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Abstract

Extensive empirical evidence demonstrates that conditional generative models1

are easier to train and perform better than unconditional ones by exploiting the2

labels of data. So do score-based diffusion models. In this paper, we analyze the3

phenomenon formally and identify that the key of conditional learning is to partition4

the data properly. Inspired by the analyses, we propose self-conditioned diffusion5

models (SCDM), which is trained conditioned on indices clustered by the k-means6

algorithm on the features extracted by a model pre-trained in a self-supervised7

manner. SCDM significantly improves the unconditional model across various8

datasets and achieves a record-breaking FID of 3.94 on ImageNet 64x64 without9

labels. Besides, SCDM achieves a slightly better FID than the corresponding10

conditional model on CIFAR10.11

1 Introduction12

Extensive empirical evidence in prior work [14, 3, 9] demonstrates that conditional generative models13

are easier to train and perform better than unconditional ones by exploiting the labels of data. So14

do score-based diffusion models (DM). For instance, the representative work [9] achieves a FID of15

10.94 when trained conditionally and a FID of 26.21 when trained unconditionally on ImageNet of16

size 256x256.17

Intuitively, the gap exists because (1) the marginal distribution induced by a conditional model is more18

expressive than the corresponding unconditional model; and (2) the data distribution conditioned on a19

specific class has fewer modes and is easier to fit than the original data distribution.20

In this paper, we formalize the above intuition in an ideal setting where we have infinite data. It is easy21

to show that the marginal distribution induced by a conditional model can be viewed as a mixture of22

the corresponding unconditional models. Further, we derive a sufficient condition for the superiority23

of the conditional model, which suggests that the conditional model gains more as the conditional24

data distribution gets simpler. The analyses explain previous empirical findings: conditioning on25

class labels probably partitions the data into simpler groups according to the semantics of data.26

Notably, our analyses apply to all possible conditions, not limited to class labels. Then, a very natural27

idea is to find a certain way to obtain meaningful conditions in an unsupervised manner and boost the28

unconditional generation results. The recent advances in self-supervised learning [10, 5] show that29

one can learn predictive representations without labels, which serve as an ideal tool for obtaining30

meaningful conditions. Specifically, we simply run a clustering algorithm (e.g., k-means) on the31

features extracted by a model pre-trained in a self-supervised manner (on the same dataset) and use32

the cluster indices as conditions to train a conditional model.33

Although our analyses and the self-conditional approach is applicable to all types of deep generative34

models, we focus on score-based diffusion models in our experiments to explore the boundary of35
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unsupervised generative modeling. Therefore, we refer to our approach as self-conditioned diffusion36

models (SCDM). We systematically evaluate SCDM on several widely adopted datasets. In all37

settings, SCDM significantly improves the unconditional model. Notably, SCDM achieves a record-38

breaking FID of 3.94 on ImageNet 64x64 without labels. Besides, SCDM achieves a slightly better39

FID than the corresponding conditional model on CIFAR10.40

2 Why Are Conditional Generative Models Better Than Unconditional Ones41

In this section, we present the problem formulation and our analyses.42

2.1 Problem Formulation43

Let q(x, c) be the joint distribution of the data x and the condition c and q(x) :=
∑

c q(x, c). Let44

pθ,E(x) be a model parameterized by θ ∈ Θ and E ∈ E , where θ denotes the parameters in the45

backbone and E is the embedding for a condition. We formalize two learning paradigms as follows.46

In unconditional learning, pθ,E(x) approximates the marginal data distribution q(x) directly and E47

is a redundant embedding shared by all data. Formally, given a certain statistics divergence D (or48

more loosely a divergence upper bound [20, 2]), unconditional learning aims to optimize49

min
θ∈Θ,E∈E

D(q(x)∥pθ,E(x)). (1)

In conditional learning, the embedding E is spared to receive the signal from the condition c, through50

an embedding function ϕ ∈ Φ. This induces a conditional model pθ,ϕ(x|c) := pθ,E(x)|E=ϕ(c),51

which approximates the conditional data distribution q(x|c) by tuning the backbone θ and the52

embedding function ϕ. Formally, conditional learning aims to optimize53

min
θ∈Θ,ϕ∈Φ

Eq(c)D(q(x|c)∥pθ,ϕ(x|c)). (2)

The conditional model applies ancestral sampling to generate samples, where a condition c is firstly54

drawn from q(c)1, and then a data x is drawn from pθ,ϕ(x|c). Such a process produces samples55

from pθ,ϕ(x) := Eq(c)pθ,ϕ(x|c). The generation performance of the conditional model is evaluated56

according to how close pθ,ϕ(x) is to the data distribution q(x), i.e., D(q(x)∥pθ,ϕ(x)).57

2.2 Analyses58

In this section, we attempt to formalize two insights on why conditional learning of generative models59

generally outperforms the unconditional one.60

Firstly, we compare the expressive power of the two strategies with the same backbone pa-61

rameterized by θ. As shown in Section 2.1, the conditional model produces samples from62

pθ,ϕ(x) = Eq(c)[pθ,ϕ(x|c)] = Eq(c)[pθ,E(x)|E=ϕ(c)]. Therefore, pθ,ϕ(x) can be viewed as a63

mixture of several unconditional models. Namely, the conditional model is more expressive than the64

unconditional one, despite the fact that both models are based on the same backbone pθ,E(x).65

Secondly, we derive a sufficient condition for the superiority of the conditional model. Let θ∗
u, E

∗
u66

be the optimal solution of the unconditional learning in Eq. (1). Let θ∗
c ,ϕ

∗
c be the optimal solu-67

tion of the conditional learning in Eq. (2). Proposition 1 characterizes a sufficient condition for68

D(q(x)∥pθ∗
c ,ϕ

∗
c
(x)) < D(q(x)∥pθ∗

u,E
∗
u
(x)).69

Proposition 1. Suppose for any parameter θ ∈ Θ and any condition c, approximating q(x|c) is70

simpler than q(x) by only tuning the embedding E of pθ,E(x), i.e., minE D(q(x|c)∥pθ,E(x)) <71

minE D(q(x)∥pθ,E(x)). Then, under additional mild regularity conditions 2, D(q(x)∥pθ∗
c ,ϕ

∗
c
(x)) <72

D(q(x)∥pθ∗
u,E

∗
u
(x)) holds. (Proof in Appendix A)73

1We assume q(c) is known, which is satisfied in conditional learning with labels.
2Specifically, we assume that the divergence D is convex and the embedding function space Φ includes

all measurable functions, which are verifiable in practice. In fact, the former can be satisfied using the KL
divergence and the latter can be satisfied by using nonparametric embeddings.
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Table 1: FID↓ results on different datasets. K represents the number of clusters.

CIFAR10 CelebA 64x64 LSUN Bedroom 64x64 ImageNet 64x64

Unconditional DM 2.72 2.14 2.69 6.44
Conditional DM 2.24 - - 3.08
SCDM (K = 2) - 2.04 - -
SCDM (K = 10) 2.23 1.91 - -
SCDM (K = 20) 2.27 2.08 2.39 -
SCDM (K = 30) 2.30 - - -
SCDM (K = 50) 2.34 - - -
SCDM (K = 100) - - 2.25 -
SCDM (K = 1000) - - - 3.94

The sufficient condition in Proposition 1 is hard to verify in practice generally3. However, it does74

provide insights on when conditional learning is preferable. In fact, it implies that the conditional75

model gains more (i.e., minE D(q(x|c)∥pθ,E(x)) gets smaller for all θ) as the conditional data76

distribution gets simpler. The condition is probably satisfied in practical conditional learning with77

class labels. In this sense, Proposition 1 explains previous empirical findings.78

3 Self-Conditioned Diffusion Models79

Note that Proposition 1 applies to all possible conditions, not limited to class labels, which inspires80

us to obtain meaningful conditions in an unsupervised manner to boost the unconditional generation81

results. The recent advances in self-supervised learning [10, 5] show that one can learn predictive82

representations without labels, which serves as an ideal tool for obtaining meaningful conditions.83

Specifically, we propose a three-stage algorithm. Firstly, we train a feature extractor on the target84

dataset (without labels) in a self-supervised manner and extract features. Secondly, we run a clustering85

algorithm (e.g., k-means in our experiments) on these features and obtain the cluster indices for all86

data. Finally, we train a conditional diffusion model [18, 9] by taking the cluster indices as conditions.87

We refer to our approach as self-conditioned diffusion models (SCDM).88

We mention that the high-level idea of using clustering indices from self-supervised learning coincides89

with prior work in GANs [1, 4, 19]. This paper presents distinct contributions in the following aspects.90

First, prior work focuses on avoiding mode collapse while this paper is motivated by a different91

perspective with theoretical insights missing in the literature. Second, this paper is built upon SOTA92

diffusion models [6, 9] to explore the boundary of unconditional generative modeling. In fact, we93

obtain a record-breaking FID of 3.94 on ImageNet 64x64 without labels. See a direct comparison94

with prior work [4, 19] in Table 2.95

4 Experiment96

We evaluate SCDM on CIFAR10 [13], CelebA 64x64 [15], LSUN Bedroom 64x64 [22] and ImageNet97

64x64 [8]. By default, we use MoCo-v2 [6] on CIFAR10, CelebA 64x64 and LSUN Bedroom98

64x64, and use MoCo-v3 [7] on ImageNet 64x64, in the self-supervised learning stage. We use99

the FID score [11] to measure the sample quality. We use the same architecture for SCDM and its100

unconditional and conditional baselines. See more experimental details in Appendix B.101

4.1 Sample Quality102

Firstly, we compare our SCDM with the unconditional and conditional baselines. As shown in Table 1,103

SCDM uniformly outperforms the unconditional model and slightly outperforms the conditional104

3A simple verifiable case is to fit a mixture of Gaussian (MoG) data by a single Gaussian (unconditional
learning) or a MoG with ground-truth cluster indices (conditional learning).
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(a) CIFAR10 (b) CelebA 64x64 (c) LSUN Bedroom 64x64 (d) ImageNet 64x64

Figure 2: Generated samples of SCDM. Each column corresponds to a cluster. We use the model
with the best FID.

(a) MoCo-v2 (K = 10) (b) SimCLR (K = 10) (c) Pixel (K = 10)

Figure 3: Generated samples on CIFAR10 with different clustering methods.

model on CIFAR10. On ImageNet 64x64, SCDM greatly improves the FID compared to the105

unconditional model. We provide generated samples in Figure 2.106

In Table 2, we compare SCDM with other methods on ImageNet 64x64 in the unlabelled setting.107

SCDM significantly outperforms all prior methods and achieves a record-breaking FID of 3.94.108

Figure 1: The effect of the self-supervised learning meth-
ods, and the backbones used in self-supervised learning.

Table 2: ImageNet 64x64 results in the un-
labelled setting. †Improved DDPM reports
FID with 10K samples, and thereby we use
reproduced results on 50K samples [2].

Method FID

SLCGAN [19] 19.2
Unconditional BigGAN [4] 16.9
IC-GAN [4] 9.2

Improved DDPM† [18] 16.38
Unconditional DM 6.44
SCDM (ours) 3.94

109

4.2 Ablation Study110

In this part, we study the effect of the self-supervised learning methods. We test MoCo-v2, as111

well as SimCLR [5] with 3 backbones: ResNet-18, ResNet-34, and ResNet-50. We also perform112

k-means on image pixels directly to get cluster indices, and we call this method pixel. As shown113

in Figure 1, SimCLR performs similarly to MoCo-v2, and the choice of backbones does not affect114

the performance much. However, k-means on image pixels performs much worse than SimCLR115

and MoCo-v2. Indeed, as shown in Figure 3, we find objects of diverse classes appear in a single116

cluster for the pixel method, leading to a more complex distribution in a single cluster, which is more117

difficult to learn.118
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A Proof of Proposition 1175

We firstly present a lemma.176

Lemma 1. Suppose min
θ∈Θ

Eq(c) min
E∈E

D(q(x|c)∥pθ,E(x)) < min
θ∈Θ,E∈E

D(q(x)∥pθ,E(x)), the diver-177

gence D is convex, and the embedding function space Φ includes all measurable functions. Then we178

have D(q(x)∥pθ∗
c ,ϕ

∗
c
(x)) < D(q(x)∥pθ∗

u,E
∗
u
(x)).179

Proof. According to the convexity of D, we have180

D(q(x)∥pθ∗
c ,ϕ

∗
c
(x)) = D(Eq(c)q(x|c)∥Eq(c)pθ∗

c ,ϕ
∗
c
(x|c)) ≤ Eq(c)D(q(x|c)∥pθ∗

c ,ϕ
∗
c
(x|c)) (3)

According to the definition of θ∗
c ,ϕ

∗
c , we have181

Eq(c)D(q(x|c)∥pθ∗
c ,ϕ

∗
c
(x|c)) = min

θ,ϕ
Eq(c)D(q(x|c)∥pθ,ϕ(x|c))

=min
θ,ϕ

Eq(c)D(q(x|c)∥pθ,ϕ(c)(x)) = min
θ

Eq(c) min
ϕ(c)

D(q(x|c)∥pθ,ϕ(c)(x))

=min
θ

Eq(c) min
E

D(q(x|c)∥pθ,E(x)). (4)

Combining Eq. (3), Eq. (4), and the assumption, we have182

D(q(x)∥pθ∗
c ,ϕ

∗
c
(x)) ≤ min

θ
Eq(c) min

E
D(q(x|c)∥pθ,E(x))

<min
θ,E

D(q(x)∥pθ,E(x)) = D(q(x)∥pθ∗
u,E

∗
u
(x)).

183

Then we present proof of Proposition 1.184

Proof. Since ∀θ, c,min
E

D(q(x|c)∥pθ,E(x)) < min
E

D(q(x)∥pθ,E(x)), we have185

min
θ

Eq(c) min
E

D(q(x|c)∥pθ,E(x)) < min
θ,E

D(q(x)∥pθ,E(x)).

According to Lemma 1, we have D(q(x)∥pθ∗
c ,ϕ

∗
c
(x)) < D(q(x)∥pθ∗

u,E
∗
u
(x)).186

B Experimental Details187

In the self-supervised learning stage, we use ResNet18 on CIFAR10, and ResNet50 on CelebA and188

LSUN Bedroom. We train 1600, 800 and 200 epochs on CIFAR10, CelebA and LSUN Bedroom189

respectively. We resize images to 32x32, and use a batch size of 512. We use the SGD optimizer with190

a learning rate of 0.06, a momentum of 0.9 and a weight decay of 5e-4. The queue size of MoCo is191

12800, and the momentum of MoCo is 0.999. As for ImageNet, we use pretrained ViT-Base provided192

in https://github.com/facebookresearch/moco-v3.193
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We provide training and sampling setting of diffusion models in Table 3. We evaluate FID every 50K194

training steps, and report the best one.195

Dataset CIFAR10 CelebA 64x64 LSUN Bedroom 64x64 ImageNet 64x64

Architecture IDDPM [18] IDDPM IDDPM ADM [9]
Noise schedule VP SDE [21] VP SDE VP SDE VP SDE
Batch size 128 128 128 2048
Training steps 1M 1M 1M 550K
Optimizer Adam [12] Adam Adam AdamW [16]
Learning rate 1e-4 1e-4 1e-4 3e-4
Sampler EM EM EM DPM-Solver [17]
Sampling steps 1K 1K 1K 50

Table 3: The experimental setting of diffusion models. EM represents the Euler-Maruyama sampler.
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