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ABSTRACT

Multimodal pre-trained models like CLIP need large image-text pairs for training
but often struggle with domain-specific tasks. Since retraining with specialized
and historical data incurs significant memory and time costs, it is important to
continually learn new domains in the open world while preserving original perfor-
mance. However, current continual learning research mainly focuses on unimodal
scenarios, and the evaluation criteria are insufficient without considering image-
text matching performance and the forgetting of zero-shot performance. This work
introduces image-caption datasets from various domains and establishes a multi-
modal vision-language continual learning benchmark. Then, a novel framework
named C-CLIP is proposed, which not only prevents forgetting but also enhances
new task learning impressively. Comprehensive experiments demonstrate that our
method has strong continual learning ability across diverse image-text datasets,
maintaining zero-shot prediction capabilities with minimal forgetting and signifi-
cantly outperforming existing methods.

1 INTRODUCTION

Multimodal pre-trained models like CLIP (Radford et al., 2021) have recently gained widespread
attention for providing general visual-language representations on downstream tasks such as image
question answering, classification, semantic segmentation, and object detection. Although CLIP is
trained on a large number of image-text pairs, it still struggles to handle image-text pairs from unseen
domains (Zhang et al., 2024), limiting real-world applicability. A straightforward way is to fine-tune
the pre-trained CLIP model on the domain-specific dataset. However, this often leads to catastrophic
forgetting (French, 1999) of existing knowledge, including both the CLIP’s original general repre-
sentations (i.e., zero-shot generalization) and the knowledge on other learned tasks. Besides, the
high memory and training cost makes retraining CLIP infeasible. Therefore, a natural, fundamental
yet underexplored question is how to maintain general representations of visual-language model
while adapting to new domains continually?

Continual learning (CL) (Liu et al., 2025; Hou et al., 2019; Yan et al., 2021; Gao et al., 2023) has
explored the problem of retaining old knowledge while learning new tasks. However, current CL
studies have several key challenges: Firstly, compared to standard unimodal continual learning
scenarios, multimodal settings present greater complexity. Although CLIP can handle both image
classification and purely multimodal tasks, the challenges of addressing forgetting and adaptability
differ significantly between these two tasks. For image classification, pre-trained models often ex-
hibit strong zero-shot performance. As a result, many previous approaches Wang et al. (2022); Tang
et al. (2023); D’Alessandro et al. (2023); Qiao et al. (2023); Li et al. (2024); Wang et al. (2024)
rely on prompt-based designs, keeping parameters fixed without fine-tuning the model itself. In
contrast, multimodal tasks are far more challenging, as poor performance in a specific domain often
necessitates simultaneous fine-tuning of both the vision and text encoders.

*This work was done during an internship at Huawei Inc.
†Corresponding author. Code available at https://github.com/SmallPigPeppa/C-CLIP
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Figure 1: Performance comparison on downstream tasks and the general representation ability. The
pre-trained CLIP (Radford et al., 2021) has good ImageNet zero-shot accuracy but performs poorly
on downstream tasks. Directly full fine-tuning remarkably enhances the image-text retrieval perfor-
mance on downstream tasks, while leading to catastrophic forgetting of ImageNet zero-shot ability.
Existing methods generally seek a trade-off between zero-shot generalization and downstream task
performance. Differently, our method (C-CLIP) impressively achieves strong downstream task per-
formance (even outperforms full fine-tuning) and well preserves the general representation ability.

Secondly, the evaluation of vision-language models (VLMs) remains insufficient. While some
recent works (Zheng et al., 2023; Yu et al., 2024; Srinivasan et al., 2022) have leveraged pre-
trained vision-language models like CLIP in tasks such as few-shot class-incremental learning
D’Alessandro et al. (2023), visual question-answering Qian et al. (2023), or cross-modal retrieval
Wang et al. (2021), their evaluations often focus on specific aspects, such as image classification
performance or cross-modal retrieval accuracy. We aim to provide a more comprehensive evalua-
tion by assessing both the general zero-shot capabilities and their continual learning performance in
downstream multimodal tasks.

Third, traditional CL methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Li & Hoiem, 2017; Hou
et al., 2019; Douillard et al., 2020) apply regularization to reduce forgetting, which unfortunately
hinders the learning of new tasks. In other words, these methods forget less because they learn less,
losing the plasticity in the continual learning process gradually (Dohare et al., 2024). Therefore,
we seek to leverage the properties of multimodal representation learning to enable simultaneous
learning of new and old knowledge, overcoming past trade-offs.

In this work, we establish a Vision-Language continual learning (VLCL) benchmark based on
image-text datasets (e.g., Flickr30K (Plummer et al., 2015) and COCO-caption (Chen et al., 2015)),
and propose the evaluation on three aspects: image-text retrieval on downstream tasks, retrieval
in unseen domains, and the general performance of visual-language model. Then, we propose a
multimodal continual learning approach named C-CLIP. Specifically, we demonstrate that reducing
trainable parameters can yield similar results to the existing sophisticated CL method, and simplify
the previously complex strategies with low-rank adaption (LoRA) (Hu et al.). In addition, we exper-
imentally find that existing methods (Kirkpatrick et al., 2017; Li & Hoiem, 2017; Douillard et al.,
2020; Zheng et al., 2023; Yu et al., 2024) generally seek a trade-off between zero-shot generalization
and downstream task performance. To overcome this limitation, we propose contrastive knowledge
consolidation that not only reduces forgetting of old tasks but also enhances learning on new tasks,
even matching or exceeding full fine-tuning performance. The results in Figure 1 show that our
method significantly improves the performance on downstream tasks while generally preserving the
ImageNet zero-shot accuracy.

Our main contributions are as follows:

• We introduce a benchmark for continual multimodal representation learning, emphasizing
that visual-language model models should retain their original general performance and
learn new image-text data simultaneously.

• We propose the C-CLIP method that consists of multimodal low-rank adaptation and con-
trastive knowledge consolidation, achieving the goal of learning more and forgetting less
for the first time.

• Extensive experiments demonstrate that our method significantly enhances performance
across different domain image-text datasets without catastrophic forgetting.
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2 RELATED WORK

2.1 CONTINUAL LEARNING

Continual Learning (Kirkpatrick et al., 2017), also known as incremental learning, has received
extensive attention recently. Existing research mainly focuses on unimodal tasks like supervised
image classification, with class-incremental learning (CIL) (Masana et al., 2022) as the common
benchmark. Regularization methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Li & Hoiem,
2017) mainly constrain the changes of parameters or feature spaces. Data replay methods (Rebuffi
et al., 2017; Hou et al., 2019) store and replay a subset of old data, which leads to additional compu-
tational, memory, and privacy costs. Architecture-based methods (Schwarz et al., 2018; Yan et al.,
2021) add new models for each task, but their parameters grow fast with more tasks, making them
unsuitable for real-world applications. More recent rehearsal-free approaches (Wang et al., 2022;
Tang et al., 2023; D’Alessandro et al., 2023; Guo et al., 2024; Li et al., 2024; Wang et al., 2024)
explore parameter-efficient strategies (e.g., prompt tuning, prefix tuning) for continual fine-tuning
of pre-trained models. However, the above methods mainly focus on unimodal scenarios, ignoring
widely existing multimodal tasks (Ramachandram & Taylor, 2017) in real-world applications.

A few recent studies (Zheng et al., 2023; Yu et al., 2024) involve visual-language models in continual
learning. Specifically, Jin et al. (2020) studied the visually-grounded masked language prediction
task by learning from streaming visual scenes. Zheng et al. (2023) and Yu et al. (2024) studied
the multi-domain task incremental learning (MTIL) benchmark that continually fine-tunes CLIP on
visual datasets and evaluates the zero-shot performance of new tasks. However, it is still far from
the goal of continually updating multimodal pre-trained models. Mod-X (Ni et al., 2023) is most
relevant to our work, which performs stage-wise data continual training on a fixed image-text dataset.
However, each task shares the same data distribution, which differs from our goal of adapting CLIP
to diverse domains. Additionally, none of these works considers CLIP’s original (e.g., zero-shot
generalization) performance during continual learning. In this paper, we study a more realistic and
challenging scenario named multimodal continual learning with the visual-language model (VLCL),
and a comparison of these settings is shown in Table 1.

Table 1: Comparison of CIL, MTIL, and VLCL benchmark.

Setting Train Data Eval Metric Eval Origin Performance?

CIL Image, Label Classification Acc ✗

MTIL Image, Label Zero-shot Acc (only new tasks) ✗

VLCL (ours) Image, Caption Image-Text Recall & Zero-shot Acc ✓

2.2 VISUAL-LANGUAGE REPRESENTATIONAL LEARNING

Vision-language representation learning (Radford et al., 2021; Jia et al., 2021; Zhang et al., 2024) has
gained widespread attention across various fields. Among them, CLIP (contrastive language-image
pretraining) (Radford et al., 2021) performs exceptionally well across many downstream tasks such
as VQA (Antol et al., 2015), classification (He et al., 2016), and detection (Ren et al., 2016). CLIP
consists of an image encoder and a text encoder. During the pre-training stage, paired image-text
samples are treated as positives, while unpaired samples are used as negatives under the contrastive
learning paradigm (Chen et al., 2020). Despite the impressive performance, training CLIP relies on
large datasets like Laion-400M (Schuhmann et al., 2021) and Conceptual Captions (Sharma et al.,
2018), making it resource-intensive. In addition, although these large pre-training datasets cover
diverse samples, well-trained vision-language models still struggle to match domain-specific image-
text pairs (Zhang et al., 2024). Therefore, continually fine-tuning CLIP without losing its original
performance becomes a key issue in real-world scenarios.

3 PROBLEM DEFINITION AND BENCHMARK

Notation and problem definition. Vision-Language continual learning (VLCL) involves learning
from a sequence of T tasks. At each stage t ∈ {1, ..., T}, the model is fine-tuned on an image-
caption dataset Dt = {(vt

i , c
t
i)}

nt
i=1, where (vt

i , c
t
i) represents an image-caption pair and nt is the
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number of pairs in this dataset. In this paper, we focus on vision-language model like CLIP and
represent model into two components: (1) a vision encoder fθ : V → Z , parameterized by θ, that
transforms an image v into a feature vector zv = fθ(v) in a high-dimensional space Z ⊂ Rd.
(2) a text encoder gφ : C → Z , with parameters φ, which maps a caption c to a feature vector
zc = gφ(c).

VLCL aims to continually learn a function f ◦ g : V × C → Y that can assign the correct label to
each image-caption pair from all seen tasks. Specifically, at stage t, the challenge is to minimize a
loss function ℓ (e.g., symmetric cross-entropy) on the new dataset Dt, while preserving knowledge
from previous tasks and potentially improving on earlier learning (Aljundi, 2019) as follows:

min
θ,φ,ϵ

E(v,c)∽Dt [ℓ(fθ(v), gφ(c))] +
∑

ϵj

s.t. E((v,c)∽Dj [ℓ(fθ(v), gφ(c))−ℓ(fθt−1(v), gφt−1(c))] ⩽ ϵj ;∀j ∈ {1, 2, ..., t− 1}.
(1)

The last term ϵ = {ϵj} is a slack variable that can represent the forgetting (ϵj > 0) or backward
knowledge transfer (ϵj ⩽ 0) on datasets Dj of j-th old task.

VLCL benchmark. To evaluate the continual learning performance of vision-language models,
we establish a novel benchmark that includes three evaluation tracks, summarized in Table 2. (1)
Multimodal continual learning. Eight image-caption datasets are used in this track. Among them,
Flickr30K (Plummer et al., 2015) and COCO (Chen et al., 2015) are general real-world datasets.
Other datasets, including Pets (Parkhi et al., 2012), Lexica (Shen et al., 2024), Simpsons, WikiArt
(Saleh & Elgammal, 2015), Kream, and Sketch (Chowdhury et al., 2022), represent specific domains
such as AI-generated images, art, clothing, and sketches. (2) Zero-shot retrieval. One held image-
caption dataset, i.e., HAVG (Abdulmumin et al., 2022), is used to assess retrieval performance on
unseen datasets. (3) Zero-shot classification. Previous CL work on CLIP has overlooked an im-
portant aspect: the forgetting of general representations (i.e., zero-shot generalization). To evaluate
this, we tested zero-shot performance on six image classification datasets: ImageNet (Deng et al.,
2009), CIFAR-100 (Krizhevsky et al., 2009), StanfordCars (Krause et al., 2013), Flowers (Nilsback
& Zisserman, 2008), DTD (Cimpoi et al., 2014), and Food101 (Bossard et al., 2014).

Table 2: Evaluation setup of the VLCL benchmark datasets.

Evaluation Aspect Dataset

Multimodal Continual Learning Flickr30K, COCO, Pets, Lexica, Simpsons, WikiArt, Kream, Sketch
Zero-shot Retrieval HAVG

Zero-shot Classification CIFAR-100, ImageNet, Flowers, DTD, Food101, StanfordCars

Evaluation metric. We focus on multimodal continual learning of VLMs and view each dataset as
one task, similar to the domain-incremental learning in classical CL (Van de Ven et al., 2022). The
task identity (task-ID) is not needed at inference time. (1) For multimodal continual learning, we
evaluate each dataset after fine-tuning all eight datasets (similar to the last accuracy in CIL), and
report Recall@1 for both Image-to-Text (I2T R@1) and Text-to-Image (T2I R@1). The average
performance on all datasets is also reported. (2) For zero-shot retrieval, we report I2T R@1. (3)
For zero-shot classification, we report the performance during each stage of the continual learning
process, as well as the final performance degradation (PD), which is calculated as the difference in
accuracies between the original pre-trained CLIP model and the final fine-tuned model.

4 THE PROPOSED METHOD: C-CLIP

The core of continual learning is to preserve the performance of previous tasks and enhance the
performance of new tasks. (1) For the first purpose, i.e., avoiding forgetting old tasks, without
storing or replaying old data, existing studies (Kirkpatrick et al., 2017; Li & Hoiem, 2017; Zheng
et al., 2023; Yu et al., 2024) have designed a variety of CL strategies, and the general idea is to
use the current data to constrain the input-output relationship in old tasks. We empirically and
theoretically show that low-rank adaptation could achieve a similar effect by reducing the number
of trainable parameters. (2) For the second purpose, i.e., enhancing learning new tasks, we find that
existing methods largely limit the plasticity of the model during continual learning, and we therefore
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Figure 2: Illustration of the C-CLIP model. We make two adjustments to CLIP: (1) applying LoRA
to reduce forgetting, though it slightly hampers new task learning; (2) introducing contrastive knowl-
edge consolidation (CKC) improves learning on new tasks and reduces forgetting. This combination
significantly enhances the continual learning ability of CLIP, achieving downstream task perfor-
mance that matches or exceeds full fine-tuning and preserving its general zero-shot ability.

propose contrastive knowledge consolidation, which is designed for vision-language models. Our
method is illustrated in Figure 2 and presented below in detail.

4.1 LORA INTEGRATION FOR FORGETTING MITIGATION

LoRA integration for VLCL. To preserve the knowledge of previous tasks, we propose simply
reducing the number of trainable parameters by leveraging parameter efficient tuning technique, i.e.,
low-rank adaptation (LoRA) (Hu et al.). As illustrated in Figure 2, LoRA composes of two rank
decomposition matrices B ∈ Ru×r and A ∈ Rr×v where r ∈ N is the rank and r ≪ min(u, v). v
and u are the dimensionality of the input x̂ ∈ Rv for current layer and hidden features, respectively.
In this work, we apply LoRA in both vision encoder fθ and text encoder gφ of CLIP. At each
continual stage t, the previous parameters {θt−1,φt−1} remain frozen, while only the newly added
A and B are trainable. However, since the model has no access to the task identity at inference, it is
hard to decide which set of LoRA to use. More importantly, storing all the LoRAs for previous tasks
leads to increasing memory issues. Therefore, we propose to integrate the current {θLoRA,φLoRA}
into the main backbone at the end of each continual stage as follows:

{θt,φt} = {θt−1 + α · θLoRA,φ
t−1 + α ·φLoRA}, (2)

where α ∈ [0, 1] is a pre-defined coefficient to reduce the forgetting of knowledge after integration.

Theoretical analysis. In the t-th continual stages, only the current dataset Dt is available, and an
intuitive and general way to maintain the previous knowledge is to regulate the model by mimicking
the input-output relation on previous (t− 1)-th continual stages based on Dt as follows:

min
θ,φ

E(v,c)∽Dt [ℓ(fθ(v), gφ(c))]

s.t. E(v,c)∽Dt ||fθ(v)− fθt−1(v)|| ⩽ ϵ, E(v,c)∽Dt ||gφ(c)− gφt−1(c)|| ⩽ ϵ, ϵ ⩾ 0.
(3)

For an arbitrary N-layer MLP model, assume that the activation function is bounded and Lipschitz
continuous, and the input and all weights have bounded norms, then the model is Lipschitz continu-
ous with respect to the weights (Appendix A.1 provides detailed proof), i.e., ||fθ(v)− fθt−1(v)|| ⩽
Kf ||θ − θt−1||, then Eq. (3) can be rewritten as:

min
θ,φ

E(v,c)∽Dt [ℓ(fθ(v), gφ(c))]

s.t. ||θ − θt−1|| ⩽ ϵ/Kf , ||φ− φt−1|| ⩽ ϵ/Kg, ϵ ⩾ 0,
(4)

where Kf and Kg are Lipschitz constant of vision encoder fθ and text encoder gφ. Interestingly,
LoRA freezes the old weights and introduces a small set of parameters that achieve the goal of
learning new tasks with ||θ − θt−1|| ⩽ ϵ/Kf , ||φ − φt−1|| ⩽ ϵ/Kg, ϵ ⩾ 0. In other words, the
proposed LoRA integration is a simple way to learn the objective of Eq. (4).

Empirical verification. In Figure 3, we compare the performance of LoRA integration with fine-
tuning, EWC (Kirkpatrick et al., 2017), ZSCL (Zhang et al., 2024) and Mod-X (Ni et al., 2023).
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Figure 3: Fine-tuning results on Flickr30K compare prior CL methods based on (a) image-caption
recall, (b) ImageNet zero-shot accuracy, (c) regularization loss, and (d) CLIP loss. Similar to ex-
isting regularization methods, LoRA reduces forgetting but sacrifices performance on new tasks.
Regularization methods create a conflict between regularization loss and CLIP loss. In contrast, our
method (C-CLIP) aligns the trends of these losses.

From the results, we can draw the following key observations: (1) While all the methods improve
the performance on the current downstream dataset (Figure 3 (a)), EWC, ZSCL and Mod-X ruin the
zero-shot performance on ImageNet-1K (Figure 3 (b)). (2) The proposed LoRA integration leads to
less forgetting of zero-shot classification ability (Figure 3 (b)), but the performance on the fine-tuned
dataset is undesirable (Figure 3 (a)). Therefore, in the following subsection 4.2, we propose a novel
contrastive knowledge consolidation strategy to improve both plasticity and stability.

4.2 CONTRASTIVE KNOWLEDGE CONSOLIDATION FOR LEARNING ENHANCEMENT

In section 4.1, we have shown that LoRA integration can effectively reduce the forgetting of pre-
vious knowledge. However, similar to other existing methods, the performance on new datasets is
undesirable. This is because simply aligning the new model with the old feature space naturally
performs poorly for new datasets and ignores the characteristics of multimodal tasks. Is it possible
to reduce forgetting and improve new task performance simultaneously? To achieve this goal, our
high-level idea is optimize CLIP to learn a better feature space from the old model, rather than just
aligning with it. Technically, each image-text pair (vt

i , c
t
i) ∼ Dt is mapped to deep feature space

by both the old model {fθt−1 ; gφt} and new model {fθt−1 ; gφt}, then we propose contrastive
knowledge consolidation (CKC) which consists two important points:

• First, we introduce a projector hψ : Z → Z after the vision and text encoders, optimizing
the model in the projected space to keep the new and old feature spaces connected but not
identical. This improves the plasticity for learning new tasks.

• Second, for each image-text pair, its feature instances in the old, projected space is viewed
as positive while that of others are viewed as negative. This remarkably increases positive
and negative pairs. Training CLIP to align with the old projected features and away from
the irrelevant features improves new task performance and mitigates forgetting.

Figure 4 presents a comparison of CKC and regularization loss, and the CKC loss for the t-th
incremental task is as follows:

Lt
CKC = − 1

2N

2N∑
i=1

log
exp

(
h̃
t⊤
i z̃t−1

i /τ
)

∑2N
j=1 exp

(
h̃
t⊤
i z̃t−1

j /τ
) + log

exp
(
z̃t−1⊤
i h̃

t

i/τ
)

∑2N
j=1 exp

(
z̃t−1⊤
i h̃

t

j/τ
)
 ,

h̃
t

i =
[hψ(fθt(vi)), hψ(gφt(ci))]

∥[hψ(fθt(vi)), hψ(gφt(ci))]∥
, z̃t−1

i =
[fθt−1(vi), gφt−1(ci)]∥∥[fθt−1(vi), gφt−1(ci)]

∥∥ ,
(5)

where [, ] denotes the concatenation operation, N is the batch size, τ is the temperature parameter,
and ∥·∥ denotes the Euclidean norm.

Total training objective. In addition, the original CLIP loss is used in the new feature space:

Lt
CLIP = − 1

2N

N∑
i=1

(
log

exp
(
zt⊤
v,i z

t
c,i/τ

)∑N
j=1 exp

(
zt⊤
v,i z

t
c,j/τ

) + log
exp

(
zt⊤
c,i z

t
v,i/τ

)∑N
j=1 exp

(
zt⊤
c,i z

t
v,j/τ

)) , (6)
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Figure 4: Illustration of CLIP, CKC, and regularization losses: Previous methods align models to the
old feature space, conflicting with CLIP optimization. CKC performs contrastive learning between
old and new image-text samples in the projected space, aligning with CLIP loss.

where zt
v,i =

fθt (vi)
∥fθt (vi)∥ and zt

c,i =
gφt (ci)

∥gφt (ci)∥ . The final loss is Lt = Lt
CKC + Lt

CLIP. The total

training process can be summarized as follows: At each continual stage t, the model is augmented
with LoRA and optimized with Lt; At the end of stage t, the LoRA module is integrated into the
backbone based on Eq. 2 (we simply use α = 0.5 for all experiments of C-CLIP). Figure 3(c)
compares the loss curve of our method with other advanced CL methods. The results show that our
loss curve closely follows CLIP’s trend, significantly differing from previous methods.

5 EXPERIMENTS

Table 3: Comparison results of image-text retrieval on trained datasets. We continually fine-tune
eight image-caption datasets, and then evaluate the performance after fine-tuning the final dataset.
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EWC 60.38 31.58 12.23 20.06 15.13 37.40 33.63 7.93 27.29
ZSCL 66.79 37.15 13.34 24.99 20.98 40.67 39.23 6.88 31.25
Mod-X 61.62 33.94 11.38 18.04 18.18 39.39 35.94 6.95 28.18
MOE-CL 63.63 34.11 12.45 23.03 17.03 41.09 38.67 7.27 29.66
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Figure 5: Continual fine-tuning performance on Flickr30k, COCO, Pets. HaVG is an unseen dataset.

Networks and comparison methods. We use CLIP (ViT-B/16) with pre-trained weights from
large-scale open-world datasets as the backbone. It achieves a zero-shot classification accuracy of
67.73% on ImageNet-1K. The comparison methods include: (1) Classical CL methods like EWC
(Kirkpatrick et al., 2017); (2) MTIL methods like ZSCL (Zhang et al., 2024) and MOE-CL (Yu
et al., 2024), and (3) other recent methods like Mod-X (Ni et al., 2023) and DKR (Cui et al., 2024).
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Table 4: Zero-shot accuracy of ImageNet-1K (ZS-I1K) and CIFAR-100 (ZS-C100) during continual
fine-tuning on eight datasets. Our method maintained high zero-shot performance.

Method Task ID PD (↓)
0 1 2 3 4 5 6 7 8

Im
ag

eN
et

EWC 67.73 56.85 50.67 43.43 46.97 48.10 46.19 44.50 40.76 26.97
ZSCL 67.73 59.10 56.51 52.47 51.74 51.03 50.89 50.02 49.60 18.13
Mod-X 67.73 57.63 52.05 48.15 47.53 47.79 48.76 46.63 44.21 23.52
MOE-CL 67.73 58.82 54.29 49.08 49.75 50.33 50.61 48.88 47.05 20.68
DKR 67.73 58.54 53.69 49.55 47.80 47.55 49.67 45.46 45.88 21.85
C-CLIP 67.73 63.11 65.31 63.26 63.31 61.95 62.13 61.51 60.31 7.42(+10.71)

C
IF

A
R

10
0

EWC 66.87 55.85 53.88 46.08 42.73 47.58 47.63 43.93 42.79 24.08
ZSCL 66.87 58.70 55.06 51.28 47.37 50.92 52.65 53.02 52.19 14.68
Mod-X 66.87 56.91 55.46 48.50 44.04 43.43 49.82 49.49 44.34 22.53
MOE-CL 66.87 58.06 58.49 50.13 45.29 48.42 50.75 50.11 49.97 16.90
DKR 66.87 57.06 56.72 49.00 44.49 42.15 48.09 48.44 46.45 20.42
C-CLIP 66.87 63.17 64.78 64.08 61.02 60.55 62.85 62.02 61.58 5.29(+9.39)
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Figure 6: Zero-shot accuracy of Flowers, DTD, Food101, and Stanford Cars after continual fine-
tuning on eight image-caption datasets. C-CLIP significantly outperforms previous CL methods.

Implementation details. C-CLIP is implemented in PyTorch lightning and trained on 8 NVIDIA
4090 GPUs with a batch size of 1024. Input images are resized to 224 × 224, and we train for 40
epochs on each dataset. The initial learning rate is set to 1× 10−6 with a 5-epoch warm-up using a
cosine-decay learning rate scheduler. The low-rank decomposition (R) of LoRA is set to 16, with a
scaling factor of 2×R and dropout of 0.1. We use the AdamW optimizer with β1 = 0.9, β2 = 0.99,
and a weight decay of 0.2. Learning rates are adjusted per dataset; for example, on COCO-caption
(Chen et al., 2015), the image encoder’s learning rate is 5×10−7, and the text encoder’s is 4×10−5.
More details are provided in Appendix A.2.

5.1 MAIN RESULTS

Comparison on trained datasets. As shown in Table 3, the CLIP model pre-trained on large-scale
datasets performs poorly on unseen datasets. This aligns with findings in (Zhang et al., 2024; Ni
et al., 2023). However, full fine-tuning of these datasets may cause severe forgetting. For exam-
ple, after fine-tuning twice on Flickr30K and COCO, the ImageNet zero-shot accuracy dropped
from 67% to 25%. Previous CL methods show considerable gaps in new tasks when compared to
full fine-tuning, sacrificing new task performance to mitigate forgetting. Our method significantly
outperforms past approaches on new tasks. For instance, on datasets like Flickr30K and COCO,
it greatly surpasses full fine-tuning in image2text retrieval performance. Moreover, As shown in
Figure 5, C-CLIP improves performance on old tasks as new tasks are learned, which is a notable
difference from previous CL methods. This demonstrates that our method can improve both new
and old task performance during continual fine-tuning.

Comparison on unseen datasets. It is obvious that fine-tuning improves performance on the trained
datasets. However, as shown in Figure 5, we observe that fine-tuning some task-specific datasets
improves image-text retrieval performance on unseen datasets. Previous CL methods have shown a
similar trend, but their training is unstable. For example, when fine-tuned on AI-generated datasets
like Lexica, these methods suffer significant performance drops on real-world datasets like COCO
and HaVG. This indicates that training on AI-generated datasets causes the model to forget its per-
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Table 5: The effectiveness of each component in C-CLIP. The combination of LoRA and CKC
results in better performance on new tasks with less forgetting.

Method flickr30k (task 0) COCO (task 1)

I2T R@1 T2I R@1 ZS-I1K ZS-C100 I2T R@1 T2I R@1 ZS-I1K ZS-C100

CLIP ViT-B/16 35.80 55.88 67.73 66.87 10.40 28.32 67.73 66.87

+ Fine-tune 74.20 76.00 47.46 49.67 43.26 44.86 23.87 25.65
+ LoRA 66.90 73.10 62.18 62.53 38.17 40.55 61.49 61.03
+ CKC 81.39 76.16 51.24 53.08 45.63 43.95 45.67 49.72
+ LoRA & CKC 80.90 75.08 63.11 63.17 43.04 42.02 65.31 64.78
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Figure 7: Impact of Learning rate: (left) image-
to-text recall; (right) text-to-image recall.

I2T R@1 T2I R@1 ZS-IK50%

60%

70%

80%

90% Flickr30k
LWF
Mod-X
CKC

I2T R@1 T2I R@1 ZS-IK30%

40%

50%

60%

70% COCO
LWF
Mod-X
CKC

Figure 8: Impact of Regularization losses on
Flickr30K (left) and COCO-caption (right) .

formance in real-world domains. Our method exhibits impressive performance, when trained on
AI-generated datasets in Task 4, the model also improves on unseen real-world datasets. This sug-
gests that C-CLIP can continuously fine-tune using data from different domains.

Zero-shot Classification ability. Table 4 and Figure 6 verify that previous CL methods are useful
for maintaining zero-shot ability, showing that their strategy of minimizing updates to feature space
helps reduce forgetting (though it may impact performance on new tasks). Our method demonstrates
the best anti-forgetting performance. For instance, after two tasks fine-tuning from Flickr30K to
COCO, the ImageNet zero-shot accuracy remained at 65.1%, very close to the original 67.7%. When
continuously fine-tuning 8 datasets, C-CLIP still maintained high zero-shot performance.

5.2 ABLATION STUDY AND FURTHER ANALYSIS

Impact of components in C-CLIP. As shown in Table 5, we evaluated the impact of each com-
ponent in C-CLIP. LoRA significantly reduces forgetting but compromises new task performance,
which is similar to previous CL methods. CKC improves both the learning ability for new tasks
and reduces forgetting. However, CKC is not a strong constraint, so the forgetting remains rela-
tively high. By combining CKC with LoRA, not only is forgetting further reduced, but new task
performance matches or even exceeds that of full fine-tuning.

Table 6: Comparison results of parameter count and model
performance with different LoRA ranks (R).

Method Params I2T R@1 T2I R@1 ZS-I1K ZS-C100

Fine-tune 149M 74.20 76.00 47.46 49.67

R = 8 27.6M 80.42 74.81 63.05 63.13
R = 16 29.1M 80.90 75.08 63.11 63.17
R = 32 32.0M 80.95 75.01 63.03 63.15
R = 64 37.9M 81.11 75.03 62.88 63.09

Impact of learning rate. Figure 7
shows results on COCO with vary-
ing learning rates. It can be seen that
I2TR@1 is significantly affected by
the learning rate. When the learn-
ing rates for the text encoder and im-
age encoder are kept the same, CLIP
training causes a degradation in the
I2TR@1 metric. Therefore, we set
the text encoder’s learning rate to 80
times that of the image encoder to
achieve optimal results. Further configuration details can be found in Appendix A.2.

Impact of regularization losses. In Figure 8, we compare different regularization losses with CKC.
Intuitively, these regularization methods, such as EWC, LWF, Mod-X, and LoRA, have a similar
effect by reducing changes in feature space. However, experimental results show that these losses
are not easily compatible with LoRA. When using LoRA, we reduced the coefficients of these reg-
ularization losses, but their performance remained poor, leading to worse new task performance and
more severe forgetting. In contrast, CKC integrates much better with LoRA.
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Table 7: The effectiveness of our method across various ViT backbones.

Backbone Method flickr30k (task0) COCO (task1)
I2T R@1 T2I R@1 ZS-I1K ZS-C100 I2T R@1 T2I R@1 ZS-I1K ZS-C100

ViT-B/32 Vanilla 31.10 52.94 62.59 61.24 8.30 25.53 62.59 61.24
C-CLIP 79.34 73.05 58.72 58.93 42.57 41.46 59.95 59.61

ViT-B/16 Vanilla 35.80 55.88 67.73 66.87 10.40 28.32 67.73 66.87
C-CLIP 80.90 75.08 63.11 63.17 43.04 42.02 65.31 64.78

ViT-L/14 Vanilla 59.10 61.66 75.01 76.78 25.86 33.14 75.01 76.78
C-CLIP 92.59 79.40 70.56 70.90 64.22 51.63 72.18 72.24

ViT-L/14@336px Vanilla 59.30 63.38 75.76 75.95 25.70 33.60 75.76 75.95
C-CLIP 93.15 79.63 71.39 70.04 64.59 52.31 72.74 71.21

Table 8: Compare our method with other prompt-based continual learning approaches.

Method Task ID
1 2 3 4 5 6 7 8

Z
S-

I1
K LoRA 62.18 61.49 58.47 57.74 55.03 53.89 52.02 51.02

L2P 59.26 60.37 58.74 58.51 57.85 56.41 57.21 56.04
CPE-CLIP 57.36 59.87 59.13 58.58 56.61 56.11 55.45 55.40
C-CLIP 63.11 65.31 63.26 63.31 61.95 62.13 61.51 60.31

I2
T-

T
1 LoRA 66.90 60.83 55.71 58.04 61.85 59.85 62.29 63.28

L2P 58.82 52.88 47.61 48.01 46.29 46.93 48.54 47.74
CPE-CLIP 61.55 57.78 53.80 54.14 54.36 52.79 51.23 52.87
C-CLIP 80.91 82.07 83.62 83.29 83.13 85.05 85.58 84.40

I2
T

@
R

1 LoRA 63.28 38.91 11.32 28.69 18.94 37.89 34.37 6.63
L2P 47.74 20.73 7.51 15.65 11.84 25.54 23.91 4.33
CPE-CLIP 52.87 23.72 8.19 17.42 13.96 28.99 27.15 5.44
C-CLIP 84.40 56.92 19.73 42.65 25.43 45.89 42.07 9.55

Parameters and LoRA setting. Table 6 compares the trainable parameters between full fine-tuning
and various LoRA configurations. LoRA significantly reduces the number of trainable parameters,
and most of the trainable parameters are embedding layers. As seen from the results of Task 0 and
Task 1, different LoRA settings perform similarly in learning new tasks and preventing zero-shot
forgetting. For simplicity, we set the LoRA rank to 16 in our experiments.

Evaluation across ViT architectures. In our main experiments, we use ViT-B/16 with a batch
size of 1024. To demonstrate the effectiveness of C-CLIP across different architectures, we also
test it on other backbones, including ViT-B/32, ViT-L/14, and ViT-L/14@336. Due to memory
constraints, we reduce the batch size to 256 for the larger ViT-L models. As shown in Table 7,
ViT-L significantly outperforms ViT-B, with substantial improvements in zero-shot performance
on downstream datasets. Our method performs well across various ViT architectures, maintaining
strong zero-shot capabilities and excelling in image-text retrieval on downstream tasks.

LoRA vs. Prompt-tuning. Prompt-based continual learning methods fix pre-trained models and
only train prompts. We evaluate two representative methods, L2P (Wang et al., 2022) and CPE-
CLIP (D’Alessandro et al., 2023). Table 8 reveals two key findings: (1) Prompt-tuning preserves
general zero-shot performance on ImageNet-1K, whereas LoRA alone suffers from increased for-
getting as tasks accumulate. (2) However, prompt-tuning does not prevent forgetting in downstream
tasks, as updating prompts for new tasks leads to significant forgetting of prior ones—for instance,
performance on the first task (I2T-T1) and all tasks (I2T@R1) is notably worse than LoRA after
learning all eight tasks. In summary, while prompt-tuning preserves the original model’s knowl-
edge, it struggles to learn and retain new tasks. In contrast, combining LoRA and CKC proves to be
more effective in this scenario.

6 CONCLUSION

This work focuses on the continual learning of visual-language models. We establish a multimodal
continual learning benchmark and call for evaluating the performance from three different aspects.
Then, we propose C-CLIP that prevents forgetting and enhances new task learning impressively with
LoRA integration and contrastive knowledge consolidation. Comprehensive experiments demon-
strate that the proposed C-CLIP outperforms existing state-of-the-art methods and achieves strong
multimodal continual learning performance across image-text datasets from various domains.
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A APPENDIX

A.1 PROOF OF LIPSCHITZ CONTINUOUS

Let the function
f(w, x) = σ (wn · σ (wn−1 · σ (. . . σ (w1 · x)))) , (7)

where w = {w1, w2, . . . , wn}, x is an input vector, wi are weight matrices, and σ is an activation
function. Assume that the activation function σ is bounded and Lipschitz continuous; that is, there
exist constants Mσ , Lσ > 0 such that for all z,

|σ(z)| ≤ Mσ, |σ(u)− σ(v)| ≤ Lσ|u− v|. (8)

Also, the input x and all weights wi have bounded norms; that is, there exist constants Mx, Mw > 0
such that

∥x∥ ≤ Mx, ∥wi∥F ≤ Mw, (9)
where ∥ · ∥F denotes the Frobenius norm. Under these conditions, we aim to prove that the function
f(w, x) is Lipschitz continuous with respect to the weights w; that is, there exists a constant K > 0
such that for any w and w′,

∥f(w, x)− f(w′, x)∥ ≤ K∥w − w′∥F . (10)

To prove this proposition, First, consider the base case n = 1. In this case, the function simplifies to
f(w1, x) = σ(w1x). For two weight matrices w1 and w′

1, we have

∥f(w1, x)− f(w′
1, x)∥ = ∥σ(w1x)− σ(w′

1x)∥. (11)

Since σ is Lipschitz continuous,

∥σ(w1x)− σ(w′
1x)∥ ≤ Lσ∥w1x− w′

1x∥. (12)

Moreover,
∥w1x− w′

1x∥ = ∥(w1 − w′
1)x∥

≤ ∥w1 − w′
1∥F ∥x∥

≤ Mx∥w1 − w′
1∥F ,

(13)

therefore,
∥f(w1, x)− f(w′

1, x)∥ ≤ LσMx∥w1 − w′
1∥F . (14)

This shows that when n = 1, f(w1, x) is Lipschitz continuous with respect to w1, with Lipschitz
constant K1 = LσMx.

Next, assume that for n = k, the function fk(w1:k, x) is Lipschitz continuous with respect to w1:k =
{w1, w2, . . . , wk}; that is,

∥fk(w1:k, x)− fk(w
′
1:k, x)∥ ≤ Kk∥w1:k − w′

1:k∥F . (15)

Now, we need to prove that the conclusion holds for n = k + 1. For n = k + 1, the function is

f(w, x) = σ (wk+1fk(w1:k, x)) . (16)

Considering two sets of weights w = {w1:k, wk+1} and w′ = {w′
1:k, w

′
k+1}, we have

∥f(w, x)− f(w′, x)∥ =
∥∥σ (wk+1fk(w1:k, x))− σ

(
w′

k+1fk(w
′
1:k, x)

)∥∥ . (17)

Using the triangle inequality and the Lipschitz continuity of σ, we obtain

∥f(w, x)− f(w′, x)∥ ≤ Lσ

(∥∥wk+1fk(w1:k, x)− wk+1fk(w
′
1:k, x)

∥∥
+
∥∥wk+1fk(w

′
1:k, x)− w′

k+1fk(w
′
1:k, x)

∥∥)
= Lσ

(∥∥wk+1

(
fk(w1:k, x)− fk(w

′
1:k, x)

)∥∥
+
∥∥(wk+1 − w′

k+1

)
fk(w

′
1:k, x)

∥∥) .
(18)

For the first term,

∥wk+1 (fk(w1:k, x)− fk(w
′
1:k, x))∥ ≤ ∥wk+1∥F ∥fk(w1:k, x)− fk(w

′
1:k, x)∥

≤ MwKk∥w1:k − w′
1:k∥F .

(19)
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For the second term,∥∥(wk+1 − w′
k+1

)
fk(w

′
1:k, x)

∥∥ ≤ ∥wk+1 − w′
k+1∥F ∥fk(w′

1:k, x)∥
≤ ∥wk+1 − w′

k+1∥FMf .
(20)

where Mf is the boundedness constant of fk. Combining the results above, we have

∥f(w, x)− f(w′, x)∥ ≤ Lσ

(
MwKk∥w1:k − w′

1:k∥F +Mf∥wk+1 − w′
k+1∥F

)
. (21)

Since
∥w1:k − w′

1:k∥F ≤ ∥w − w′∥F , ∥wk+1 − w′
k+1∥F ≤ ∥w − w′∥F , (22)

we can let
Kk+1 = Lσ(MwKk +Mf ), (23)

thus obtaining
∥f(w, x)− f(w′, x)∥ ≤ Kk+1∥w − w′∥F . (24)

This shows that when n = k+1, f(w, x) is Lipschitz continuous with respect to w. By mathematical
induction, we conclude that for any n, the function f(w, x) is Lipschitz continuous with respect to
the weights w. ■

"a small dog with a black 
and white coat."

"A man dressed as Santa 
Claus stand next to a 
woman."

"A dark landscape with a 
bright moon and a large 
central tree."

(c) Simpsons

"ultra realistic delorean
dmc 5 drifts on road 
wreckag..."

"outer, Patagonia Classic Retro-X 
Jacket Natural, a photography of 
a tan jacket with a blue pocket."

"People are playing and 
walking around in a park."

(a) Pets (b) Kream

(d) Wikiart (e) Sketch (f) Lexica

Figure 9: Examples of image-text data from different domains in the VLCL benchmark.

A.2 ADDITIONAL EXPERIMENTAL DETAILS

Table 9: Comparison of train-
ing time (Epoch/s).

Method flickr30k COCO

Fine-tune 13.15 44.58
+ LWF 15.72 53.20
+ Mod-X 16.91 57.13
+ CKC 16.59 56.07

In Figure A.2, we present image-text data from different domains
in the VLCL benchmark. Some image caption datasets have prede-
fined splits, such as Flickr30K and COCO-caption, with test sets of
1K and 5K, respectively. For Pet, Lexica, and HausaVG, we eval-
uate their test sets. For other datasets like Simpsons, Sketch, and
Wikiart, we randomly split 80% for training and 20% for testing.
For Kream, the training and test sets are evenly divided. Figure
3 shows examples of tasks from different domains in the VLCL
benchmark. During training, all images are resized to 224x224, and
the maximum text length is set to 77.

Regarding learning rates, we tested several values. For COCO-caption, we set the learning rate for
the text encoder to 80 times that of the image encoder, while for other datasets, it was set to 10 times.
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The base learning rate was 5e-7 for COCO-caption, 1e-5 for Flickr30K, and 3e-5 for other datasets,
from Pet to Sketch. Our method’s code will be open-sourced, and further details can be found in the
released code.

A.3 TRAINING EFFICIENCY COMPARISON

We assess the efficiency of CKC and other regularization losses by comparing their average per-
epoch training times over 40 epochs. As shown in Table 9, the additional losses introduce some over-
head. For instance, on COCO, LWF and Mod-X increased training time by 19.3% and 28.2%, re-
spectively. The computational overhead of our method is comparable to these regularization losses,
leading to a 25.2% increase in training time.

A.4 LIMITATION

Our method is mainly designed for contrastive learning based version-language models like CLIP.
More advanced multimodal large language models like LLaVA (Liu et al., 2024) typically use lan-
guage modeling autoregressive loss. Nevertheless, considering the version encoder in LLaVA is
from CLIP and plays an important role in LLaVA, we believe the proposed C-CLIP can also en-
hance the vision ability of multimodal large language models. In the future, we will explore contin-
ual learning for generative VLMs like LLaVA.
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