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ABSTRACT

Fairness in machine learning has emerged as a central concern, as predictive models
frequently inherit or even amplify biases present in training data. Such biases
often manifest as unintended correlations between model outcomes and sensitive
attributes, leading to systematic disparities across demographic groups. Existing
approaches to fair learning largely fall into two directions: incorporating fairness
constraints tailored to specific definitions, which limits their generalizability, or
reducing the statistical dependence between predictions and sensitive attributes,
which is more flexible but highly sensitive to the choice of distance measure. The
latter strategy in particular raises the challenge of finding a principled and reliable
measure of dependence that can perform consistently across tasks. In this work,
we present a general and model-agnostic approach to address this challenge. The
method is based on encouraging independence between predictions and sensitive
features through an optimization framework that leverages the Cauchy—Schwarz
(CS) Divergence as a principled measure of dependence. Prior studies suggest
that CS Divergence provides a tighter theoretical bound compared to alternative
distance measures used in earlier fairness methods, offering a stronger foundation
for fairness-oriented optimization. Our framework, therefore, unifies prior efforts
under a simple yet effective principle and highlights the value of carefully chosen
statistical measures in fair learning. Through extensive empirical evaluation on
four tabular datasets and one image dataset, we show that our approach consistently
improves multiple fairness metrics while maintaining competitive accuracy.

1 INTRODUCTION

Fairness in machine learning has garnered growing concern, as machine learning (ML) models are
playing key roles in many high-stakes decision-making scenarios, such as credit scoring (Leal, 2022),
the job market (Hu & Chen, 2018), healthcare (Grote & Keeling, 2022), and education (Bgyum,
2014; Kizilcec & Lee, 2022). Among the various fairness notions, group fairness is one of the
most extensively studied ones as it addresses the prediction disparities across demographic groups,
including gender, age, skin color, and region (Mehrabi et al., 2021; Dwork et al., 2012; Barocas
etal., 2017). While many group fairness ML algorithms are proposed, they have challenges in their
applications, especially the generalizability, i.e., their adaptation to different fairness notions, and
robustness, i.e., the stability of the fairness when they encounter a slight change of model parameter.

Existing group fairness approaches can be intrinsically categorized into two main approaches based
on their debiasing objectives: i) directly integrate the fairness notion into the training objective,
ii) minimizing the correlation between predictions and sensitive attributes. Methods belongs to i)
such as a demographic parity (DP) regularizer, and an equality of opportunity (EO) regularizer. The
benefit of this approach is that the model trained by the target fairness objective can perform well on
specific fairness notions. For example, the machine learning model trained at demographic parity
has a high possibility of achieving good demographic parity in testing. However, such methods
limited their generalizability to other fairness notions (shown in Figure 1). Method ii) solves from a
more fundamental way that can deal with generalizability, including using information theory, or an
adversarial approach to minimize the correlation between the prediction and the sensitive attribute.
The most straightforward way is to use a distance measurement that assesses the relationship between
the sensitive attribute and the prediction, thus minimizing this distance during the training. This
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Figure 1: From left to right: (1) Prediction distribution of all classes; (2) T-SNE plot of embeddings
for samples from all classes; (3) Prediction distribution of class 1; (4) T-SNE plot of embeddings for
samples from Adult, and the sensitive attribute is gender. The blue points represent samples with
sensitive attribute 0, while the red points represent samples with sensitive attribute 1.
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Figure 2: Fairness loss landscapes evaluated using three functions, presented from left to right:
Kullback-Leibler (KL) divergence, Hilbert-Schmidt Independence Criterion (HSIC), and Cauchy-
Schwarz (CS) divergence. A smaller inner circle indicates greater robustness. Among these methods,
the CS divergence achieves the smallest inner circle, ranging from —2 to 1, while the inner circles of
KL and HSIC divergences both span from —2 to 2.

enables the generalizability, but ascribes the pressure of the fairness performance to the quality of the
distance measurement.

Existing fairness regularizers mainly assessed this correlation using gap parity,

Gretton et al., 2012), Kullback-Leibler (KL) divergence, and the Hilbert-
Schmidt Independence Criterion (HSIC). However, the current fairness regularizers are sensitive
to the model parameter change, making them less robust in maintaining fairness, responding to a
small change in the model parameters (shown in Figure 2). Theoretical studies have shown that the
Cauchy-Schwarz divergence provides a tighter bound compared to the Kullback-Leibler divergence
and gap parity, suggesting its potential to improve fairness in machine learning models. Motivated
by this, we would like to know if using CS divergence can result in more generalizable and more
consistent utility—fairness trade-off across hyperparameter settings than standard regularizers due
to the benefit of a tighter upper bound of CS divergence. In light of this, we propose a new fairness
regularizer based on the Cauchy-Schwarz divergence for fair machine learning. To evaluate the
generalizability, we tested the fairness under a wide range of fairness notions proposed by previous
studies, and to evaluate the robustness, we visualize whether a small change in the learned model
parameters can influence the fairness. We summarize our contributions as follows:

* We introduce the Cauchy-Schwarz divergence to fair machine learning and present a novel regular-
ization method.

* We elucidate the relationships between the Cauchy-Schwarz regularizer and other fairness regular-
izers, emphasizing its superior effectiveness in debiasing.

* Our experimental results, obtained from four tabular datasets and one image dataset, validate the
efficacy of the proposed Cauchy-Schwarz regularizer in achieving fairness across multiple fairness
notions simultaneously.

This develops CS divergence in a fairness-specific setting that is complementary to prior work on
CS-based density estimation, clustering, and representation learning.
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2 PRELIMINARIES

In this section, we establish the foundational concepts for our study. We start by exploring the notion
of fairness in machine learning, including the relevant notations. Next, we provide an overview
of general fairness-aware machine learning methods. Finally, we introduce the Cauchy-Schwarz
divergence and discuss its benefits in reducing bias.

Problem scope. This paper focuses on in-process group fairness in the context of binary classification
with binary-sensitive attributes. In contrast, group fairness seeks to ensure that machine learning
models treat different demographic groups equitably, where groups are defined based on sensitive
attributes such as gender, race, and age (Feldman et al., 2015; Zemel et al., 2013).

Notations. Under this setting, we consider a dataset D = {(x;, yi, 5;) }}£,, where M is the number
of samples, x; € R? represents the features excluding the sensitive attribute, 35; € {0, 1} is the label
of the downstream task, and s; € {0, 1} is the sensitive attribute of the i-th sample. The predicted
probability for the i-th sample is denoted as z; € [0, 1], computed by the machine learning model
as z; = f(x;,s;) : R? — [0,1]. The binary prediction is represented as ; € {0, 1}, defined by
i = 1(, > t[2], where 1, > t(-) is the indicator function that evaluates whether its input is greater
than or equal to the threshold ¢. Finally, X, Y, S, and Y denote random variables corresponding to
X;, Ui» S;, and §;, respectively.

Problem Formulation. Generally, the fairness objective can be summarized as follows:

m}n Eutility + )\Efairnessa (1)

where the term L,;:1, denotes the loss function that measures the utility of the model, often a binary
entropy loss, for our binary classification problem, while £ ¢4irness (also shown in Figure 2) indicates
the fairness constraint applied in the model. The parameter A is used to control the trade-off between
utility and fairness.

2.1 GROUP FAIRNESS

There are many ways to define and measure the group fairness. Each definition focuses on distinct
statistical measures aimed at achieving balance among subgroups within the data. Among these, De-
mographic Parity and Equal Opportunity are the most popular ones, other popular fairness definitions
are summarized in Appendix

Demographic Parity (DP). Demographic Parity (Zafar et al., 2017; Feldman et al., 2015; Dwork
et al., 2012) mandates that the predicted outcome Y be independent of the sensitive attribute .S,

expressed mathematically as Y LS. Most of the existing literature primarily addresses binary
classification and binary attributes, where Y € {0,1} and S € {0, 1}. Similar to the concept of equal
opportunity, the metric evaluating the DP fairness is defined by:

App=|P(Y]|S =0) = P(Y]S = 1)|. @)

A lower value of A pp signifies a fairer classifier.

Equal Opportunity (EO). Equal Opportunity (Hardt et al., 2016) mandates that a classifier achieves
equal true positive rates across various subgroups, striving towards the ideal of a perfect classifier.
The corresponding fairness measurement for EO can be articulated as follows:

Apo=|PY|Y =1,8=0) - P(Y|Y = 1,5 =1)|. 3)

A low Ao indicates that the difference in the probability of an instance in the positive class being
assigned a positive outcome is relatively small for both subgroup members. Both DP and EO can be
effectively extended to problems involving multi-class classifications and multiple sensitive attribute
categories. Note that in the binary classification task, App and Ao are sometimes calculated after
binarizing P(Y). Specifically, App is defined as App = |[P(Y = 1|S = 0) — P(Y = 1|S = 1),
and Ago is defined as Apo = [P(Y = 1Y = 1,5 =0)— P(Y = 1|Y = 1,5 = 1)| (Beutel et al,
2017; Dai & Wang, 2021; Dong et al., 2022).
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2.2 CAUCHY-SCHWARZ DIVERGENCE

Motivated by the well-known Cauchy-Schwarz (CS) inequality for square-integrable functions’,
which holds with equality if and only if p(x) and ¢(x) are linearly dependent, we can define a measure
of the distance between p(x) and ¢(x). This measure is referred to as the CS divergence (Principe
et al., 2000; Yu et al., 2023), given by:

Dcs(p; q) = —log ( 4)

(/ p(x)a(x)dr)” ) .

[ p(x)%dz [ q(x)?dx

The CS divergence, denoted as Dcs, is symmetric for any two probability density functions (PDFs) p
and ¢, satisfying 0 < D¢s < oo. The minimum divergence is achieved if and only if p(x) = g(x).

3  WHAT MAKES A GOOD FAIRNESS REGULARIZER?

Current fair machine learning algorithms  Reg. Fairness Objective (£ fairness)
Zgo?t a Virlety of a}pproaches., promptingus to IE (?I S=0)E (}A,| S=1)

plore the essential properties that make for - ~

; ) ; . B0 [E(Y]Y =1,8=0) —E(Y|Y = 1,5 =1)|

effective fairness regularizers. By categoriz-
; X , MMD  Dwmp(Zs—o, Zs=1)
ing these algorithms into three types and con- BS1C Dusic(V, S)
ducting preliminary experiments, we aimto . D:RI(Y é)
identify the key characteristics that contribute :
to mitigating bias in machine learning models. Table 1: Fairness regularizers (Reg.) and objectives.

3.1 BALANCING THE PREDICTION ACROSS DIFFERENT SENSITIVE GROUPS

The first is to directly integrate the fairness notions, such as DP and EO, into the fairness objective.
Cfaimess = D(IR Q) where
P=PY |S=0), Q=P(Y |S=1)forDP, 5
P=P(Y|Y=1,5=0), Q=P(Y|Y =1,5=1) for EO.

Calculating the distance between P and Q has many ways by using difference distance measurement
D, and the most used one is to calculate the absolute distance between the mean empirical estimations:

Efairness = |E(P) - E(Q)|7 (6)

where the expected values are calculated as the mean of summation since P and Q are discrete
distributions.

Previous fair machine learning studies have shown that the fairness loss of the testing can be upper
bounded by the loss of training. Therefore, a distance function having a tighter generalization error
bound used in training will lead to a better fairness guarantee for testing.

['fairness = |E(Y|S = 0) - E(Y|S = ].)‘ (7)
We can see that the basic idea is to balance the prediction distribution between two sensitive groups.
Therefore, for this type of approach, we can also use other distance measurements: Therefore, except
for the absolute distance between the two prediction distributions.
3.2 BALANCING THE LATENT REPRESENTATION ACROSS DIFFERENT SENSITIVE GROUPS

Distance measures and minimization:
‘Cfairness = D(ZS:07ZS:1)7 (8)

where Z is the latent representation from the neural networks, and Zs—o and Zg—; are the represen-
tation when the sensitive attribute is 1 or 0. The distance metric D(-) here can be a Mean Maximum
Discrepancy (Louizos et al., 2016).

([ p(x)g(x)dz)* < [ p(x)* do [ q(x)* dz
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Extension to multiple sensitive attributes. While our theoretical development is presented for
a single sensitive attribute S for notational simplicity, the proposed CS-based regularizer naturally
extends to multiple sensitive attributes. Let S = (51,..., Sk ) denote a vector of sensitive at-

tributes. One can either (i) treat .S as a joint variable and apply the same CS divergence to (Y S),
i.e., penalize DCS(P{,‘S, P{/Ps), or (ii) sum the CS divergences over individual attributes, e.g.,
Ziil DCS(P?IS% , Py Ps, ), depending on whether joint or per-attribute control is desired. Both
variants use exactly the same empirical estimator as in (Equation (13)) and do not require any
algorithmic changes; only the definition of S in the mini-batch needs to be updated.

3.3 MINIMIZING THE RELATIONSHIP BETWEEN PREDICTIONS AND SENSITIVE ATTRIBUTES

The goal of this category is to ensure that a fair machine learning algorithm’s predictions retain
minimal sensitive information.

Efairness = D(YA—» S)7 (9)

The HSIC and PR in Table | belong to this category. Specifically, the DPR(Y, S) is defined as:

Dpr(Y,8) = ZZpy, log( (() (>)) (10)

jey s€S

Note that, adversarial debiasing methods (Zhang et al., 2018) fall into this category because they em-
ploy discriminators to predict sensitive group membership from the learned encoded representations.
These methods aim to make sensitive attributes difficult to deduce from the encoded representations.

4 CAUCHY-SCHWARZ FAIRNESS REGULARIZER

In this section, we first introduce three prominent fairness regularizers that assess distribution distance
using different metrics: Mean Maximum Discrepancy, Kullback-Leibler divergence, and Hilbert-
Schmidt Independence Criterion (HSIC). For each metric, we explore its relationship with CS
divergence. Subsequently, we explain how CS divergence can be utilized to achieve fairness.

4.1 How CAN THE CAUCHY-SCHWARZ DIVERGENCE BE APPLIED TO MITIGATE BIAS?

Given samples {x?}" | and {x!}"_, drawn independently and identically distributed (i.i.d.) from
p(x) and ¢(x) respectlvely, we can estimate the empirical CS divergence. This estimation can be
performed using the kernel density estimator (KDE) as described in (Parzen, 1962) and follows the
empirical estimator formula in (Jenssen et al., 2006).

Proposition 4.1. Given two sets of observations {x?}', and {xq} i21, let p and q denote the
distributions of two groups. The empirical estimator of the CcS dtvergence Dcs(p; q) is then given by:

Ny N2

1 1
Destrra) =1og |z D wotiod) | +10g | 517 3 w(xto)
J=1 i,5=1
i,j= J (11
Na N
—21
g
i=1j
The proof of this proposition is detailed in Appendix B.l. where « represents a kernel function, such

as the Gaussian kernel defined as k, (7, 2') = exp(— ||z — 2'||3/20?). In the following sections, we
will explore the relationship between this kernel function and the existing fairness regularizer.

As mentioned earlier, the goal of fairness is to ensure an equal distribution of predictions across
sensitive attributes. To achieve this, fairness-aware algorithms focus on minimizing the dependency
of predictions on these sensitive attributes. Therefore, effectively modeling the relationship between
the outcome variable Y and the sensitive attribute .S becomes crucial. The prediction distribution
over the sensitive attribute S is defined as follows:

P=PY |S=0); Q=PY|S=1). (12)

(W3-2
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By substituting the distribution of predictions over the sensitive attribute into Equation (20), where
p = Pand ¢ = Q, we can define the objective we aim to solve as follows:

: ~ g
mGIDEBCE-i-aDCS (P, Q) + §H9||§7 (13)
where Lpcg is the binary cross-entropy loss, which measures the classifier’s accuracy. It is defined as:
1M
Lyck = M;—Yilogn, (14)

where Y; is the predicted output obtained from the training model parameterized by 6. This model
can be a Multi-Layer Perceptron for tabular data or a ResNet for image data. Additionally, |03
serves as an Lo regularizer.

Computational complexity. Naively computing the CS divergence on all n training examples
has O(n?) cost, since it involves pairwise interactions between samples. In practice, as is standard
for kernel-based regularizers such as MMD and HSIC, we evaluate the CS-based fairness loss on
mini-batches. Given a batch of size B (typically B < n), the additional cost per optimization
step is O(B?) and is implemented using vectorized matrix operations that reuse the same mini-
batches as the prediction loss. Under typical batch sizes used in our experiments, this overhead is
modest and comparable to that of existing kernel-based fairness methods, making the CS regularizer
computationally practical for both tabular and image models.

(To Revwier Pqrj:

4.2 WHY IS THE CS DIVERGENCE MORE EFFECTIVE FOR ENSURING FAIRNESS?

The CS Divergence is particularly well-suited for promoting fairness due to several key reasons:

(1) Closed-form solution for the mixture of Gaussians. The CS divergence has several advantageous
properties, one of which is that it provides a closed-form solution for the mixture of Gaussians (Kampa
et al.,, 2011). This particular property has facilitated its successful application in various tasks,
including deep clustering (Trosten et al., 2021), disentangled representation learning (Tran et al.,
2022), and point-set registration (Sanchez Giraldo et al., 2017).

(2) CS Divergence has a tighter error bound than the KL divergence.

Proposition 4.2. For any d-variate Gaussian distributions p ~ N (p,, Xp) and g ~ N (pq, Xq),
where Y, and ¥4 are positive definite, the following inequality holds:

Dcs(p; q) < Dxu(p; q) and Dcs(p; q) < DxL(q;p). (15)

The proof can be found in Appendix B.3. It is important to note that the divergences are being
compared under the same model parameter 6.

Remark on the Gaussian setting. Proposition 4.2 should be interpreted as a stylized comparison
that is carried out under a Gaussian model solely for analytical convenience. The Gaussian assumption
allows us to derive closed-form expressions for both the CS and KL divergences and to make their
relationship explicit. It is not required by our training procedure, and it is not assumed anywhere in
the empirical evaluation; in particular, the CS-based regularizer we optimize is defined for arbitrary
distributions of predictions and sensitive attributes.

(W3-1

1
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(3) CS divergence can provide tighter bounds than MMD and DP when the distributions are far
apart or when the scale of the embeddings varies significantly. Based on Remark A.1, we know
that CS divergence employs cosine distance, while MMD relies on Euclidean distance. In addition,
DP Equation (5) utilizes a mean disparity, which is a Manhattan distance for the mean estimations
of two distributions. CS divergence measures the angle between two distributions in the feature
space, focusing on the difference in direction rather than magnitude. In cases where the distributions
have significantly different variances or scales, MMD and DP may yield a large distance even if the
distributions are aligned in the feature space. In contrast, CS divergence normalizes this comparison,
resulting in a more accurate measure of similarity and thereby providing a tighter generalization
bound. This normalization enhances the robustness of CS divergence, preventing MMD and DP from
overestimating the discrepancy due to their reliance on an unnormalized distance measure.

| ESYX: W1-1
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Methods | Utility | Fairness
| ACC (%) T | AUC (%) T | ADP (%) \L | AEO (%) l,
MLP |85.63+0.38 — [90.82+0.235 — [16.524001 — |8.4313.20 —

Gender pp  [82.421039 -3.75% [86.9140.80 -4.31%[1.29,0 95 92.19%]20.1541.15 -139.03%

MMD [81.9040.6s -4.36%|85.271052 -6.11% |2.471052 85.05% |17.5341.36 -107.95%
HSTC|82.89, (95 -3.20%|87.25,0 4 -3.93%|2.6640.51 83.90%|18.471100 -119.10%

PR 81.8110.52 -4.46%|85.384+10.82 -5.99%|0.7110.40 95.70% 12'45:t2.38 -47.69%
CS 83.314+0.47 -2.71%(90.1510.49 -0.74% |2.4240.85 85.35%|2.27+1.04 73.07%

MLP | 84.4210.31 — | 90.1510.36 — | 13.4710.83 — | 9.2513.86 —

Race DP 83.64:‘:0'78 -0.92% | 88.45+0.32 -1.89%|2.4510.67 81.81%|2.16+1.06 76.65%
MMD |83.1240.82 -1.54%|88.364+0.67 -1.99% |2.58+0.75 80.85%|3.33+0.93 64.00%
HSIC|[84.98.:0.17 0.66% |90.9010.19 0.83% [7.9010.72 41.35%|2.114+0.18 77.19%
PR 82.13+1.16 -2.71% |87.441033 -3.01%|1.531083 88.64% Mio.eo 90.70%
CS  [83.534053 -1.05%(90.26 0 4 0.12% |216, 04 83.96%|0.4dso1s  95.24%

MLP | 66.854+0.72 — | 72.1040.94 — | 13.2243.39 — | 11.4145.83 —

Gender pp 64.204+1.58 -3.96%|70.64+1.05 -2.02%|5.7840.33 56.28%|6.78+161 40.58%
MMD [64.82,, 45 -3.04%|70.7210.02 -1.91%|3.09+0.02 76.63% |3.15+437 72.39%

HSTIC|63.1743.46 -5.50% |71.1740.84 -1.29% |1.84, 5 86.08%|2.60. (45 77.21%

PR 64.9510.15 -2.84%|72.1219.75 0.03% [3.85+0.60 70.88%[3.914+1.02 65.73%
Cs 64.2510.97 -3.89%|71.53 561 -0.79%|1.3010.47 90.17% |0.4410.13 96.14%

MLP | 66.99+1.05 — | 72.464+0.88 — | 17.2444.15 — | 19.44 14 63 —

Race DP 64.98L3.72 -3.00%|72.0941.03 0.51% |8.70x1.12 49.54%|7.0442.13 63.79%
MMD |64.414004 -3.85%|72.1041.83 0.50% |4.424211 74.36%|5.60+1.25 71.19%
HSIC|64.524290 -3.69% |72.1610.94 0.41% 221:!:0.68 87.18% 2’7210.87 86.01%

PR 67.221090 0.34% [72.86+0.87 -0.55%|5.60+1.12 67.52%|6.52+1.30 66.46%
Cs 65.62:‘:1'24 -2.05% 72'7011.06 0.33% [1.794+0.96 89.62%(1.48 1164 92.39%

MLP |82.0410.27 — [90.164018 — [10.264468 — [2.1343.64 —

Gender pp |81.3240.17 -0.88%[89.33 15 -0.92%]0.9640.22 90.64%|5.37+0.32 -152.11%

MMD |80.93+0.55 -1.35%|88.4441.71 -191%|2.454065 76.12% [4.914148 -130.52%
HSIC|81.40, 45 -0.78%|89.53+0.10 -0.70% |1.541+0.18 84.99% |4.95+0.30 -132.39%

PR 80.03+0.30 -2.45% |88.10+0.26 -2.28%|0.35+0.20 96.59% |4.54,4 4, -113.15%
Cs 81.86+0.04 -0.22% |89.1510.60 -1.12%|0.77 545 92.5% [0.90+0.46 57.75%

MLP | 81.2340.14 — | 90.16+0.18 — | 10.06+1.84 — | 7.42410.66 —

Race pp |81.25,,,, 0.02% |89.45 ., -0.79%|0.56 (4, 94.43% |4.5310.48 38.95%
MMD |80.221120 -1.24% |88.421163 -1.93% |1.454089 85.59% |4.0140510  45.96%
HSTC|81.4110.15 0.22% |89.671012 -0.54% [1.0d1053 89.66% |2.7T a5 62.67%
PR [80.274026 -1.18% |88.454021 -1.90%|0.3T+030 96.32% |4.254040 42.72%
CS  [80.78%0ss -0.55% |89.140.91 -1.13% |0.8140.08 91.95%|1.3510.6a 81.81%

Adult

COMPAS

ACS-I

Table 2: Fairness performance of existing fair models on the tabular datasets, considering race
and gender as sensitive attributes. 1 indicates accuracy improvement compared to MLP, with
higher accuracy reflecting better performance, and | denotes fairness improvement compared to
MLP, where lower values indicate better fairness. Green values denotes better than MLP on the
corresponding metric (ACC/AUC 1; App/Agol), while red denote worse. rAll results are based on
10 runs for each method. The best results for each metric and dataset are highlighted in bold text.

Distribution-free applicability. We also emphasize that the optimization framework of Section 4
is distribution-free. The empirical CS divergence used as a fairness loss is implemented via a
kernel-based estimator that only depends on samples from the joint distribution of predictions and
sensitive attributes and does not impose any parametric form on this distribution. Consequently, the

same regularizer can be applied to both tabular and image models. Our experiments in Section 5,
which span four tabular datasets and one image dataset with clearly non-Gaussian distributions,

show that the CS-based regularizer consistently improves group-fairness metrics while maintaining
competitive utility, supporting the practical relevance of the theoretical insight obtained from the
Gaussian comparison in Proposition 4.2.

| To Revwier

Limitations and discussion. While CS offers a flexible and theoretically grounded way to penalize
dependence between predictions and sensitive attributes, it also has several limitations. First, CS is
implemented as a kernel-based dependence measure and thus is computationally more expensive
than simple gap-based penalties such as DP or EO alone: evaluating the regularizer on a mini-batch
of size B incurs O(B?) cost, similar to MMD and HSIC, whereas DP/EO-style losses can often be
computed in O(B) time. Second, as with other kernel methods, the performance of CS can depend

|ESYX: W1-1
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DP MMD HSIC PR —— CS
Adult COMPAS ACS-I
14.0 6.0
9.0
N 4.0
QQ 6.0 7.0
3.0 2.0
0.0 0.0
76.0 79.0 82.0 85.0 58.0 61.0 64.0 67.0 770 79.0 81.0
Accuracy (%) Accuracy (%) Accuracy (%)

Figure 3: Fairness-accuracy trade-off curves on the test sets for (left) Adult, (middle) COMPAS, and
(bottom) ACS~TI. Ideally, results should be positioned in the bottom-right corner.

on the choice of kernel and bandwidth; in this work, we use an RBF kernel with the median heuristic,
but exploring alternative kernels is an interesting direction for future work. Finally, our formulation
specifically targets group fairness notions (e.g., DP and EO) and does not directly address other
notions such as individual or causal fairness, which should be taken into account when deciding
whether CS is suitable for a given application.

Choice of kernel. Throughout this work, we instantiate the empirical CS divergence with a Gaussian
(RBF) kernel and choose its bandwidth using the median heuristic, following common practice in
kernel-based dependence measures such as MMD and HSIC (Gretton et al., 2012; 2005). This choice
is kept fixed across datasets and models to ensure a controlled comparison between regularizers.
In principle, our framework is not restricted to a particular kernel family: alternative kernels (e.g.,
Laplacian or polynomial) can be plugged into the same estimator without changing the overall
training objective or algorithm (Scholkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004). A
more systematic investigation of how different kernel families and bandwidth-selection strategies
affect the utility-fairness trade-off is an interesting direction for future work.
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5 EXPERIMENTS

In this section, we evaluate the effectiveness of the CS fairness regularizer from several perspectives:
(1) utility and fairness performance, (2) the tradeoff between utility and fairness, (3) prediction
distributions across different sensitive groups, (4) T-SNE plots for these sensitive groups, and (5)
the sensitivity of parameters in Equation (13). Our evaluation encompasses five datasets with
diverse sensitive attributes, including four tabular datasets: Adult, COMPAS, ACS-TI, and ACS-T,
as well as one image dataset, CelebA-A. Utility performance is assessed based on accuracy and
the area under the curve (AUC), while fairness performance is measured using A pp Equation (2)
and A po Equation (3). Detailed information about the datasets and baselines can be found in the
Appendix. We denote an observation drawn from the results as Obs..

5.1 FAIRNESS AND UTILITY PERFORMANCE

We conducted experiments on five datasets along with their corresponding baselines, as previously
mentioned. For each dataset, we performed 10 different splits to ensure robustness in our results. We
calculated the mean and standard deviation for each metric across these splits. The accuracy and
fairness performance of the downstream tasks is in Table 2. Our observations are as follows:

Obs. 1: CS achieves the best or near-best /A ;o on most datasets and is competitive on A pp,
while maintaining high utility. Notably, CS demonstrates exceptional fairness performance on
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the image dataset, CelebA-A, where the disparity in the ‘Young’ and ‘Non-Young’ groups sees a
A pp reduction of 97.36% and a /A go reduction of 98.58%. Furthermore, in the Adult and ACS-1I
datasets, which include gender groups, traditional methods such as DP, MMD, HSIC, and PR do not
effectively optimize for EO fairness. In contrast, the proposed CS achieves significant reductions in
A po by 72.12% and 63.85%, respectively, compared to MLP.

Obs. 2: CS achieves good fairness performance with a small sacrifice in utility. Specifically, CS
exhibits a decrease of less than 3.1% in accuracy and less than 2.2% in AUC. The only exception is
observed with COMPAS when gender is treated as a sensitive attribute, resulting in a slightly higher
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Figure 4: Prediction distributions for female and male groups in the Adult dataset. The top row
shows kernel density estimates of the raw predictions Y for all target labels, grouped by gender,

while the bottom row shows the prediction densities for the positive class, Y = 1, for the two gender
groups. Each column corresponds to a different fairness regularizer. A larger overlap between the
blue and red curves indicates better group fairness, and the reported values above each panel give the
corresponding gaps in App (top row) and Aggo (bottom row).

accuracy loss of 3.6%. Notably, CS demonstrates either equivalent or improved AUC performance,
with increases of 0.02% and 0.58% on Adult for the gender and race groups, respectively, as well
as a 0.35% increase on COMPAS for the race group. Among the baselines, HSIC ranks highest in
utility, achieving the best performance on ACS-TI for the race group and on ACS-T for both the
gender and race groups. This is followed by PR, which shows the best utility on COMPAS for both
the gender and race groups, as well as on CelebA-A for the gender group.

5.2 How DO ACCURACY AND FAIRNESS TRADE-OFF IN BASELINE MODELS AND CS?

We evaluate the trade-off between accuracy and App for the baselines by varying the fairness
hyperparameters (Yao et al., 2023; Deka & Sutherland, 2023). The results are presented in Figure 3,
where the x-axis represents the target accuracy, while the y-axis shows the average Demographic
Parity (DP) across both positive and negative target classes. It is important to note that the figure in
the bottom right corner represents the optimal result.

Obs. 3: At the same utility level, CS is the most effective method in promoting fairness.
Analyzing the results, we find that CS consistently achieves the lowest A pp across most accuracy
levels, with this effect becoming more pronounced at higher accuracy levels. This is evidenced
by the significant gap in App between CS and other baselines. It is important to note that while
all baselines can demonstrate good fairness when the optimization prioritizes fairness over task
objectives, the task objective remains critical for the practical application of these models. Obs. 4:
High accuracy can sometimes lead to worse fairness compared to MLP, as the fairness objective
becomes more challenging to optimize when there is a stronger focus on task-specific objectives.
As shown in Table 2, the App for MMD is over 14.0, which is greater than the average App of
13.22 for MLP. However, these fairness regularizers generally prove effective in controlling bias in
representations, especially when more emphasis is placed on the task-specific objective. Notably,
some datasets with particularly sensitive attributes pose greater challenges for achieving fairness.
For instance, the COMPAS dataset, which includes gender as a sensitive attribute, demonstrates this
difficulty. One possible explanation is the relatively small sample size of COMPAS, which contains
only 6, 172 samples, significantly fewer than other datasets where fairness is easier to achieve. Obs.
5: cs displays a significant increase in A pp at a slower rate than other baselines as accuracy
increases. We analyze the slope of the lines representing the increase in A p p with rising accuracy.
Many methods, such as PR and DP, demonstrate strong fairness performance at low accuracy levels;
however, they quickly lose control over fairness as accuracy begins to increase. This is evident from
the abrupt rise in A pp observed at around 82.0% on Adult, 63.0% on COMPAS, and 81.0% on
ACS-TI. In contrast, CS only exhibits a sudden increase at 85.0%, 65.5%, and 81.5% for the same
datasets, respectively.

5.3 How CAN THE CS FAIRNESS REGULARIZER PERFORM WELL ON BOTH DP AND EO?

We visualize the kernel density estimate plot -~ of the predictions Y across different sensitive groups to
analyze how CS achieves a better balance of various fairness definitions compared to other baselines.

2https ://seaborn.pydata.org/generated/seaborn.kdeplot.html
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The first row displays the predictions for all target classes, specifically Y = 0 and Y = 1, grouped
by sensitive attributes. In this row, the blue areas represent the prediction density for S = 0, while
the red areas indicate the prediction density for S = 1. The second row illustrates the prediction
density for the positive target class, Y = 1, across two different sensitive groups. Figure 4 presents
the results for Adult based on gender and race groups, with additional results for other datasets
available in Appendix

Obs. 6: CS effectively optimizes the prediction distributions for the two sensitive groups,
specifically Y|S = 0 and f’\S = 1. Additionally, it optimizes the prediction distributions
for these groups within the positive target group, i.e., 17|S =0,Y =1and Y|S =1Y =1
Achieving DP and EO fairness requires different objectives. For instance, DP directly optimizes the
A pp, which results in reduced effectiveness for achieving EO fairness. This is evident across all
datasets, as DP ranks among the worst, achieving 7/10 of the lowest EO fairness scores on A go
when tested on five datasets with two types of sensitive attributes. The distribution plots for DP
further illustrate this, showing a generally larger gap between the two sensitive groups in the EO
plots compared to other methods. In contrast, CS consistently minimizes the prediction density gap
between the two sensitive groups.
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5.4 PARAMETER SENSITIVITY ANALYSIS
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For all models, we tune the hyperparameters us-  *'
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Speciﬁcally’ we VaI'y the parameters o and ﬁ le-4 Se-4 le-3 5;3 le-2 5e-2 le-1 le-4 5e-4 le-3 5;3 le-2 Se-2 le-1
in Equation (13) across the ranges (le — 6,150) Figure 5: Parameter sensitivity of the CS regu-
and (le — 3,10), respectively. In this experi- larizer on ADULT: heatmaps show test accuracy
ment, we specifically visualize the values of & (left) and App (right) as the fairness weight o and
in the range (le — 4, 1e — 1) for Cs. {5 weight 3 vary over the cross-validated ranges.
Overall, CS exhibits a smooth utility—fairness
trade-off, remaining stable over a broad range of
£ and becoming noticeably more sensitive only
when « is very large.

The heatmap in Figure 5 illustrates the accuracy
and A pp across various combinations of o and
[ values for the Adult. In the accuracy plots,
darker colors indicate higher values, which are
preferable, while lighter colors in the /A pp plots represent better fairness performance.

Obs. 7: The highest accuracy is achieved when « is set to its smallest value, 1e — 4, while the
best fairness is obtained with oo = 5e — 2. Notably, fairness drops significantly when « increases
from be — 2 to 1e — 1. Generally, smaller values of « can still yield satisfactory fairness performance
when paired with an appropriate range of (3, specifically around 5 — 10. Obs. 8: The fairness
performance is more sensitive to changes in « than in 3. For instance, adjusting 8 from le — 3 to
10, which represents a 10,000 x increase, results in only a slight decrease in A pp from 7.2 to 4.2.
In contrast, increasing « from le — 2 to 5e — 2, a 5x change, leads to a significant drop in App
from 6.7 to 2.8, when keeping 5 fixed at le — 3.

6 CONCLUSION

In this paper, we introduce a novel fair machine learning method called the Cauchy-Schwarz (CS)
fairness regularizer. Empirically, our approach achieves a more consistent utility—fairness trade-off
across hyperparameter settings than standard regularizers, and yields more generalizable fairness by
minimizing the Cauchy—Schwarz divergence between the prediction distribution and the sensitive
attributes. We demonstrate that the CS divergence provides a tighter bound compared to both the

(To Revwier JuMp:

Kullback-Leibler divergence and the Maximum Mean Discrepancy, as well as the mean disparity used
in Demographic Parity regularization. This superiority is particularly evident when the distributions
are significantly different or when there is substantial variation in the scale of the embeddings. As
a result, our CS fairness regularizer delivers improved fairness performance in practical scenarios.
While our work currently only evaluates on general machine learning tasks, and thus leave future
work to other tasks such as graph learning.
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ETHICS STATEMENT

Our work aims to improve fairness in machine learning by introducing a general and model-agnostic
regularization method that reduces statistical dependence between predictions and sensitive attributes.
By encouraging independence through Cauchy—Schwarz (CS) Divergence, our framework helps
mitigate systematic biases that often lead to disparate treatment of demographic groups. We use
publicly available datasets containing sensitive attributes (e.g., gender, race) solely for the purpose
of evaluating fairness interventions. We acknowledge that fairness is a multidimensional concept
and that no single method can fully eliminate all forms of bias. While our method improves several
group fairness metrics, we caution against deploying fairness-enhancing techniques without thorough
domain-specific evaluation and stakeholder engagement.

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of our results by providing the following: (1) a comprehensive
description of the CS Fairness Regularization method, including the formulation of the objective
function and optimization procedure; (2) details on hyperparameters, model architectures, and training
procedures used in all experiments; (3) evaluation on five benchmark datasets using multiple fairness
metrics and baselines; and (4) open-sourcing our code and data preprocessing scripts upon publication.
We follow standard experimental protocols and report average results across multiple runs to account
for randomness. These practices facilitate independent verification and encourage future research on
robust fairness methods.
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LLM DISCLOSURE

We used an LLM (OpenAl ChatGPT) only for copyediting—streamlining phrasing and correcting
grammatr, spelling, and stylistic inconsistencies. The model played no role in conceiving the research,
designing methods, implementing code, running experiments, analyzing results, or shaping claims.
All edits were reviewed by the authors, and only manuscript text was provided to the tool.

A WHAT IS THE RELATIONSHIP BETWEEN CS DIVERGENCE AND EXISTING
DISTRIBUTION DISTANCE MEASURES?

To illustrate the advantages of the CS fairness regularizer, we begin by summarizing the com-
monly used distribution distance metrics: Maximum Mean Discrepancy (MMD), Kullback-Leibler
divergence (KL), and Hilbert-Schmidt Independence Criterion (HSIC).
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Demographic Parity Regularizer. The demographic parity regularizer is widely utilized in fairness-
focused machine learning studies (Chuang & Mroueh, 2020). It aims to optimize the mean disparity
between two prediction distributions. This regularizer can be formally expressed as:

1 & 1 &
9 =I5 ;p(xz—) -7 ;q(xm (16)

where x; and x; are data points from S = 0 and S = 1, in the context of fairness. In the following,
we represent x; with distribution p and x; with distribution ¢ as x? and x! for simplicity. However,
only optimizing on the mean disparity of two distributions cannot always generate an optimized DP
or EO, as the Equation (16) equals 0 is a necessary but not sufficient condition for achieving DP and
EO.

Mean Maximum Discrepancy. One of the most widely used distance metrics is the Mean Maximum
Discrepancy (MMD) (Gretton et al., 2012). In the context of fairness, previous studies have employed
MMD as a regularizer to enforce statistical parity among the embeddings of different sensitive groups
within a machine learning model (Deka & Sutherland, 2023; Louizos et al., 2016). This approach
aims to facilitate fair representation learning.

MMD NQZ z’ j QZ 17 ]

i,j=1 i,j=1

1 2
- S

=1 j=1

a7

By comparing with Equation (20), we observe that the CS divergence introduces a logarithmic term
for each component of the MMD. Through simple transformations, we can deduce the following:

Remark A.1. CS divergence measures the cosine distance between empirical mean embedding
By = N% Zf\;ll f(x¥) and p, = Z 1 f(x§) in a Reproducing Kernel Hilbert Space, while
MMD utilizes Euchdean distance.

Kullback-Leibler Divergence. Kullback-Leibler (KL) Divergence is a key concept in information
bottleneck theory, where it is used to quantify the mutual information between two probability
distributions. This metric has gained popularity across various domains, including fair machine
learning (Kamishima et al., 2012).

D= [ nto (229 (18)

Hilbert-Schmidt Independence Criterion (HSIC). Let K and L denote the Gram matrices for the
variables = and y, respectively. Specifically, K is defined such that K;; = x(x;,x;), and L is defined

as L;; = k(y;,y;), where  is the Gaussian kernel function given by k = exp ( L0 ) The Hilbert-

Schmidt Independence Criterion (HSIC) can be estimated using the following express1on (Gretton
et al., 2007):

HSIC(p; q) el ZKULU + = N - Z KijLyr
,J 4,5,4,T (19)
~3 Z tr(KHLH),
4,5,9

where H = I — %]l]lT represents a centering matrix of size N x N. In this expression, [ is the

identity matrix, 1 is a vector of ones, and %]I]IT computes the average across the columns, effectively
centering the data by subtracting the mean from each entry.

Compared to Equation (17), The HSIC can be interpreted as the MMD between the joint distribution
p(x,y) and the product of their marginal distributions p(x)p(y).
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B DETAILS ON THE RELATION OF CS AND EXISTING FAIRNESS
REGULARIZERS

B.1 PROOF OF PROPOSITION

Proposition 1. Given two sets of observations {x}; 11 and {qu j=1» let p and q denote the

distributions of two groups. The empirical estimator of the CS divergence Dcs(p; q) is given by:

- 1 1
Des(p; q) =log 2 Z r(x},x%) | +log N2 Z r(x{, x7)
Ly j=1 2 =1
J J (20)
Nl N2
—2lo ,
8 N1N2 2; x5
Proof. The CS divergence is defined as:
(J p(x)q(x) dx)*
Des(p;q) = —1 21
cs (P; q) og (fp(x)2dqu(x)2dx ; 21

where p(x) = 7 ZZ | Ko (x —x5) and §(x) = + Zf\;l Ko (x — x7§) are kernel density estimation.

Then we can obtain:

M M
. 1
/pz(x)dx: WZZK)@J(X?*X?). (22)
i=1 j=1
By a similar approach,
| NN
/qA(z)2 dx = WZZK\@U(XEI - x7), (23)
i=1 j=1
and
] MN
/ﬁ(x)é(x) dx = D> kg x!—xD). (24)
i=1 j=1
Substituting (Equation (22))-(Equation (24)) into Eq. (21), we obtain:
D ! p P 1 - q q
Dcs(p; q) = log el Z K. (X; —%5) | +log N2 Z K5 (X] —X7)
i,j=1 =1
] ’ (25)
| M N
—2log | 37 > D ks, (xf X))
i=1 j=1
O

B.2 PROOF OF REMARK

Remark 1. CS divergence measures the cosine distance between ., and 1, in a Reproducing Kernel
Hilbert Space, while MMD utilizes Euclidean distance.

Proof. Let H be a Reproducing Kernel Hilbert Space (RKHS) associated with a kernel x(x?, xg) =
(f(x7), f(x}))# (Yu et al,, 2024). The mean embeddings of two distributions p and ¢ in H are

7

denoted by p, = N% Zi\lel f(xP) and p, = NLQ Z 1 f(x§) in H, respectively. The CS divergence
defined by Equation (20) can thus be written as:

<H‘p7 I'LQ>7'[

ﬁCS piq) = _210g7
#:9) T allita

= —2log Dcos (tp, Hq)
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Here, (-, -)% denotes the inner product in the RKHS, and || - || represents the norm induced by the
inner product. The mean embeddings pt,, and p, are elements of . Thus, the CS divergence is
computed based on the cosine distance Dcog between p,, and .

Similarly, the Maximum Mean Discrepancy (MMD) between distributions p and ¢ defined in Equa-
tion (17) can be written as:

MMDQ(p, q) = llmp — Nq”%-t = Deuc(pp, Hq)-

Thus, the MMD measures the Euclidean distance between the mean embeddings of p and ¢ in the
RKHS H, i.e., the p, and pg. O

B.3 PROOF OF PROPOSITION

Proposition 2. For any d-variate Gaussian distributions p ~ N (p,, X)) and g ~ N (pg, X4) with
positive definite ¥, and Y4, the following inequality holds:

Dcs(p; q) < Dxn(p; q) and Dcs(p; q) < DxL(q;p)- (26)

Proof. The KL divergence for p and ¢ is given by:

1 _ _ b
Dxr(p;q) = 3 <tr(2]q 1Ep)—d—|—(uq—,up)TEq 1(,uq—,up) + log (H) > . (27)
p
The CS divergence is expressed as (Kampa et al., 2011):
1 1
Dcs(p; q) = —log(dgy) + 3 log(dgz) + 3 log(dyy), (28)
where: (29)
g = o (5 — 1) T(Ep 4 B0) " 1y — 1)) 30)
pq = )
(2m)4[E, + X4
1 1
dpp = e dgq = e (31)
V (2m) 4125, V/(2m)4)2%,|
We simplify:
1 _ 1 |2, + 2]
Des(p;q) = = (kg — pp) " (Sp + 2g) g — pp) + = log | ———=L— | . 32
cs(p; ) 2(“«1 pp) (2 )" (g — mp) 2 g 20 /15, 4] (32)

When the mean vectors differ, based on the property (Horn & Johnson, 2012), Z;l —(Z,+X) !
is positive semi-definite given 3, = >, we have:

2(Des(p; q) — Dxu(p; 9))
= (pq — Hp)T(Ep + Eq)il(ﬂq — Hp) (33)
— (kg — NP)TEq_l(Hq — pp) < 0.

When the covariance matrices differ, let I be the d-dimensional identity matrix (Yin et al., 2024):

2Des(p: ) — D (p; ) = log <IE+EI>

20/ 155 1%
24|

— log <E|> — tr(Z;lEp) +d (34)
p
= —dlog2 + log (\E;lEp +1)

1 _ _
+ 5 log (171 5p]) — tr(2,15,) + d.
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We have [S.'5,] < (3 tr(Eq_lﬂp))d, and '8, + 1] < (1+ étr(Eq_lZp))d. Thus, based
on Equation (34), we can obtain:

2(Des(p; q) — Dxe(p;q))

1

< —dlog2 + dlog (1+ - (%, ',)) (35)
d 1 -1 —1

+ 5 log (2 tx(Z;15,) ) — (2, '5,) +

The combined Equation (33) and Equation (35), we can obtain:

2(Dcs(p; a) — Dx(pig)) <0, (36)

Similarly, we can obtain 2(Dcs(q; p) — Dxr(¢;p)) < 0. In conclusion, we conclude:
Daes(p;q) < Dkw(p;q) and Des(p; g) < Dxu(g;p)- 37)
O
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Methods | Utility | Fairness
IACC%)  + |AUCH)  t |Apr R L |Amo B 4
MLP |66.2110.95 — |73.784025 — |8.321267 — [5.1143.55 —
DP (65384009 -1.25% |72.401058 -1.87% |0.29.0 15 96.51%|1.8340.06 64.19%
Gender MMD  |64.4840.07 -2.61% |72.92, 5, -1.17% |1.224036 85.34%|2.11409.49 58.71%
HSIC|66.0140.29 -0.30% [73.16410.32 -0.84% |0.98+0.26 88.22%(1.00, .5 80.43%
PR 62.7241.01 -527% [69.3619.85 -5.99% |0.78+050 90.63%|1.07+9.36 79.06%
o Cs 65.704 040 -0.77% |72.83 4058 -1.29% |0.1719.08 97.96%|0.75+0.22 85.32%
|
8 MLP |66.38i0_42 — |7369:{:065 — |9~28:|:1463 — |6'21:i:1.63 —
< DP 64.9640.03 -2.14% |71.86+0.23 -2.48% |0.82, 33 91.16%|1.30+9.26 79.07%
Race MMD |65.71.g¢5 -1.01% |70.57+050 -4.23% |3.97+0.97 57.22%|1.55409.79 75.04%
HSIC|65.811904 -0.86% [72.92 1493 -1.04% |1.754031 81.14%|0.43 1023 93.08%
PR 64.254087 -3.21% |70.2540.30 -4.67% |1.56+0.87 83.19%|1.21,47, 80.52%
CS (65164045 -1.84% |72.56, 07 -1.41% |0.554019 94.07%|1.3830.46 77.78%
RN |78~14:t0.47 — |86.58io,55 — |51.66ﬂ:0,97 — |35.67j:1,11 —
DP 62.424 479 -20.12%(66.86+3.19 -22.78%|0.4610.05 99.11%|4.841537 86.43%
Gender MMD  |62.541 496 -19.96%|66.4713.85 -23.23%|1.39+1064 97.31%|5.894+312 83.49%
< HSIC|63.39+43.63 -18.88%(69.33+3.05 -19.92%|2.241+09.36 95.66%|3.8319 45 89.26%
.<I[j PR 65.511350 -16.16%|71.704285 -17.19%|4.0019.50 92.26%|5.0542.57 85.84%
% CS 65.0543g0 -16.75%|71.42 15 46 -17.51%|0.98 ¢ 98.10%|1.5341.05 95.71%
—
8 RN |78.14i0'47 — |86.67i0'53 — |41-74i1.17 — |18~35i1.56 —_
DP 66.78.1361 -14.54%|73.9513 44 -14.68%|2.43 1083 94.18%(0.91,, 7» 95.04%
Young MMD |65.821487 -15.77%|72.844361 -15.96%|3.494083 91.64%|1.6049.71 91.28%
HSIC|66.04,5 0 -15.49%|73.081060 -15.68%|1.99410.55 95.23%|1.0450g0 94.33%
PR 62.98+4.69 -19.40%(69.63+4.02 -19.66%|1.32, ¢ 49 96.84%|1.82+9.53 90.08%
Cs 65.3344.06 -16.39%|73.15, 384 -15.60%|1.28.0.40 96.93%|0.30+9.12 98.37%

Table 3: The fairness performance on the tabular dataset for existing fair models, and we consider
race and gender as sensitive attributes. A higher accuracy metric indicates better performance. 1
represents the accuracy improvement compared to MLP. A lower fairness metric indicates better
fairness. | represents the improvement of fairness compared to MLP. Green values denotes better
than MLP on the corresponding metric (ACC/AUC 1; App/Agol), while red values denote worse.
The results are based on 10 runs for all methods.

C MORE EXPERIMENTAL RESULTS

C.1 EXPERIMENTS ON IMAGE DATASET

In this section, we present the experimental results on the Ce 1elbA—-A image dataset. The CelebA-A
face attributes dataset (Liu et al., 2015) contains over 200, 000 face images, where each image has
40 human-labeled attributes. Among the attributes, we select ‘Attractive’ as a binary classification
task and consider ‘Gender’ and ‘Young’ as sensitive attributes. The results are presented in Table
The results show a similar finding with the tabular dataset, demonstrating that 1) DP method always
achieves a lower A pp but a relatively high Ago. 2) HSIC is a more promising fair model to achieve
equal opportunity.
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C.2 IS THE REPRESENTATION LEARNED BY APPLYING CS VIEWED AS FAIR?

Gender Race Gender Gender

Adult

COMPAS

Figure 6: T-SNE visualizations of the latent representations on Adult, COMPAS, and ACS-1I,
colored by the target attribute (top) and the sensitive attribute (bottom).

To further validate that CS can learn fair representations, we visualize the T-SNE embeddings of
the latent space from the last layer before the prediction layer (Van der Maaten & Hinton, 2008)".
Figure 6 displays the representations learned from the last embedding layer on the Adult, COMPAS,
and ACS-T datasets, while Figure 12 presents the results for ACS—T and CelebA-A. Based on
these visualizations, we make the following observations:

Obs. 7: The CS can learn representations that are indistinguishable between sensitive groups.
This observation validates the effectiveness of CS in learning fair representations. Specifically, the
plots in the first row of Figure 6 illustrate the embedding visualization of two sensitive groups: blue
for S =0 and red for S =1. Overall, the points are uniformly dispersed, with no clear clusters of
nodes sharing the same color. This indicates that the embeddings are learned independently of the
sensitive attribute. Although some groups have a greater number of data points—such as in the
Adult dataset with the sensitive attribute race, where the ratio of S=0:5=11is 1:9.20, and in the
COMPAS dataset with gender, where the ratio is 1:4.17 (as shown in Table 4)—the distribution of
points in both colors remains even.

Obs. 8: The CS can learn distinguishable representations for different target attributes.
Observing the second row of Figure 6, we can identify a distinct pattern in the distribution of the
blue and red points across different locations in the plot. Among these, the embedding for ACS-T
exhibits the clearest pattern, followed by Adult. This observation is consistent with the utility
results presented in Table 2, which show a decrease in accuracy and AUC as the degree of negativity
increases, particularly evident in the 1 columns compared to the MLP. In contrast, COMPAS presents
a greater challenge in ensuring utility while considering fairness, as indicated by the less distinct
pattern in the learned embeddings, corroborated by the most significant utility drops in Table

3https ://scikit-learn.org/stable/modules/generated/sklearn\protect\pena
lty\z@.manifold.TSNE.html
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C.3 MORE PREDICTION DISTRIBUTIONS OVER THE SENSITIVE GROUPS

As described in Section 5.3, the kernel density plots in this subsection visualize how the prediction

distributions vary across sensitive groups, and how different fairness regularizers affect this alignment.

In general, a larger overlap between the distributions of different sensitive groups indicates better
group fairness. For each figure in this subsection, the top row shows the distributions of the raw

predictions Y for all target labels, grouped by a given sensitive attribute, while the bottom row focuses
on the positive class.

For example, in Figure 7: the first row plots the prediction densities for Race: the blue shaded area
corresponds to Y | Race = Black and the red shaded area corresponds to Y | Race = White; the
second row then plots the prediction densities for the positive class, i.e., Y =1, again conditioned on
the two race groups (blue for Y =1 | Race = Black and red for Y =1 | Race = White).

The other figures are interpreted analogously for their respective sensitive attributes. Since the degree
of overlap can sometimes be difficult to judge by eye, we also print the corresponding group-fairness
metric in each subfigure: the first row reports App (demographic parity gap) and the second row
reports Ago (equalized odds gap).
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Figure 7: Prediction distributions for black and white groups in the Adult dataset.
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Figure 9: Accuracy and A pp trade-off on ACS—TI with sensitive attribute gender and race. Results
located in the bottom-right corner are preferable.
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Figure 11: Accuracy and App trade-off on CelebA-A with sensitive attribute gender and race.
Results located in the bottom-right corner are preferable.
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C.4 MORE T-SNE PLOTS

Gender Race

ACS-T Celeba-A

Figure 12: Accuracy and A pp trade-off on ACS-T and CelebA-A. Results located in the bottom-
right corner are preferable.

In addition to the T-SNE plots shown in Figure 6, which show the results on three datasets, we also
include the T-SNE plots on the two remaining datasets ACS—T and CelebA-A in Figure 12.

D DATASET DESCRIPTIONS AND DETAILS

We conducted experiments on five datasets, including four tabular datasets and one image dataset.
The introduction of these datasets is as follows:

e Adult’ (Dua & Graff, 2017) The Adult dataset includes data from 45, 222 individuals based on
the 1994 US Census. The primary task is to predict whether an individual’s income exceeds $50k
USD, using various personal attributes. In this analysis, we focus on gender and race as sensitive
attributes.

» COMPAS’ (Larson et al., 2016) The COMPAS dataset contains records of criminal defendants
and is designed to predict the likelihood of recidivism within two years. It encompasses various
attributes related to the defendants, including their criminal history, gender, and race.

* ACS-I and ACS-T° (Ding et al., 2021) The ACS dataset is derived from the American Community
Survey (ACS) Public Use Microdata Sample and encompasses several prediction tasks. These
tasks include predicting whether an individual’s income exceeds $50k and whether an individual
is employed, with features such as race, gender, and other relevant characteristics tailored to each
task.

» CelebAa-A’ (Liu et al., 2015) The CelebFaces Attributes dataset comprises 20, 000 face images
of 10, 000 distinct celebrities. Each image is annotated with 40 binary labels representing various
facial attributes, including gender, hair color, and age. In this study, we focus on the ’attractive’
label for a binary classification task, while considering ’young’ and ’gender’ as sensitive attributes.

The detailed statistics for the aforementioned datasets are summarized as follows:

‘https://archive.ics.uci.edu/ml/datasets/adult
Shttps://github.com/propublica/compas-analysis
®https://github.com/zykls/folktables
"https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Dataset Task Sen. Attr. (S) #Samples #Feat. ClassY 0:1 1stS0:1 2nd S0:1
Adult Income Gender, Race 45,222 101 1:0.33 1:2.08 1:9.20
COMPAS Credit Gender, Race 6,172 405 1:0.83 1:4.17 1:0.52
ACS-I Income Gender, Race 195,665 908 1:0.70 1:0.89 1:1.62

ACS-T Travel Time Gender, Race 172,508 1,567 1:0.94 1:0.89 1:1.61
CelebA-A Attractive  Gender, Young 202,599 48 x 48 1:0.95 1:0.71 1:3.45

Table 4: The table presents the statistics of the datasets. #Feat. refers to the total number of features
after preprocessing”. The ratio 0:1 represents the proportion between the two categories of the target
label or sensitive attributes.

E BASELINES DETAILS

We consider four widely used fairness methods: DP, MMD, HSIC, and PR. Specifically, DP and HSIC
minimize the demographic parity and Hilbert-Schmidt Independence Criterion, respectively. MMD
learns a classifier that optimizes the Mean Maximum Discrepancy. We also include base models MLP
and RN for tabular data and image data, respectively.

* DP: It is a gap regularization method for demographic parity (Chuang & Mroueh, 2020). As these
fairness definitions cannot be optimized directly, gap regularization is differentiable and can be
optimized using gradient descent.

* MMD: The Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is a metric used to measure
the distance between probability distributions. Previous research has leveraged MMD to enhance
fairness in machine learning models, specifically in variational autoencoders (Louizos et al., 2016)
and MLPs (Deka & Sutherland, 2023). In this paper, we build on the methodologies from earlier
works (Zhao & Meng, 2015) to compute the MMD baseline.

* HSIC: It minimizes the Hilbert-Schmidt Independence Criterion between the prediction accuracy
and the sensitive attributes (Gretton et al., 2005; Baharlouei et al., 2020; Li et al., 2019).

* Prejudice Remover (PR) (Kamishima et al., 2012) (Prejudice Remover) minimizes the prejudice
index, which is the mutual information between the prediction accuracy and the sensitive attributes.

F MORE FAIRNESS DEFINITIONS

G DETAILS OF THE GROUP FAIRNESS

In this section, we provide the details of the group fairness. We first introduce the definition of group
fairness. Then, we introduce the existing group fairness metrics and algorithms.

* DP (Demographic Parity or Statistical Parity) (Zemel et al., 2013). A classifier satisfies de-
mographic parity if the predicted outcome Y is independent of the sensitive attribute 5, i.e.,
P(Y|S=0)=P(Y |S=1).

e prule (Zafar et al., 2017). A classifier satisfies p%-rule if the ratio between the probability of

subjects having a certain sensitive attribute value assigned the positive decision outcome and the
probability of subjects not having that value also assigned the positive outcome should be no less

than p/100, i.e., |[P(Y =1| 8 =1)/P(Y =1| 8 = 0)| < p/100.
» EOpp (Equality of Opportunity) (Hardt et al., 2016). A classifier satisfies equalized opportunity
if the predicted outcome Y is independent of the sensitive attribute .S when the label Y = 1, i.e.,

PY|S8=0Y=1)=PY |S=1Y =1).

e EOdd (Equalized Odds) (Hardt et al., 2016). A classifier satisfies equalized odds if the predicted
outcome Y is independent of the sensitive attribute S conditioned on the label Y, i.e., P (Y |
S=0,Y=9y)=PY |S=1Y =y),yec{0,1}.

* ACC (Accuracy Parity). A classifier satisfies accuracy parity if the error rates of different sensitive
attribute values are the same, i.e., P(Y #Y | S=0)=P(Y #Y | S =1),y € {0,1}.

* aucp (ROC AUC Parity). A classifier satisfies ROC AUC parity if its area under the receiver
operating characteristic curve with w.r.t. different sensitive attribute values is the same.
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* ppVv (Predictive Parity Value Parity) A classifier satisfies predictive parity value parity if the
probability of a subject with a positive predictive value belonging to the positive class w.r.t.
different sensitive attribute values are the same, i.e, P(Y =1 |Y,S =0) = P(Y =1 |
V,5=1).

* bnegc (Balance for Negative Class). A classifier satisfies balance for the negative class if
the average predicted probability of a subject belonging to the negative class is the same w.r.t.
different sensitive attribute values, i.e., E[f(X) | Y =0,5 =0 =E[f(X) | Y =0,5 =1].

* bposc (Balance for Positive Class). A classifier satisfies balance for the negative class if the
average predicted probability of a subject belonging to the positive class is the same w.r.t.
different sensitive attribute values, i.e., E[f(X) | Y =1, =0 =E[f(X) | Y =1,5 =1].

 abcc (Area Between Cumulative density function Curves) (Han et al., 2023) is proposed to
precisely measure the violation of demographic parity at the distribution level. The new fairness
metrics directly measure the difference between the distributions of the prediction probability for
different demographic groups

H ADDITION EXPERIMENTS

H.1 ADDITION EXPERIMENTS ON MORE FAIRNESS METRICS

We provide additional results comparing our framework with baselines under the following fairness no-
tions: Predictive Parity (PPV) (Chouldechova, 2017), p%-Rule (PRULE) (Zafar et al., 2017), Balance
for Positive Class (BFP) (Kleinberg et al., 2016), and Balance for Negative Class (BFN) (Kleinberg
et al., 2016). The dataset is Adult, using gender as the sensitive attribute. All other experimental
settings are consistent with Table 1 in the paper.

Method Appv (\l,) PRULE (T) ABFrp (\l,) ABFN (\L)

DP 27.35£5.64 81.21£9.04 11.25+2.75 5.15+0.44
MMD 35.19+6.33  85.83£7.15 18.32+£3.74 3.49+£0.25
HSIC 37.25+£3.19  96.18 £2.12 16.47+1.21 4.04+£0.32
PR 2546 £3.17 89.57+£7.39 21.45+£237 3.46 +£0.28
Cs 31.59+435 97.75+3.24 1525£2.58 3.18+0.36

Table 5: Fairness performance comparison on the Adult dataset, with gender as the sensitive
attribute under Appy, PRULE, Agrp, and Agpyn.

We observe the following:

» CS generally achieves the best fairness trade-off performance across the four tested fairness
notions.

* On the Adult, BFN is generally minimized more effectively than BFP.

* Since BFN is related to EO, the ranking of Aggy aligns with Agg in Table 1 of the paper.
Note that, as stated in previous studies (Kleinberg et al., 2016), there is an inherent trade-off
between BFP and BFN in practice.

H.2 ADDITIONAL EXPERIMENTS ON COMBINING MULTIPLE REGULARIZER TERMS
SIMULTANEOUSLY

We conducted additional experiments where we combined both KL divergence and CS divergence as
regularizers. The experiments were performed on the Adult, with gender as the sensitive attribute.

Actually, combining multiple fairness objectives has several drawbacks, which is why most existing
studies avoid using multiple regularizers. Instead, they often choose to add simple constraint terms.
The key drawbacks of combining fairness regularizers are summarized as follows:

8We adopt the preprocessing in previous studies (Le Quy et al., 2022; Mehrabi et al., 2021) involving
identifying the target labels and sensitive attributes, and then selecting the relevant features for the analysis.
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Method | App({) Ago (1)

DP 1.29+0.95 20.15+1.13
CS 242 +0.85 2.27+1.04
KL 2.77+0.86 10.42+4.34

CS+KL 246 +1.25 13.42+£6.12
CS+0.5KL | 2.25+1.14 9.33+£6.36

Table 6: The fairness performance on Adult (gender).

» The CS divergence is upper-bounded by the KL divergence. Therefore, adding KL as an
additional fairness objective is theoretically redundant and will not provide further benefits.

* Adding KL or other fairness metrics increases computational complexity, making the
optimization process more challenging.

These experimental results further show the significance of our contribution: identifying a suitable,
tighter-bounded fairness regularizer that balances effectiveness and computational efficiency.

H.3 ADDITIONAL EXPERIMENTAL ON EODD AND EOPP

In this subsection, we provide additional experimental results on EOdd and EOpp, defined in Ap-
pendix G. Each line represents the results for one of the hyperparameter values o = 0.2/0.8/1.4,
denoted as ’lam’ in the legend. We observe that both EOdd and EOpp regularizers perform well on
the EO metrics but do not perform as well on the DP metrics. We summarize the results as follows:

Table 7: Fairness performance comparison on the ACS-I (gender) on additional metrics.

Method Appv (\L) PRULE (T) Aprp (\L) ABFN (\L) App (i) AEO (\L)

Dp 11.86 £6.54 97.14+12.41 4.83+4.35 3.97 +£4.02 0.96 £0.22 5.37£0.32
EOdd 8.38 £1.28 84.75 £ 3.88 043+0.63 031+0.73 5.76+1.42 0.64 £1.25
Eopp 8.00 = 1.65 83.36 £ 4.41 0.34+£1.00 1.24+1.43 6.32+0.81 0.52+1.29
CS 7.00 + 8.35 96.90 £ 8.35 4.39+£1.32 277+1.83 077038 0.90+0.46

The observations from the results align with our claims, and the CS regularizer demonstrates signifi-
cant effectiveness:

* As shown in Table 2 of our paper, the MLP achieves a A o of 2.13 + 3.64, whereas the DP
regularizer gets a higher A po of 3.97 &+ 4.02. This indicates that the DP regularizer does
not effectively optimize and may even negatively affects EO fairness.

e EO-based methods (EOdd and EOpp) show the worst performance in terms of DP fairness,
even compared to other baselines such as MMD, HSIC, and PR (as reported in Table 2 in
the paper). In particular, EOpp reaches approximately 15 in App on the Adult dataset,
as shown in the Appendix K. This high App is consistently observed across different
hyperparameter (o = 0.2, 0.8, 1.4, referred to as ’lam’ in the figure).

(To Revwier Pqrj:

H.4 ADDITIONAL EXPERIMENTS ON PRE-PROCESSING AND POST-PROCESSING BASELINES

We have added a post-processing method, PostEO (Hardt et al., 2016) on the Adult dataset (with
gender as the sensitive attribute).

The PostPro method is specifically designed to optimize for EO (Hardt et al., 2016), which explains
its lower Ago.

However, both pre-processing and post-processing methods share a common limitation: they result
in lower utility (ACC or AUC). Considering the need for a balanced trade-off between fairness and
utility, CS emerges as the most favorable option in our comparison.
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Method ACC(1)  AUC(Y)  App(l)  Apo())

DP 82.42+0.39 86.91+0.80 1.294+0.95 20.15+1.13
CSs 83.31410.47 90.1540.49 2.42+0.85 2.274+1.04
PR 81.81 +0.52 &85.384+0.82 0.714+0.40 12.454+2.38

PostPro  80.25 £0.83 84.35+£0.98 5.75+1.67 212+1.44

Table 8: Comparison of methods on various metrics.

H.5 ADDITIONAL BASELINES WITH DEPENDENCE MEASURES

To further contextualize our CS-based fairness regularizer, we additionally compare against sev-

eral classical dependence measures between the model prediction Y and the sensitive attribute S:
Hirschfeld-Gebelein—Rényi maximal correlation (HGR), mutual information (MI), and (distance) co-
variance (dCov) or empirical distance covariance. In all cases, we regularize the model by penalizing

the corresponding dependence between Y and S.

HGR maximal correlation (HGR). The Hirschfeld-Gebelein—Rényi maximal correla-
tion (Hirschfeld, 1935; Gebelein, 1941; Rényi, 1959) between two random variables X and S
is defined as:

prcr(X, 8)=sup Corr(f(X),g(S)) st E[f(X)]=E[g(S)]=0, E[f(X)*|=E[g(5)*]=1,

f9
(38)
where the supremum is taken over square-integrable functions f and g. We instantiate an HGR-based
fairness regularizer by penalizing pggr (Y, .S) using a neural estimator.

Mutual information (MI). Mutual information (Cover, 1999) between X and S is

I1(X;9) //pr ,8)log ——2——— Px.s(@;5) dx ds, (39)
px () ps(s)
or, for discrete variables,
z,S
I(X;S):ZZ])XSQ 9)1ogpxsi() (40)
Pl x () ps(s)
Equivalently, MI can be written as a Kullback-Leibler divergence
I(X;S) = Dxi(px,s || pxps)- (41)

Our MI-based baseline regularizes the mutual information between the prediction and the sensitive
attribute, I(Y';.S), using a differentiable estimator.
Distance covariance (dCov) and empirical distance covariance. Distance covariance (Székely

et al., 2007) between X € R? and S € R? is defined via their joint and marginal characteristic
functions ¢ x g, ¢x, and g as

dCov?(X, S) = / lox.s(t,u) — ox (t) ps(w)]® w(t,u) dt du, 42)
JRP+a
for a suitable weight function w(t, w). In practice, we use the standard empirical distance covariance
estimator. Given samples {(z;, s;) }7—;, define pairwise distances a;; = ||x;—x;|| and b;; = ||s;—
and their double-centered versions:
Aij = ;5 — Q;. — Q.5 +a.., 43)

where @;. and a.; denote row and column means, and a.. is the grand mean (and analogously for b).
The empirical distance covariance is then:

n n

dCov = Z > AiiBij. (45)

=1 j=1

—_— 2 A~
Our dCov-based regularizer penalizes dCov (Y, 5).
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Experimental setup. To assess how our CS-based regularizer compares with other classical
dependence measures, we conduct an additional experiment on the ADULT dataset using gender as
the sensitive attribute. We keep all settings identical to the main experiment on ADULT in Section 5:
the same data split and preprocessing, the same MLP classifier architecture, optimizer, batch size,
learning rate, number of epochs, and the same protocol for tuning the fairness-regularization weight.
The only change is the choice of the fairness loss term Lg,j;,.

Concretely, for each additional baseline, we replace the CS-based fairness loss in Equation (13) with
the corresponding dependence measure between the model prediction Y and the sensitive attribute
S (i) the HGR baseline penalizes the Hirschfeld—Gebelein—Rényi maximal correlation ,()HGR(Y7 S)
using a neural estimator; (ii) the MI baseline penalizes the mutual information (}7; S) between
prediction and sensitive attribute, estimated with a differentiable MI estimator; and (iii) the dCov

baseline penalizes the empirical distance covariance dCov 2(}7, S) defined before. In all cases, the
overall training objective retains the same form as Equation (1), and we evaluate the resulting models
on accuracy, AUC, App, and Ago using the same test split as in the main experiments. The results
are summarized in Table 9.

Method  ACC (1) AUC (1) App (1) Apo (1)

HGR 80.13+1.35 84204127 3.82+£0.84 6.82+3.77
dCov 82.31+0.62 85.394+0.89 4.75+1.67 12.41+1.44
PR 81.81+0.52 85.384+0.82 0.71+0.40 12.45+2.38
cs 83.31+047 90.15+049 2424085 2.27+1.04

Table 9: Additional comparison of with HGR and dCov.

From the results in Table 9, we observe that the proposed CS-based regularizer achieves the best
overall performance among all dependence-based baselines: it attains the highest ACC and AUC
while keeping both App and Agg low, confirming that CS offers a robust utility—fairness trade-off.
More specifically, (i) HGR is theoretically a very strong dependence measure, but in practice it
requires a neural estimator of the maximal correlation, which makes optimization noisy and sensitive
to hyperparameters; this is reflected in its relatively low ACC/AUC and larger standard deviations,
although its fairness metrics are still competitive, indicating that it can reduce dependence when the
optimization succeeds. (ii) dCov is a kernel-based or distance-based statistic with a closed-form
empirical estimator, so it is easier to optimize and leads to higher ACC/AUC and smaller variance
than HGR; however, its fairness performance is weaker, suggesting that penalizing average pairwise
distances between prediction and sensitive-feature embeddings is less aligned with group-rate gaps
than the density-ratio style CS divergence, which yields tighter control over the discrepancies that
drive App and Agp. (iii) PR (an MI-based regularizer) achieves very small App, consistent
with its design of directly reducing mutual information between Y and S and thereby aligning the
marginal prediction rates across groups, but its Ago remains large and its utility is moderate, as
MI does not explicitly constrain the conditional error rates P(f/ | Y, S) that underlie equalized
odds. Overall, these observations support CS as the most balanced choice among the considered
dependence measures.

Discussion: Relation between MI and our KL- and PR-based regularizers. For completeness,
we briefly discuss how the generic MI baseline above relates to the KL-based fairness losses and the
Prejudice Remover (PR) baseline used in our main experiments. By definition, mutual information is
a Kullback—Leibler divergence between the joint distribution and the product of the marginals:

I(X;S) = Dxi(px,s || pxps). (46)

Thus, MI and KL belong to the same family of information-theoretic discrepancy measures: MI
uses KL to quantify any deviation of px ¢ from independence, while many fairness regularizers
based on KL (including the KL term used in our fairness-loss landscape in Figure 2) penalize
Kullback—Leibler divergences between conditional distributions, such as Dxr, (pm s—o | Py is=1)-
These conditional KL penalties are closely related to MI but not identical: if all Py |5=s coincide,

then both the conditional KL and I (57; S') vanish, yet vanishing conditional KL for one pair of groups
does not necessarily minimize the full KL between py. ¢ and py-ps.
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The Prejudice Remover (PR) (Kamishima et al., 2012) can be viewed as an explicit MI-based
regularizer. PR minimizes the prejudice index, which is defined as the mutual information between
the prediction and the sensitive attribute, I(YA’: S), under a log-linear model of the conditional odds.
In this sense, PR instantiates the generic MI regularization principle with a particular parametric form
and optimization scheme.

In summary, the generic MI baseline, the KL-based fairness penalties, and PR all enforce indepen-
dence between Y and S using KL divergence in different guises: MI regularizes the KL divergence
between py ¢ and py-ps; Our KL-based fairness loss penalizes KL divergences between group-
conditional predictions distributions; and PR minimizes a parametric approximation of I(Y;S). Our
CS-based regularizer complements this family by replacing the KL.-based dependence measure with
the Cauchy—Schwarz divergence, which enjoys closed-form kernel estimators and the tighter bounds
analyzed in the main text.

| To Revwier

H.6 ADVERSARIAL METHODS EXPERIMENTS

We conducted additional experiments using Adversarial Debiasing (Louppe et al., 2017), which we
refer to as ADV below.

Method ACC(T) AUC () App () Ao (4)
DP 82.42+0.39 86.91+0.80 1.29+£0.95 20.15£1.13
Cs 83.04+0.51 90.84+£0.35 2.13£0.89 235+1.15
ADV 81.58 £1.26 83.08+£0.75 16.3+7.5 14.2 £ 8.6

Table 10: Additional experiment on the fairness performance of ADV on the Adult dataset (gender
attribute).

From Table 10, we observe that:

* The ADV method exhibits lower utility (in terms of ACC and AUC) and higher A pp compared to
both the DP and CS fairness regularizers. It also performs worse than the CS regularizer in terms
of A EO-

* ADV also shows a higher variance in accuracy, likely due to the greater difficulty of optimizing
adversarial objectives compared to the DP and CS regularization approaches.

| ESYX: R2-1
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I MORE EXPERIMENTAL DETAILS

In this section, we describe the details of the experimental setup. In this work, we adopted a
straightforward stopping strategy. We employ a linear decay strategy for the learning rate, halving
it every 50 training step. The model training is stopped when the learning rate decreases to a value
below 1le~®. Across all datasets, we use a weight decay of 0.0, StepLR with a step size of 50 and
a gamma value of 0.1, and train for 150 epochs using the Adam Optimizer (Kingma & Ba, 2014).
The batch size and learning rate vary depending on the dataset, with specific values provided below.
Additionally, Table 11 lists the range of the control hyperparameter g for each fairness approach. The
experiments were executed using NVIDIA RTX A4000 GPUs with 16GB GDDR6 Memory.

1.1 HYPERPARAMETER SETTINGS

1. Training Hyperparameters:

¢ Tabular data (Adult, COMPAS, ACS-T, and ACS-T):
Learning rate: le~2

Weight decay: 0.0

StepLR _step: 50

StepLR_gamma: 0.1

— Training epochs: 150
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— Batch sizes: 1,024 on Adult, 32 on COMPAS, 4,096 on ACS-1I, 4,096 on ACS-T
* Image data (CelebA-2):
- Learning rate: 1e=3
Weight decay: 0.0
StepLR _step: 50
StepLR_gamma: 0.1
Training epochs: 150
Batch sizes: 256.

2. Architecture Hyperparameters:

* Multilayer perceptron:

— Number of layers: 3
— Number of hidden neurons: {512, 256,64}
e ResNet-18 (He et al., 2016):

— Model: https://github.com/pytorch/vision/blob/main/torchvisio
n/models/resnet.py

1.2  HYPERPARAMETER SELECTION

To implement CS and the baseline methods, we adjust the hyperparameter 3 by tuning it within a
specified range. The details of the hyperparameter selection process and the specific range for 5 are
provided below:

Method Fairness Control Hyperparameter 3

DP 0.5,1.0,1.2,1.4,1.6,1.8,2.0,2.5,3.0,3.5,4

HSIC 0.1,1,5,10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1, 000

PR 0.05,0.2,0.3,0.40,0.50,0.7,0.9, 1.0

ADV 0.5,1.0,1.2,1.4,1.6,1.8,2.0,2.5,3.0, 3.5

Cs le7f 1e7® 1e74 1e73,1e72,2¢72,5¢72,0.1,0.5, 1.0, 2.0, 3.0, 4.0, 50, 150

Table 11: The selections of fairness control hyperparameter blue/.

J RELATED WORK

In this section, we first review relevant prior studies, beginning with an overview of algorithmic
fairness in machine learning. We then narrow our focus to regularization-based in-processing methods,
which are central to our approach.

J.1 ALGORITHMIC FAIRNESS IN MACHINE LEARNING

The importance of fairness in machine learning has grown significantly as the demand for unbiased
decision-making models for individuals and groups increases. This is especially critical in high-
stakes applications where the consequences of biased decisions can be severe. Fairness is commonly
categorized into three main types: Individual fairness (Yurochkin et al., 2019; Mukherjee et al.,
2020; Yurochkin & Sun, 2020; Kang et al., 2020; Mukherjee et al., 2022), which aims to ensure that
similar individuals are treated similarly; Group fairness (Hardt et al., 2016; Verma & Rubin, 2018;
Lietal., 2020; Ling et al., 2023), which focuses on achieving fairness across predefined subgroups,
often defined by sensitive attributes such as gender or race; Counterfactual fairness (Kusner et al.,
2017; Agarwal et al., 2021; Zuo et al., 2022), which seeks to ensure fairness by considering how
decisions would hold under alternative scenarios. Given the widespread adoption of group fairness
metrics in real-world applications and the increasing development of in-processing techniques for
deep neural network models, we focus on benchmarking these methods to ensure group fairness in
neural networks, particularly for tabular and image data.
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Various techniques for mitigating bias in machine learning models can be categorized into three
main approaches: pre-processing, in-processing, and post-processing. Pre-processing methods
focus on addressing biases present in the dataset itself to ensure that the trained model exhibits
fairness (Kamiran & Calders, 2012; Calmon et al., 2017a). For instance, these techniques may
involve rebalancing the dataset or modifying the data collection process (Calmon et al., 2017b).
In-processing methods, on the other hand, adjust the training objectives by incorporating fairness
constraints directly into the learning process (Kamishima et al., 2012; Zhang et al., 2018; Madras
et al., 2018; Zhang et al., 2022; Buyl & De Bie, 2022; Alghamdi et al., 2022; Shui et al., 2022;
Mehrotra & Vishnoi, 2022). This approach aims to ensure that the model learns fair representations
during training. Finally, post-processing methods modify the predictions made by classifiers after
the model has been trained, with the goal of promoting fairness across different groups (Hardt et al.,
2016; Jiang et al., 2020; Tsaousis & Alghamdi, 2022). By categorizing these techniques, we can
better understand the different strategies available for mitigating bias in machine learning systems.

J.2 REGULARIZATION-BASED IN-PROCESSING METHODS

In this paper, we explore three types of regularization-based in-processing methods. First, Gap
Regularization (Chuang & Mroueh, 2020) streamlines the optimization process by offering a smooth
approximation of real-world loss functions, which are typically non-convex and difficult to optimize
directly. This category includes methods such as DP, EO, and EOD. Second, the Independence
approach integrates fairness constraints into the optimization, aiming to mitigate the influence of
protected attributes on model predictions while maintaining overall performance. Notable examples
of this approach include PR (Kamishima et al., 2012) and HSIC (Li et al., 2019). Lastly, adversarial
debiasing seeks to minimize utility loss while hindering an adversary’s ability to accurately predict
the protected attributes. This approach encompasses methods like ADV (Zhang et al., 2018; Louppe
et al., 2017; Beutel et al., 2017; Edwards & Storkey, 2015; Adel et al., 2019) and LAFTR (Madras
etal., 2018).

J.3 CAUCHY-SCHWARZ DIVERGENCE IN OTHER ML SETTINGS

Cauchy-Schwarz (CS) divergence has also been studied and applied in several machine-learning
problems outside of algorithmic fairness. Early work used CS divergence together with Parzen
window density estimates to build information-theoretic criteria for clustering and graph-based
learning, and to relate CS divergence to Mercer kernels and graph cuts (Jenssen et al., 2006). More
recent studies have employed CS divergence as a training objective for representation learning and
deep models, for example in information-bottleneck formulations for regression (Yu et al., 2024),
domain adaptation (Yin et al., 2024), and CS-regularized autoencoders that improve density estimation
and clustering performance (Tran et al., 2022). Conditional variants of CS divergence have further
been developed for time-series analysis and sequential decision making (Yu et al., 2025). These
works demonstrate that CS divergence is a versatile discrepancy measure for density estimation
and representation learning; our contribution is complementary, as we systematically develop and
evaluate CS divergence as an in-processing fairness regularizer with dedicated theoretical analysis
and extensive experiments in the algorithmic-fairness setting.

[ To Revwier JuMp:

In contrast to these applications, which primarily target density estimation, clustering, or represen-
tation learning objectives, our focus is on algorithmic fairness. To the best of our knowledge, our
work is the first to systematically develop Cauchy-Schwarz divergence as an in-processing fairness
regularizer, with theoretical analysis tailored to group-fairness notions and an extensive empirical
study of the resulting utility-fairness trade-offs.
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K CURVES

In this section, we show some important curves we recorded.

Note: The line represents the mean values, and the shaded area indicates the variation across all
runs.

K.1 EODD ADDITIONAL RESULTS
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Figure 13: Other metrics (Appv (1), PRULE(T), Agrp (1), Arn (1) ), App (Shown as
’dpe’), and eodde.
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Figure 14: ACC, AUC and Ao (Shown as “eoppe”)
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ACS-I (Gender)
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Figure 15: Other metrics (Appy
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Figure 16: ACC, AUC and A EO (Shown as “eoppe”).
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K.2 EOPP ADDITIONAL RESULTS
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Figure 17: Other metrics (Appy (1), PRULE(1), Agrp (), Arn (1) ), App (Shown as

’dpe’), and eodde.
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ACS-I (Gender)

Figure 20: ACC, AUC and A go (Shown as “eoppe”).

* Dataset: Adult
* Sensitive Attribute: Gender (represented as “Sex”)

» Hyperparameters: Learning rate = 1 x 1072, o = 5 x 1072, batch size = 1024, and
B8 = 1.0 (kept consistent across all regularizers).

Training Fairness loss: HSIC, CS, and DP
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Figure 21: Training loss.

Training Fairness Loss: HSIC and CS

train/fair_loss
x, model: s — dataset: adult,tarpet_a

o
e \///’“v/\ M —_— .

Step
4 20 40 60 80 100 120 140

Figure 22: Training loss (excluding DP regularizer line) to more clearly observe the gap between
HSIC and CS regularizers.
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Test App and Ago:

Figure 23: Test App and Ago.

L ADDITIONAL ABLATIONS AND EXPERIMENTS WITH MULTIPLE SENSITIVE

ATTRIBUTES . .
_{To Revwier Pqrj: }

Follow up

L.1 ABLATION OVER KERNEL FAMILIES (GAUSSIAN/ LAPLACIAN/POLYNOMIAL)

Beyond the bandwidth study, we also compare different kernel families used inside the CS regularizer.
We consider three standard choices:

* Gaussian (RBF): kr(u,v) = exp(_%) .
* Laplacian: kj,p(u,v) = exp(—@) )
* Polynomial (degree 2): kpoy(u,v) = (yu'v + 1)27 v =1/o

On the Adult-Income task (sensitive attribute Sex), we keep the model architecture, optimizer, training
schedule, and regularization weight ) identical to the main experiment, and only change the kernel
family used in the CS loss. For a fair comparison, we use the same bandwidth o, = 0 = O¢ross = 1
for all three kernels. We summarize the final results from Figure 26 into Table

A

/\

Figure 24: Ablation study: Accuracy and fairness of different kernel functions (Gaussian/Lapla-
cian/polynomial) on Adult (sex).

Kernel type AUC (%)t Acc (%)t Arol Appl

Laplacian 84.2 83.5 0.75 3.3
Gaussian RBF 85.8 84.7 2.5 5.6
Polynomial 86.3 85.1 3.3 6.5

Table 12: Ablation study: CS performance on different kernel functions (Gaussian/ Laplacian/polyno-
mial)

From Table 12, all three kernels achieve strong predictive performance (AUC = 84-86%), but they
trace out different points on the accuracy—fairness trade-off curve:
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» The Laplacian kernel yields the smallest EO and DP gaps, i.e., the best group fairness, at the
cost of a small drop in AUC/accuracy.

* The polynomial kernel attains slightly higher AUC/accuracy, but with noticeably larger EO/DP
gaps.

* The Gaussian (RBF) kernel lies between the two, offering a balanced trade-off: it preserves
most of the performance benefits of the polynomial kernel while significantly improving fairness
compared to polynomial and remaining closer to Laplacian.

These results confirm that CS is compatible with multiple kernel families and that the choice of kernel
can be used to tune the fairness—utility trade-off. In the main paper, we adopt the Gaussian kernel as
a default because it provides a stable, middle-ground trade-off and is widely used in dependence
measures (MMD/HSIC), making our comparison to existing divergences more direct.

L.2 ABLATION OVER KERNEL BANDWIDTH o

To study the effect of the kernel bandwidth in the CS regularizer, we fix the model and training setup
used on Adult-Income (sensitive attribute Sex) and vary the kernel bandwidths while keeping all
other hyperparameters fixed (same optimizer, learning rate, batch size, and « as in the main Adult
experiments).

llu—vli3

We use an RBF kernel &, (u,v) = exp (7T> , and set o, = 1 for the prediction output, while

varying o, = 0y = Ocross € {0.5, 1,2, 5,10, 15, 20} for the sensitive attribute and cross terms in the
CS loss. For each configuration we record: (i) the Ago ('test/eoppe’), (ii) the App ("test/dpe’), (iii)
test accuracy, and (iv) test AUC at the final epoch.

- -
— 149:85.00774 (85.007 00774) dat ult, ta i
49: 8208152 (82. 08152, 82. 08152) dataset: adult, target_a...gma_y: 5, sigma_cross: 5 49:90 n 1

test/dpe test/eoppe

Figure 25: Ablation study: Ablation over kernel bandwidth of CS on Adult (sex). How to read
these figures: in each subfigure, the lines are ordered in the legend from top to bottom according
to their values, from highest to lowest.

From Table 13, we see two observations:

* Extremely small bandwidths (¢ < 1) Here the RBF kernel becomes extremely peaked. The CS
loss forces almost pointwise independence, which makes optimization unstable: accuracy collapses
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Oy = Ox = Ocross AEO \L ADP \I/ ACC (%) T AUC (%) T

0.5 1.52 4.34 24.8 84.5
1 0.75 3.39 24.8 84.9
2 7.76 12.80 76.9 90.4
5 6.39 22.15 82.1 90.8
10 5.64 20.27 85.5 91.2
15 3.68 16.37 84.5 90.8
20 8.08 19.40 85.0 90.7

Table 13: Ablation study: Kernel bandwidth on the proposed CS fairness regularizer.

to =~ 25% and AUC drops to ~ 84-85%. The very small DP/EO gaps in this regime are therefore
misleading—they correspond to a nearly random classifier.

* Moderate bandwidths (o € [2,20]) In this regime, the classifier maintains high utility (AUC
~ 90-91%, accuracy between 77% and 85.5%). Fairness varies smoothly with o

* Ago generally improves when moving from too-local kernels (o = 2, 5) to more moderate ones;
o = 15 achieves the smallest Ago among the stable runs.

* App is best at o = 2, but this comes with noticeably lower accuracy. For o € {10, 15, 20}, both
DP and EO are within a similar, reasonable range while utility is highest.

Overall, the results show that CS is not hypersensitive to the exact kernel bandwidth: once o is
chosen in a reasonable range, the method achieves consistently high AUC with a stable fairness—utility
trade-off. In our main experiments we therefore use a moderate bandwidth (e.g.,0 = 10) that lies in
this stable region, balancing strong accuracy (AUC ~ 91%) with substantially reduced App/Ago.

L.3 EXPERIMENTS WITH MULTIPLE SENSITIVE ATTRIBUTES

To evaluate CS on multi-attribute fairness, we extend the Adult setting from a single sensitive
attribute to an intersectional attribute combining sex and race. We construct four groups S €
{0, 1,2, 3} as White-Male, White-Female, Non-White-Male, and Non-White-Female. For each group

gwedefine: DP, =P(Y =1|S=g), EO,=P(Y =1|Y =1,8=g), Acc, =PY =
Y | S = g). We then report the intersectional demographic-parity gap ADP™" = max, DP, —
miny DP,, the intersectional equal-opportunity gap AEO™" = max, EO, — min, EO,, and the
worst-group accuracy Acc,i, = ming Accgy. The code snippet of these metrics are in Appendix
Using the same MLP architecture and o ("lam’ in the figure) = 0.5, we compare CS with three
representative dependence-based regularizers (diffDP, HSIC, diffEOpp). The results are summarized
below:

Figure 26: Evaluation of CS on the Adult (sex) as the sensitive attribute.

Method ~ ADP™ | AEO™ |  AcCmin T

diffDP 0.255 0.112 0.792
HSIC 0.262 0.152 0.791
diffEOpp  0.268 0.183 0.790
cs (ours)  0.241 0.108 0.803

Table 14: Evaluation of CS on the Adult (sex) as the sensitive attribute.
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From Table 14, we observe that CS attains the smallest intersectional ADP™"/AEO™® while also
achieving the highest worst-group accuracy, indicating that the proposed Cauchy—Schwarz regularizer
remains effective even when fairness is evaluated over four intersectional subgroups rather than a
single sensitive attribute.

In particular, CS improves both ADP™" and AEO™ over HSIC and DP regularizer, and slightly
improves Accnin, compared to all baselines. These results suggest that the tighter dependence
control provided by CS translates into more balanced treatment across intersectional groups without
sacrificing worst-case utility.

M DISCUSSION: WHEN AND WHY IS CS EXPECTED TO OUTPERFORM OTHER
DIVERGENCES?

To address the question of when CS is practically preferable to other dependence measures, we
summarize the regimes where CS is theoretically and empirically advantageous:

* Heavy-tailed or skewed group distributions. When one group exhibits heavier prediction tails
(e.g., more extreme probabilities), KL and DP penalties can be dominated by these tails. In contrast,
the CS divergence, through its Lo-normalization of group embeddings, limits the influence of such
extremes and yields a more stable fairness penalty.

* Scale-mismatched representations. When latent embeddings for different groups differ markedly
in variance or norm (a common scenario in deep models), Euclidean-based MMD can report
large distances even when the group embeddings are well aligned in direction. CS compares
normalized embeddings and therefore provides a tighter and more meaningful notion of “closeness”
for fairness.

» Imbalanced group sizes. In highly imbalanced datasets, group-conditional densities are estimated
with very different effective sample sizes. In such cases, KL and HSIC can fluctuate considerably
with the minority group’s empirical variance, whereas the cosine-style normalization implicit in CS
makes the fairness loss less sensitive to this sampling noise.

These regimes are not hypothetical: the datasets in Section 5 (Adult, COMPAS, ACS, CelebA-A) all

exhibit at least one of these characteristics. This helps explain why CS often achieves lower App
and Ago at comparable or better utility in our experiments.

N CODE SNIPPET

1 def calculate_intersectional_metrics(y_pred, y_target, sensitive):
2 if isinstance (y_pred, torch.Tensor):

3 y_pred = y_pred.detach() .cpu() .numpy ()

4 if isinstance(y_target, torch.Tensor):

5 y_target = y_target.detach () .cpu() .numpy ()
6 if isinstance(sensitive, torch.Tensor):

7 sensitive = sensitive.detach () .cpu() .numpy ()
8

9 y_pred = y_pred.flatten()

10 y_target = y_target.flatten|()

11 sensitive = sensitive.flatten()

12

13 y_pred_binary = (y_pred > 0.5).astype (int)

14

15 groups = [0, 1, 2, 3]

16

17 rates = {}

18 for g in groups:

19 mask = sensitive == g
20 if mask.sum() > 0:
21 rates[g] = y_pred_binary[mask].mean ()
22 else:
23 rates[g] = 0.0
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25 dp_gap = max(rates.values()) - min(rates.values())

27 tprs = {}
28 for g in groups:

29 mask = (sensitive == g) & (y_target == 1)
30 if mask.sum() > 0:

31 tprs[g] = y_pred_binary[mask].mean ()
32 else:

33 tprs(g] = 0.0

34

35 eo_gap = max (tprs.values()) - min(tprs.values())
36

37 accs = {}

38 for g in groups:

39 mask = sensitive ==

40 if mask.sum() > 0:

41 accs[g] = (y_pred_binary[mask] == y_target[mask]) .mean ()
42 else:

43 accs[g] = 0.0

44 worst_group_acc = min(accs.values())

45

46 return {

47 "intersectional_ DP_gap": dp_gap,

48 "intersectional EO_gap": eo_gap,

49 "worst_group_acc": worst_group_acc,

50 }

Listing 1: Calculation of Intersectional Fairness Metrics
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