increasing order, which we term as OPT.

Preemption is the operation of pausing the execution of one job in the favor of running another one.
Thus, preemptive algorithms are ones that support preemption, while non-preemptive algorithms do
not allow it and must run each started job until completion.

4 Benchmark: Follow The Perfect Prediction

We compare our algorithms to a baseline that completes each job by increasing expected sizes, called
Follow-The-Perfect-Prediction (FTPP). For exponential job sizes, this strategy is optimal between
all algorithms without access to job size realizations (see Cai et al. 2014, Corollary 2.1). Thus, with
learning, we aim at designing algorithms approaching the performance of FTPP, whilst mitigating
the cost of learning (i.e., mitigating the cost of exploration). In the rest of this section, we analyze the
performance of FTPP.

First, we evaluate the performance of non-clairvoyant algorithms that do not exploit the job type
structure. We then compare the performance of the best of those algorithms against that of FTPP
and show the clear advantage of using the structure of job types.

4.1 Non-clairvoyant Algorithms

An algorithm A is said non-clairvoyant if it does not have any information on the job sizes, including
the job type structure. Recall that RR is the algorithm that computes all unfinished jobs in parallel and
is the optimal deterministic algorithm in the adversarial setting. The following proposition states that
in our setting, it is the optimal algorithm among all non-clairvoyant ones (full proof in Appendix A.3).
Proposition 4.1. For any λ and any (deterministic or randomized) non-clairvoyant algorithm A,
there exists a job ordering such that E[CA] ≥ E[CRR].

Unfortunately, even though our setting is not adversarial, the CR of RR is bounded from below
(Lemma A.3): for any λ, E[CRR]

E[COPT] ≥ 2− 4
n+3 .

4.2 Performance of FTPP

The first statement establishes that FTPP outperforms RR on any instance.
†For clarity of exposition, we assume that there are exactly n jobs per type. When types have different

numbers of jobs n1, n2, . . . , nK , all algorithms can run with n = maxℓ nℓ.

3

Algorithm 1 Non-Preemptive Algorithms routine

1: Init: type set U = [K], active jobs ik = 1,∀k ∈ [K]
2: while U is not empty do
3: Use a type selection subroutine to select a type k ∈ U
4: Run job ik until completion; set ik ← ik + 1
5: if All jobs of type k are completed then
6: Remove type k from U
7: end if
8: end while

Lemma 4.2. For any n and λ, E[CFTPP] ≤ E[CRR].

The proof is a straightforward computation, done in Appendix A.2.3. This indicates that when
information on the job types is available, it is always advantageous to use it. In the rest of the section,
we quantify the improvement this extra information brings. More precisely, we show that on a wide
variety of instances, the CR of FTPP is much smaller than that of RR. We first present such a bound
when K = 2 (full proof in Proposition A.4).

Proposition 4.3. The CR of FTPP with K = 2 types of jobs with n jobs per type with λ1 = 1 and
λ2 = λ > 1 satisfies E[CFTPP]

E[COPT] ≤ 2− 4 λ−1
(1+λ)2+4λ .

In the case K = 2, there exists values of λ for which the CR of FTPP is lower than 1.71. In the
general case, Proposition A.5 in Appendix A.2.2 shows that there exist values of K and λ for which
the CR is as low as 1.274.‡

5 Non-Preemptive Algorithms

After establishing FTPP as the baseline for learning algorithms, we move to tackle learning in the
non-preemptive setting, where once started, job execution cannot be stopped (see Algorithm 1). This
is relevant, for example, to settings where switching tasks is very costly (e.g., in running time or
memory) or even impossible (e.g., in medical applications, where treatment of a patient cannot be
stopped). We show how algorithms from the bandit literature can be adapted to the scheduling setting
and bound their excessive cost, compared to FTPP. Specifically, by treating each job type as an
‘arm’, we adapt explore-then-commit and optimism-based strategies to the scheduling setting.

5.1 Description of ETC-U and UCB-U

In the following, we describe the type selection mechanism for ETC-U and UCB-U. The full
pseudo-code of both algorithms is available in Appendix B.1.

Let U be the set of all job types with at least one remaining job.

ETC-U type selection. While ETC-U runs, it maintains a set of types A that are candidates for
having the lowest mean size among the incomplete types U . At each iteration, ETC-U chooses a job
of type k of the minimal number of completed jobs in A and executes it to completion. Then, U and
A are updated and the procedure repeats until no more jobs are available in U .

We now describe the mechanism of maintaining the candidate type set A. At a given iteration, denote
by mk, the number of jobs of type k that have been computed up to that iteration. Letting

r̂
min(mk,mℓ)
k,ℓ =

∑min(mk,mℓ)
i=1 1

{
P k
i < P ℓ

i

}
min(mk,mℓ)

and δ
min(mk,mℓ)
k,ℓ =

√
log(2n2K3)

2min(mk,mℓ)
,

a type ℓ is excluded from A if there exists a type k such that

r̂
min(mk,mℓ)
k,l − δ

min(mk,mℓ)
k,ℓ > 0.5. (1)

‡An exact expression for the CR of FTPP is given at Equation (6) in the appendix and is omitted for clarity
reasons.

4

In the proof, we show that this condition implies w.h.p. that λk < λℓ. Thus, when it holds, job type ℓ
is no longer a candidate for the remaining job type with the smallest expectation, and we say that
type k eliminates type ℓ. Once a job type is eliminated, it remains so until A is empty, at which point
all job types in U are reinstated to A.

Finally, whenever A contains only one type k, all jobs of this type are run to completion, and after all
jobs from type k are finished, it is removed from U and therefore from A. This means that types that
were eliminated by k can be candidates again.

UCB-U type selection. At every iteration, the algorithm computes an index for each job type and
plays a type with the minimal index from the incomplete types U . Specifically, if mk jobs were
completed from type k, the index of the type is defined as

λmk

k =
2
∑mk

i=1 X
k
i

χ2
2mk

(1− 1
2n2K2)

,

where χ2
m(δ) is the δ-percentile of a χ2 distribution with m degrees of freedom. In the proof, we

show that these indices are a lower bound of the job means w.h.p., so choosing the minimal index
corresponds to choosing the type with the optimistic shortest duration.

5.2 Cost Analysis

Proposition 5.1. The following bounds hold:

E[CETC-U] ≤ E[CFTPP] +
1

n
E[COPT] +

∑
k∈[K]

[
1

2
(k − 1)(2K − k) + (K − k)2

]
λkn

√
8n log(2n2K3),

E[CUCB-U] ≤ E[CFTPP] + n(K − 1)
√

3n ln (2n2K2)

K∑
k=1

λk +
2

n
E[COPT].

Proposition 5.1 shows that both ETC-U and UCB-U have sublinear excess cost. Indeed the optimal
cost and thus also the cost of FTPP is lower bounded by Ω(n2

∑
k λk) which makes the terms in

O(n
√
n) strictly sublinear in n compared to the optimal cost.

Proof sketch (full proof in Appendix B). The above proposition is a concatenation of propositions
B.2 and B.4. The proof of both bounds starts with the decomposition of the cost with the following
Lemma (proven in Appendix B.2).

Lemma 5.2 (Cost of non-preemptive algorithms). Any non-preemptive algorithm A has a cost

E[CA] =E[CFTPP] +
∑

(ℓ,k)∈[K2],k>ℓ

(i,j)∈[n]2

(λk − λℓ)E
[
1
{
eki ≤ bℓj

}]
.

This lemma is obtained by computing explicitly the expected cost of algorithm FTPP and using the
fact that the realized length of the jobs conditioned on their type is independent of their start date.

Then the two proofs diverge.

For ETC-U, the first step is to prove that condition (1) implies w.h.p that λk ≤ λℓ, which implies
that the type in U with the smallest mean is never eliminated. Then, for the sake of the analysis, the
run of the algorithm is divided into phases. In phase number ℓ, type ℓ is the job type remaining with
the smallest mean. We then bound the total number of samples before an arm with a large mean is
eliminated at phase ℓ.

The proof for UCB also starts by showing that w.h.p., arm indices lower bound the true means. Then,
under the condition that the bounds hold, we upper bound the number of times an arm of type k ≥ ℓ
can be pulled while type ℓ is still active.

The bounds in 5.1 hold for any value of the parameters. When the parameter values are far from each
other, tighter bounds hold. We give here these tighter bounds for K = 2 when λ2 ≥ 3λ1. A more
general version of this bound is given in the Appendix, propositions B.2 and B.4.

5

Algorithm 2 Preemptive Algorithms routine

1: Init: type set U = [K], active jobs ik = 1,∀k ∈ [K]
2: while U is not empty do
3: Use a type selection subroutine to select a type k ∈ U ; run job ik for ∆ time units
4: if ik was completed then
5: Set ik ← ik + 1
6: end if
7: if All jobs of type k are completed then
8: Remove type k from U
9: end if

10: end while

Lemma 5.3. If K = 2 and λ2 ≥ 3λ1, the following bounds hold:

E[CETC-U] ≤E[CFTPP] + 12λ2n log(2n2K3) +
2

n
E[COPT],

E[CUCB-U] ≤E[CFTPP] +
9

2
λ2n ln

(
2n2K2

)
+

4

n
E[COPT].

The bounds of this section seem quite discouraging – they imply that the existence of even one type
of extremely large duration has grave implications on the cost of any algorithm. Unfortunately, for
any non-preemptive algorithm, an extra cost w.r.t. FTPP scaling as nλK is unavoidable. Indeed,
in the beginning, no information on the mean types is available, and any started job will be fully
computed, delaying all remaining nK − 1 jobs (see Appendix B.5.2 for a formal proof).

5.3 Lower bound

We end this section by analyzing lower bounds for any non-preemptive scheduling algorithm. In
particular, we focus on the dependency of the excessive cost, compared to FTPP, as a function of n.
We focus on lower bounds for the case of K = 2, providing a bound when λ1 and λ2 are close to each
other and showing that in this case, the excess cost increases as n

√
n (proved in Appendix B.5.2).

Proposition 5.4 (Dependency in n). For any λ1, λ2, the flow time of any deterministic or randomized
non-preemptive algorithm A satisfies:

E[CA] ≥ E[CFTPP] + (λ2 − λ1)n
2 exp

(
−n (λ2 − λ1)

2

λ1λ2

)
/8

In particular, if λ2 = Θ(λ1 (1 + 1/
√
n)), then E[CA] ≥ E[CFTPP] + Ω ((λ1 + λ2)n

√
n).

6 Preemptive Algorithms

In this section, we show how to leverage preemption to get better performance. In practice, we allow
preemption by discretizing the computation time into small time slots of length ∆. Then, at every
iteration, one or multiple job types are selected depending on some algorithm-specific criteria. The
current running job(s) of the selected type is allocated computation time ∆ instead of being run to
completion. As before, we employ both an explore-then-commit strategy and an optimism-based
strategy. In both cases, the only dependence of the resulting algorithm on the discretization size is
due to the discretization error (the time between the end of a job and the end of a window), which
decreases with the discretization step. We omit that discretization error of at most ∆N is the bounds.

Note that in practice, any implementation of RR proceeds in a similar manner. For instance, in
(Motwani et al., 1994), the discretization step is assumed much smaller than the length of the jobs.
Thus, when we run jobs in parallel, they cyclically run in a RR with a small discretization step.

6.1 ETC-RR and UCB-RR

ETC-RR type selection. As ETC-U, ETC-RR maintains a set of types A that are candidates for
lowest mean size among the set U of types with at least one remaining jobs. The main difference is

6

that the job type selected is the one in A with the lowest total run-time (not the one with the lowest
number of computed jobs).

The statistics needed to constructA are different from the ones used in ETC-U. At a given time, βk,ℓ

is the number jobs of type k that has finished while ℓ and k were both active. Moreover, we define

r̂k,ℓ =
βk,ℓ

βk,ℓ + βℓ,k
and δk,ℓ =

√
log(2n2K3)

2(βk,ℓ + βℓ,k)
.

The elimination rule is the same as the one of ETC-U, using these modified statistics.

Reducing the number of algorithm updates: In practice, both the statistics and the chosen types are
not updated at every iteration; active jobs run in parallel (meaning in a round-robin style), and the
statistics are updated every time a job terminates. This formulation of the algorithm is the one we
implement(see pseudo-code in Appendix C.1).

UCB-RR type selection. For each job type k ∈ [K], we introduce Tk(t), the number of times job
type k has been chosen up to iteration t, and the random variables (xs

k)s s.t.:

xs
k =

∑
t

1{a(t) = k, Tk(t) = s and the job finishes} .

It is the indicator that a job of type k is completed when this type is picked for the sth time by the
algorithm. We define the empirical means as µ̂k(T) :=

1
T

∑T
s=1 x

s
k, and the index for each arm k as

uk(t) = max

{
µ̃ ∈ [0, 1] : d (µ̂k(Tk(t)), µ̃) ≤

log n2

Tk(t)

}
,

with d(x, y) the Kullback-Leibler divergence. A job type with the largest index is selected.

Reducing the number of algorithm updates: As for ETC-RR, the running jobs and statistics are not
updated at every iteration. Suppose type k∗ is chosen at iteration t. If k∗ is the last remaining type, it
is run until the end. Otherwise, let ℓ be the type with the second largest index. We define

µ̃γ
k(T) :=

1

T + 2γ

T∑
s=1

xs
k and ũγ

k(t) = max

{
µ̃ ∈ [0, 1] : d (µ̃γ

k(Tk(t)), µ̃) ≤
log n2

Tk(t) + 2γ

}
.

This would be the new index of arm k, were it to run for additional 2γ iterations with no job
terminating during this additional iterations. Then, we set γ∗ = argmaxγ ũ

γ
k∗(t) ≥ uℓ(t) and type

k∗ is allocated 2γ
∗

iterations with no statistics update.

6.2 Cost Analysis

Proposition 6.1. The following bounds hold:

E[CETC-RR] ≤E[CFTPP] +
12K

n
E[COPT] + 4n

√
n log(2n2K3)

K−1∑
k=1

(K − k)2λk,

and for any ∆ ≤ λ1

4 and n ≥ max(20, 10 ln(K)),

E[CUCB-RR] ≤ E[CFTPP] +
12K

n
E[COPT] + 6n

√
2n log(2n2K2) + 2

K−1∑
k=1

(K − k)λk.

Proof sketch (full proof in Appendix C). The above proposition is a combination of Propositions C.3
and C.4. Both algorithms belong to the following family of type-wise non-preemptive algorithms.

Definition 6.2. Recall that bki and eki are the beginning and end dates of the computation of the ith

job of type k. A type-wise non-preemptive algorithm is an algorithm that computes jobs of the
same type one after another, i.e., ∀i ∈ [n],∀k ∈ [K], eki ≤ bki+1.

The following Lemma, proven in Appendix C.2 bounds the expected cost of any type-wise non-
preemptive algorithms.

7

(a) CR of all algorithms with varying number of
jobs, λ1 = 1, λ2 = 0.25, averaged over 400
seeds.

(b) Normalized excess cost of all algorithms w.r.t.
FTPP with varying value of λ1, for λ2 = 1 and
n = 50, averaged over 5, 000 seeds.

Figure 1: Simulation results.

Lemma 6.3 (Cost of type-wise non-preemptive algorithms). Any type-wise non-preemptive algorithm
A has the following upper bound on its cost:

E[CA] ≤ E[CFTPP] +
∑

(ℓ,k)∈[K2],k>ℓ

(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
+ (K − 1)n

K∑
k=1

λk.

The proof again involves computing explicitly the cost of FTPP and using that the realization of a
job length is independent of its start date. A first upper bound is obtained by noting that a job started
before another delays the former in expectation by at most its expected length. The second element to
the proof is the fact that at every job termination, at most one job of each other type is currently active.
This observation leads to the upper bound on the additional cost of preemption and the last term of
the expression of the Lemma. Note that this last term implies that our upper bound will include a
term scaling as nλK , which would indicate that preemptive algorithms have an extra learning cost
scaling as the highest mean type. However, we strongly believe this to be an artefact of the analysis.

Given the decomposition, the two proofs diverge.

The analysis of ETC-RR is split into phases, as the analysis of ETC-U. However, the bound on the
number of ‘bad’ jobs computed in each phase requires more care because of independence arguments.
Specifically, the upper bound is derived from concentration bounds on the computed statistics, and an
additional bound on the number of successful jobs of each type when two types are run in parallel.
The details on how to deal with those two non-independent events can be found in Appendix C.3.

For UCB-RR, the first step is to distinguish two types of ‘failures’ of the index. In the first failure
case, the index deviates below the true mean. We show that this happens with probability O(1/n2)
(Lemma C.7), independently of ∆. The second type of failure is when the index of a sub-optimal arm
is much larger than its true mean. Here, we show that the upper bound on the number of iterations
where this happens does diverge as ∆ goes to zero. However, the algorithm only incurs a cost on the
‘bad pull’ of a type when the selected job terminates. The probability of job termination decreases as
∆ decreases, which compensates for the rise in the upper bound (Equation (31)).

7 Experiments

In this section, we design synthetic experiments to compare ETC-U, ETC-RR, UCB-RR,UCB-U,
RR and FTPP. All code is written in Python. We use matplotlib (Hunter, 2007) for plotting, and
numpy (Harris et al., 2020) for array manipulations.

The first experiment plots the CR of each algorithm for two types of jobs and fixed values of λ1, λ2

as n varies (see Figure 1a). Even though all our suggested algorithms have the same asymptotic

8

performance, their non-asymptotic behavior drastically varies. As predicted by theory, the preemptive
versions of the algorithm consistently outperform the non-preemptive ones.

In the second experiment, n = 50 and λ2 = 1 are fixed, while λ1 varies in (0, 1) (see Figure 1b).
To be able to discern performance gaps when λ1 is small, we plot the difference between the
CR of different algorithms and FTPP at a logarithmic scale. Here, for small values of λ, both
preemptive methods outperform the non-preemptive ones. This corresponds with the improvement in
the dominant error term of the preemptive cost upper bounds, as a function of λ2.

7.1 Discussion

Preemptive vs. Non-Preemptive The competitive ratio of all algorithms is asymptotically the one of
FTPP. Indeed, it always holds that E[COPT] ≥ (λ1 + λ2)

n2

4 (Equation (5)), so by Propositions 6.1
and 5.1, for any algorithm A among ETC-U, ETC-RR, UCB-U and UCB-RR:

CRA = CRFTPP +O
(√

log(n)/n
)
.

On the one hand, the leading term in the cost is the same for all algorithms. On the other hand, the
error term can be much smaller in the case of preemptive algorithms.

To illustrate this claim, let us consider the case where there are two types of jobs of expected sizes λ1

and λ2, respectively. Instantiating the bounds of Propositions 5.1 and 6.1 to this setting, we get:

E[CETC-U] ≤ E[CFTPP] + n(λ1 + λ2)
√
8n log(2n2K3) +

8

n
E[COPT], (2)

E[CETC-RR] ≤ E[CFTPP] + 2nλ1(
√
4n log(2n2K3) + 1) +

16

n
E[COPT]. (3)

If λ2 ≫ λ1 the bound in Equation (2) is much larger than the bound in Equation (3), which is
consistent with what we observe in Figure 1b. In particular, one can observe that for small λ1,
non-preemptive algorithms converge to a strictly positive error (due to the unavoidable dependence
in λ2 = 1), while the error of the preemptive algorithms diminishes. This empirically supports our
claim that the nλK-dependence, as appears in the preemptive cost decomposition of Lemma 6.3, is
only due to a proof artefact.

Optimism-based vs. explore-then-commit. In the simulations, we see that optimism-based
algorithms perform much better than their ETC counterparts. In traditional bandit settings, it is
well known that the regret of ETC strategies is a constant-times larger than that of optimism-based
strategies. Here, we believe that in addition to that, a second phenomenon, not reflected in the
analysis, renders the optimism-based strategies better than the other ones. Because of the structure
of the cost, a pull of a ‘bad job’ at the beginning is much more expensive than the same pull done
later in the interaction (as it delays more jobs). Optimism-based strategies explore continuously as
they run, whereas ETC strategies have all the exploration at the beginning, when it is more expensive.
Again, this phenomenon stands in contrast with traditional bandits, where only the number of ‘bad
pulls’ matter, and not their position.

8 Conclusion and Future Work

We designed and analyzed a family of algorithms for static scheduling on a single machine in the
presence of job types. The special cost structure of this problem differs from that of traditional bandit
problems, and early mistakes carry much more weight than late ones, as they delay more jobs. This
modified cost directly impacts the performance of algorithms; although all suggested algorithms
asymptotically have the same CR as the optimal algorithm that knows job type sizes (FTPP), their
non-asymptotic performances differ.

When preemption is allowed, algorithms that explore job types with a strategy inspired by the
worst-case optimal deterministic algorithm RR have a clear advantage over non-preemptive learning
algorithms. Thus, because of the cost structure, the performance is impacted not only by the number
of exploratory steps but also by the nature of the exploratory steps.

Due to the ubiquitousness of scheduling problems, we believe that our results could be extended
to many other variants of this setting. In particular, it would be interesting to take our algorithmic

9

principles and test them on real-world scheduling problems. Whether our current assumption on the
exponential distribution of job sizes can be removed is an exciting direction for future work. We
believe that many of the proofs for the non-preemptive case can be extended to other well-behaved
distributions. However, in the preemptive case, our proofs do heavily rely on the properties of the
exponential distribution, mainly the memoryless increments property. Without it, we can no longer
average over different sections of a job evaluation to estimate its expected duration. Still, we believe
that the results are still generalizable although proving the bounds would be technically much harder.

Moreover, we believe that elements from our works can be taken to other online learning settings
outside the scope of scheduling. Specifically, we believe that the notion of types serves as a reasonable
approximation that allows the integration of learning to many online problems. We also think that the
study of cost functions that are sensitive the early exploration is of great interest.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 101034255.

Nadav Merlis is partially supported by the Viterbi Fellowship, Technion.

Mathieu Molina is supported by the French National Research Agency (ANR) through grant
ANR-20-CE23-0007.

Vianney Perchet acknowledges support from the French National Research Agency (ANR) under grant
number (ANR-19-CE23-0026 as well as the support grant, as well as from the grant “Investissements
d’Avenir” (LabEx Ecodec/ANR-11-LABX-0047).

References
Bansal, N. and Dhamdhere, K. Minimizing weighted flow time. ACM Transactions on Algorithms

(TALG), 3(4):39–es, 2007.

Becchetti, L. and Leonardi, S. Nonclairvoyant scheduling to minimize the total flow time on single
and parallel machines. Journal of the ACM, 51(4):517–539, July 2004. ISSN 0004-5411. doi:
10.1145/1008731.1008732.

Cai, X. and Zhou, X. Asymmetric earliness and tardiness scheduling with exponential processing
times on an unreliable machine. Annals of Operations Research, 98(1):313–331, 2000.

Cai, X. and Zhou, X. Single-machine scheduling with exponential processing times and general
stochastic cost functions. Journal of Global Optimization, 31(2):317–332, 2005.

Cai, X., Wu, X., and Zhou, X. Optimal Stochastic Scheduling, volume 4. Springer, 2014.

Calin, O. and Udrişte, C. Geometric modeling in probability and statistics, volume 121. Springer,
2014.

Cunningham, A. A. and Dutta, S. K. Scheduling jobs, with exponentially distributed processing
times, on two machines of a flow shop. Naval Research Logistics Quarterly, 20(1):69–81, 1973.

Dürr, C., Erlebach, T., Megow, N., and Meißner, J. An adversarial model for scheduling with testing.
Algorithmica, 82(12):3630–3675, 2020.

Garivier, A., Ménard, P., and Stoltz, G. Explore first, exploit next: The true shape of regret in bandit
problems. Mathematics of Operations Research, 44(2):377–399, 2019. doi: 10.1287/moor.2017.
0928. URL https://doi.org/10.1287/moor.2017.0928.

Glazebrook, K. D. Scheduling tasks with exponential service times on parallel processors. Journal of
Applied Probability, 16(3):685–689, 1979.

Hamada, T. and Glazebrook, K. D. A bayesian sequential single machine scheduling problem to
minimize the expected weighted sum of flowtimes of jobs with exponential processing times.
Operations Research, 41(5):924–934, 1993.

10

https://doi.org/10.1287/moor.2017.0928

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., del R’ıo, J. F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K.,
Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL
https://doi.org/10.1038/s41586-020-2649-2.

Hunter, J. D. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9(3):
90–95, 2007.

Kämpke, T. Optimal scheduling of jobs with exponential service times on identical parallel processors.
Operations Research, 37(1):126–133, 1989.

Krishnasamy, S., Arapostathis, A., Johari, R., and Shakkottai, S. On learning the cµ rule in single and
parallel server networks. In 2018 56th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 153–154. IEEE, 2018.

Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cambridge University Press, 2020. doi:
10.1017/9781108571401.

Laurent, B. and Massart, P. Adaptive estimation of a quadratic functional by model selection. Annals
of Statistics, pp. 1302–1338, 2000.

Lawler, E. L. and Labetoulle, J. On preemptive scheduling of unrelated parallel processors by linear
programming. Journal of the ACM (JACM), 25(4):612–619, 1978.

Lee, D. and Vojnovic, M. Scheduling jobs with stochastic holding costs. Advances in Neural
Information Processing Systems, 34:19375–19384, 2021.

Levi, R., Magnanti, T., and Shaposhnik, Y. Scheduling with testing. Management Science, 65(2):
776–793, 2019.

Li, H., Chen, J., Tao, Y., Gro, D., and Wolters, L. Improving a local learning technique for queuewait
time predictions. In Sixth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’06), volume 1, pp. 335–342. IEEE, 2006.

Magerlein, J. M. and Martin, J. B. Surgical demand scheduling: a review. Health services research,
13(4):418, 1978.

Marbán, S., Rutten, C., and Vredeveld, T. Learning in stochastic machine scheduling. In International
Workshop on Approximation and Online Algorithms, pp. 21–34. Springer, 2011.

Mitzenmacher, M. Scheduling with predictions and the price of misprediction. In 11th Innovations
in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

Motwani, R., Phillips, S., and Torng, E. Nonclairvoyant scheduling. Theoretical computer science,
130(1):17–47, 1994.

Pinedo, M. and Weiss, G. Scheduling jobs with exponentially distributed processing times and intree
precedence constraints on two parallel machines. Operations Research, 33(6):1381–1388, 1985.

Pinedo, M. L. Scheduling, volume 29. Springer, 2012.

Schrage, L. A proof of the optimality of the shortest remaining processing time discipline. Operations
Research, 16(3):687–690, 1968.

Tsung-Chyan, L., Sotskov, Y. N., Sotskova, N. Y., and Werner, F. Optimal makespan scheduling with
given bounds of processing times. Mathematical and Computer Modelling, 26(3):67–86, 1997.

White, R. W. and Hassan Awadallah, A. Task duration estimation. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, pp. 636–644, 2019.

11

https://doi.org/10.1038/s41586-020-2649-2

A Benchmark FTPP

In this section, for all jobs i ∈ [N], we call Pi the job size of job i. Jobs are ordered in increasing
order of their expected size (Notation Pi and P

⌈i/n⌉
i mod n denote the same job). For any algorithm

A, we note TA
ij for each (i, j) ∈ [N]2 the amount of time job i and job j delay each other under

algorithm A.

A.1 Cost of OPT and FTPP, CR of RR

Let us express the expected cost of any algorithm in terms of TA
i,j for k ∈ [K]:

E[CA] = E

 N∑
i=1

Pi +

N∑
i=1

N∑
j=i+1

TA
i,j

 (4)

Lemma A.1 (Cost of OPT). The cost of OPT is given by

E[COPT] = n2

(
K∑
ℓ=1

1

4
λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

λkλℓ

λk + λℓ

)
+

3n

4

K∑
ℓ=1

λℓ.

Note that this lemma implies the following inequality, which will be used in other proofs:

E[COPT] ≥
n2

4

(
K∑
ℓ=1

λℓ

)
(5)

Proof. We apply Equation (4) with A = OPT. In that case, for any to jobs (i, j) ∈ [N], i ̸= j, as
the shortest job is scheduled first, we have

E[TA
ij] = E[min(Pi, Pj)].

So E[TA
ij] =

λkλℓ

λk+λℓ
if job i is of type k and job j is of type ℓ.

E[COPT] = E

 N∑
i=1

Pi +

N∑
i=1

N∑
j=i+1

TA
i,j

=

K∑
ℓ=1

n∑
i=1

λℓ +

n∑
j=i+1

λℓ

2
+

K∑
k=ℓ+1

n∑
j=1

λkλℓ

λk + λℓ

=

K∑
ℓ=1

(
nλℓ +

n(n− 1)

2

λℓ

2
+ n2

K∑
k=ℓ+1

λkλℓ

λk + λℓ

)

= n2

(
K∑
ℓ=1

1

4
λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

λkλℓ

λk + λℓ

)
+

3n

4

K∑
k=1

λk.

Lemma A.2 (Cost of FTPP). The cost of FTPP is given by:

E[CFTPP] = n2

(
1

2

K∑
ℓ=1

λℓ +

K∑
ℓ=1

(K − ℓ)λℓ

)
+ n

(∑K
ℓ=1 λℓ

2

)

12

Proof. We apply Equation (4) with A = OPT, so that E[TA
ij] = min(λk, λℓ) if job i is of type k and

job j is of type ℓ

E[CFTPP] = E

 N∑
i=1

Pi +

N∑
i=1

N∑
j=i+1

TA
i,j

=

K∑
ℓ=1

n∑
i=1

λℓ +

n∑
j=i+1

λℓ +

K∑
k=ℓ+1

n∑
j=1

λℓ

=

K∑
ℓ=1

(
nλℓ +

n(n− 1)

2
λℓ + n2

K∑
k=ℓ+1

λℓ

)

= n2

(
1

2

K∑
ℓ=1

λℓ +

K∑
ℓ=1

(K − ℓ)λℓ

)
+ n

(∑K
ℓ=1 λℓ

2

)
.

Lemma A.3 (CR of RR). For any For any λ, the following lower bound holds:

E[CRR]

E[COPT]
≥ 2− 4

n+ 3
.

Proof. For RR, any two jobs are run in parallel until one terminates, thus:

E[TRR
ij] = 2E[min(Pi, Pj)].

Thus, by equation 4:

E[CRR] =

N∑
i=1

E[Pi] +

N∑
j=1

2E[min(Pi, Pj)].

On the other hand:

E[COPT] =

N∑
i=1

E[Pi] +

N∑
j=1

E[min(Pi, Pj)].

Thus:

E[CRR]

E[COPT]
= 2−

∑N
i=1 Pi

E[COPT]

= 2−
n
∑K

ℓ=1 λℓ

n2
(∑K

ℓ=1
1
4λℓ +

∑K
ℓ=1

∑K
k=ℓ+1

λkλℓ

λk+λℓ

)
+ 3n

4

∑K
ℓ=1 λℓ

≥ 2−
n
∑K

ℓ=1 λℓ

n2
(∑K

ℓ=1
1
4λℓ

)
+ 3n

4

∑K
ℓ=1 λℓ

= 2− 4

n+ 3
.

With the second line obtained by Lemma A.1.

A.2 CR of FTPP

A.2.1 CR with K types

Proposition A.4 (Upper bound on the CR in function of λ). The CR of FTPP with K types of jobs
with n jobs per type satisfies:

E[CFTPP]

E[COPT]
≤ 2− fK(λ)

where fK(λ) =
2
∑K

ℓ=1

∑K
k=ℓ+1

λkλℓ
λk+λℓ

−
∑K

ℓ=1(K−ℓ)λℓ∑K
ℓ=1

1
4λℓ+

∑K
ℓ=1

∑K
k=ℓ+1

λkλℓ
λk+λℓ

13

Note that instantiating this bound with K = 2 types of jobs, n jobs per type, λ1 = 1 and λ2 = λ > 1,
we get Proposition 4.3:

E[CFTPP]

E[COPT]
≤ 2− 4

λ− 1

(1 + λ)2 + 4λ
.

Proof of Proposition A.4. Compute E[COPT] using Lemma A.1, E[CFTPP] using Lemma A.2.

The competitive ratio of FTPP is given by:

CRFTPP =
E[CFTPP]

E[COPT]
=

n2
(

1
2

∑K
ℓ=1 λℓ +

∑K
ℓ=1(K − ℓ)λℓ

)
+ n(12

∑K
ℓ=1 λℓ)

n2
(∑K

ℓ=1
1
4λℓ +

∑K
ℓ=1

∑K
k=ℓ+1

λkλℓ

λk+λℓ

)
+ n(34

∑K
ℓ=1 λℓ)

(6)

For any values a, b, c, d ∈ R4
+,

if a > c > 0 and d > b > 0, then
a+ b

c+ d
≤ a

c
. (7)

Now, we have 1
2 ≤

3
4 and

K∑
ℓ=1

1

4
λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

λkλℓ

λk + λℓ
≤ 1

2

K∑
ℓ=1

λℓ +

K∑
ℓ=1

(K − ℓ)λℓ.

This implies:

CRFTPP ≤
1
2

∑K
ℓ=1 λℓ +

∑K
ℓ=1(K − ℓ)λℓ∑K

ℓ=1
1
4λℓ +

∑K
ℓ=1

∑K
k=ℓ+1

λkλℓ

λk+λℓ

= 2−
2
∑K

ℓ=1

∑K
k=ℓ+1

λkλℓ

λk+λℓ
−
∑K

ℓ=1(K − ℓ)λℓ∑K
ℓ=1

1
4λℓ +

∑K
k=1

∑K
k=ℓ+1

λkλℓ

λk+λℓ︸ ︷︷ ︸
fK(λ)

.

A.2.2 Upper bound on the CR for particular values of λ

Proposition A.5.

∀K > 1,∃λ, 0 < λ1 ≤ · · · ≤ λK = 1,CRFTPP(λ) ≤
HK − 1

2BK

1
4BK +AK

with HK =
∑K

k=1
1
k , BK =

∑K
k=1

1
k2 and AK =

∑K
k=1

∑k−1
ℓ=1

1
k2+ℓ2 .

Furthermore limK→∞
HK− 1

2BK
1
4BK+AK

= 4
π ≈ 1.273 which implies that there exists some value of K for

which CRFTPP(λ) ≤ 1.274.

Proof. A way to prove such a result would be to find the minimum of CRFTPP with respect to λ.
But this is difficult. We propose another point λ̃.

λ̃k =
1

(K − k + 1)2
. (8)

14

We express the competitive ratio using λ̃:

CRFTPP(λ̃) =

∑K
k=1(

1
2 +K − k)λ̃k∑K

k=1

(
1
4 λ̃k +

∑K
ℓ=k+1

λ̃kλ̃ℓ

λ̃k+λ̃ℓ

)
=

∑K
k=1(

1
2 +K − k) 1

(K−k+1)2∑K
k=1

(
1
4

1
(K−k+1)2 +

∑K
ℓ=k+1

1
(K−k+1)2+(K−ℓ+1)2

)
=

∑K
k=1(

1
2 + k − 1) 1

k2∑K
k=1

(
1
4

1
k2 +

∑k−1
ℓ=1

1
k2+ℓ2

)
=

HK − 1
2BK

1
4BK +AK

with HK =

K∑
k=1

1

k
, BK =

K∑
k=1

1

k2
, and AK =

K∑
k=1

k−1∑
ℓ=1

1

k2 + ℓ2
.

This shows the first part of the lemma. The fact that HK− 1
2BK

1
4BK+AK

→ 4
π follows from Lemma A.6.

Lemma A.6.

lim
K→∞

HK − 1
2BK

1
4BK +AK

=
4

π

with HK =
∑K

k=1
1
k , BK =

∑K
k=1

1
k2 and AK =

∑K
k=1

∑k−1
ℓ=1

1
k2+ℓ2

Proof. We now focus on the behavior of HK− 1
2BK

1
4BK+AK

as K goes to∞.

We know that for the harmonic number HK = Θ(log(K)), and that for the partial sum of the Basel
problem 0 ≤ BK ≤

∑∞
k=1 k

−2 = π2/6 = O(1). Let us bound Ak. Using the fact that for y > 0
and x > 0 the function f : (x, y) 7→ (x2 + y2)−1 is decreasing in x, for (k, ℓ) ∈ [K]2 we have∫ ℓ+1

ℓ

1

k2 + t2
dt ≤ 1

k2 + ℓ2
≤
∫ ℓ

ℓ−1

1

k2 + t2

1

k2

∫ ℓ+1

ℓ

1

(t/k)2 + 1
dt ≤ 1

k2 + ℓ2
≤ 1

k2

∫ ℓ

ℓ−1

1

(t/k)2 + 1
dt

1

k
(arctan(

ℓ+ 1

k
)− arctan(

ℓ

k
)) ≤ 1

k2 + ℓ2
≤ 1

k
(arctan(

ℓ

k
)− arctan(

ℓ− 1

k
)).

Hence by summing for 1 ≤ ℓ < k ≤ K:

K∑
k=1

1

k
(arctan(1)− arctan(

1

k
)) ≤ AK ≤

K∑
k=1

1

k
(arctan(

k − 1

k
)− arctan(0)),

K∑
k=1

1

k
(
π

4
− arctan(

1

k
)) ≤ Ak ≤

K∑
k=1

1

k
arctan(

k − 1

k
).

For the right-hand-side we use that arctan is increasing, thus

AK ≤
K∑

k=1

1

k
arctan(

k − 1

k
) ≤ π

4
HK .

Using that arctan(x) ≤ x for x ≥ 0, we have

AK ≥
K∑

k=1

1

k
(
π

4
− 1

k
) =

π

4
HK −BK .

15

Combining everything we obtain the following inequality:

HK − 1
2BK

π
4HK + 1

4BK

≤ CRFTPP(λ̃) ≤
HK − 1

2BK

π
4HK − 3

4BK

.

Therefore

lim
K→∞

CRFTPP(λ̃) =
4

π
≈ 1.273.

A.2.3 The cost of FTPP is lower than the cost of RR

Let us order all jobs i ∈ [N] in order of their increasing expected size, and denote Pi, the size of job
i. An alternative notation to Pi is P ⌈i/n⌉

i mod n, where the first is used in this proof for convenience. We
consider here the most general setting where K = N .

We have

Lemma A.7.
E[CFTPP] ≤ E[CRR]

Proof. The cost of FTPP with K = N and n = 1 is given by

E[CFTPP] =

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

E
[
TFTPP
ij

]
=

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

min(λi, λj)

where TFTPP
ij is the amount of time job i and job j delay each other in FTPP which verifies

E
[
TFTPP
ij

]
= min(λi, λj)

Similarly, using TRR
ij = 2min(Pi, Pj) which implies E[TRR

ij] = 2
λiλj

λi+λj
, we get

E[CRR] =

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

E
[
TRR
ij

]
=

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

2
λiλj

λi + λj

Then we write

2
λiλj

λi + λj
=

2
1
λi

+ 1
λj

≥ 2
1

min(λi,λj)
+ 1

min(λi,λj)

≥ min(λi, λj)

We conclude that CFTPP ≤ CRR.

16

A.3 Lower bound: Proof of Proposition 4.1

Let us order all jobs i ∈ [N] in order of their increasing expected size, and denote Pi, the size of job
i. An alternative notation to Pi is P ⌈i/n⌉

i mod n, where the first is used in this proof for convenience. We
consider here the most general setting where K = N . Any algorithm has a cost:

E[CA] =

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

E[TA
ij]

where TA
ij = DA

ij +DA
ji where DA

ij is the amount of time job i delay job j.

Lemma A.8. Consider K = N jobs where job i ∈ [N] has mean size λi and λ1 ≤ · · · ≤ λN .
Consider any algorithm A and let TA

ij the total amount of time spent by A on i or j while both jobs
are alive.

E[TA
ij] ≥ 2E[TOPT

ij]

where OPT is the optimal offline algorithm

Proof of Lemma A.8. Let us first prove our proposition for any deterministic algorithm A. We denote
i(t) amount of time that A allocates to job i after a time t < TA

ij is allocated to job i or j.

E[TA
ij]

=

∫ +∞

t=0

P(TA
ij ≥ t)dt

=

∫ +∞

t=0

P (Pi ≥ i(t))P (Pj ≥ t− i(t)) dt

=

∫ +∞

t=0

exp

(
− i(t)

λi

)
exp

(
− t− i(t)

λj

)
dt

=

∫ +∞

t=0

exp

(
− i(t) + t/2− t/2

λi

)
exp

(
− t− (i(t) + t/2− t/2)

λj

)
dt

=

∫ +∞

t=0

exp

(
−
(

1

λi
+

1

λj

)
t

2

)
exp

(
−
(

1

λi
− 1

λj

)(
i(t)− t

2

))
dt.

Calling f(t) = exp
(
−
(

1
λi

+ 1
λj

)
t
2

)
and g(t) = | 1λi

− 1
λj
|
(
i(t)− t

2

)
it holds that either∫ ∞

t=0

f(t) exp(−g(t))dt ≥
∫ ∞

t=0

f(t)dt

or ∫ ∞

t=0

f(t) exp(g(t))dt ≥
∫ ∞

t=0

f(t)dt.

Otherwise, we would have∫ ∞

t=0

f(t)
1

2
(exp(−g(t)) + exp(g(t)))dt <

∫ ∞

t=0

f(t)dt

which cannot be true since ∀t, 1
2 (exp(−t) + exp(t)) ≥ 1.

Therefore an adversary knowing i(t) can always chose the order of λi and λj such that

E[TA
ij] ≥

∫ +∞

t=0

exp(−(1
λi

+
1

λj
)
t

2
)dt = 2

λiλj

λi + λj

The optimal delay is

E[TOPT
ij] = E[min(Pi, Pj)] =

λiλj

λi + λj

17

so our Lemma is proven for any deterministic algorithm A.

Consider a randomized algorithm R which can be seen as a probabilistic distribution over the set of
deterministic algorithms. Therefore A, i(t) and g(t) are now seen as random variables. By the tower
rule, the amount of time job i and j delay each other in R is such that:

E[TR
ij] = E[E[TA

ij |A]]

= E[
∫ +∞

t=0

f(t) exp(sign(λi − λj)g(t))dt]

By the same argument as in the deterministic case, it holds that either

E[
∫ ∞

t=0

f(t) exp(−g(t))dt] ≥
∫ ∞

t=0

f(t)dt

or

E[
∫ ∞

t=0

f(t) exp(g(t))dt] ≥
∫ ∞

t=0

f(t)dt

Otherwise, we would have

E[
∫ ∞

t=0

f(t)
1

2
(exp(−g(t)) + exp(g(t)))dt] <

∫ ∞

t=0

f(t)dt

which implies that there exists a deterministic function g such that∫ ∞

t=0

f(t)
1

2
(exp(−g(t)) + exp(g(t)))dt <

∫ ∞

t=0

f(t)dt

which cannot be true as shown in the deterministic case. The rest of the argument is the same as in
the deterministic case and therefore omitted.

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Take any algorithm A

E[CA] =

N∑
i=1

E[Pi] +

N∑
i=1

N∑
j=i+1

E[TA
ij] (9)

≥
N∑
i=1

λi + 2

N∑
i=1

N∑
j=i+1

E[TOPT
ij] (10)

where (10) comes from Lemma A.8.

Observe that applying RR on the same data would yield an expected completion time:

E[CRR] =

N∑
i=1

E[Pi] + 2

N∑
i=1

N∑
j=i+1

E[min(Pi, Pj)]

=

N∑
i=1

E[Pi] + 2

N∑
i=1

N∑
j=i+1

E[TOPT
ij]

≤ E[CA]

which concludes the proof.

18

B Analysis of Non-Preemptive Learning algorithms

B.1 Full Algorithmic Details

In this appendix, we present a full description of ETC-U and UCB-U.

Algorithm 3 Explore-Then-Commit Uniform (ETC-U)]

1: Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types)
2: For all pairs of different types k, ℓ initialize δk,ℓ = 0, r̂k,ℓ = 0 and hk,ℓ = 0
3: For all types k, set mk = 0
4: repeat
5: U is the set of types with at least one remaining job
6: if A is empty then
7: A = {ℓ ∈ U ,∀k ∈ U , k ̸= ℓ, r̂k,ℓ − δk,ℓ ≤ 0.5}
8: end if
9: Select the type ℓ with the lowest number of finished jobs ℓ = argmink∈A mk and run one job

of type ℓ yielding a size P ℓ
mℓ+1.

10: mℓ = mℓ + 1
11: for k, ℓ in A, k ̸= ℓ do
12: hk,ℓ =

∑min(mk,mℓ)
i=1 1{P k

i < P ℓ
i }

13: δk,ℓ =
√

log(2n2K4)
2min(mk,mℓ)

14: r̂k,ℓ =
hk,ℓ

min(mk,mℓ)

15: if r̂k,ℓ − δk,ℓ ≥ 0.5 or mℓ = n then
16: Remove ℓ from A
17: end if
18: end for
19: until U is not empty

Algorithm 4 Upper-Confidence-Bound-Uniform (UCB-U)

1: Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types)
2: For all types k ∈ [K], set mk = 0
3: Set U = [K]
4: For all types k ∈ [K], compute the lower bound λmk

k using Equation (15)
5: repeat
6: Select k∗ = argmink∈U λmk

k
7: Set mk∗ = mk∗ + 1
8: Compute a job of type k∗ until completion and record its size Pmk∗

k∗

9: Update the lower bound λmk∗
k∗ using again Equation (15)

10: If mk∗ = n, remove k∗ from U
11: until U is empty

B.2 Cost Decomposition

In this appendix, we analyze the non-preemptive learning algorithms presented in our paper - ETC-U
and UCB-U. We start by presenting a general cost decomposition result that relates the cost of any
non-preemptive algorithm to the one of FTPP. We will use this result to derive the bounds of both
our suggested algorithms.

Lemma B.1 (Cost of non-preemptive algorithms). Any non-preemptive algorithm A has a cost

E[CA] = E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}]

19

Proof. Denote Pi, the size of the job i, and TA
ij = DA

ij +DA
ji, where DA

ij is the amount of time a job
i delays job j. For any algorithm, we have:

CA =

N∑
a=1

Pa +

N∑
a=1

N∑
b=a+1

TA
ab

For non-preemptive algorithms, TA
ab = Pa if job a is scheduled before b and Pb otherwise so that we

can write

CA =

N∑
a=1

Pa +

N∑
a=1

N∑
b=a+1

(Pa1{Pa computed before Pb}+ Pb1{Pb computed before Pa})

Now assume w.l.o.g. that (Pa)a∈[N] are in the order chosen by FTPP, i.e., Pa is the ath executed
task by FTPP and if a ≤ b then E[Pa] ≤ E[Pb]. Under this convention, we get:

CFTPP =

N∑
a=1

Pa +

N∑
a=1

N∑
b=a+1

Pa

and recalling that

1{Pa computed before Pb} = 1− 1{Pb computed before Pa}
we have

CA = CFTPP +

N∑
a=1

N∑
b=a+1

(Pb − Pa)1{Pb computed before Pa}

Reindexing the job without changing the order, where P k
i is now the i-th job of type k, we have:

CA = CFTPP +

K∑
ℓ=1

n∑
j=1

K∑
k=ℓ+1

n∑
i=1

(P k
i − P ℓ

j)1
{
P k
i computed before P ℓ

j

}
Taking the expectation finishes the proof.

B.3 Upper bound for ETC-U

Proposition B.2. The following upper bounds hold:

E[CETC-U] ≤ E[CFTPP] +
1

n
E[COPT] +

∑
k∈[K]

[
1

2
(k − 1)(2K − k) + (K − k)2

]
λkn

√
8n log(2n2K3).

and

E[CETC-U] ≤ E[CFTPP] +
1

n
E[COPT] +

∑
k∈[K]

k−1∑
ℓ=1

(K − ℓ)
(λk + λℓ)

2

(λk − λℓ)
n8 log(2n2K3).

We start with the following technical lemma, isolated to be reused in other proofs. Pick some
α ∈ N. Let (X1

i)i∈[αn] and (X2
i)i∈[αn] be independent exponential variables of parameters λ1 and

λ2 respectively. Define for any m ∈ [αn]:

r̂m =
1

m

m∑
i=1

1X1
i <X2

i

and

δ(m,n) =

√
log(2n2K3)

2m
.

Let r denote the expectation r := E
[
1X1

i <X2
i

]
= λ2

λ1+λ2
.

20

Lemma B.3. For any m ∈ [αn], the estimator r̂m is within δ(m,n) of its expectation w.h.p:

P
(
∃m ∈ [αn] s.t. |r̂m − r| ≥ δ(m,n)

)
≤ α

nK3
.

Proof. By Hoeffding’s inequality:

∀m ∈ [αn], P

(
|r̂m − r| ≥

√
log(2n2K3)

2m

)
≤ 1

n2K3

The lemma is then obtained by a union bound over the αn possible values of m.

We are now ready to prove Proposition B.2.

Proof. Recall that we assumed without loss of generality that λ1 ≤ · · · ≤ λK . Recall also the
definition for any (k, ℓ) ∈ [K]2, for any (mℓ,mk) ∈ [n]2, of:

r̂
min(mk,mℓ)
k,ℓ =

1

min(mk,mℓ)

min(mk,mℓ)∑
i=1

1Pk
i <P ℓ

i
.

Let us define the good event E as:

E :=
{
∀(k, ℓ) ∈ [K]2,∀m ∈ [n], |r̂mk,ℓ − E[rmk,ℓ]| < δ(m,n)

}
By Lemma B.3 applied with α = 1, for any couple (ℓ, k) it holds that :

P
(
∃m ∈ [n] s.t. |r̂mk,ℓ − E[rmk,ℓ]| > δ(m,n)

)
≤ 1

n
.

A union bound over the K(K−1)
2 possible pairs gives the following bound:

P
(
E
)
≤ 1

2nK
. (11)

With the help of Lemma B.1, the cost of ETC-U can be decomposed using the event E as follows:

E[CETC-U] = E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}]

(Lemma B.1)

≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}
|E
]

︸ ︷︷ ︸
(i)

+

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}
|E
]
P
(
E
)

︸ ︷︷ ︸
(ii)

.

(12)

21

Bounding (ii). Recall that by assumption, if k ≥ ℓ, then λk ≥ λℓ. Therefore, we have that

(ii) = P
(
E
) K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)︸ ︷︷ ︸
≥0

E

1{P k
i computed before P ℓ

j

}︸ ︷︷ ︸
≤1

|E

≤ P

(
E
) K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)

= n2P
(
E
) K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)

= n2P
(
E
)(K∑

k=1

(k − 1)λk −
K∑
ℓ=1

(K − ℓ)λℓ

)

≤ n2KP
(
E
) K∑
k=1

λk

≤ 4KE[COPT]P
(
E
)

(Equation (5))

≤ 2

n
E[COPT], (13)

where the last inequality is by Equation (11).

Bounding (i). Consider any couple (k, ℓ) ∈ [K]2 s.t. ℓ ≤ k. Let m∗
ℓ,k be the number of compar-

isons performed between jobs of type ℓ and k before the algorithm detects that λℓ ≤ λk. A first
obvious upper bound is m∗

ℓ,k ≤ n. A second upper is obtained by noting that m∗
ℓ,k is smaller than

any m′ s.t.

δ(m
′,n) <

1

2

∣∣∣∣ λk

λk + λℓ
− 0.5

∣∣∣∣.
For this value of δ(m

′,n), the event E ensures that if λk ≥ λℓ, then

r̂m
′

ℓ,k − δ(m
′,n)

Under E
≥ E[rm

′

ℓ,k]− 2δ(m
′,n) >

λk

λk + λℓ
−
(

λk

λk + λℓ
− 1

2

)
=

1

2
,

and type k would be eliminated. This implies the following upper bound on m∗
ℓ,k:

m∗
ℓ,k ≤ min

(
n, 8

(
λk + λℓ

λk − λℓ

)2

log
(
2n2K3

))
. (14)

On the other hand, notice that under the good event E , a type ℓ will never be eliminated due to a type
k of greater expected duration λk ≥ λℓ, since

r̂m
′

k,ℓ − δ(m
′,n)

Under E
≤

(
E[rm

′

ℓ,k] + δ(m
′,n)
)
− δ(m

′,n) =
λℓ

λk + λℓ
≤ 1

2
.

We decompose the run of the algorithm into (up to K) phases. For each ℓ ∈ [K], we call phase ℓ the
iterations at which jobs of type ℓ are the jobs with the smallest mean still not terminated. Note that
during phase ℓ, job type ℓ is always active, as the contrary would mean event E does not hold. This
implies that the number of jobs of any type k > ℓ computed during phase ℓ is lower than m∗

ℓ,k. We
have the following bound:

22

(i) =

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}
|E
]

(1)

≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before phase ℓ+ 1

}
|E
]

≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
i∈[n]

n(λk − λℓ)E

[
ℓ∑

o=1

1
{
P k
i computed during phase o

}
|E

]
(2)

≤
K∑
ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

E[m∗
o,k|E]n(λk − λℓ)

≤
K∑
ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

E[m∗
o,k|E]n(λk − λo)

(3)
=

K∑
k=1

k−1∑
o=1

k−1∑
l=o

E[m∗
o,k|E]n(λk − λo)

=

K∑
k=1

k−1∑
o=1

E[m∗
o,k|E]n(k − o)(λk − λo)

(4)

≤
K∑

k=1

k−1∑
ℓ=1

E[m∗
ℓ,k|E]n(K − ℓ)(λk − λℓ)

(5)

≤
K∑

k=1

k−1∑
ℓ=1

min

(
n, 8

(
λk + λℓ

λk − λℓ

)2

log
(
2n2K3

))
n(K − ℓ)(λk − λℓ).

(1) is since by the beginning of phase ℓ+ 1, all jobs of type ℓ were completed. (2) is since during
phase o, the oth type was not eliminated, so there cannot be more than m∗

o,k jobs of type k in this
phase. In (3), we changed the summation order and in (4), we replaced o→ ℓ. Finally, (5) is due to
the bound of Equation (14), which holds under E .

Next, for any λk ≥ λℓ, we have:

(λk − λℓ)min

(
n, 8

(
λk + λℓ

λk − λℓ

)2

log
(
2n2K3

))
≤ (λk + λℓ)

√
8n log(2n2K3),

since min {a, b} ≤
√
ab for any a, b ≥ 0. This implies that

(i) ≤
K∑

k=1

k−1∑
ℓ=1

n(K − ℓ)(λk + λℓ)
√
8n log(2n2K3)

=

K∑
k=1

[
1

2
(k − 1)(2K − k) + (K − k)2

]
λkn

√
8n log(2n2K3).

Substituting this and the bound of Equation (13) into the decomposition of Equation (12) gives the
first bound of the proposition.

The second bound is obtained by upper bounding:

(λk − λℓ)min

(
n, 8

(
λk + λℓ

λk − λℓ

)2

log
(
2n2K3

))
≤ 8

(λk + λℓ)
2

λk − λℓ
log
(
2n2K3

)
,

23

B.4 Upper bound for UCB-U

Proposition B.4. The expected cost of UCB-U is upper bounded by:

E[CUCB-U] ≤ E[CFTPP] + n(K − 1)
√

3n ln (2n2K2)

K∑
k=1

λk +
2

n
E[COPT],

and:

E[CUCB-U] ≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

(λk + λℓ)
2

λk − λℓ
3n ln

(
2n2K2

)
+

2

n
E[COPT].

Concentration of exponential distribution If X ∼ E(λ), then 2
λX ∼ E(2) = χ2

2 (χ2 with 2

degrees of freedom). It follows that if ∀i ∈ [m], Xi ∼ E(λ), then 2
λ

∑m
i=1 Xi ∼ χ2

2m. Denote
χ2
2m(α) the α-th percentile, we have with probability 1− δ that

2
∑

i Xi

χ2
2m(1− δ/2)

≤ λ ≤
2
∑

i Xi

χ2
2m(δ/2)

Setting δ = 1
n2K2 , we get the following formula for a lower bound:

λm
k =

2
∑m

i=1 X
k
i

χ2
2m(1− 1

2n2K2)
(15)

and another formula for the upper bound

λ
m

k =
2
∑m

i=1 X
k
i

χ2
2m(1

2n2K2)

If a job k is wrongly scheduled before a job of type ℓ, then the decision rule is misleading meaning
that:

λmk

k =
2
∑nk

i=1 X
k
i

χ2
2nk

(1− 1
2n2K2)

<
2
∑nℓ

i=1 X
ℓ
i

χ2
2nℓ

(1− 1
2n2K2)

= λmℓ

ℓ

even though λℓ < λk.

Bounding the cost From Lemma B.1, the cost of any non preemptive algorithm A writes

E[CA] = E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}]
(16)

(17)

Let us then introduce the GOOD event which is:

E = {∀i ∈ [n],∀k ∈ [K], λi
k ≤ λk ≤ λ

i

k}
With a union bound, it is easy to show that E holds with probability 1− 1

nK and that the contradictory
event E happens with probability 1

nK .

Using the same method as in the proof of Proposition B.2 (the decomposition using E and E as done
in Equation (12) and the derivation of Equation (13)), we can upper bound the cost of UCB-U as:

E[CUCB−U] ≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}
|E
]

︸ ︷︷ ︸
(i)

+ E[COPT] 4KP (E)︸ ︷︷ ︸
4/n

24

Furthermore, P k
i computed before P ℓ

j implies that λi
k < λj

ℓ and therefore

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)P(λi
k < λj

ℓ |E)

Under E , we have λj
ℓ ≤ λℓ. Moreover, it holds that λ

i

k ≥ λk, and by the definition of λi
k, and λ

i

k,

λi
k =

χ2
2i(

1
2n2K2)

χ2
2i(1− 1

2n2K2)
λ
i

k ≥
χ2
2i(

1
2n2K2)

χ2
2i(1− 1

2n2K2)
λk.

Combined, under E we can bound
{
λi
k < λj

ℓ

}
⊆
{
λk

χ2
2i(

1
2n2K2)

χ2
2i(1−

1
2n2K2)

< λℓ

}
and therefore write

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

1

{
λk

χ2
2i(

1
2n2K2)

χ2
2i(1− 1

2n2K2)
< λℓ

}
(λk − λℓ)

=

K∑
ℓ=1

K∑
k=ℓ+1

nmax

{
i ∈ [n], λk

χ2
2i(

1
2n2K2)

χ2
2i(1− 1

2n2K2)
< λℓ

}
(λk − λℓ)

So finally we have

E[CUCB-U] ≤ E[CFTPP]+

K∑
ℓ=1

K∑
k=ℓ+1

nmax

{
i ∈ [n], λk

χ2
2i(

1
2n2K2)

χ2
2i(1− 1

2n2K2)
< λℓ

}
(λk−λℓ)+

2

n
E[COPT]

(18)

Bounding the ratio. We now focus on bounding the maximum term in Equation (18). By Lemma
1 of (Laurent & Massart, 2000), if U ∼ χ2

D, then

P
(
U ≥ D + 2

√
Dx+ 2x

)
≤ exp(−x), and P

(
U ≤ D − 2

√
Dx
)
≤ exp(−x), (19)

and in particular,

χ2
D(δ) ≥ D − 2

√
D ln

1

δ
, and χ2

D(1− δ) ≤ D + 2

√
D ln

1

δ
+ 2 ln

1

δ
. (20)

Thus, for any i ∈ [n], a necessary condition to the inequality λk
χ2
2i(

1
2n2K2)

χ2
2i(1−

1
2n2K2)

< λℓ is

2i− 2
√
2i ln (2n2K2)

2i+ 2
√

2i ln (2n2K2) + 2 ln (2n2K2)
<

λℓ

λk

⇒
(
1− λℓ

λk

)
i−
√
2 ln (2n2K2)

(
1 +

λℓ

λk

)√
i− λℓ

λk
ln
(
2n2K2

)
< 0

⇒ (λk − λℓ) i−
√
2 ln (2n2K2) (λk + λℓ)

√
i− λℓ ln

(
2n2K2

)
< 0

⇒
√
i <

√
2 ln (2n2K2) (λk + λℓ) +

√
2 ln (2n2K2) (λk + λℓ)

2
+ 4 ln (2n2K2)λℓ (λk − λℓ)

2 (λk − λℓ)

⇒
√
i <

√
2 ln (2n2K2)

(λk + λℓ) +

√
(λk + λℓ)

2
+ 2λℓ (λk − λℓ)

2 (λk − λℓ)

Now, using the fact that 2λℓ ≤ λℓ + λk, we get the simplified bound

√
i <

√
2 ln (2n2K2)

(λk + λℓ) +
√

2λk (λk + λℓ)

2 (λk − λℓ)
≤
√
2 ln (2n2K2)

(
1 +
√
2
) λk + λℓ

2 (λk − λℓ)
,

(21)

25

or i ≤ 3 ln
(
2n2K2

) (
λk+λℓ

λk−λℓ

)2
. Since we also know that i ∈ [n], we can write

max

{
i ∈ [n], λk

χ2
2i(

1
2n2K2)

χ2
2i(1− 1

2n2K2)
< λℓ

}
≤ min

{
3 ln

(
2n2K2

)(λk + λℓ

λk − λℓ

)2

, n

}

≤
√
3n ln (2n2K2)

λk + λℓ

λk − λℓ
,

where the second inequality is since min {a, b} ≤
√
ab for a, b > 0. Substituting back into

Equation (18), we get the first bound in the proposition:

E[CUCB-U] ≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

n
√
3n ln (2n2K2)

λk + λℓ

λk − λℓ
(λk − λℓ) +

2

n
E[COPT]

= E[CFTPP] + n
√
3n ln (2n2K2)

K∑
ℓ=1

K∑
k=ℓ+1

(λk + λℓ) +
2

n
E[COPT]

= E[CFTPP] + n
√

3n ln (2n2K2)

(
K∑

k=1

(k − 1)λk +

K∑
ℓ=1

(K − ℓ)λℓ

)
+

2

n
E[COPT]

= E[CFTPP] + n(K − 1)
√
3n ln (2n2K2)

K∑
k=1

λk +
2

n
E[COPT].

The second bound is obtained through the upper bound:

(λk − λℓ)min

{
3 ln

(
2n2K2

)(λk + λℓ

λk − λℓ

)2

, n

}
≤ 3 ln

(
2n2K2

)((λk + λℓ)
2

λk − λℓ

)
.

B.5 Lower bounds for Non-Preemptive Algorithms

B.5.1 Small Differences (Proposition 5.4)

Proof of Proposition 5.4. Assume K = 2 and take any non-preemptive algorithm A. Call P 1
i the

i-th job of type 1 and P 2
j the j-th job of type 2. According to Lemma B.1, A has a cost

E[CA] = E[CFTPP] + (λ2 − λ1)E

 ∑
(i,j)∈[n]2

1
{
P 2
j computed before P 1

i

}
if λ2 > λ1 (the role of λ2 and λ1 are reversed if λ2 < λ1).

We then follow the same approach as in chapter 15 in Lattimore & Szepesvári (2020). Consider
situation 1 where λ1 = a, λ2 = b and situation 2 where λ1 = b and λ2 = a with a < b and assumes
that the adversary chooses the situation based on the algorithm A. Intuitively, if A tends to complete
more of jobs of type 1 before jobs of type 2, the adversary will decide that λ1 > λ2 (situation 2)
otherwise, it will choose λ2 > λ1 (situation 1). Call Pν1

the joint probability over the scheduling
decisions and job sizes in situation 1 following the policy prescribed by algorithm A and Pν2

the
same probability in situation 2. Call Pat

(xt) the probability that the job of type at chosen at time
t is of size xt. Calling KL the KL divergence, we have following the Lemma 15.1 in Lattimore &
Szepesvári (2020): KL(Pν1 ,Pν2) = n(KL(Xa, Xb) +KL(Xb, Xa)) where Xa is an exponential
random variable of expectation a and Xb is an exponential random variable of expectation b.

Note right away that KL(Xa, Xb) =
a
b − 1− log(ab) (e.g., Calin & Udrişte, 2014, Example 4.2.1),

therefore KL(Xa, Xb) +KL(Xb, Xa) =
a
b − 2 + b

a = (b−a)2

ab so

KL(Pν1
,Pν2

) ≤ n
(b− a)2

ab
.

The cost of algorithm A in situation 1 is lower bounded as:

Eν1
[CA] ≥ Eν1

[CFTPP]+(b−a)Eν1

1
 ∑

(i,j)∈[n]2

1
{
P 2
j computed before P 1

i

}
≥ n2/2

n2/2.

26

The cost of algorithm A in situation 2 is lower bounded as:

Eν1
[CA] ≥ Eν2

[CFTPP]+(b−a)Eν2

1
 ∑

(i,j)∈[n]2

1
{
P 1
i computed before P 2

j

}
> n2/2

n2/2.

Introduce the event E = 1
{∑

(i,j)∈[n]2 1
{
P 2
j computed before P 1

i

}
≥ n2/2

}
, we have that

E[CA] = max
ν∈{ν1,ν2}

Eν [CA]

≥ Eν1 [CA] + Eν2 [CA]

2

≥ Eν1
[CFTPP] + Eν2

[CFTPP]

2
+ (b− a)n2/2

Pν1
(E) + Pν2

(E)

2

First, let us notice that

E[CFTPP] =
Eν1

[CFTPP] + Eν2
[CFTPP]

2
Then, using Bretagnolle–Huber inequality (Th 14.2 in Lattimore & Szepesvári (2020)), we get
Pν1(E) + Pν2(E) ≥ 1

2 exp(−KL(Pν1 ,Pν2)) and since KL(Pν1 ,Pν2) ≤ n (λ2−λ1)
2

λ1λ2
, we have

E[CA] ≥ E[CFTPP] + (b− a)n2/2
exp(−n (b−a)2

ab)

4

At this stage, we can rewrite the equation assuming λ2 ≥ λ1 and so that we get

E[CA] ≥ E[CFTPP] + (λ2 − λ1)n
2
exp(−n (λ2−λ1)

2

λ1λ2
)

8
,

which proves the first result of the proposition. In particular, taking λ2 ≤ λ1

(
1 + 1√

n

)
gives its

second result

E[CA]− E[CFTPP] ≥ λ1n
√
n
exp(−n 1/n

(1+1/
√
n)2

)

8

≥ λ1n
√
n
e−1/4

8

≥ (λ1 + λ2)n
√
n
e−1/4

24
.

B.5.2 Large Differences

Proposition B.5. For any non-preemptive algorithm, there exists a problem instance with expected
type durations of λ1 ≤ λ2 · · · ≤ λK such that

E[CA] ≥ E[CFTPP] +
n

K

K∑
k=1

(2k −K − 1)λk.

In particular, for K = 2 and λ2 ≥ 3λ1, it holds that

E[CA] ≥ E[CFTPP] +
n

4
(λ1 + λ2),

Let pk be the probability that a non-preemptive algorithm completes a job of type k at its first round.
Notice that this distribution cannot depend on the expected duration of any of the types, since no
data was gathered. Thus, types can be arbitrarily ordered without affecting this distribution. In
particular, we assume w.l.o.g. that p1 ≤ p2 ≤ . . . pK and choose a problem instance where job types

27

are ordered in an increasing duration λ1 ≤ λ2 ≤ . . . λK . Then, the expected cost of the algorithm
can be bounded according to Lemma B.1, by

E[CA] = E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
P k
i computed before P ℓ

j

}]
≥ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
j∈[n]

(λk − λℓ)E
[
1
{
P k
1 computed before P ℓ

j

}]
≥ E[CFTPP] + n

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)E
[
1
{
P k
1 was the first job

}]
= E[CFTPP] + n

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)pk

= E[CFTPP] + n

K∑
k=1

pk

k−1∑
ℓ=1

(λk − λℓ).

Now, one can be easily convinced that between all probability vectors with non-decreasing compo-
nents, this bound is minimized by the uniform distribution pk = 1/K. To see this, observe that the
sum

∑k−1
ℓ=1 (λk − λℓ) increases with k. Therefore, if p is non-uniform, then pK > 1/K, and there

would exist a coordinate k < K to which we could move weight from pK , which would decrease the
bound.

Substituting pk = 1/K we then get

E[CA] ≥ E[CFTPP] +
n

K

K∑
k=1

k−1∑
ℓ=1

(λk − λℓ)

= E[CFTPP] +
n

K

K∑
k=1

(2k −K − 1)λk.

In particular, if K = 2, we get

E[CA] ≥ E[CFTPP] +
n

2
(λ2 − λ1)

and, for λ2 ≥ 3λ1, we have λ2 − λ1 ≥ λ1+λ2

2 and thus

E[CA] ≥ E[CFTPP] +
n

4
(λ1 + λ2).

28

C Analysis of Preemptive Learning algorithms

C.1 Full Algorithmic Details

In this appendix, we present a full description of ETC-RR and UCB-RR.

Algorithm 5 Explore-Then-Commit-Round-Robin (ETC-RR)

1: Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types)
2: For all pairs of different types k, ℓ initialize δk,ℓ = 0, r̂k,ℓ = 0 and hk,ℓ = 0
3: For all types k, set ck = 0
4: repeat
5: U is the set of types with at least one remaining job
6: if A is empty then
7: A = {ℓ ∈ U ,∀k ∈ U , k ̸= ℓ, r̂k,ℓ − δk,ℓ ≤ 0.5}
8: end if
9: Run jobs (P k

ck+1)k∈A in parallel until a job finishes and denote ℓ the type of this job
10: cℓ = cℓ + 1
11: for k ∈ A, k ̸= ℓ do
12: βℓ,k = βℓ,k + 1

13: δℓ,k = δk,ℓ =
√

log(2n2K4)
2(βℓ,k+βk,ℓ)

14: r̂ℓ,k =
βℓ,k

βk,ℓ+βℓ,k

15: r̂k,ℓ =
βk,ℓ

βk,ℓ+βℓ,k

16: if r̂ℓ,k − δℓ,k ≥ 0.5 then
17: Remove k from A
18: end if
19: if r̂k,ℓ − δk,ℓ ≥ 0.5 or cℓ = n then
20: Remove ℓ from A
21: end if
22: end for
23: until U is empty

Algorithm 6 Upper-Confidence-Bound-Round-Robin (UCB-RR)

1: Input : n ≥ 1 (number of jobs of each type), K ≥ 2 (number of types), discretization step ∆
2: repeat
3: U is the set of types with at least one remaining job
4: Calculate type indices uk for all jobs k ∈ U according to Equation (28)
5: Choose type ℓ ∈ argmaxℓ∈U uℓ

6: Run a job of type ℓ for ∆ time units
7: until U is empty

C.2 Cost Decomposition

We start with a cost decomposition, which relates the performance of preemptive algorithms to
the one of FTPP. We limit ourselves to the natural family of preemptive algorithms that do not
simultaneously run two tasks of the same type and is formally defined as follows.

Definition C.1. Denote bℓi and eℓi the beginning and end dates of the computation of the ith job of
type ℓ. A type-wise non-preemptive algorithm is an algorithm that computes jobs of the same type
one after another, i.e., ∀i ∈ [n],∀k ∈ [K], eℓi ≤ bℓi+1.

This property is very natural, as for exponential durations without knowledge of the real execution
times, there is no advantage in simultaneously running two tasks of the same type. Specifically, all of
our suggested algorithms fall under this definition.

For such algorithms, the cumulative cost can be compared to FTPP using the following lemma.

29

Lemma C.2 (Cost of type-wise non-preemptive algorithms). Any type-wise non-preemptive algorithm
A has the following upper bound on its cost:

E[CA] ≤ E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
+ (K − 1)n

K∑
ℓ=1

λℓ.

Proof. Recall that if DA
ij is the amount of time a job i delays job j when running algorithm A, then

we can write the cost of algorithm A as

CA =

N∑
j=1

Pj +

N∑
i=1

N∑
j=i+1

(
DA

ij +DA
ji

)
.

Moreover, if bi,ei are the start (end) time of job i, it always holds that DA
ij ≤ Pi1{bi < ej}. Using

this inequality and dividing the summation into types, we get

E[CA] ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
E
[
P ℓ
i 1
{
bℓi < ekj

}]
+ E

[
P k
j 1
{
bkj < eℓi

}])

+

K∑
ℓ=1

 n∑
i=1

E[P ℓ
i] +

n∑
j=i+1

E[P ℓ
i 1
{
bℓi < eℓj

}
] + E[P ℓ

j 1
{
bℓj < eℓi

}
]

 .

Since jobs are independent, the expected duration of a job of type ℓ is λℓ, independently of its
start time. Also, as the algorithm is type-wise non-preemptive, for all ℓ ∈ [K], j > i, we have
1
{
bℓj < eℓi]

}
= 0 and 1

{
bℓi ≤ eℓj]

}
= 1. Thus,

E[CA] ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓE

[
1
{
bℓi < ekj

}]
+ λkE

[
1
{
bkj < eℓi

}])

+

K∑
ℓ=1

 n∑
i=1

λℓ +

n∑
j=i+1

λℓ

=

K∑
ℓ=1

λℓ
n(n+ 1)

2
+

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓE

[
1
{
bℓi < ekj

}]
+ λkE

[
1
{
bkj < eℓi

}])
︸ ︷︷ ︸

(i)

. (22)

We can now decompose the event that job i of type ℓ started before job j of type k finished:
1
{
bℓi < ekj

}
= 1

{
bℓi < ekj ≤ eℓi

}
+ 1

{
eℓi < ekj

}
= 1

{
bℓi < ekj ≤ eℓi

}
+ 1

{
eℓi < bkj

}
+ 1

{
bkj ≤ eℓi < ekj

}{
eℓi < bkj

}
is the event that job i of type ℓ was fully computed before job j of type k started.{

bℓi < ekj ≤ eℓi
}

is the event that job i of type ℓ was running when job j of type k finished, and
reciprocally for

{
bkj ≤ eℓi < ekj

}
. This gives the following decomposition:

(i) =

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓE

[
1
{
eℓi < bkj

}]
+ λkE

[
1
{
ekj < bℓi

}])
︸ ︷︷ ︸

(ii)

+

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

λℓE
[
1
{
bℓi < ekj ≤ eℓi

}]
+ λk1

{
bkj ≤ eℓi < ekj

}
︸ ︷︷ ︸

(iii)

+

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

λkE
[
1
{
bkj < eℓi ≤ ekj

}
+ λk1

{
bℓi ≤ ekj < eℓi

}]
︸ ︷︷ ︸

(iv)

30

Since the algorithm is type-wise non-preemptive, a single job of each type may run at a given time.
This implies that any job of type ℓ cannot be in a middle of two different jobs of type k, namely

∀(ℓ, k) ∈ [K]2, ℓ ̸= k, ∀(i, j) ∈ [n]2,

n∑
j=1

1
{
bkj ≤ eℓi < ekj

}
≤ 1.

The same conclusion similarly holds for all other sums in terms (iii) and (iv), and therefore implies
the following bound:

(iii) + (iv) ≤ n

K∑
ℓ=1

K∑
k=ℓ+1

(λℓ + λk) = (K − 1)n

K∑
ℓ=1

λℓ.

We also have 1
{
ekj < bℓi

}
≤ 1− 1

{
bℓi < ekj

}
, thus

(ii) ≤
K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(
λℓ + (λk − λℓ)E

[
1
{
ekj < bℓi

}])
= n2

K∑
ℓ=1

K∑
k=ℓ+1

(K − ℓ)λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
.

Combining everything into Equation (22), we get:

E[CA] ≤
K∑
ℓ=1

λℓ
n(n+ 1)

2
+ n2

K∑
ℓ=1

K∑
k=ℓ+1

(K − ℓ)λℓ

+

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
+ (K − 1)n

K∑
ℓ=1

λℓ

= E[CFTPP] +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
+ (K − 1)n

K∑
ℓ=1

λℓ,

where the last equality is by Lemma A.2.

C.3 Upper bound for ETC-RR

Proposition C.3. The following bound holds:

E[CETC-RR] ≤ E[CFTPP] +
12K

n
E[COPT] + 4n

√
n log(2n2K3)

K∑
ℓ=1

(K − ℓ)2λℓ. (23)

Good Event. For any couple (k, ℓ), if at some iteration βk,ℓ + βℓ,k = m, we define the more precise
notation for r̂ℓ,k at that iteration as r̂mℓ,k. Notice that m represents the number of times that jobs of
either type were completed while both were active. Therefore, m can have 2n different values, where
the extreme case m = 2n− 1 is, for example, when n− 1 jobs of type k are first completed and only
then all n jobs of type ℓ are completed.

Let us start by showing that the estimators r̂ℓ,k well-concentrate around their expectations. Exponen-
tial random variables are memory-less, i.e., if Xi ∼ Exp(λi), the law of Xi conditionally on it being
larger than a constant is unchanged. In particular, ‘resetting’ (replacing by an independent copy) an
exponential random variable at any time that precedes its activation does not affect its distribution.
We employ reset when one of the types is completed, or when either of the types is removed from A
(and then we discard the comparison between types k, ℓ), and say that way a comparison is triggered,
it is taken from an i.i.d. sequence of comparisons. Specifically, given a deterministic number of
comparisons m between types k, ℓ, we write

r̂mℓ,k
L
=

1

m

m∑
i=1

1{Xℓ
i < Xk

i },

31

with (Xℓ
i)i∈[m] and (Xk

i)i∈[m] independent exponential variables of parameters λℓ and λk respec-
tively.

Finally, E be the event that all comparisons between k, ℓ are well-concentrated, namely,

E =

{
∀(k, ℓ) ∈ [K]2,∀m ∈ [2n],

∣∣∣∣r̂mℓ,k − λk

λℓ + λk

∣∣∣∣ < δ(m,n)

}

with δ(m,n) =
√

log(2n2K3)
2m , and recall that for any m ∈ [2n], E[r̂mℓ,k] =

λk

λℓ+λk
. By Lemma B.3

applied with α = 2, and a union bound over the K(K−1)
2 possible pairs, we have:

P(E) ≤ 1

nK
. (24)

Notice that under E a type ℓ will never be eliminated by a type k with λk ≥ λℓ, since

r̂k,ℓ − δℓ,k <

(
λℓ

λk + λℓ
+ δℓ,k

)
− δℓ,k =

λℓ

λk + λℓ
≤ 1

2
,

so if k is the minimal type in A, then under the good event, it will never be eliminated. Moreover,
type k can only be compared to a type ℓ with λℓ ≤ λk at most

mmax
ℓ,k ≤ min

{
2n, 8

(
λk + λℓ

λk − λℓ

)2

log(2n2K3)

}
:= m∗

ℓ,k (25)

since clearly m ≤ 2n and if m ≥ 8
(

λk+λℓ

λk−λℓ

)2
log(2n2K3), then δℓ,k ≤ 1

4
λk−λℓ

λk+λℓ
and

r̂ℓ,k − δℓ,k >

(
λk

λk + λℓ
− δℓ,k

)
− δℓ,k ≥

λk

λk + λℓ
− 2 · 1

4

λk − λℓ

λk + λℓ
=

1

2
.

Cost Analysis. Assume that the active type set A can only change at discrete times t ∈
{0,∆, 2∆, . . . } ≜ T for some ∆ > 0. We will later take the limit ∆ → 0, which coincides
with the following Algorithm 5. In the following, we denote by A(t) the active type set at time
interval [t, t+∆), and U(t) incomplete type set at [t, t+∆). Also, let bℓi ∈ T be the start time of
the ith job of the ℓth type and eℓi ∈ T be its end-time (w.l.o.g., if a task ended at a time t /∈ T , we
delay its ending to ⌈ t

∆⌉∆).

Starting from the cost decomposition of Lemma C.2, we have

E[CA] ≤ E[CFTPP] + (K − 1)n

K∑
ℓ=1

λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
≤ E[CFTPP] + (K − 1)n

K∑
ℓ=1

λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

n∑
j=1

E
[
1
{
ekj < bℓn

}]
︸ ︷︷ ︸

(∗)

. (26)

We focus our attention on bounding term (∗). For any t ∈ T and every o ∈ [K], define the events

Fo(t) = {o ∈ A(t),∀p < o : p /∈ A(t)} , F̄o(t) = {∀p ≤ o : p /∈ A(t)}

32

These events capture the notion of phases, namely, when Fo is active, the o is the type of the smallest
mean that has not been finished. Then, we can write

(∗) =
n∑

j=1

E
[
1
{
ekj < bℓn

}]
=

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆, ekj < bℓn

}]
(1)

≤
n∑

j=1

∑
t∈T

E
[
1
{
ekj = t+∆, ℓ ∈ U(t)

}]
≤

ℓ∑
o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆,Fo(t)

}]
+

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆, ℓ ∈ U(t), F̄ℓ(t)

}]
(2)

≤
ℓ∑

o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆,Fo(t)

}]
+

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆, E

}]
(3)

≤
ℓ∑

o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆,Fo(t)

}]
︸ ︷︷ ︸

(i)

+nP(E).

(1) is true since the event
{
ekj = t+∆, ekj < bℓn

}
implies that bℓn > t, so type ℓ was not completed

at time t. (2) holds since under E , the type of the minimal duration expected is never eliminated, so
if ℓ ∈ U(t), it is impossible that p /∈ A(t) for all p ≤ ℓ (either there is a type p < ℓ, p ∈ U(t) that
should not have been eliminated, or type ℓ should not have been eliminated since it is still incomplete).
Finally, (3) is since every job can only end at one time point.

We now further continue to bound term (i). To do so, observe that if ekj = t+∆, then k ∈ A(t) and
the task j of this type was completed at the interval [t, t + ∆). Moreover, since the job durations
are exponential, the completion of any job in A(t) at interval [t, t+∆) is independent of the events
that occurred until time t. Taking into consideration that only one job of any type can run in every
interval, the two following equalities hold:

E
[
1
{
ekj = t+∆,Fo(t)

}]
= (1− exp(−∆/λk))E [1{Fo(t), k ∈ A(t)}]

E
[
1
{
ekj = t+∆ or eoj = t+∆,Fo(t), k ∈ A(t)

}]
= (1− exp(−∆/λk −∆/λo))E [1{Fo(t), k ∈ A(t)}] .

Thus, (i) can be written as

(i) =

ℓ∑
o=1

(1− exp(−∆/λk))

(1− exp(−∆/λk −∆/λo))

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆ or eoj = t+∆,Fo(t), k ∈ A(t)

}]

≤
ℓ∑

o=1

(1− exp(−∆/λk))

(1− exp(−∆/λk −∆/λo))
E

 n∑
j=1

∑
t∈T

1
{
ekj = t+∆ or eoj = t+∆,Fo(t), k ∈ A(t), E

}
︸ ︷︷ ︸

(ii)

+

ℓ∑
o=1

n∑
j=1

∑
t∈T

E
[
1
{
ekj = t+∆ or eoj = t+∆,Fo(t), E

}]
︸ ︷︷ ︸

(iii)

The bad-event term can be bounded by

(iii) ≤ E

1{E} ℓ∑
o=1

n∑
j=1

∑
t∈T

1
{
ekj = t+∆ or eoj = t+∆,Fo(t)

}
≤ (ℓ+ 1)nP(E).

33

For the second term, recall that the ℓth phase, in which type ℓ is the smallest one that was not
completed, is represented by the event Fℓ(t). Furthermore, given the good event, the smallest type
is never eliminated. so once Fℓ(t) becomes active, it would end only when all jobs of type ℓ are
completed. In other words, the time indices in which Fℓ(t) hold form a (possibly empty) interval
I∆(ℓ), which represents the ℓth phase. Thus, term (ii) counts the expected number of times that jobs
of either type k or o could finish in this interval while type k is still active.

Now, we take the limit ∆→ 0 (and denoting the limit interval I∆(ℓ)→ I(ℓ)). Notice that the limit
and expectation are interchangeable by the bounded convergence theorem, as the number of times a
job of either type k or o can be completed is bounded by 2n.

(ii) →
∆→0

ℓ∑
o=1

λo

λk + λo
E

 ∑
t∈I(o)

n∑
j=1

1
{
ekj ∈ I(o) or eoj ∈ I(o), k ∈ A(t), E

}
≤

ℓ∑
o=1

λo

λk + λo
m∗

o,k.

The inequality holds since under the good event, at any interval where both types k and o with
λo ≤ λk are active, there can be at most m∗

o,k comparisons. Substituting (ii) and (iii) back into (i),
we get

(i) ≤
ℓ∑

o=1

λo

λk + λo
m∗

o,k + (ℓ+ 1)nP(E),

and yet again, substituting this, through (∗), back into Equation (26), yields

E[CA]− E[CFTPP]

≤ (K − 1)n

K∑
ℓ=1

λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
ℓ∑

o=1

λo

λk + λo
m∗

o,k + (ℓ+ 2)nP(E)

)

≤ (K − 1)n

K∑
ℓ=1

λℓ + 2Kn2P(E)
K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)

+

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

ℓ∑
o=1

λo

λk + λo
min

{
2n, 8

(
λk + λo

λk − λo

)2

log(2n2K3)

}
(Equation (25))

≤ (K − 1)n

K∑
ℓ=1

λℓ + 2K2n2P(E)
K∑
ℓ=1

λℓ

+
K∑
ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

n(λk − λℓ)
λo

λk + λo
4
√

n log(2n2K3)
λk + λo

λk − λo
(min {a, b} ≤

√
ab, ∀a, b ≥ 0)

≤
(
2
K − 1

n
+

4K

n

)
E[COPT] (Equation (24) and (5))

+ 4n
K∑
ℓ=1

K∑
k=ℓ+1

ℓ∑
o=1

λo

√
n log(2n2K3) (λo ≤ λℓ)

≤ 6K

n
E[COPT] + 4n

√
n log(2n2K3)

K∑
ℓ=1

ℓ∑
o=1

(K − ℓ)λo

≤ 6K

n
E[COPT] + 4n

√
n log(2n2K3)

K∑
ℓ=1

(K − ℓ)2λℓ

34

C.4 Analysis of UCB-RR

Proposition C.4. The following bound holds for any ∆ ≤ λ1

4 and n ≥ max(20, 10 ln(K)) :

E[CUCB-RR] ≤E[CFTPP] +
12K

n
E[COPT] + 6n

√
2n log(2n2K2)

K∑
ℓ=1

(K − ℓ)λℓ. (27)

Assume discretization of the time to units of ∆, as was done in the analysis of ETC-RR. Specifically,
assume that the active job only changes at times t ∈ {0,∆, 2∆, . . . } ≜ T for some ∆ > 0. We then
denote the index of the discretization step by h = t

∆ + 1 ∈ {1, 2, . . . }.
For each job type ℓ ∈ [K], we introduce Tℓ(h), the number of times job type ℓ has been chosen up
to iteration h. Due to the fact that job durations are exponential, their increments are independent,
and increments of length ∆ of jobs of type ℓ have a termination probability of µℓ = 1 − e

− ∆
λk .

Leveraging this, let (xs
ℓ)s≥1 be sequences of i.i.d Bernoulli random variables of mean µℓ,. We then

fix our probability space for the analysis s.t. when choosing a job of type ℓ for the sth time, it is
terminated if xs

ℓ = 1. Notice that while we allow the sequence (xs
ℓ)s≥1 to have more than n job

terminations, it is of no consequence of the analysis, as the algorithm will never choose a job type
after its nth job was terminated.

Next, define the empirical means after running m discretized intervals of type-ℓ jobs as µ̂ℓ(m) :=
1
m

∑m
s=1 x

s
ℓ , and the index at iteration h as

uℓ(h) = max

{
µ̃ ∈ [0, 1] : d (µ̂ℓ(Tℓ(t− 1)), µ̃) ≤

log
(
n2K2

)
Tℓ(t− 1)

}
. (28)

Starting from the cost decomposition of Lemma C.2, we have

E[CA] ≤ E[CFTPP] + (K − 1)n

K∑
ℓ=1

λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

∑
(i,j)∈[n]2

(λk − λℓ)E
[
1
{
ekj < bℓi

}]
≤ E[CFTPP] + (K − 1)n

K∑
ℓ=1

λℓ +

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

n∑
j=1

E
[
1
{
ekj < eℓn

}]
︸ ︷︷ ︸

(∗)

. (29)

Denote a(h) ∈ [K], the type of job chosen at iteration h, and let εℓ,k > 0 be some constant that will
be determined later in the proof. Notice that if ekj < eℓn, then there must be an iteration where type ℓ

was not completed and the jth job of type k were played and completed:

(∗) ≤
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1
{
a(h) = k, ℓ ∈ U(h), xTk(h)

k = 1
}]

=

∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1
{
a(h) = k, ℓ ∈ U(h), uℓ(h) ≤ uk(h), x

Tk(h)
k = 1

}]

≤
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1
{
a(h) = k, ℓ ∈ U(h), uk(h) ≥ uℓ(h) ≥ µℓ − εℓ,k, x

Tk(h)
k = 1

}]

+

∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)E
[
1
{
a(h) = k, ℓ ∈ U(h), uℓ(h) ≤ µℓ − εℓ,k, x

Tk(h)
k = 1

}]
(1)

≤
∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)E [1{a(h) = k, uk(h) ≥ µℓ − εℓ}]︸ ︷︷ ︸
(i)

+

K∑
ℓ=1

K∑
k=ℓ+1

n2(λk − λℓ)P (∃h s.t. uℓ(h) ≤ µℓ − εℓ)︸ ︷︷ ︸
(ii)

(30)

35

In (1), we get the first line by the memoryless property of exponential random variables, not-
ing that all the events inside the indicator are determined before the beginning of the hth itera-
tion. The second line of this relation uses the fact that all tasks will eventually be completed, so∑∞

h=1 E
[
1
{
a(h) = k, x

Tk(h)
k = 1

}]
= n.

Bounding term (i). We now bound the first term of the decomposition in Equation (30).

(i) :=

∞∑
h=1

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)E [1{a(h) = k, uk(h) ≥ µℓ − εℓ}]

=

K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)

∞∑
h=1

E [1{a(h) = k, uk(h) ≥ µℓ − εℓ}] .

Denoting d(p, q) = d(p, q)1{p ≤ q}, we have

{µℓ−εℓ,k ≤ uk(h)} =⇒ {µ̂k(Tk(h)) ≤ µℓ−εℓ,k and d(µ̂k(Tk(h)), µℓ−εℓ,k) ≤
log
(
n2K2

)
Tk(h)

} or {µ̂k(Tk(h)) ≥ µℓ−εℓ,k},

which is equivalent to
{
d(µ̂k(Tk(h)), µℓ − εℓ,k) ≤

log(n2K2)
Tk(h)

}
. Thus, we can bound

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)

∞∑
h=1

E

[
1

{
a(h) = k, d(µ̂k(Tk(h)), µℓ − εℓ,k) ≤

log
(
n2K2

)
Tk(h)

}]

≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)

∞∑
s=1

E

[
d(µ̂k(s), µℓ − εℓ,k) ≤

log
(
n2K2

)
Tk(h)

]
,

where the second inequality is since Tk(h) increases by 1 every time that a(h) = k. This can be
naturally bounded using the following lemma.

Lemma C.5. Let X1, X2, . . . be a sequence of Bernoulli independent random variables with mean
µ, and let µ̂s = 1

s

∑s
t=1 Xt be the sample mean. Further, let a > 0, µ′ > µ and define κ =∑∞

s=1 1
{
d(µ̂s, µ

′) ≤ a
s

}
. Then,

E[κ] ≤ inf
ε∈(0,µ′−µ)

(
a

d(µ+ ε, µ′)
+

1

d (µ+ ε, µ)

)
.

Proof. The proof closely follows the one of (Lattimore & Szepesvári, 2020, Lemma 10.8). For
completeness, we now state the well-known Chernoff bound.

Lemma C.6 (Chernoff’s bound, e.g., Lattimore & Szepesvári (2020), Lemma 10.3). Let
X1, X2, . . . , XT be a sequence of Bernoulli independent random variables with mean µ, and let µ̂ =
1
T

∑T
t=1 Xt be the sample mean. Then, for a ≥ 0:

P(d(µ̂, µ) ≥ a, µ̂ ≤ µ) ≤ exp(−Ta).

36

Let ϵ ∈ (0, µ′ − µ) and u = a
d(µ+ε,µ′) . Then, it holds that

E[κ] =
∞∑
s=1

P
{
d(µ̂s, µ

′) ≤ a

s

}
=

∞∑
s=1

P
{
µ̂s ≥ µ′ or d(µ̂s, µ

′) ≤ a

s

}
≤

∞∑
s=1

P
{
µ̂s ≥ µ+ ε or d(µ̂s, µ

′) ≤ a

s

}
(µ′ > µ+ ϵ)

≤
∞∑
s=1

P
{
µ̂s ≥ µ+ ε or d(µ+ ε, µ′) ≤ a

s

}
(d(·, µ′) is decreasing in [0, µ′])

≤u+

∞∑
s=1

P {µ̂s ≥ µ+ ε}

≤u+

∞∑
s=1

∞∑
s=1

exp (−sd(µ+ ϵ, µ)) (Chernoff’s bound)

≤ a

d(µ+ ε, µ′)
+

1

d (µ+ ε, µ)
,

and the proof is concluded by taking the infimum over all ε ∈ (0, µ′ − µ).

Now, assume w.l.o.g. that λk > λℓ (or, equivalently, µℓ < µk) for all k > ℓ; otherwise, terms where

λk = λℓ in (i) will be equal to 0. Then, letting κk,ℓ =
∑∞

s=1 1

{
d(µ̂k(s), µℓ − εℓ,k) ≤

log(n2K2)
s

}
,

the last lemma implies that

(i) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)E[κk,ℓ]

≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)(1− e
− ∆

λk)

(
log
(
n2K2

)
d(µk + εk,ℓ, µℓ − εℓ)

+
1

d (µk + εk,ℓ, µk)

)
(31)

for some εk,ℓ ∈ (0, µℓ − εℓ,k − µk) that will be determined later.

Bounding term (ii). We next focus on bounding the probabilities at the second summation of
Equation (30). To do so, we prove the following lemma, which bounds each of the summands of term
(ii).
Lemma C.7. The following bound holds: P (∃h s.t. uℓ(h) ≤ µℓ − εℓ,k) ≤ µℓ

n2K2d(µℓ−εℓ,k,µℓ)
.

Proof. Define Smax
ℓ :=

∑∞
h=1 1{a(h) = ℓ}, the number of iterations ℓ is picked by the algorithm.

We have:

P (∃h s.t. uℓ(h) ≤ µℓ − εℓ,k) =P

(
∃h s.t. µ̂ℓ(Tℓ(h)) ≤ µℓ − εℓ,k and d(µ̂ℓ(Tℓ(h)), µℓ − εℓ,k) ≥

log
(
n2K2

)
Tℓ(h)

)

=P

(
∃s ≤ Smax

ℓ s.t. µ̂ℓ(s) ≤ µℓ − εℓ,k and d(µ̂ℓ(s), µℓ − εℓ,k) ≥
log
(
n2K2

)
s

)

≤P

(
∃1 ≤ s <∞ s.t. µ̂ℓ(s) ≤ µℓ − εℓ,k and d(µ̂ℓ(s), µℓ − εℓ,k) ≥

log
(
n2K2

)
s

)
.

Now, observe that the empirical means µ̂ℓ decrease in intervals without successes. Namely, if a < b
are time indices such that xa

ℓ = 1, xb
ℓ = 1 and for all s ∈ [a + 1, b − 1], xs

ℓ = 0, then for any

37

s ∈ [a, b− 1], it holds that µ̂ℓ(s) ≥ µ̂ℓ(b− 1). We thus have:

P

(
∃1 ≤ s <∞ : d (µ̂ℓ(s), µℓ − εℓ,k) >

log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k

)

= P

(
∃1 ≤ s <∞ : d (µ̂ℓ(s), µℓ − εℓ,k) >

log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k, x
s+1
ℓ = 1

)
.

Using the union bound, this implies

P (∃h s.t. uℓ(h) ≤ µℓ − εℓ,k) ≤
∞∑
s=1

P

(
d (µ̂ℓ(s), µℓ − εℓ,k) >

log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k, and xs+1
ℓ = 1

)

=

∞∑
s=1

P
(
xs+1
ℓ = 1

)
P

(
d (µ̂ℓ(s), µℓ − εℓ,k) >

log
(
n2K2

)
s

, µ̂ℓ(s) ≤ µℓ − εℓ,k|xs+1
ℓ = 1

)

=

∞∑
s=1

µℓP

(
d (µ̂ℓ(s), µℓ − εℓ,k) >

log
(
n2K2

)
s

, µ̂ℓ(s) < µℓ − εℓ,k

)

≤
∞∑
s=1

µℓP

(
d (µ̂ℓ(s), µ) >

log
(
n2K2

)
s

+ d(µℓ − εℓ,k, µℓ), µ̂ℓ(s) < µℓ

)
,

where we used the fact that the sequence xs
ℓ is independent and the last inequality is by (Lattimore &

Szepesvári, 2020, Lemma 10.2, (c)). Next, using Chernoff’s bound (Lemma C.6), we get

P (∃h s.t. uℓ(h) ≤ µℓ − εℓ,k) ≤ µℓ

∞∑
s=1

exp

(
−s

(
d(µℓ − εℓ,k, µℓ) +

log
(
n2K2

)
s

))

≤ µℓ

n2K2

∞∑
s=1

exp (−sd(µℓ − εℓ,k, µℓ))

≤ µℓ

n2K2d(µℓ − εℓ,k, µℓ)
,

which concludes the proof of Lemma C.7.

Finally, substituting back into (ii) leads to the bound

(ii) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n2(λk − λℓ)
µℓ

n2K2d(µℓ − εℓ,k, µℓ)

=
1

K2

K∑
ℓ=1

K∑
k=ℓ+1

µℓ(λk − λℓ)

d(µℓ − εℓ,k, µℓ)
. (32)

Combining both bounds.

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
µk log

(
n2K2

)
d(µk + εk,ℓ, µℓ − εℓ,k)

+
µk

d (µk + εk,ℓ, µk)

)

+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
µℓ

K2d(µℓ − εℓ,k, µℓ)
.

We now use a local refinement of Pinsker’s inequality (Garivier et al., 2019):

d(p, q) ≥ 1

2max(p, q)
(p− q)2.

38

This implies:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
2µk (µℓ − εℓ,k) log

(
n2K2

)
(µℓ − εℓ,k − µk − εk,ℓ)2

+
2µk(µk + εk,ℓ)

ε2k,ℓ

)

+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
2µ2

ℓ

K2ε2ℓ,k
.

Case 1: Assume µℓ ≥ 5µk. Setting εk,ℓ = µk, we obtain,

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
2µk(µℓ − εℓ,k) log

(
n2K3

)
(µℓ − εℓ,k − 2µk)2

+ 4

)
+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
2µ2

ℓ

K2ε2ℓ,k

≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
2µk(µℓ − εℓ,k) log

(
n2K3

)
(35µℓ − εℓ,k)2

+ 4

)
+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
2µ2

ℓ

K2ε2ℓ,k

Setting εℓ,k = 1
5µℓ, we get:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)

(
10µk log

(
n2K2

)
µℓ

+ 4

)
+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
50

K2
.

We have µk = 1− e
− ∆

λk ≤ ∆
λk

, and if ∆ ≤ 1
4λℓ, 1

µℓ
≤ 1.13λℓ

∆ , this implies:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

nλℓ11.3 log
(
n2K2

)
+

K∑
ℓ=1

λℓ

(
50

K
+ 4nK

)
.

Since K ≥ 2, this implies:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

nλℓ11.3 log
(
n2K2

)
+

K∑
ℓ=1

λℓ (12.5 + 4n)K.

Case 2: Assume µℓ ≤ 5µk. Setting εk,ℓ = (µℓ − µk)/4 and εℓ,k = (µℓ − µk)/4, we obtain,

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)
µ2
k

(µℓ − µk)2
(
32 log

(
n2K2

)
+ 64

)
+

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
32µ2

ℓ

K2(µℓ − µk)2
.

It also holds that (∗) ≤
∑K

ℓ=1

∑K
k=ℓ+1 n

2(λk − λℓ). Thus:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

n(λk − λℓ)
4µk

(µℓ − µk)

√
2n (log (n2K3) + 4) +

K∑
ℓ=1

K∑
k=ℓ+1

(λk − λℓ)
4
√
2µℓn

K(µℓ − µk)
.

If ∆ ≤ 1
4λℓ, we have:

1

µℓ − µk
≤ 1.46

λkλℓ

(λk − λℓ)
.

We thus obtain:

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

6nλℓ

√
2n (log (n2K2) + 4) +

K∑
ℓ=1

9nλℓ.

For any n ≥ max(10, 10 log(K)), we have:

ln(n2K2) ≤ 1

2
n

which implies 6nλℓ

√
2n (log (n2K2) + 4) ≥ 11.3 log

(
n2K2

)
. Thus for any n ≥

max(10, 10 log(K)) and ∆ ≤ 1
4λℓ,

(∗) ≤
K∑
ℓ=1

K∑
k=ℓ+1

6nλℓ

√
2n (log (n2K2) + 4) +

10K

n
E[COPT].

39

D Additional experiments

We implemented the Bayesian approach of (Marbán et al., 2011) that we call LSEPT. We used an
uninformative prior α = 1, w = 0 (the same for all job types). LSEPT is then in essence a greedy
algorithm. Whenever a job finishes, it runs until completion a job whose type has the lowest empirical
mean size (computed across jobs that have been processed so far).

We ran all algorithms with K = 2, where jobs of type 1 have a mean size λ1 = 0.8 and jobs of type
2 have a mean λ2 = 1.

As can be seen in Figure 2, LSEPT has better mean performance than RR, a non-adaptive method.
However, it has a large variance and its performance does not improve with n. This is typical of the
performance of greedy algorithms: since the algorithm commits very early, it can either get very good
or very bad performances. We plot the mean over 200 seeds.

Figure 2: CR on jobs with 2 different types. K = 2, λ2 = 1 and λ1 = 0.8, n takes a grid of values.

40

	Introduction
	Related Work
	Setting and Notations
	Benchmark: Follow The Perfect Prediction
	Non-clairvoyant Algorithms
	Performance of FTPP

	Non-Preemptive Algorithms
	Description of ETC-U and UCB-U
	Cost Analysis
	Lower bound

	Preemptive Algorithms
	ETC-RR and UCB-RR
	Cost Analysis

	Experiments
	Discussion

	Conclusion and Future Work
	Benchmark FTPP
	Cost of OPT and FTPP, CR of RR
	CR of FTPP
	CR with K types
	Upper bound on the CR for particular values of
	The cost of FTPP is lower than the cost of RR

	Lower bound: Proof of Proposition 4.1

	Analysis of Non-Preemptive Learning algorithms
	Full Algorithmic Details
	Cost Decomposition
	Upper bound for ETC-U
	Upper bound for UCB-U
	Lower bounds for Non-Preemptive Algorithms
	Small Differences (prop:dependency in n)
	Large Differences

	Analysis of Preemptive Learning algorithms
	Full Algorithmic Details
	Cost Decomposition
	Upper bound for ETC-RR
	Analysis of UCB-RR

	Additional experiments

