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ABSTRACT

Fairness in machine learning has emerged as a central concern, as predictive models
frequently inherit or even amplify biases present in training data. Such biases
often manifest as unintended correlations between model outcomes and sensitive
attributes, leading to systematic disparities across demographic groups. Existing
approaches to fair learning largely fall into two directions: incorporating fairness
constraints tailored to specific definitions, which limits their generalizability, or
reducing the statistical dependence between predictions and sensitive attributes,
which is more flexible but highly sensitive to the choice of distance measure. The
latter strategy in particular raises the challenge of finding a principled and reliable
measure of dependence that can perform consistently across tasks. In this work,
we present a general and model-agnostic approach to address this challenge. The
method is based on encouraging independence between predictions and sensitive
features through an optimization framework that leverages the Cauchy–Schwarz
(CS) Divergence as a principled measure of dependence. Prior studies suggest
that CS Divergence provides a tighter theoretical bound compared to alternative
distance measures used in earlier fairness methods, offering a stronger foundation
for fairness-oriented optimization. Our framework, therefore, unifies prior efforts
under a simple yet effective principle and highlights the value of carefully chosen
statistical measures in fair learning. Through extensive empirical evaluation on
four tabular datasets and one image dataset, we show that our approach consistently
improves multiple fairness metrics while maintaining competitive accuracy.

1 INTRODUCTION

Fairness in machine learning has garnered growing concern, as machine learning (ML) models are
playing key roles in many high-stakes decision-making scenarios, such as credit scoring (Petrasic et al.,
2017), the job market (Hu & Chen, 2018), healthcare (Grote & Keeling, 2022), and education (Bøyum,
2014; Kizilcec & Lee, 2022). Among the various fairness notions, group fairness is one of the
most extensively studied ones as it addresses the prediction disparities across demographic groups,
including gender, age, skin color, and region (Mehrabi et al., 2021; Dwork et al., 2012; Barocas
et al., 2017). While many group fairness ML algorithms are proposed, they have challenges in their
applications, especially the generalizability, i.e., their adaptation to different fairness notions, and
robustness, i.e., the stability of the fairness when they encounter a slight change of model parameter.

Existing group fairness approaches can be intrinsically categorized into two main approaches based
on their debiasing objectives: i) directly integrate the fairness notion into the training objective,
ii) minimizing the correlation between predictions and sensitive attributes. Methods belongs to i)
such as a demographic parity (DP) regularizer, and an equality of opportunity (EO) regularizer. The
benefit of this approach is that the model trained by the target fairness objective can perform well on
specific fairness notions. For example, the machine learning model trained at demographic parity
has a high possibility of achieving good demographic parity in testing. However, such methods
limited their generalizability to other fairness notions (shown in Fig. 1). Method ii) solves from a
more fundamental way that can deal with generalizability, including using information theory, or an
adversarial approach to minimize the correlation between the prediction and the sensitive attribute.
The most straightforward way is to use a distance measurement that assesses the relationship between
the sensitive attribute and the prediction, thus minimizing this distance during the training. This
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𝑌 = 1𝑌 = 0/1 

Figure 1: From left to right: (1) Prediction distribution of all classes; (2) T-SNE plot of embeddings
for samples from all classes; (3) Prediction distribution of class 1; (4) T-SNE plot of embeddings for
samples from Adult, and the sensitive attribute is gender. The blue points represent samples with
sensitive attribute 0, while the red points represent samples with sensitive attribute 1.

Figure 2: Fairness loss landscapes evaluated using three functions, presented from left to right:
Kullback-Leibler (KL) divergence, Hilbert-Schmidt Independence Criterion (HSIC), and Cauchy-
Schwarz (CS) divergence. A smaller inner circle indicates greater robustness. Among these methods,
the CS divergence achieves the smallest inner circle, ranging from −2 to 1, while the inner circles of
KL and HSIC divergences both span from −2 to 2.

enables the generalizability, but ascribes the pressure of the fairness performance to the quality of the
distance measurement.

Existing fairness regularizers mainly assessed this correlation using gap parity, MMD, Kullback-
Leibler (KL) divergence, and the Hilbert-Schmidt Independence Criterion (HSIC). However, the
current fairness regularizers are sensitive to the model parameter change, making them less robust
in maintaining fairness, responding to a small change in the model parameters (shown in Fig. 2).
Theoretical studies have shown that the Cauchy-Schwarz divergence provides a tighter bound com-
pared to the Kullback-Leibler divergence and gap parity, suggesting its potential to improve fairness
in machine learning models. Motivates by this, we would like to know if using CS divergence can
result in more generalizable and more robust fairness due to the benefit from a tighter upper bound of
CS divergence. In light of this, we propose a new fairness regularizer based on the Cauchy-Schwarz
divergence for fair machine learning. To evaluate the generalizability, we tested the fairness under
a wide range of fairness notions proposed by previous studies, and to evaluate the robustness, we
visualize if a small change of the learned model parameters can influence the fairness. We summarize
our contributions as follows:

• We introduce the Cauchy-Schwarz divergence to fair machine learning and present a novel regular-
ization method.

• We elucidate the relationships between the Cauchy-Schwarz regularizer and other fairness regular-
izers, emphasizing its superior effectiveness in debiasing.

• Our experimental results, obtained from four tabular datasets and one image dataset, validate the
efficacy of the proposed Cauchy-Schwarz regularizer in achieving fairness across multiple fairness
notions simultaneously.

2 PRELIMINARIES

In this section, we establish the foundational concepts for our study. We start by exploring the notion
of fairness in machine learning, including the relevant notations. Next, we provide an overview
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of general fairness-aware machine learning methods. Finally, we introduce the Cauchy-Schwarz
divergence and discuss its benefits in reducing bias.

Problem scope. This paper focuses on in-process group fairness in the context of binary classification
with binary-sensitive attributes. While group fairness seeks to ensure that machine learning models
treat different demographic groups equitably, where groups are defined based on sensitive attributes
such as gender, race, and age (Feldman et al., 2015; Zemel et al., 2013).

Notations. Under this setting, we consider a dataset D = {(xi, yi, si)}Mi=1, where M is the number
of samples, xi ∈ Rd represents the features excluding the sensitive attribute, yi ∈ {0, 1} is the label
of the downstream task, and si ∈ {0, 1} is the sensitive attribute of the i-th sample. The predicted
probability for the i-th sample is denoted as zi ∈ [0, 1], computed by the machine learning model
as zi = f(xi, si) : Rd → [0, 1]. The binary prediction is represented as ŷi ∈ {0, 1}, defined by
ŷi = 1{}≥ t[zi], where 1{}≥ t(·) is the indicator function that evaluates whether its input is greater
than or equal to the threshold t. Finally, X , Y , S, and Ŷ denote random variables corresponding to
xi, yi, si, and ŷi, respectively.

Problem Formulation. Generally, the fairness objective can be summarized as follows:

min
f

Lutility + λLfairness, (1)

where the term Lutility denotes the loss function that measures the utility of the model, often a binary
entropy loss, for our binary classification problem, while Lfairness (also shown in Fig. 2) indicates
the fairness constraint applied in the model. The parameter λ is used to control the trade-off between
utility and fairness.

2.1 GROUP FAIRNESS

There are many ways to define and measure the group fairness. Each definition focuses on distinct
statistical measures aimed at achieving balance among subgroups within the data. Among these, De-
mographic Parity and Equal Opportunity are the most popular ones, other popular fairness definitions
are summarized in Appendix L.2.

Demographic Parity (DP). Demographic Parity (Zafar et al., 2017; Feldman et al., 2015; Dwork
et al., 2012) mandates that the predicted outcome Ŷ be independent of the sensitive attribute S,
expressed mathematically as Ŷ ⊥ S. Most of the existing literature primarily addresses binary
classification and binary attributes, where Y ∈ {0, 1} and S ∈ {0, 1}. Similar to the concept of equal
opportunity, the metric evaluating the DP fairness is defined by:

△DP = |P (Ŷ |S = 0)− P (Ŷ |S = 1)|. (2)

A lower value of △DP signifies a fairer classifier.

Equal Opportunity (EO). Equal Opportunity (Hardt et al., 2016) mandates that a classifier achieves
equal true positive rates across various subgroups, striving towards the ideal of a perfect classifier.
The corresponding fairness measurement for EO can be articulated as follows:

△EO = |P (Ŷ |Y = 1, S = 0)− P (Ŷ |Y = 1, S = 1)|. (3)

A low △EO indicates that the difference in the probability of an instance in the positive class being
assigned a positive outcome is relatively small for both subgroup members. Both DP and EO can be
effectively extended to problems involving multi-class classifications and multiple sensitive attribute
categories. Note that in the binary classification task, △DP and △EO are sometimes calculated after
binarizing P (Ŷ ). Specifically, △DP is defined as △DP = |P (Ŷ = 1|S = 0)− P (Ŷ = 1|S = 1)|,
and △EO is defined as △EO = |P (Ŷ = 1|Y = 1, S = 0)−P (Ŷ = 1|Y = 1, S = 1)| (Beutel et al.,
2017; Dai & Wang, 2021; Dong et al., 2022).

2.2 CAUCHY-SCHWARZ DIVERGENCE

Motivated by the well-known Cauchy-Schwarz (CS) inequality for square-integrable functions1,
which holds with equality if and only if p(x) and q(x) are linearly dependent, we can define a measure

1(∫ p(x)q(x) dx
)2 ≤

∫
p(x)2 dx

∫
q(x)2 dx

3
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of the distance between p(x) and q(x). This measure is referred to as the CS divergence (Principe
et al., 2000; Yu et al., 2023), given by:

DCS(p; q) = − log

( (∫
p(x)q(x)dx

)2∫
p(x)2dx

∫
q(x)2dx

)
. (4)

The CS divergence, denoted as DCS, is symmetric for any two probability density functions (PDFs) p
and q, satisfying 0 ≤ DCS < ∞. The minimum divergence is achieved if and only if p(x) = q(x).

3 WHAT MAKES A GOOD FAIRNESS REGULARIZER?

Reg. Fairness Objective (Lfairness)

DP |E
(
Ŷ |S = 0

)
− E

(
Ŷ |S = 1

)
|

EO |E
(
Ŷ |Y = 1, S = 0

)
− E

(
Ŷ |Y = 1, S = 1

)
|

MMD DMMD(ZS=0, ZS=1)
HSIC DHSIC(Ŷ , S)
PR DPR(Ŷ , S)

Table 1: Fairness regularizers (Reg.) and objectives.

Current fair machine learning algorithms
adopt a variety of approaches, prompting us to
explore the essential properties that make for
effective fairness regularizers. By categoriz-
ing these algorithms into three types and con-
ducting preliminary experiments, we aim to
identify the key characteristics that contribute
to mitigating bias in machine learning models.

3.1 BALANCING THE PREDICTION ACROSS DIFFERENT SENSITIVE GROUPS

The first is to directly integrate the fairness notions, such as DP and EO, into the fairness objective.

Lfairness = D(P,Q) where{
P = P (Ŷ | S = 0), Q = P (Ŷ | S = 1) for DP,
P=P (Ŷ |Y =1, S=0), Q=P (Ŷ |Y =1, S=1) for EO.

(5)

Calculating the distance between P and Q has many ways by using difference distance measurement
D, and the most used one is to calculate the absolute distance between the mean empirical estimations:

Lfairness = |E(P)− E(Q)|, (6)

where the expected values are calculated as the mean of summation since P and Q are discrete
distributions.

Previous fair machine learning studies have shown that the fairness loss of the testing can be upper
bounded by the loss of training. Therefore, a distance function having a tighter generalization error
bound used in training will lead to a better fairness guarantee for testing.

Lfairness = |E
(
Ŷ |S = 0

)
− E

(
Ŷ |S = 1

)
|. (7)

We can see that the basic idea is to balance the prediction distribution between two sensitive groups.
Therefore, for this type of approach, we can also use other distance measurements: Therefore, except
for the absolute distance between the two prediction distributions.

3.2 BALANCING THE LATENT REPRESENTATION ACROSS DIFFERENT SENSITIVE GROUPS

Distance measures and minimization:

Lfairness = D(ZS=0, ZS=1), (8)

where Z is the latent representation from the neural networks, and ZS=0 and ZS=1 are the represen-
tation when the sensitive attribute is 1 or 0. The distance metric D(·) here can be a Mean Maximum
Discrepancy (Louizos et al., 2016).

3.3 MINIMIZING THE RELATIONSHIP BETWEEN PREDICTIONS AND SENSITIVE ATTRIBUTES

The goal of this category is to ensure that a fair machine learning algorithm’s predictions retain
minimal sensitive information.

Lfairness = D(Ŷ , S), (9)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The HSIC and PR in Table 1 belong to this category. Specifically, the DPR(Ŷ , S) is defined as:

DPR(Ŷ , S) =
∑
ŷ∈Ŷ

∑
s∈S

p(ŷ, s) log

(
p(ŷ, s)

p(ŷ)p(s)

)
. (10)

Note that, adversarial debiasing methods (Zhang et al., 2018) fall into this category because they em-
ploy discriminators to predict sensitive group membership from the learned encoded representations.
These methods aim to make sensitive attributes difficult to deduce from the encoded representations.
However, our study does not include adversarial methods, as they require training additional discrimi-
nator models, thereby adding complexity to the framework. Instead, we focus our comparisons on
simple distance-based fairness regularizers.

4 CAUCHY-SCHWARZ FAIRNESS REGULARIZER

In this section, we first introduce three prominent fairness regularizers that assess distribution distance
using different metrics: Mean Maximum Discrepancy, Kullback-Leibler divergence, and Hilbert-
Schmidt Independence Criterion (HSIC). For each metric, we explore its relationship with CS
divergence. Subsequently, we explain how CS divergence can be utilized to achieve fairness.

4.1 HOW CAN THE CAUCHY-SCHWARZ DIVERGENCE BE APPLIED TO MITIGATE BIAS?

Given samples {xp
i }mi=1 and {xq

i }ni=1 drawn independently and identically distributed (i.i.d.) from
p(x) and q(x) respectively, we can estimate the empirical CS divergence. This estimation can be
performed using the kernel density estimator (KDE) as described in (Parzen, 1962) and follows the
empirical estimator formula in (Jenssen et al., 2006).
Proposition 4.1. Given two sets of observations {xp

i }
N1
i=1 and {xq

j}
N2
j=1, let p and q denote the

distributions of two groups. The empirical estimator of the CS divergence DCS(p; q) is then given by:

D̃CS(p; q) = log

 1

N2
1

N1∑
i,j=1

κ(xp
i ,x

p
j )

+ log

 1

N2
2

N2∑
i,j=1

κ(xq
i ,x

q
j)


− 2 log

 1

N1N2

N2∑
i=1

N2∑
j=1

κ(xp
i ,x

q
j)

 .

(11)

The proof of this proposition is detailed in Appendix B.1. where κ represents a kernel function, such
as the Gaussian kernel defined as κσ(x, x

′) = exp(−∥x− x′∥22/2σ2). In the following sections, we
will explore the relationship between this kernel function and the existing fairness regularizer.

As mentioned earlier, the goal of fairness is to ensure an equal distribution of predictions across
sensitive attributes. To achieve this, fairness-aware algorithms focus on minimizing the dependency
of predictions on these sensitive attributes. Therefore, effectively modeling the relationship between
the outcome variable Y and the sensitive attribute S becomes crucial. The prediction distribution
over the sensitive attribute S is defined as follows:

P = P (Ŷ | S = 0); Q = P (Ŷ | S = 1). (12)

By substituting the distribution of predictions over the sensitive attribute into Eq. (20), where p = P
and q = Q, we can define the objective we aim to solve as follows:

min
θ

LBCE + αD̃CS (P,Q) +
β

2
∥θ∥22, (13)

where LBCE is the binary cross-entropy loss, which measures the classifier’s accuracy. It is defined as:

LBCE =
1

M

M∑
i=1

−Yi log Ŷi, (14)

where Ŷi is the predicted output obtained from the training model parameterized by θ. This model
can be a Multi-Layer Perceptron for tabular data or a ResNet for image data. Additionally, ∥θ∥22
serves as an L2 regularizer.

5
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Methods Utility Fairness
ACC (%) ↑ AUC (%) ↑ ∆DP (%) ↓ ∆EO (%) ↓

A
d
u
l
t

Gender
MLP 85.63±0.34 — 90.82±0.23 — 16.52±0.91 — 8.43±3.20 —
DP 82.42±0.39 -3.75% 86.91±0.80 -4.31% 1.29±0.95 92.19% 20.15±1.13 -139.03%
MMD 81.90±0.68 -4.36% 85.27±0.52 -6.11% 2.47±0.52 85.05% 17.53±1.36 -107.95%
HSIC 82.89±0.23 -3.20% 87.25±0.41 -3.93% 2.66±0.54 83.90% 18.47±1.22 -119.10%
PR 81.81±0.52 -4.46% 85.38±0.82 -5.99% 0.71±0.40 95.70% 12.45±2.38 -47.69%
CS 83.31±0.47 -2.71% 90.15±0.49 -0.74% 2.42±0.85 85.35% 2.27±1.04 73.07%

Race
MLP 84.42±0.31 — 90.15±0.36 — 13.47±0.83 — 9.25±3.86 —
DP 83.64±0.78 -0.92% 88.45±0.32 -1.89% 2.45±0.67 81.81% 2.16±1.06 76.65%
MMD 83.12±0.82 -1.54% 88.36±0.67 -1.99% 2.58±0.75 80.85% 3.33±0.93 64.00%
HSIC 84.98±0.17 0.66% 90.90±0.19 0.83% 7.90±0.72 41.35% 2.11±0.18 77.19%
PR 82.13±1.16 -2.71% 87.44±0.33 -3.01% 1.53±0.83 88.64% 0.86±0.60 90.70%
CS 83.53±0.53 -1.05% 90.26±0.47 0.12% 2.16±0.61 83.96% 0.44±0.12 95.24%

C
O
M
P
A
S

Gender
MLP 66.85±0.72 — 72.10±0.94 — 13.22±3.32 — 11.41±5.83 —
DP 64.20±1.58 -3.96% 70.64±1.05 -2.02% 5.78±0.33 56.28% 6.78±1.61 40.58%
MMD 64.82±1.62 -3.04% 70.72±0.92 -1.91% 3.09±0.92 76.63% 3.15±4.37 72.39%
HSIC 63.17±3.46 -5.50% 71.17±0.84 -1.29% 1.84±0.43 86.08% 2.60±0.63 77.21%
PR 64.95±0.15 -2.84% 72.12±0.75 0.03% 3.85±0.60 70.88% 3.91±1.02 65.73%
CS 64.25±0.97 -3.89% 71.53±0.61 -0.79% 1.30±0.47 90.17% 0.44±0.13 96.14%

Race
MLP 66.99±1.05 — 72.46±0.88 — 17.24±4.15 — 19.44±4.63 —
DP 64.98±3.72 -3.00% 72.09±1.03 0.51% 8.70±1.12 49.54% 7.04±2.13 63.79%
MMD 64.41±2.04 -3.85% 72.10±1.83 0.50% 4.42±2.11 74.36% 5.60±1.25 71.19%
HSIC 64.52±2.20 -3.69% 72.16±0.94 0.41% 2.21±0.68 87.18% 2.72±0.87 86.01%
PR 67.22±0.90 0.34% 72.86±0.87 -0.55% 5.60±1.12 67.52% 6.52±1.30 66.46%
CS 65.62±1.24 -2.05% 72.70±1.06 0.33% 1.79±0.96 89.62% 1.48±1.64 92.39%

A
C
S
-
I

Gender
MLP 82.04±0.27 — 90.16±0.18 — 10.26±4.68 — 2.13±3.64 —
DP 81.32±0.17 -0.88% 89.33±0.15 -0.92% 0.96±0.22 90.64% 5.37±0.32 -152.11%
MMD 80.93±0.55 -1.35% 88.44±1.71 -1.91% 2.45±0.65 76.12% 4.91±1.48 -130.52%
HSIC 81.40±0.12 -0.78% 89.53±0.10 -0.70% 1.54±0.18 84.99% 4.95±0.39 -132.39%
PR 80.03±0.30 -2.45% 88.10±0.26 -2.28% 0.35±0.20 96.59% 4.54±0.41 -113.15%
CS 81.86±0.94 -0.22% 89.15±0.60 -1.12% 0.77±0.38 92.5% 0.90±0.46 57.75%

Race
MLP 81.23±0.14 — 90.16±0.18 — 10.06±1.84 — 7.42±0.66 —
DP 81.25±0.13 0.02% 89.45±0.11 -0.79% 0.56±0.30 94.43% 4.53±0.48 38.95%
MMD 80.22±1.22 -1.24% 88.42±1.63 -1.93% 1.45±0.89 85.59% 4.01±0.54 45.96%
HSIC 81.41±0.15 0.22% 89.67±0.12 -0.54% 1.04±0.53 89.66% 2.77±0.35 62.67%
PR 80.27±0.26 -1.18% 88.45±0.21 -1.90% 0.37±0.30 96.32% 4.25±0.49 42.72%
CS 80.78±0.85 -0.55% 89.14±0.94 -1.13% 0.81±0.28 91.95% 1.35±0.64 81.81%

Table 2: Fairness performance of existing fair models on the tabular datasets, considering race and
gender as sensitive attributes. ↑ indicates accuracy improvement compared to MLP, with higher
accuracy reflecting better performance, and ↓ denotes fairness improvement compared to MLP,
where lower values indicate better fairness. All results are based on 10 runs for each method. The
best results for each metric and dataset are highlighted in bold text.

4.2 WHY IS THE CS DIVERGENCE MORE EFFECTIVE FOR ENSURING FAIRNESS?

The CS Divergence is particularly well-suited for promoting fairness due to several key reasons:

(1) Closed-form solution for the mixture of Gaussians. The CS divergence has several advantageous
properties, one of which is that it provides a closed-form solution for the mixture of Gaussians (Kampa
et al., 2011). This particular property has facilitated its successful application in various tasks,
including deep clustering (Trosten et al., 2021), disentangled representation learning (Tran et al.,
2022), and point-set registration (Sanchez Giraldo et al., 2017).

(2) CS Divergence has a tighter error bound than the KL divergence.
Proposition 4.2. For any d-variate Gaussian distributions p ∼ N (µp,Σp) and q ∼ N (µq,Σq),
where Σp and Σq are positive definite, the following inequality holds:

DCS(p; q) ≤ DKL(p; q) and DCS(p; q) ≤ DKL(q; p). (15)

The proof can be found in Appendix B.3. It is important to note that the divergences are being
compared under the same model parameter θ.

(3) CS divergence can provide tighter bounds than MMD and DP when the distributions are
far apart or when the scale of the embeddings varies significantly. Based on Remark A.1, we

6
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Figure 3: Fairness-accuracy trade-off curves on the test sets for (left) Adult, (middle) COMPAS, and
(bottom) ACS-I. Ideally, results should be positioned in the bottom-right corner.

know that CS divergence employs cosine distance, while MMD relies on Euclidean distance. In
addition, DP Eq. (5) utilizes a mean disparity, which is a Manhattan distance for the mean estimations
of two distributions. CS divergence measures the angle between two distributions in the feature
space, focusing on the difference in direction rather than magnitude. In cases where the distributions
have significantly different variances or scales, MMD and DP may yield a large distance even if the
distributions are aligned in the feature space. In contrast, CS divergence normalizes this comparison,
resulting in a more accurate measure of similarity and thereby providing a tighter generalization
bound. This normalization enhances the robustness of CS divergence, preventing MMD and DP from
overestimating the discrepancy due to their reliance on an unnormalized distance measure.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of the CS fairness regularizer from several perspectives:
(1) utility and fairness performance, (2) the tradeoff between utility and fairness, (3) prediction
distributions across different sensitive groups, (4) T-SNE plots for these sensitive groups, and (5) the
sensitivity of parameters in Eq. (13). Our evaluation encompasses five datasets with diverse sensitive
attributes, including four tabular datasets: Adult, COMPAS, ACS-I, and ACS-T, as well as one
image dataset, CelebA-A. Utility performance is assessed based on accuracy and the area under the
curve (AUC), while fairness performance is measured using △DP Eq. (2) and △EO Eq. (3). Detailed
information about the datasets and baselines can be found in the Appendix. We denote an observation
drawn from the results as Obs..

5.1 FAIRNESS AND UTILITY PERFORMANCE

We conducted experiments on five datasets along with their corresponding baselines, as previously
mentioned. For each dataset, we performed 10 different splits to ensure robustness in our results. We
calculated the mean and standard deviation for each metric across these splits. The accuracy and
fairness performance of the downstream tasks is in Table 2. Our observations are as follows:

Obs. 1: CS consistently achieves the best △EO and ranks among the top four for △DP across
the Adult, COMPAS, and ACS-I datasets, with only a small margin behind the best results
on the remaining datasets. Notably, CS demonstrates exceptional fairness performance on the
image dataset, CelebA-A, where the disparity in the ‘Young’ and ‘Non-Young’ groups sees a △DP

reduction of 97.36% and a △EO reduction of 98.58%. Furthermore, in the Adult and ACS-I
datasets, which include gender groups, traditional methods such as DP, MMD, HSIC, and PR do not
effectively optimize for EO fairness. In contrast, the proposed CS achieves significant reductions in
△EO by 72.12% and 63.85%, respectively, compared to MLP.

Obs. 2: CS achieves good fairness performance with a small sacrifice in utility. Specifically, CS
exhibits a decrease of less than 3.1% in accuracy and less than 2.2% in AUC. The only exception is
observed with COMPAS when gender is treated as a sensitive attribute, resulting in a slightly higher
accuracy loss of 3.6%. Notably, CS demonstrates either equivalent or improved AUC performance,
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DP MMD HSIC PR CS

Figure 4: Prediction distributions for female and male groups in the Adult dataset.

with increases of 0.02% and 0.58% on Adult for the gender and race groups, respectively, as well
as a 0.35% increase on COMPAS for the race group. Among the baselines, HSIC ranks highest in
utility, achieving the best performance on ACS-I for the race group and on ACS-T for both the
gender and race groups. This is followed by PR, which shows the best utility on COMPAS for both
the gender and race groups, as well as on CelebA-A for the gender group.

5.2 HOW DO ACCURACY AND FAIRNESS TRADE-OFF IN BASELINE MODELS AND CS?

We evaluate the trade-off between accuracy and △DP for the baselines by varying the fairness
hyperparameters (Yao et al., 2023; Deka & Sutherland, 2023). The results are presented in Fig. 3,
where the x-axis represents the target accuracy, while the y-axis shows the average Demographic
Parity (DP) across both positive and negative target classes. It is important to note that the figure in
the bottom right corner represents the optimal result.

Obs. 3: At the same utility level, CS is the most effective method in promoting fairness.
Analyzing the results, we find that CS consistently achieves the lowest △DP across most accuracy
levels, with this effect becoming more pronounced at higher accuracy levels. This is evidenced by the
significant gap in △DP between CS and other baselines. It is important to note that while all baselines
can demonstrate good fairness when the optimization prioritizes fairness over task objectives, the
task objective remains critical for the practical application of these models.

Obs. 4: High accuracy can sometimes lead to worse fairness compared to MLP, as the fairness
objective becomes more challenging to optimize when there is a stronger focus on task-specific
objectives. As shown in Table 2, the △DP for MMD is over 14.0, which is greater than the average
△DP of 13.22 for MLP. However, these fairness regularizers generally prove effective in controlling
bias in representations, especially when more emphasis is placed on the task-specific objective. No-
tably, some datasets with particular sensitive attributes pose greater challenges for achieving fairness.
For instance, the COMPAS dataset, which includes gender as a sensitive attribute, demonstrates this
difficulty. One possible explanation is the relatively small sample size of COMPAS, which contains
only 6, 172 samples, significantly fewer than other datasets where fairness is easier to achieve. For
example, the ACS-I dataset has 195, 995 samples, approximately 31.7 times that of COMPAS, and
features a more balanced gender distribution.

Obs. 5: CS displays a significant increase in △DP at a slower rate than other baselines as
accuracy increases. We analyze the slope of the lines representing the increase in △DP with
rising accuracy. Many methods, such as PR and DP, demonstrate strong fairness performance at low
accuracy levels; however, they quickly lose control over fairness as accuracy begins to increase. This
is evident from the abrupt rise in △DP observed at around 82.0% on Adult, 63.0% on COMPAS,
and 81.0% on ACS-I. In contrast, CS only exhibits a sudden increase at 85.0%, 65.5%, and 81.5%
for the same datasets, respectively.

5.3 HOW CAN THE CS FAIRNESS REGULARIZER PERFORM WELL ON BOTH DP AND EO?

We visualize the kernel density estimate plot 2 of the predictions Ŷ across different sensitive groups to
analyze how CS achieves a better balance of various fairness definitions compared to other baselines.

2https://seaborn.pydata.org/generated/seaborn.kdeplot.html
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The first row displays the predictions for all target classes, specifically Y = 0 and Y = 1, grouped
by sensitive attributes. In this row, the blue areas represent the prediction density for S = 0, while
the red areas indicate the prediction density for S = 1. The second row illustrates the prediction
density for the positive target class, Y = 1, across two different sensitive groups. Fig. 4 presents
the results for Adult based on gender and race groups, with additional results for other datasets
available in Appendix C.3.

Obs. 6: CS effectively optimizes the prediction distributions for the two sensitive groups,
specifically Ŷ |S = 0 and Ŷ |S = 1. Additionally, it optimizes the prediction distributions
for these groups within the positive target group, i.e., Ŷ |S = 0, Y = 1 and Ŷ |S = 1, Y = 1.
Achieving DP and EO fairness requires different objectives. For instance, DP directly optimizes the
△DP , which results in reduced effectiveness for achieving EO fairness. This is evident across all
datasets, as DP ranks among the worst, achieving 7/10 of the lowest EO fairness scores on △EO

when tested on five datasets with two types of sensitive attributes. The distribution plots for DP
further illustrate this, showing a generally larger gap between the two sensitive groups in the EO
plots compared to other methods. In contrast, CS consistently minimizes the prediction density gap
between the two sensitive groups.

5.4 PARAMETER SENSITIVITY ANALYSIS
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Figure 5: Parameter sensitivity study on Adult.

For all models, we tune the hyperparameters us-
ing cross-validation on the training set. The hy-
perparameters for these variants are determined
through grid search during cross-validation.
Specifically, we vary the parameters α and β
in Eq. (13) across the ranges (1e− 6, 150) and
(1e − 3, 10), respectively. In this experiment,
we specifically visualize the values of α in the
range (1e− 4, 1e− 1) for CS.

The heatmap in Fig. 5 illustrates the accuracy and △DP across various combinations of α and
β values for the Adult. In the accuracy plots, darker colors indicate higher values, which are
preferable, while lighter colors in the △DP plots represent better fairness performance.

Obs. 7: The highest accuracy is achieved when α is set to its smallest value, 1e− 4, while the
best fairness is obtained with α = 5e− 2. Notably, fairness drops significantly when α increases
from 5e− 2 to 1e− 1. Generally, smaller values of α can still yield satisfactory fairness performance
when paired with an appropriate range of β, specifically around 5− 10.

Obs. 8: The fairness performance is more sensitive to changes in α than in β. For instance,
adjusting β from 1e− 3 to 10, which represents a 10, 000× increase, results in only a slight decrease
in △DP from 7.2 to 4.2. In contrast, increasing α from 1e − 2 to 5e − 2, a 5× change, leads to a
significant drop in △DP from 6.7 to 2.8, when keeping β fixed at 1e− 3.

6 CONCLUSION

In this paper, we introduce a novel fair machine learning method called the Cauchy-Schwarz (CS)
fairness regularizer. Our approach achieves more robust and generalizable fairness by minimizing
the Cauchy-Schwarz divergence between the prediction distribution and the sensitive attributes. We
demonstrate that the CS divergence provides a tighter bound compared to both the Kullback-Leibler
divergence and the Maximum Mean Discrepancy, as well as the mean disparity used in Demographic
Parity regularization. This superiority is particularly evident when the distributions are significantly
different or when there is substantial variation in the scale of the embeddings. As a result, our CS
fairness regularizer delivers improved fairness performance in practical scenarios. While our work
currently only evaluates on general machine learning tasks, and thus leave future work to other tasks
such as graph learning.
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ETHICS STATEMENT

Our work aims to improve fairness in machine learning by introducing a general and model-agnostic
regularization method that reduces statistical dependence between predictions and sensitive attributes.
By encouraging independence through Cauchy–Schwarz (CS) Divergence, our framework helps
mitigate systematic biases that often lead to disparate treatment of demographic groups. We use
publicly available datasets containing sensitive attributes (e.g., gender, race) solely for the purpose
of evaluating fairness interventions. We acknowledge that fairness is a multidimensional concept
and that no single method can fully eliminate all forms of bias. While our method improves several
group fairness metrics, we caution against deploying fairness-enhancing techniques without thorough
domain-specific evaluation and stakeholder engagement.

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of our results by providing the following: (1) a comprehensive
description of the CS Fairness Regularization method, including the formulation of the objective
function and optimization procedure; (2) details on hyperparameters, model architectures, and training
procedures used in all experiments; (3) evaluation on five benchmark datasets using multiple fairness
metrics and baselines; and (4) open-sourcing our code and data preprocessing scripts upon publication.
We follow standard experimental protocols and report average results across multiple runs to account
for randomness. These practices facilitate independent verification and encourage future research on
robust fairness methods.
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LLM DISCLOSURE

We used an LLM (OpenAI ChatGPT) only for copyediting—streamlining phrasing and correcting
grammar, spelling, and stylistic inconsistencies. The model played no role in conceiving the research,
designing methods, implementing code, running experiments, analyzing results, or shaping claims.
All edits were reviewed by the authors, and only manuscript text was provided to the tool.

A WHAT IS THE RELATIONSHIP BETWEEN CS DIVERGENCE AND EXISTING
DISTRIBUTION DISTANCE MEASURES?

To illustrate the advantages of the CS fairness regularizer, we begin by summarizing the com-
monly used distribution distance metrics: Maximum Mean Discrepancy (MMD), Kullback-Leibler
divergence (KL), and Hilbert-Schmidt Independence Criterion (HSIC).

Demographic Parity Regularizer. The demographic parity regularizer is widely utilized in fairness-
focused machine learning studies (Chuang & Mroueh, 2020). It aims to optimize the mean disparity
between two prediction distributions. This regularizer can be formally expressed as:

DP(p; q) = | 1

N1

N1∑
i

p(xi)−
1

N2

N2∑
j

q(xj)|, (16)

where xi and xj are data points from S = 0 and S = 1, in the context of fairness. In the following,
we represent xi with distribution p and xj with distribution q as xp

i and xq
i for simplicity. However,

only optimizing on the mean disparity of two distributions cannot always generate an optimized DP
or EO, as the Eq. (16) equals 0 is a necessary but not sufficient condition for achieving DP and EO.

Mean Maximum Discrepancy. One of the most widely used distance metrics is the Mean Maximum
Discrepancy (MMD) (Gretton et al., 2012). In the context of fairness, previous studies have employed
MMD as a regularizer to enforce statistical parity among the embeddings of different sensitive groups
within a machine learning model (Deka & Sutherland, 2023; Louizos et al., 2016). This approach
aims to facilitate fair representation learning.

M̃MD
2
(p; q)=

1

N2
1

N1∑
i,j=1

κ(xp
i ,x

p
j )+

1

N2
2

N2∑
i,j=1

κ(xq
i ,x

q
j)

− 2

N1N2

N1∑
i=1

N2∑
j=1

κ(xp
i ,x

q
j).

(17)

By comparing with Eq. (20), we observe that the CS divergence introduces a logarithmic term for
each component of the MMD. Through simple transformations, we can deduce the following:
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Remark A.1. CS divergence measures the cosine distance between empirical mean embedding
µp = 1

N1

∑N1

i=1 f(x
p
i ) and µq = 1

N2

∑N2

j=1 f(x
q
j) in a Reproducing Kernel Hilbert Space, while

MMD utilizes Euclidean distance.

Kullback-Leibler Divergence. Kullback-Leibler (KL) Divergence is a key concept in information
bottleneck theory, where it is used to quantify the mutual information between two probability
distributions. This metric has gained popularity across various domains, including fair machine
learning (Kamishima et al., 2012).

DKL =

∫
p(x) log

(
p(x)

q(x)

)
(18)

Hilbert-Schmidt Independence Criterion (HSIC). Let K and L denote the Gram matrices for the
variables x and y, respectively. Specifically, K is defined such that Kij = κ(xi,xj), and L is defined

as Lij = κ(yi,yj), where κ is the Gaussian kernel function given by κ = exp
(
−∥·∥2

2σ2

)
. The Hilbert-

Schmidt Independence Criterion (HSIC) can be estimated using the following expression (Gretton
et al., 2007):

H̃SIC(p; q) =
1

N2

N∑
i,j

KijLij +
1

N4

N∑
i,j,q,r

KijLqr

− 2

N3

N∑
i,j,q

KijLiq =
1

N2
tr(KHLH),

(19)

where H = I − 1
N 11

T represents a centering matrix of size N × N . In this expression, I is the
identity matrix, 1 is a vector of ones, and 1

N 11
T computes the average across the columns, effectively

centering the data by subtracting the mean from each entry.

Compared to Eq. (17), The HSIC can be interpreted as the MMD between the joint distribution
p(x,y) and the product of their marginal distributions p(x)p(y).

B DETAILS ON THE RELATION OF CS AND EXISTING FAIRNESS
REGULARIZERS

B.1 PROOF OF PROPOSITION 4.1

Proposition 1. Given two sets of observations {xp
i }

N1
i=1 and {xqj}N2

j=1, let p and q denote the
distributions of two groups. The empirical estimator of the CS divergence DCS(p; q) is given by:

D̃CS(p; q) = log

 1

N2
1

N1∑
i,j=1

κ(xp
i ,x

p
j )

+ log

 1

N2
2

N2∑
i,j=1

κ(xq
i ,x

q
j)


− 2 log

 1

N1N2

N1∑
i=1

N2∑
j=1

κ(xp
i ,x

q
j)

 .

(20)

Proof. The CS divergence is defined as:

DCS(p; q) = − log

(
(
∫
p(x)q(x) dx)2∫

p(x)2 dx
∫
q(x)2 dx

)
, (21)

where p̂(x) = 1
M

∑M
i=1 κσ(x− xp

j ) and q̂(x) = 1
N

∑N
i=1 κσ(x− xq

j) are kernel density estimation.

Then we can obtain: ∫
p̂2(x) dx =

1

M2

M∑
i=1

M∑
j=1

κ√
2σ(x

p
i − xp

j ). (22)
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By a similar approach, ∫
q̂(z)2 dx =

1

N2

N∑
i=1

N∑
j=1

κ√
2σ(x

q
i − xq

j), (23)

and ∫
p̂(x)q̂(x) dx =

1

MN

M∑
i=1

N∑
j=1

κ√
2σ(x

q
i − xp

j ). (24)

Substituting (Eq. (22))-(Eq. (24)) into Eq. (21), we obtain:

D̃CS(p; q) = log

 1

M2

M∑
i,j=1

κ√
2σ(x

p
i − xp

j )

+ log

 1

N2

N∑
i,j=1

κ√
2σ(x

q
i − xq

j)


− 2 log

 1

MN

M∑
i=1

N∑
j=1

κ√
2σ(x

q
i − xp

j )

 .

(25)

B.2 PROOF OF REMARK A.1

Remark 1. CS divergence measures the cosine distance between µp and µq in a Reproducing Kernel
Hilbert Space, while MMD utilizes Euclidean distance.

Proof. Let H be a Reproducing Kernel Hilbert Space (RKHS) associated with a kernel κ(xp
i ,x

q
j) =

⟨f(xp
i ), f(x

q
j)⟩H (Yu et al., 2024). The mean embeddings of two distributions p and q in H are

denoted by µp = 1
N1

∑N1

i=1 f(x
p
i ) and µq = 1

N2

∑N2

j=1 f(x
q
j) in H, respectively. The CS divergence

defined by Eq. (20) can thus be written as:

D̃CS(p; q) = −2 log
⟨µp,µq⟩H

∥µp∥H∥µq∥H
= −2 logDCOS(µp,µq)

Here, ⟨·, ·⟩H denotes the inner product in the RKHS, and ∥ · ∥H represents the norm induced by the
inner product. The mean embeddings µp and µq are elements of H. Thus, the CS divergence is
computed based on the cosine distance DCOS between µp and µq .

Similarly, the Maximum Mean Discrepancy (MMD) between distributions p and q defined in Eq. (17)
can be written as:

MMD2(p, q) = ∥µp − µq∥2H = DEUC(µp,µq).

Thus, the MMD measures the Euclidean distance between the mean embeddings of p and q in the
RKHS H, i.e., the µp and µq .

B.3 PROOF OF PROPOSITION 4.2

Proposition 2. For any d-variate Gaussian distributions p ∼ N (µp,Σp) and q ∼ N (µq,Σq) with
positive definite Σp and Σq , the following inequality holds:

DCS(p; q) ≤ DKL(p; q) and DCS(p; q) ≤ DKL(q; p). (26)

Proof. The KL divergence for p and q is given by:

DKL(p; q) =
1

2

(
tr(Σ−1

q Σp)−d+(µq−µp)
⊤Σ−1

q (µq−µp) + log

(
|Σq|
|Σp|

))
. (27)
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The CS divergence is expressed as (Kampa et al., 2011):

DCS(p; q) = − log(dxy) +
1

2
log(dxx) +

1

2
log(dyy), (28)

where: (29)

dpq =
exp

(
− 1

2 (µp − µq)
⊤(Σp +Σq)

−1(µp − µq)
)√

(2π)d|Σp +Σq|
, (30)

dpp =
1√

(2π)d|2Σp|
, dqq =

1√
(2π)d|2Σq|

. (31)

We simplify:

DCS(p; q) =
1

2
(µq − µp)

⊤(Σp +Σq)
−1(µq − µp) +

1

2
log

(
|Σp +Σq|

2d
√

|Σp||Σq|

)
. (32)

When the mean vectors differ, based on the property (Horn & Johnson, 2012), Σ−1
q − (Σp +Σq)

−1

is positive semi-definite given Σp = Σq , we have:

2(DCS(p; q)−DKL(p; q))

= (µq − µp)
⊤(Σp +Σq)

−1(µq − µp)

− (µq − µp)
⊤Σ−1

q (µq − µp) ≤ 0.

(33)

When the covariance matrices differ, let I be the d-dimensional identity matrix (Yin et al., 2024):

2(DCS(p; q)−DKL(p; q)) = log

(
|Σp +Σq|

2d
√
|Σp||Σq|

)

− log

(
|Σq|
|Σp|

)
− tr(Σ−1

q Σp) + d

= −d log 2 + log
(
|Σ−1

q Σp + I|
)

+
1

2
log
(
|Σ−1

q Σp|
)
− tr(Σ−1

q Σp) + d.

(34)

We have |Σ−1
q Σp| ≤

(
1
d tr(Σ

−1
q Σp)

)d
, and |Σ−1

q Σp + I| ≤
(
1 + 1

d tr(Σ
−1
q Σp)

)d
. Thus, based

on Eq. (34), we can obtain:

2(DCS(p; q)−DKL(p; q))

≤ −d log 2 + d log
(
1 +

1

d
tr(Σ−1

q Σp)
)

+
d

2
log
(1
d
tr(Σ−1

q Σp)
)
− tr(Σ−1

q Σp) + d.

(35)

The combined Eq. (33) and Eq. (35), we can obtain:

2(DCS(p; q)−DKL(p; q)) ≤ 0, (36)

Similarly, we can obtain 2(DCS(q; p)−DKL(q; p)) ≤ 0. In conclusion, we conclude:

DCS(p; q) ≤ DKL(p; q) and DCS(p; q) ≤ DKL(q; p). (37)
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Methods Utility Fairness

ACC (%) ↑ AUC (%) ↑ ∆DP (%) ↓ ∆EO (%) ↓

A
C
S
-
T

Gender

MLP 66.21±0.95 — 73.78±0.25 — 8.32±2.67 — 5.11±3.55 —

DP 65.38±0.29 -1.25% 72.40±0.38 -1.87% 0.29±0.15 96.51% 1.83±0.26 64.19%
MMD 64.48±0.27 -2.61% 72.92±0.31 -1.17% 1.22±0.36 85.34% 2.11±0.49 58.71%
HSIC 66.01±0.29 -0.30% 73.16±0.32 -0.84% 0.98±0.26 88.22% 1.00±0.28 80.43%
PR 62.72±1.01 -5.27% 69.36±0.85 -5.99% 0.78±0.50 90.63% 1.07±0.36 79.06%
CS 65.70±0.42 -0.77% 72.83±0.58 -1.29% 0.17±0.08 97.96% 0.75±0.22 85.32%

Race

MLP 66.38±0.42 — 73.69±0.63 — 9.28±1.63 — 6.21±1.63 —

DP 64.96±0.23 -2.14% 71.86±0.23 -2.48% 0.82±0.33 91.16% 1.30±0.26 79.07%
MMD 65.71±0.65 -1.01% 70.57±0.52 -4.23% 3.97±0.97 57.22% 1.55±0.79 75.04%
HSIC 65.81±0.24 -0.86% 72.92±0.23 -1.04% 1.75±0.31 81.14% 0.43±0.23 93.08%
PR 64.25±0.87 -3.21% 70.25±0.30 -4.67% 1.56±0.87 83.19% 1.21±0.74 80.52%
CS 65.16±0.45 -1.84% 72.56±0.72 -1.41% 0.55±0.19 94.07% 1.38±0.46 77.78%

C
e
l
e
b
A
-
A

Gender

RN 78.14±0.47 — 86.58±0.55 — 51.66±0.97 — 35.67±1.11 —

DP 62.42±4.79 -20.12% 66.86±3.19 -22.78% 0.46±0.25 99.11% 4.84±2.37 86.43%
MMD 62.54±4.26 -19.96% 66.47±3.85 -23.23% 1.39±0.64 97.31% 5.89±3.12 83.49%
HSIC 63.39±3.63 -18.88% 69.33±3.25 -19.92% 2.24±0.36 95.66% 3.83±2.22 89.26%
PR 65.51±3.52 -16.16% 71.70±2.88 -17.19% 4.00±0.52 92.26% 5.05±2.57 85.84%
CS 65.05±3.80 -16.75% 71.42±2.46 -17.51% 0.98±0.62 98.10% 1.53±1.05 95.71%

Young

RN 78.14±0.47 — 86.67±0.53 — 41.74±1.17 — 18.35±1.56 —

DP 66.78±3.61 -14.54% 73.95±3.44 -14.68% 2.43±0.83 94.18% 0.91±1.77 95.04%
MMD 65.82±4.87 -15.77% 72.84±3.61 -15.96% 3.49±0.83 91.64% 1.60±0.71 91.28%
HSIC 66.04±3.01 -15.49% 73.08±2.69 -15.68% 1.99±0.55 95.23% 1.04±0.60 94.33%
PR 62.98±4.69 -19.40% 69.63±4.02 -19.66% 1.32±0.49 96.84% 1.82±0.53 90.08%
CS 65.33±4.26 -16.39% 73.15±3.84 -15.60% 1.28±0.40 96.93% 0.30±0.12 98.37%

Table 3: The fairness performance on the tabular dataset for existing fair models, and we consider
race and gender as sensitive attributes. A higher accuracy metric indicates better performance. ↑
represents the accuracy improvement compared to MLP. A lower fairness metric indicates better
fairness. ↓ represents the improvement of fairness compared to MLP. The results are based on 10
runs for all methods.

C MORE EXPERIMENTAL RESULTS

C.1 EXPERIMENTS ON IMAGE DATASET

In this section, we present the experimental results on the CelebA-A image dataset. The CelebA-A
face attributes dataset (Liu et al., 2015) contains over 200, 000 face images, where each image has
40 human-labeled attributes. Among the attributes, we select ‘Attractive’ as a binary classification
task and consider ‘Gender’ and ‘Young’ as sensitive attributes. The results are presented in Table 3.
The results show a similar finding with the tabular dataset, demonstrating that 1) DP method always
achieves a lower ∆DP but a relatively high ∆EO. 2) HSIC is a more promising fair model to achieve
equal opportunity.
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C.2 IS THE REPRESENTATION LEARNED BY APPLYING CS VIEWED AS FAIR?

Gender Race

Adult ACS-ICOMPAS

Gender Race Gender Race

Figure 6: T-SNE visualizations of the latent representations on Adult, COMPAS, and ACS-I,
colored by the target attribute (top) and the sensitive attribute (bottom).

To further validate that CS can learn fair representations, we visualize the T-SNE embeddings of
the latent space from the last layer before the prediction layer (Van der Maaten & Hinton, 2008)3.
Fig. 6 displays the representations learned from the last embedding layer on the Adult, COMPAS,
and ACS-I datasets, while Fig. 12 presents the results for ACS-T and CelebA-A. Based on these
visualizations, we make the following observations:

Obs. 7: The CS can learn representations that are indistinguishable between sensitive groups.
This observation validates the effectiveness of CS in learning fair representations. Specifically, the
plots in the first row of Fig. 6 illustrate the embedding visualization of two sensitive groups: blue for
S=0 and red for S=1. Overall, the points are uniformly dispersed, with no clear clusters of nodes
sharing the same color. This indicates that the embeddings are learned independently of the sensitive
attribute. Although some groups have a greater number of data points—such as in the Adult dataset
with the sensitive attribute race, where the ratio of S=0:S=1 is 1:9.20, and in the COMPAS dataset
with gender, where the ratio is 1:4.17 (as shown in Table 4)—the distribution of points in both colors
remains even.

Obs. 8: The CS can learn distinguishable representations for different target attributes.
Observing the second row of Fig. 6, we can identify a distinct pattern in the distribution of the
blue and red points across different locations in the plot. Among these, the embedding for ACS-I
exhibits the clearest pattern, followed by Adult. This observation is consistent with the utility
results presented in Table 2, which show a decrease in accuracy and AUC as the degree of negativity
increases, particularly evident in the ↑ columns compared to the MLP. In contrast, COMPAS presents
a greater challenge in ensuring utility while considering fairness, as indicated by the less distinct
pattern in the learned embeddings, corroborated by the most significant utility drops in Table 2.

3https://scikit-learn.org/stable/modules/generated/sklearn\prot
ect\penalty\z@.manifold.TSNE.htmlhttps://scikit-learn.org/stable/modules/generated/sklearn
.manifold.TSNE.html
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C.3 MORE PREDICTION DISTRIBUTIONS OVER THE SENSITIVE GROUPS

DP MMD HSIC PR CS

Figure 7: Prediction distributions for black and white groups in the Adult dataset.

DP MMD HSIC PR CS

(a) Prediction distributions for female and male groups in the COMPAS dataset.
DP MMD HSIC PR CS

(b) Prediction distributions for Caucasian and (all) other groups in the COMPAS dataset.

Figure 8: Accuracy and △DP trade-off on COMPAS with sensitive attribute gender and race. Results
located in the bottom-right corner are preferable.
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DP MMD HSIC PR CS

(a) Prediction distributions for female and male groups in the ACS-I dataset.
DP MMD HSIC PR CS

(b) Prediction distributions for black and white groups in the ACS-I dataset.

Figure 9: Accuracy and △DP trade-off on ACS-I with sensitive attribute gender and race. Results
located in the bottom-right corner are preferable.
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DP MMD HSIC PR CS

(a) Prediction distributions for female and male groups in the ACS-T dataset.
DP MMD HSIC PR CS

(b) Prediction distributions for black and white groups in the ACS-T dataset.

Figure 10: Accuracy and △DP trade-off on ACS-T with sensitive attribute gender and race. Results
located in the bottom-right corner are preferable.
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DP MMD HSIC PR CS

(a) Prediction distributions for female and male groups in the CelebA-A dataset.
DP MMD PRHSIC CS

(b) Prediction distributions for young and non-yong groups in the CelebA-A dataset.

Figure 11: Accuracy and △DP trade-off on CelebA-A with sensitive attribute gender and race.
Results located in the bottom-right corner are preferable.
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C.4 MORE T-SNE PLOTS

Gender Race

ACS-T Celeba-A

Gender Young

Figure 12: Accuracy and △DP trade-off on ACS-T and CelebA-A. Results located in the bottom-
right corner are preferable.

In addition to the T-SNE plots shown in Fig. 6, which show the results on three datasets, we also
include the T-SNE plots on the two remaining datasets ACS-T and CelebA-A in Fig. 12.

D DATASET DESCRIPTIONS AND DETAILS

We conducted experiments on five datasets, including four tabular datasets and one image data. The
introduction of these datasets is as follows:

• Adult4 (Dua & Graff, 2017) The Adult dataset includes data from 45, 222 individuals based on
the 1994 US Census. The primary task is to predict whether an individual’s income exceeds $50k
USD, using various personal attributes. In this analysis, we focus on gender and race as sensitive
attributes.

• COMPAS5 (Larson et al., 2016) The COMPAS dataset contains records of criminal defendants
and is designed to predict the likelihood of recidivism within two years. It encompasses various
attributes related to the defendants, including their criminal history, gender, and race.

• ACS-I and ACS-T6 (Ding et al., 2021) The ACS dataset is derived from the American Community
Survey (ACS) Public Use Microdata Sample and encompasses several prediction tasks. These
tasks include predicting whether an individual’s income exceeds $50k and whether an individual
is employed, with features such as race, gender, and other relevant characteristics tailored to each
task.

• CelebA-A7 (Liu et al., 2015) The CelebFaces Attributes dataset comprises 20, 000 face images
of 10, 000 distinct celebrities. Each image is annotated with 40 binary labels representing various
facial attributes, including gender, hair color, and age. In this study, we focus on the ’attractive’
label for a binary classification task, while considering ’young’ and ’gender’ as sensitive attributes.

The detailed statistics for the aforementioned datasets are summarized as follows:

4https://archive.ics.uci.edu/ml/datasets/adult
5https://github.com/propublica/compas-analysis
6https://github.com/zykls/folktables
7https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Dataset Task Sen. Attr. (S) #Samples #Feat. Class Y 0:1 1st S 0:1 2nd S 0:1

Adult Income Gender, Race 45, 222 101 1:0.33 1:2.08 1:9.20
COMPAS Credit Gender, Race 6, 172 405 1:0.83 1:4.17 1:0.52
ACS-I Income Gender, Race 195, 665 908 1:0.70 1:0.89 1:1.62
ACS-T Travel Time Gender, Race 172, 508 1, 567 1:0.94 1:0.89 1:1.61
CelebA-A Attractive Gender, Young 202, 599 48× 48 1:0.95 1:0.71 1:3.45

Table 4: The table presents the statistics of the datasets. #Feat. refers to the total number of features
after preprocessing8. The ratio 0:1 represents the proportion between the two categories of the target
label or sensitive attributes.

E BASELINES DETAILS

We consider four widely used fairness methods: DP, MMD, HSIC, and PR. Specifically, DP and HSIC
minimize the demographic parity and Hilbert-Schmidt Independence Criterion, correspondingly. MMD
learns a classifier that optimizes the Mean Maximum Discrepancy. We also include base models MLP
and RN for tabular data and image data, correspondingly.

• DP: It is a gap regularization method for demographic parity (Chuang & Mroueh, 2020). As these
fairness definitions cannot be optimized directly, gap regularization is differentiable and can be
optimized using gradient descent.

• MMD: The Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is a metric used to measure
the distance between probability distributions. Previous research has leveraged MMD to enhance
fairness in machine learning models, specifically in variational autoencoders (Louizos et al., 2016)
and MLPs (Deka & Sutherland, 2023). In this paper, we build on the methodologies from earlier
works (Zhao & Meng, 2015) to compute the MMD baseline.

• HSIC: It minimizes the Hilbert-Schmidt Independence Criterion between the prediction accuracy
and the sensitive attributes (Gretton et al., 2005; Baharlouei et al., 2020; Li et al., 2019).

• Prejudice Remover (PR) (Kamishima et al., 2012) (Prejudice Remover) minimizes the prejudice
index which is the mutual information between the prediction accuracy and the sensitive attributes.

F MORE FAIRNESS DEFINITIONS

G DETAILS OF THE GROUP FAIRNESS

In this section, we provide the details of the group fairness. We first introduce the definition of group
fairness. Then, we introduce the existing group fairness metrics and algorithms.

• DP (Demographic Parity or Statistical Parity) (Zemel et al., 2013). A classifier satisfies de-
mographic parity if the predicted outcome Ŷ is independent of the sensitive attribute S, i.e.,
P (Ŷ | S = 0) = P (Ŷ | S = 1).

• prule (Zafar et al., 2017). A classifier satisfies p%-rule if the ratio between the probability of
subjects having a certain sensitive attribute value assigned the positive decision outcome and the
probability of subjects not having that value also assigned the positive outcome should be no less
than p/100, i.e., |P (Ŷ = 1 | S = 1)/P (Ŷ = 1 | S = 0)| ≤ p/100.

• prule (Equality of Opportunity) (Hardt et al., 2016). A classifier satisfies equalized opportunity
if the predicted outcome Y is independent of the sensitive attribute S when the label Y = 1, i.e.,
P (Ŷ | S = 0, Y = 1) = P (Ŷ | S = 1, Y = 1).

• prule (Equalized Odds) (Hardt et al., 2016). A classifier satisfies equalized odds if the predicted
outcome Y is independent of the sensitive attribute S conditioned on the label Y , i.e., P (Ŷ |
S = 0, Y = y) = P (Ŷ | S = 1, Y = y), y ∈ {0, 1}.

• ACC (Accuracy Parity). A classifier satisfies accuracy parity if the error rates of different sensitive
attribute values are the same, i.e., P (Ŷ ̸= Y | S = 0) = P (Ŷ ̸= Y | S = 1), y ∈ {0, 1}.

• aucp (ROC AUC Parity). A classifier satisfies ROC AUC parity if its area under the receiver
operating characteristic curve of w.r.t. different sensitive attribute values are the same.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• ppv (Predictive Parity Value Parity) A classifier satisfies predictive parity value parity if the
probability of a subject with a positive predictive value belonging to the positive class w.r.t.
different sensitive attribute values are the same, i.e., P (Y = 1 | Ŷ , S = 0) = P (Y = 1 |
Ŷ , S = 1).

• bnegc (Balance for Negative Class). A classifier satisfies balance for the negative class if
the average predicted probability of a subject belonging to the negative class is the same w.r.t.
different sensitive attribute values, i.e., E[f(X) | Y = 0, S = 0] = E[f(X) | Y = 0, S = 1].

• bposc (Balance for Positive Class). A classifier satisfies balance for the negative class if the
average predicted probability of a subject belonging to the positive class is the same w.r.t.
different sensitive attribute values, i.e., E[f(X) | Y = 1, S = 0] = E[f(X) | Y = 1, S = 1].

• abcc (Area Between Cumulative density function Curves) (Han et al., 2023) is proposed to
precisely measure the violation of demographic parity at the distribution level. The new fairness
metrics directly measure the difference between the distributions of the prediction probability for
different demographic groups

H ADDITION EXPERIMENTS ON MORE FAIRNESS METRICS

we provide additional results comparing our framework with baselines under the following fairness no-
tions: Predictive Parity (PPV) (Chouldechova, 2017), p%-Rule (PRULE) (Zafar et al., 2017), Balance
for Positive Class (BFP) (Kleinberg et al., 2016), and Balance for Negative Class (BFN) (Kleinberg
et al., 2016). The dataset is Adult, using gender as the sensitive attribute. All other experimental
settings are consistent with Table 1 in the paper.

Method ∆PPV (↓) PRULE (↑) ∆BFP (↓) ∆BFN (↓)
DP 27.35± 5.64 81.21± 9.04 11.25± 2.75 5.15± 0.44
MMD 35.19± 6.33 85.83± 7.15 18.32± 3.74 3.49± 0.25
HSIC 37.25± 3.19 96.18± 2.12 16.47± 1.21 4.04± 0.32
PR 25.46± 3.17 89.57± 7.39 21.45± 2.37 3.46± 0.28
CS 31.59± 4.35 97.75± 3.24 15.25± 2.58 3.18± 0.36

Table 5: Fairness performance comparison on the Adult dataset, with gender as the sensitive
attribute under ∆PPV , PRULE, ∆BFP , and ∆BFN .

We observe the following:

- CS generally achieves the best fairness trade-off performance across the four tested fairness notions.
- On the Adult, BFN is generally minimized more effectively than BFP. - Since BFN is related to
EO, the ranking of ∆BFN aligns with ∆EO in Table 1 of the paper. Note that, as stated in previous
studies (Kleinberg et al., 2016), there is an inherent trade-off between BFP and BFN in practice.

I ADDITIONAL EXPERIMENTS ON COMBINING MULTIPLE REGULARIZER
TERMS SIMULTANEOUSLY

We conducted additional experiments where we combined both KL divergence and CS divergence as
regularizers. The experiments were performed on the Adult, with gender as the sensitive attribute.

Actually, combining multiple fairness objectives has several drawbacks, which is why most existing
studies avoid using multiple regularizers. Instead, they often choose to add simple constraint terms.
The key drawbacks of combining fairness regularizers are summarized as follows:

- The CS divergence is upper-bounded by the KL divergence. Therefore, adding KL as an additional
fairness objective is theoretically redundant and will not provide further benefits. - Adding KL or

8We adopt the preprocessing in previous studies (Le Quy et al., 2022; Mehrabi et al., 2021) involving
identifying the target labels and sensitive attributes, and then selecting the relevant features for the analysis.
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Method ∆DP (↓) ∆EO (↓)
DP 1.29± 0.95 20.15± 1.13
CS 2.42± 0.85 2.27± 1.04
KL 2.77± 0.86 10.42± 4.34
CS+KL 2.46± 1.25 13.42± 6.12
CS+0.5KL 2.25± 1.14 9.33± 6.36

Table 6: The fairness performance on Adult (gender).

other fairness metrics increases computational complexity, making the optimization process more
challenging.

These experimental results further shows the significance of our contribution: identifying a suitable,
tighter-bounded fairness regularizer that balances effectiveness and computational efficiency.

J ADDITIONAL EXPERIMENTS ON PRE-PROCESSING AND POST-PROCESSING
BASELINES

we have added a post-processing method, PostEO (Hardt et al., 2016) on the Adult dataset (with
gender as the sensitive attribute).

Method ACC (↑) AUC (↑) △DP (↓) △EO (↓)
DP 82.42± 0.39 86.91± 0.80 1.29± 0.95 20.15± 1.13
CS 83.31±0.47 90.15±0.49 2.42± 0.85 2.27± 1.04
PR 81.81± 0.52 85.38± 0.82 0.71± 0.40 12.45± 2.38
PostPro 80.25± 0.83 84.35± 0.98 5.75± 1.67 2.12± 1.44

Table 7: Comparison of methods on various metrics.

the PostPro method is specifically designed to optimize for EO (Hardt et al., 2016), which explains
its lower ∆EO.

However, both pre-processing and post-processing methods share a common limitation: they result
in lower utility (ACC or AUC). Considering the need for a balanced trade-off between fairness and
utility, CS emerges as the most favorable option in our comparison.

K MORE EXPERIMENTAL DETAILS

In this section, we describe the details of the experimental setup. In this work, we adopted a
straightforward stopping strategy. We employ a linear decay strategy for the learning rate, halving
it every 50 training step. The model training is stopped when the learning rate decreases to a value
below 1e−5. Across all datasets, we use a weight decay of 0.0, StepLR with a step size of 50 and
a gamma value of 0.1, and train for 150 epochs using the Adam Optimizer (Kingma & Ba, 2014).
The batch size and learning rate vary depending on the dataset, with specific values provided below.
Additionally, Table 8 lists the range of the control hyperparameter β for each fairness approach. The
experiments were executed using NVIDIA RTX A4000 GPUs with 16GB GDDR6 Memory.

K.1 HYPERPARAMETER SETTINGS

1. Training Hyperparameters:

• Tabular data (Adult, COMPAS, ACS-I, and ACS-T):

– Learning rate: 1e−2

– Weight decay: 0.0
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– StepLR step: 50
– StepLR gamma: 0.1
– Training epochs: 150
– Batch sizes: 1, 024 on Adult, 32 on COMPAS, 4, 096 on ACS-I, 4, 096 on ACS-T

• Image data (CelebA-A):
– Learning rate: 1e−3

– Weight decay: 0.0
– StepLR step: 50
– StepLR gamma: 0.1
– Training epochs: 150
– Batch sizes: 256.

2. Architecture Hyperparameters:

• Multilayer perceptron:
– Number of layers: 3
– Number of hidden neurons: {512, 256, 64}

• ResNet-18 (He et al., 2016):
– Model: https://github.com/pytorch/vision/blob/main/torchvisio
n/models/resnet.py

K.2 HYPERPARAMETER SELECTION

To implement CS and the baseline methods, we adjust the hyperparameter β by tuning it within a
specified range. The details of the hyperparameter selection process and the specific range for β are
provided below:

Method Fairness Control Hyperparameter β

DP 0.5, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, 4
HSIC 0.1, 1, 5, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1, 000
PR 0.05, 0.2, 0.3, 0.40, 0.50, 0.7, 0.9, 1.0
ADV 0.5, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5
CS 1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 2e−2, 5e−2, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 50, 150

Table 8: The selections of fairness control hyperparameter blueβ.

L RELATED WORK

In this section, we first review relevant prior studies, beginning with an overview of algorithmic
fairness in machine learning. We then narrow our focus to regularization-based in-processing methods,
which are central to our approach.

L.1 ALGORITHMIC FAIRNESS IN MACHINE LEARNING

The importance of fairness in machine learning has grown significantly as the demand for unbiased
decision-making models for individuals and groups increases. This is especially critical in high-
stakes applications where the consequences of biased decisions can be severe. Fairness is commonly
categorized into three main types: Individual fairness (Yurochkin et al., 2019; Mukherjee et al.,
2020; Yurochkin & Sun, 2020; Kang et al., 2020; Mukherjee et al., 2022), which aims to ensure that
similar individuals are treated similarly; Group fairness (Hardt et al., 2016; Verma & Rubin, 2018;
Li et al., 2020; Ling et al., 2023), which focuses on achieving fairness across predefined subgroups,
often defined by sensitive attributes such as gender or race; Counterfactual fairness (Kusner et al.,
2017; Agarwal et al., 2021; Zuo et al., 2022), which seeks to ensure fairness by considering how
decisions would hold under alternative scenarios. Given the widespread adoption of group fairness
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metrics in real-world applications and the increasing development of in-processing techniques for
deep neural network models, we focus on benchmarking these methods to ensure group fairness in
neural networks, particularly for tabular and image data.

Various techniques for mitigating bias in machine learning models can be categorized into three
main approaches: pre-processing, in-processing, and post-processing. Pre-processing methods
focus on addressing biases present in the dataset itself to ensure that the trained model exhibits
fairness (Kamiran & Calders, 2012; Calmon et al., 2017a). For instance, these techniques may
involve rebalancing the dataset or modifying the data collection process (Calmon et al., 2017b).
In-processing methods, on the other hand, adjust the training objectives by incorporating fairness
constraints directly into the learning process (Kamishima et al., 2012; Zhang et al., 2018; Madras
et al., 2018; Zhang et al., 2022; Buyl & De Bie, 2022; Alghamdi et al., 2022; Shui et al., 2022;
Mehrotra & Vishnoi, 2022). This approach aims to ensure that the model learns fair representations
during training. Finally, post-processing methods modify the predictions made by classifiers after
the model has been trained, with the goal of promoting fairness across different groups (Hardt et al.,
2016; Jiang et al., 2020; Tsaousis & Alghamdi, 2022). By categorizing these techniques, we can
better understand the different strategies available for mitigating bias in machine learning systems.

L.2 REGULARIZATION-BASED IN-PROCESSING METHODS

In this paper, we explore three types of regularization-based in-processing methods. First, Gap
Regularization (Chuang & Mroueh, 2020) streamlines the optimization process by offering a smooth
approximation of real-world loss functions, which are typically non-convex and difficult to optimize
directly. This category includes methods such as DP, EO, and EOD. Second, the Independence
approach integrates fairness constraints into the optimization, aiming to mitigate the influence of
protected attributes on model predictions while maintaining overall performance. Notable examples
of this approach include PR (Kamishima et al., 2012) and HSIC (Li et al., 2019). Lastly, adversarial
debiasing seeks to minimize utility loss while hindering an adversary’s ability to accurately predict
the protected attributes. This approach encompasses methods like ADV (Zhang et al., 2018; Louppe
et al., 2017; Beutel et al., 2017; Edwards & Storkey, 2015; Adel et al., 2019) and LAFTR (Madras
et al., 2018).
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