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ABSTRACT

We provide finite-particle convergence rates for the Stein Variational Gradi-
ent Descent (SVGD) algorithm in the Kernelized Stein Discrepancy (KSD) and
Wasserstein-2 metrics. Our key insight is that the time derivative of the relative
entropy between the joint density of N particle locations and the N -fold product
target measure, starting from a regular initial distribution, splits into a dominant
‘negative part’ proportional to N times the expected KSD2 and a smaller ‘positive
part’. This observation leads to KSD rates of order 1/

√
N , in both continuous and

discrete time, providing a near optimal (in the sense of matching the correspond-
ing i.i.d. rates) double exponential improvement over the recent result by Shi &
Mackey (2024). Under mild assumptions on the kernel and potential, these bounds
also grow polynomially in the dimension d. By adding a bilinear component to
the kernel, the above approach is used to further obtain Wasserstein-2 conver-
gence in continuous time. For the case of ‘bilinear + Matérn’ kernels, we derive
Wasserstein-2 rates that exhibit a curse-of-dimensionality similar to the i.i.d. set-
ting. We also obtain marginal convergence and long-time propagation of chaos
results for the time-averaged particle laws.

1 INTRODUCTION

Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016) is a widely-used deterministic
particle-based algorithm for sampling from a target density π ∝ exp(−V ), where V : Rd → R is
the potential function. For a given symmetric, positive-definite kernel k : Rd × Rd → R, discrete
time-step n ∈ N0, step-size η > 0, and for 1 ≤ i ≤ N , the SVGD algorithm is given by

xNi (n+ 1) = xNi (n)− η

N

∑
j

[
k(xNi (n), xNj (n))∇V (xNj (n))−∇2k(xNi (n), xNj (n))

]
. (1)

SVGD provides a compelling alternative to more classical randomized sampling algorithms like
Markov Chain Monte Carlo (MCMC) that require additional uncertainty quantification with respect
to the algorithmic randomness. It has attracted considerable attention in the machine learning and
applied mathematics communities because of its fascinating theoretical properties and broad range
of applications (Feng et al., 2017; Haarnoja et al., 2017; Lambert et al., 2021; Liu et al., 2021; Xu
et al., 2022). Our focus in this work is on deriving rates of convergence of the SVGD algorithm
in equation 1 and the corresponding continuous-time, N -particle SVGD dynamics on Rd, obtained
by letting η → 0+, given by

ẋNi (t) = − 1

N

∑
j

k(xNi (t), xNj (t))∇V (xNj (t)) +
1

N

∑
j

∇2k(xNi (t), xNj (t)), (2)
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with ẋ denoting the time derivative and ∇2 represents gradient with respect to the second argument.
Throughout the paper, we will implicitly assume the existence of a solution to the above equation
and the completeness of the vector field driving the above dynamics in

(
Rd
)N

. This is satisfied, for
example, under standard continuity and linear growth assumptions on the driving vector field.

The motivation for SVGD originates from the gradient flow for the relative entropy (i.e., the KL
divergence) on the Wasserstein-2 space of probability measures on Rd. More precisely, for a proba-
bility measure µ on Rd possessing a regular enough positive density, the Wasserstein gradient flow
is given by the measure-valued trajectory µt satisfying the continuity equation

∂tµt +∇ · (vtµt) = 0, µ0 = µ, (3)

where vt = −∇ log(pt/π) and pt is the density of µt. Under suitable conditions, µt can be shown
to converge (often with quantifiable fast rates) to π. Unfortunately, this approach is not practically
implementable via particle discretization as the associated empirical measure approximating µt does
not possess a density.

In a very influential paper, Liu & Wang (2016) devised a projected gradient descent algorithm
by projecting the velocity vector vt along a reproducing kernel Hilbert space (RKHS) associated
with a symmetric positive definite kernel k. This leads to a flow analogous to equation 3 but with
vt = −Pµt∇ log(pt/π), where the projection Pµt is given by Pνf(x) :=

∫
k(x, y)f(y)ν(dy) for

probability measure ν and function f : Rd → R for which the integral is well-defined. The key
observation of Liu & Wang (2016) was that, by applying integration by parts, one obtains

−Pµt∇ log(pt/π)(x) =

∫
(−k(x, y)∇V (y) +∇2k(x, y))µt(dy).

The right hand side is well-defined even when µt lacks a density and is hence amenable to particle
discretization, which leads to the SVGD equations equation 1 and equation 2. See Korba et al.
(2020) for a more detailed description of this approach.

Challenges for finite-particle SVGD: There has been extensive work in quantifying convergence
rates for the mean-field SVGD equation (see ‘Past works’ below). However, only Shi & Mackey
(2024) and Liu et al. (2024) have made attempts towards obtaining rates for the finite-particle version
of (deterministic) SVGD. This has been perceived as a challenging open problem till date. The
tractability of the mean-field SVGD equation comes from the observation that it has a (projected)
gradient structure which leads to the following monotonicity property of the KL-divergence:

∂tKL(µt||π) = −KSD2(µt||π), t ≥ 0,

where KSD stands for the Kernelized Stein Discrepancy (Chwialkowski et al. (2016); Liu et al.
(2016); Gorham & Mackey (2017)). The non-negativity of KL then leads to bounds on the KSD. For
the finite-particle versions equation 1 and equation 2, there is no gradient structure to the dynamics,
which renders the above approach inapplicable. Moreover, the vector field driving the finite-particle
dynamics is not globally Lipschitz and lacks suitable convexity properties. This results in double-
exponentially growing bounds in time between the particle empirical distribution and the mean-field
limit (see Lu et al. (2019, Prop. 2.6) and Shi & Mackey (2024, Thm. 1)). As a consequence,
attempts to demonstrate finite-particle convergence to the target distribution π by relying on the
mean-field convergence and the convergence of the mean-field equation to the target in the general
(non-Gaussian) setting lead to a slow convergence rate of 1/

√
log logN . In Das & Nagaraj (2023),

the authors intentionally bypassed this approach for the finite-particle setting, achieving improved
convergence rates, but their method requires a distinct, albeit related, algorithm that incorporates
additional randomness into the dynamics.

Our contributions: A key insight in this paper is to work with the joint density of the particle
locations, when started from a suitably regular initial distribution, and track the evolution of its
relative entropy with respect to theN -fold product measure π⊗N . It turns out that the time derivative
of this relative entropy has a ‘negative part’ that is exactly N times the expected KSD2 of the
empirical measure at time t with respect to π, and a ‘positive part’ that can be separately handled
and shown to be small in comparison to the negative part (see equation 9). This gives a novel
connection between the joint particle dynamics and the empirical measure evolution.

Our first main result, Theorem 1, exploits this observation to obtain O(1/
√
N) bounds for the ex-

pected KSD between µN
av := 1

N

∫ N

0
µN (t)dt and π for the continuous-time SVGD dynamics in
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equation 2. Analogous bounds for the discrete-time SVGD dynamics in equation 1 are obtained in
Theorem 3. Together, these results constitute a double exponential improvement over Shi & Mackey
(2024) for the true SVGD algorithm. As discussed in Remark 2, the bounds in Theorem 1 are essen-
tially optimal when compared with the KSD in the i.i.d. setting, and grow linearly in d (that is, KSD
is O(d/

√
N)) under mild assumptions on the kernel and the potential. Moreover, unlike previous

works even for the mean-field SVGD, we do not require any assumptions on the tail behavior (such
as sub-Gaussianity) of the target π in Theorem 1. Further, it follows from Gorham & Mackey (2017)
that the KSD bound alone does not even guarantee weak convergence of the particle marginal laws as
N → ∞, unless one establishes tightness of these laws. Our approach gives control on the relative
entropy of the joint law in time which, in turn, gives the desired tightness and weak convergence for
the time-averaged particle marginal laws µ̄N (·) := 1

N

∫ N

0
P(x1(t) ∈ ·)dt, for exchangeable initial

conditions, see Theorem 2.

The discrete-time SVGD bound in Theorem 3, although similar in flavor to Theorem 1, is sub-
stantially more involved and requires careful control on the discretization error. In this result, we
incorporate a parameter α that lets us interpolate between exponential tails and Gaussian tails as
α varies from 0 to 1/2. This parameter turns out to be crucial in choosing the step-size η, which
is ≈ d−( 1+α

2(1−α)
∨1)N− 1+α

1−α , and the number of iterations required ≈ N
2

1−α , to obtain KSD bounds
which areO

(
d(

3−α
4(1−α)

∨1)N−1/2
)

. Unlike the population limit discrete-time SVGD rates previously
obtained in Korba et al. (2020); Salim et al. (2022), the Hilbert-Schmidt norm of the Jacobian of the
transformation associated with each iteration depends non-trivially on the initial configuration and
the number of iterations. A key technical ingredient in controlling this is an ‘a priori’ bound on the
functional n 7→ N−1

∑
i V (xNi (n)) obtained in Lemma 3.

In Section 4, we obtain Wasserstein-2 convergence and associated rates. For this purpose, we heav-
ily rely on the treatise of Kanagawa et al. (2022) which connects KSD convergence to Wasserstein
convergence when the kernel has a bilinear component and a translation invariant component of
the form (x, y) 7→ Ψ(x − y) (see equation 11). Such kernels are typically unbounded, in contrast
with standard boundedness assumptions in most papers on SVGD (a notable exception is Liu et al.
(2024)). In Theorem 4, under dissipativity and growth assumptions on the potential V , we obtain
polynomial KSD convergence rates for SVGD finite-particle dynamics with such kernels, which
by Kanagawa et al. (2022) imply Wasserstein convergence. When the translation invariant part of
the kernel is of Matérn type, we obtain Wasserstein convergence rates in Theorem 5 of the form
O(1/Nα/d) (where α > 0 does not depend on d) for the particle SVGD using Theorem 4 in con-
junction with results in Kanagawa et al. (2022). This is the first work on Wasserstein convergence
for non-Gaussian SVGD finite-particle dynamics. Unlike the KSD bound, the d dependence leads
to curse-of-dimensionality in the Wasserstein bound, but this is to be expected when compared to
Wasserstein bounds for empirical distribution of i.i.d. random variables (Dudley, 1969; Weed &
Bach, 2019). Finally, we obtain a long-time propagation of chaos result in Proposition 1, namely,
we show that the time-averaged marginals of the particle locations over the time interval [0, N ],
started from an exchangeable initial configuration, become asymptotically independent as N → ∞
and essentially produce i.i.d samples from π. Although the results in Sections 4 and 5 are proved for
the continuous-time SVGD in equation 2 to highlight the main ideas, analogous results can also be
proved in discrete-time and is deferred to future work.

Past works: The following diagram from Liu et al. (2024) highlights the major approaches under-
taken in rigorously analyzing the SVGD dynamics:

Initial particles
µN (0)= 1

N

∑N
j=1 δxj(0)

Evolving particles
µN (t)= 1

N

∑N
j=1 δxj(t)

Equilibrium
µN (∞)= 1

N

∑N
j=1 δxj(∞)

Initial density
µ0

Evolving density
µt

Target
µ∞=π

(c)

(b)

(e)

(d)

(a)

(a) Unified convergence of the empirical measure forN <∞ particles to the continuous target
as time t and N jointly grow to infinity;

(b) Convergence of mean-field SVGD to the target distribution over time;
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(c) Convergence of the empirical measure for finite particles to the mean-field distribution at
any finite given time t ∈ [0,∞);

(d) Convergence of finite-particle SVGD to equilibrium over time;
(e) Convergence of the empirical measure for finite particles to the continuous target at time

t = ∞.

Practically speaking, (a) is the ideal outcome that completely defines the algorithmic behavior of
SVGD. One approach towards this is to combine either (b) and (c) or (d) and (e) in a quantitative way
to yield (a). Regarding (b), Liu (2017) showed the convergence of mean-field SVGD (solution to
equation 3 with vt = −Pµt

∇ log(pt/π)) in KSD which is known to imply weak convergence under
appropriate assumptions. Korba et al. (2020); Chewi et al. (2020); Salim et al. (2022); Sun et al.
(2023); Duncan et al. (2023) sharpened the results with weaker conditions or explicit rates. He et al.
(2024) extended the above result to the stronger Fisher information metric and Kullback–Leibler
divergence based on a regularization technique. Lu et al. (2019); Gorham et al. (2020); Korba
et al. (2020) obtained time-dependent mean-field convergence (c) under various assumptions using
techniques from partial differential equations and from the literature of ‘propagation of chaos’. In
particular, Lu et al. (2019) derived the mean-field PDE equation 3 for the evolving density that
emerges as the mean-field limit of the finite-particle SVGD systems, and showed the well-posedness
of the PDE solutions. Carrillo & Skrzeczkowski (2023) established refined stability estimates in
comparison to Lu et al. (2019) for the mean-field system when the initial distribution is close to
the target distribution in a suitable sense. In particular, they increase the length of the time interval
in which mean-field approximation is meaningful from ≈ log logN to ≈

√
N for such initial data

close to the target.

Shi & Mackey (2024) obtained refined results for (c) and combined them with (b) to get the first uni-
fied convergence (a) in terms of KSD. However, they have a rather slow rate of order 1/

√
log logN ,

resulting from the fact that their bounds for (c) still depend on the time t (sum of step sizes) double-
exponentially. Note that studying the convergence (d) and (e), provides another way to characterize
the unified convergence (a) for SVGD. Liu et al. (2024) analyzed this strategy for the Gaussian
SVGD case where the target distribution π and initial distribution µ are both Gaussian and the kernel
k is bilinear. In this case, the flow of measures for the mean-field SVGD remains Gaussian for all
time and this fact was exploited to obtain detailed rates and ‘uniform-in-time’ propagation of chaos
results. Das & Nagaraj (2023) obtained a polynomial convergence rate (O(N−α) for some α > 0)
for a related but different algorithm, which they called SVGD with virtual particles, by adding
more randomness to the dynamics and using stochastic approximation techniques. The recent work
of Priser et al. (2024) also studies finite-particle asymptotics, albeit for not the original SVGD it-
erates (as in equation 1) but for a modified one where a Langevin-type regularization including a
Gaussian noise is added at each step. Hence, they leverage existing techniques for Langevin Monte
Carlo to establish their results. However, their techniques are not applicable to the deterministic
SVGD system in equation 1.

Notation: We will say a function f is Ck if it is k times continuously differentiable in its arguments.
L(X) will denote the law of the random variable X . We let B(Rd) denote the Borel sigma-algebra
on Rd. We use π⊗N N-fold product target measure, i.e., π⊗N (x1, . . . , xN ) := π(x1)×· · ·×π(xN ).
Throughout the article (particularly in the proofs), we will often suppress the superscript N for
various objects when it is clear from context. Furthermore, underlined vectors (e.g., x) denote
objects in

(
Rd
)N

.

2 CONTINUOUS-TIME FINITE-PARTICLE CONVERGENCE RATES IN KSD
METRIC

We first provide rates in the KSD metric. Let H0 denote the reproducing kernel Hilbert space
(RKHS) of real-valued functions associated with the positive definite kernel k (Aronszajn, 1950).
Then H := H0 × · · · × H0 inherits a natural RKHS structure comprising Rd-valued functions.
The Langevin-Stein operator (Gorham & Mackey, 2015) Tπ , associated with π ∝ e−V , acts on
differentiable functions ϕ : Rd → Rd by

Tπϕ(x) := −∇V (x) · ϕ(x) +∇ · ϕ(x), x ∈ Rd.
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The Kernelized Stein Discrepancy1 (KSD) (Chwialkowski et al., 2016; Gorham & Mackey, 2017),
associated with the kernel k, of a probability measure P on Rd with respect to π is defined as

KSD(P ||π) := sup{E [Tπϕ(X)] : X ∼ P, ϕ ∈ H, ∥ϕ∥H ≤ 1}. (4)

The definition of KSD is motivated by Stein’s identity which says that, for any sufficiently regular
ϕ, EX∼π [Tπϕ(X)] = 0 and thus, the above measures the ‘distance’ of P from π via the maximum
discrepancy of this expectation from 0 when X ∼ P , as ϕ varies over H.

The appeal of KSD lies in the fact that, unlike most distances on the space of probability measures,
KSD has an explicit tractable expression. The function ϕ∗ ∈ H for which the above supremum is
attained has a closed form expression ϕ∗(x) ∝ EY∼P [−k(Y, x)∇V (Y ) +∇1k(Y, x)]. Using this,
we get the following expression for KSD:

KSD2(P ||π) = E(X,Y )∼P⊗P [∇V (X) · (k(X,Y )∇V (Y ))−∇V (X) · ∇2k(X,Y )

−∇V (Y ) · ∇1k(X,Y ) +∇1 · ∇2k(X,Y )] . (5)

Before proceeding, we introduce the following regularity conditions, and state an existence and
regularity result (proved in Appendix A.1) for the joint particle density.
Assumption 1. We make the following regularity assumptions.

(a) The maps (x, y) 7→ k(x, y) and x 7→ V (x) are C3.

(b) xN (0) = (xN1 (0), . . . , xNN (0)) has a C2 density pN0 .
Lemma 1. Consider the SVGD dynamics equation 2 under Assumption 1. Then the particle loca-
tions (x1(t), . . . , xN (t)) have a joint density pN (t, ·) for every t ≥ 0, and the map (t, z) 7→ pN (t, z)
is C2.

The proof of this lemma is deferred to Appendix A.1. Now we proceed to bound KL-divergence
between the joint density ofN -many particles at time t and theN -fold product measure of the target
distribution π.

Denote the KL-divergence as

KL(pN (t)||π⊗N ) :=

∫
log

(
pN (t, z)

π⊗N (z)

)
pN (t, z)dz. (6)

The following theorem furnishes the key bound on the KSD between the empirical law

µN (t) :=
1

N

N∑
i=1

δxi(t), t ≥ 0,

and the target distribution π. Define

C∗(z) := ∇2k(z, z) · ∇V (z) + k(z, z)∆V (z)−∆2k(z, z), z ∈ Rd. (7)

In the above, ∇2k(z, z) := ∇2k(z, ·)(z) and ∆2k(z, z) := ∆2k(z, ·)(z).
Theorem 1. Let Assumption 1 hold. Then, we have for every T > 0,

1

T

∫ T

0

E[KSD2(µN (t)||π)]dt ≤ KL(pN (0)||π⊗N )

NT
+

1

N2T

∫ T

0

E

[
N∑

k=1

C∗ (xk(t))

]
dt,

where the expectation is with respect to p(t). In addition, we have that

KL(pN (T )||π⊗N ) ≤ KL(pN (0)||π⊗N ) +
1

N

∫ T

0

E

[
N∑

k=1

C∗ (xk(t))

]
dt.

Moreover, if C∗ := supz∈Rd C∗(z) <∞ and lim sup
N→∞

KL(pN (0)||π⊗N )/N <∞, then

(E[KSD(µN
av||π)])2 ≤ 1

N

∫ N

0

E[KSD2(µN (t)||π)]dt ≤
supL

KL(pL(0)||π⊗L)
L + C∗

N
, (8)

where µN
av(dx) :=

1
N

∫ N

0
µN (t, dx)dt.

1See Barp et al. (2022, Section 2.2) for additional technical details regarding the well-definedness of KSD.
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Remark 1. The condition C∗ < ∞ holds, for example, when k(u, v) = Ψ(u − v) for a positive-
definite C3 function Ψ : Rd → R (Bochner, 1933), and supx∈Rd ∆V (x) < ∞. Examples of
such kernels include the radial basis kernel (e.g., Gaussian) and a wide class of Matérn kernels.
The condition on the potential allows for a large class of non-log-concave densities as well. The
condition lim sup

N→∞
KL(pN (0)||π⊗N )/N < ∞ holds, for example, if we set the law of xN (0) =

(xN1 (0), . . . , xNN (0)) to be µ⊗N
◦ , where µ◦ is any probability measure on Rd satisfying KL(µ◦||π) <

∞.

Remark 2 (Optimality and dimension dependence). According to Sriperumbudur (2016); Ha-
grass et al. (2024), we have under mild regularity conditions, that the empirical measure PN :=
1
N

∑N
i=1 δXi

, where Xi ∼ P , i.i.d., satisfies E[KSD(PN ||P )] = O(1/
√
N). This points to the fact

that our rates in Theorem 1 are presumably optimal with respect to N . While there is no curse-
of-dimensionality in the KSD rates, the dimension factor appears in the numerator of the bound
equation 8. When k(u, v) = Ψ(u − v) as in Remark 1 with supx∈Rd ∆V (x) ≤ Cd for some di-
mension independent constant C, it can be checked that C∗ ≤ Ψ(0)Cd − ∆Ψ(0), which gives a
linear in d upper bound on C∗ for a wide range of kernels (including the Gaussian kernel) and
potentials. Moreover, as long as mild regularity conditions are assumed about the kernel and the
potential function, then according to Vempala & Wibisono (2019, Lemma 1), the initialization de-
pendent term could be taken to be linear in d when V has Lipschitz gradients. These combine to
give an O(d/

√
N) bound on the KSD.

Proof of Theorem 1. We will abbreviate H(t) := KL(pN (t)||π⊗N ). Using the particle dynamics
equation 2 and integration by parts, it is easy to verify that p(t, z) is a weak solution of the following
N -body Liouville equation (see, for example, Golse et al. (2013, Pg. 7) and Ambrosio et al. (2005,
Chapter 8)) given by

∂tp(t, z) +
1

N

N∑
k,ℓ=1

divzk(p(t, z)Φ(zk, zℓ)) = 0,

where Φ(z, w) := −k(z, w)∇V (w) + ∇2k(z, w). Recalling equation 6, and using the density
regularity obtained in Lemma 1, we have that

H′(t) =

∫
∂tp(t, z)dz +

∫
log

(
p(t, z)

π⊗N (z)

)
∂tp(t, z)dz

= −
∫

1

N

∑
k,ℓ

log

(
p(t, z)

π⊗N (z)

)
divzk(p(t, z)Φ(zk, zℓ))dz

=
1

N

∑
k,ℓ

∫
∇zk log

(
p(t, z)

π⊗N (z)

)
· (p(t, z)Φ(zk, zℓ))dz

=
1

N

∑
k,ℓ

∫
∇zkp(t, z) · Φ(zk, zℓ)dz +

1

N

∑
k,ℓ

∫
∇V (zk) · Φ(zk, zℓ)p(t, z)dz

=
1

N

∑
k,ℓ

∫
(−divzkΦ(zk, zℓ) +∇V (zk) · Φ(zk, zℓ)) p(t, z)dz.

Now, observe that

−divzkΦ(zk, zℓ) = divzk(k(zk, zℓ)∇V (zℓ))− divzk(∇2k(zk, zℓ))
= ∇1k(zk, zℓ) · ∇V (zℓ)−∇1 · ∇2k(zk, zℓ) + C∗(zk)1{k=ℓ}.

Similarly,

∇V (zk) · Φ(zk, zℓ) = −∇V (zk) · (k(zk, zℓ)∇V (zℓ)) +∇V (zk) · ∇2k(zk, zℓ).

Therefore, using the explicit form of KSD in equation 5, we have∑
k,ℓ

(−divzkΦ(zk, zℓ) +∇V (zk) · Φ(zk, zℓ)) = −N2KSD2(µ(z)||π) +
∑
k

C∗(zk),
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where µ(z) := 1
N

∑N
i=1 δzi . Hence, we have

H′(t) = −NE[KSD2(µN (t)||π)] + 1

N
E
[∑

k

C∗ (xk(t))
]
, (9)

where we recall that µN (t) = 1
N

∑N
i=1 δxi(t) is the empirical measure. Hence, we have

1

T

∫ T

0

E[KSD2(µN (t)||π)]dt ≤ H(0)

NT
+

1

N2T

∫ T

0

E

[∑
k

C∗ (xk(t))

]
dt,

which completes the first claim. The entropy bound follows from equation 9.

To prove the final claim, recall µN
av(dx) := 1

N

∫ N

0
µN (t, dx)dt and note that the map Q 7→

KSD(Q||π) is convex, which follows immediately from the representation of KSD given in equa-
tion 4. From this and repeated applications of Jensen’s inequality, we obtain

E[KSD(µN
av||π)] ≤

1

N

∫ N

0

E[KSD(µN (t)||π)]dt ≤ 1

N

∫ N

0

√
E[KSD2(µN (t)||π)]dt

≤

(
1

N

∫ N

0

E[KSD2(µN (t)||π)]dt

)1/2

≤

(
supL

H(0)
L + C∗

) 1
2

√
N

.

This completes the proof of the theorem.

We now address the convergence in law of the time-averaged marginals of a single particle when the
initial particle locations are drawn from an exchangeable law. We defer its proof to Appendix A.2.
Theorem 2. Suppose Assumption 1 holds, C∗ < ∞ and let k(u, v) = Ψ(x − y), where Ψ
is a C3 function with non-vanishing generalized Fourier transform. Suppose also that the law
p0 of the initial particle locations (x1(0), . . . , xN (0)) is exchangeable for each N ∈ N and
lim sup
N→∞

1
NKL(pN (0)||π⊗N ) <∞. Define

µ̄N (A) :=
1

N

∫ N

0

P(x1(t) ∈ A)dt, for A ∈ B(Rd).

Then, µ̄N → π, weakly.

3 DISCRETE-TIME FINITE-PARTICLE RATES IN KSD METRIC

In this section, we obtain KSD rates for the discrete-time SVGD dynamics given by equation 1. The
dynamics can be succinctly represented as

x(n+ 1) = x(n)− ηT(x(n)), n ∈ N0,

where η is the step-size and T = (T1, . . . ,TN )′ with Ti(x) =
1
N

∑
j [k(xi, xj)∇V (xj)−∇2k(xi, xj)]. In this section, we use T to denote the number of

iterations.

Although the idea is once again to track the evolution of the relative entropy of the joint density of
particle locations with respect to π⊗N , one needs a careful quantification of the discretization error
to obtain an equation similar to equation 9. We will make the following assumptions. All constants
appearing in the section will be independent of d,N .
Assumption 2. We make the following regularity assumptions.

(a) Boundedness: k and all its partial derivatives up to order 2 are uniformly bounded by
B ∈ (0,∞).

(b) Growth: infz∈Rd V (z) > 0 and, for some A > 0, α ∈ [0, 1/2], ∥∇V (x)∥ ≤ AV (x)α for
all x ∈ Rd.

7
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(c) Bounded Hessian: supz∈Rd ∥HV (z)∥op = CV <∞, where HV denotes the Hessian of V
and ∥ · ∥op denotes the operator norm.

(d) Recalling equation 7, we assume that supz∈Rd ∇2k(z, z) · ∇V (z) + k(z, z)∆V (z) −
∆2k(z, z) = c∗d for some constant c∗ > 0.

(e) Initial entropy bound: KL(p(0)||π⊗N ) ≤ CKLNd for some constant CKL > 0.
Remark 3. Conditions (a) and (c) are essentially motivated by the work of Korba et al. (2020), who
in turn are motivated by standard assumptions made in the stochastic optimization literature. The
condition (b) in Assumption 2 captures the growth rate of the potential V which plays a crucial role
in the step-size selection and number of iterations required (see equation 10 below) to obtain the
convergence rate in Theorem 3. As α approaches 0, π approaches the exponential distribution and
as α approaches 1/2, π is close to a Gaussian (in tail behavior). Conditions (d) and (e) are explicit
refinements of similar conditions required in the continuous-time analysis.
Theorem 3. Suppose Assumption 2 holds. Let the initial locations (x1(0), . . . , xN (0)) be sampled
from

pK(0) := p(0)|SK where SK :=
{
x ∈

(
Rd
)N

: N−1
∑
i

V (xi) ≤ K
}
,

for some K > 0 satisfying
∫
SK

p(0, z)dz ≥ 1/2, where p(0)|SK represents the restriction of the
density to the set SK . Then there exist positive constants a, b depending only on the constants
appearing in Assumption 2 such that with

η =
a

d
1+α

2(1−α) +
√
dKα + d

N− 1+α
1−α , T = ⌈N

2
1−α ⌉, (10)

we have

EpK(0)

[ 1
T

T−1∑
n=0

KSD2
(
µN
n ||π

) ]
≤
bd
(
d

1+α
2(1−α) +

√
dKα + d

)
N

.

In particular, if (x1(0), . . . , xN (0)) is sampled from p(0), then for any ϵ > 0,

P

 1

T

T−1∑
n=0

KSD2
(
µN
n ||π

)
>
bd
(
d

1+α
2(1−α) +

√
dKα + d

)
Nϵ

 ≤ ϵ+

∫
Sc
K

p(0, z)dz.

We prove Theorem 3 in Appendix A.3.
Remark 4. The proof of Theorem 3 involves an ‘interpolation’ in the spirit of Korba et al. (2020)
between the laws of x(n) and x(n + 1) which leads to a Taylor expansion of the relative entropy.
The main subtlety in the analysis when dealing with the joint law evolution here comes from the
fact that, unlike for the population limit SVGD, the Hilbert-Schmidt norm of the Jacobian of the
map T(x) at x = x(n) is not uniformly bounded in n and x(0). This requires refined ‘a priori’
bounds on the rate of growth of the path functional n 7→ 1

N

∑
i V (xi(n)) (see Lemma 3). As a

result, for initial locations in SK one can fine tune the step-size depending on N, d,K such that the
second order term in the Taylor expansion becomes small in comparison to the first term. Moreover,
the first order term is shown to have the same form as the continuous-time derivative of the joint
relative entropy obtained in the proof of Theorem 1. This leads to the results in Theorem 3.

Marginal convergence results, similar to Theorem 2, in the discrete-time setting can also be deduced
from the entropy bounds involved in proving Theorem 3.

4 CONTINUOUS-TIME FINITE-PARTICLE RATES IN W2 METRIC

We now explore convergence rates for the continuous-time SVGD in the L2-Wasserstein metric. For
s > 0, let Ps be the set of all Borel measurable probability measures on Rd with finite s-moment.
For two measures µ, ν ∈ Ps, the Ls-Wasserstein distance (based on the Euclidean distance) is
defined as

Ws(µ, ν) :=

(
inf

π∈Π(µ,ν)
E(X,Y )∼π [∥X − Y ∥s2]

)1/s

,

8
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where Π(µ, ν) denotes the set of all possible couplings of the probability measures µ and ν.

To addressW2 convergence, we consider the SVGD dynamics in equation 2 with kernels of the form

k̃(u, v) = 1 + ⟨u, v⟩+Ψ(u− v). (11)
We further assume that the kernel obtained by (u, v) 7→ Ψ(u − v) is positive-definite, Ψ(z) =
Ψ(−z) for all z ∈ Rd, supz∈Rd ∥∇Ψ(z)∥ < ∞, Ψ ∈ C3 and has a non-vanishing and continuous
generalized Fourier transform. A classical example of a kernel that satisfies these assumptions is the
Matérn kernel. We first state the following dissipativity and growth assumptions from Kanagawa
et al. (2022) along with an additional Laplacian growth condition.
Assumption 3. The following conditions hold:

(a) Dissipativity: The potential V satisfies −⟨x,∇V (x)⟩ ≤ −α∥x∥2 + β1∥x∥+ (β0 − d), for
some α > 0 and β1, β0 ≥ 0.

(b) Growth: ∥∇V (x)∥ ≤ λb(1 + ∥x∥), for some λb > 0.

(c) supz∈Rd ∆V (z) <∞.

The above assumptions are widely used in the MCMC literature (e.g., Raginsky et al. (2017)) and
are satisfied in many cases including certain Gaussian mixture models, and allow for some degree
of non-log-concavity in π.
Theorem 4. Let Assumption 3 hold. Assume that the initialization is such that
lim sup
N→∞

N−1KL(p(0)||π⊗N ) < ∞. Fix any σ > 0 and let M = M(N) := ⌈N2+σ⌉. Then, there

exists a constant C0 > 0 such that

E[KSD(µM
av||π)] ≤

C0

N1+σ/2
, ∀N ≥ 1 and W2(µ

M
av, π)

a.s→ 0, as N → ∞,

where recall µM
av(dx) :=

1
M

∫M

0
µM (t, dx)dt.

Theorem 4 is proven in Appendix A.4. By the results in Kanagawa et al. (2022, Section 3.2), we
can translate the KSD bound in Theorem 4 into a bound in the W2 metric. While a more abstract
result for the choice of kernel in equation 11 could be obtained by leveraging Kanagawa et al. (2022,
Theorem 3.2), for the sake of concreteness, we restrict ourselves to the Matérn-family of kernels.
Specifically we consider equation 11 with

k̃mk(u, v) := 1 + ⟨u, v⟩+ 21−(d/2+ν)

Γ(d/2 + ν)
∥Σ(u− v)∥ν2K−ν

(
∥Σ(u− v)∥2

)
︸ ︷︷ ︸

:=Ψmk(u−v)

, (12)

where Γ is the Gamma function, Σ a strictly positive definite matrix, and K−ν the modified Bessel
function of the second kind of order −ν.

To proceed, we also require the following assumption from Kanagawa et al. (2022), which is moti-
vated by the Langevin diffusion:

dZt = −∇V (Zt)dt+
√
2dBt, (13)

where (Bt)t≥0 is a d-dimensional Brownian motion. Note that equation 13 is the stochastic differ-
ential equation equivalent of the Wasserstein gradient flow in equation 3; see, for example, Jordan
et al. (1998); Bakry et al. (2014) for details. The connection between the two perspectives has in
particular proved to be extremely useful for analyzing both Markov Chain Monte Carlo algorithms
and particle-based methods.
Assumption 4. For s ∈ {1, 2}, let ρs : [0,∞) → [0,∞) be an upper bounding function for the
Ls-Wasserstein distance in the following sense:

Ws(L(Zx
t ),L(Z

y
t )) ≤ ρs(t)∥x− y∥2, ∀x, y ∈ Rd, t ≥ 0, (14)

where Zx
t and Zx

t are Langevin diffusion processes in equation 13 with initializations Z0 = x and

Z0 = y. Assume that ρ̃(t) :=
log

ρ1(t)

ρ1(0)
−log ρ2(t)

log
ρ1(t)

ρ1(0)

is uniformly bounded in t and, moreover,∫ ∞

0

ρ1(t)
{
1 +

√
ρ1(t) ρ̃(t)

}
dt <∞.

9
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Remark 5. Suppose there exist U > 0 and R,L ≥ 0 such that the potential V satisfies

⟨∇V (x)−∇V (y), x− y⟩
∥x− y∥22

≤
{

−U if ∥x− y∥2 > R,
L if ∥x− y∥2 ≤ R.

(15)

Then, by Eberle (2011; 2016), there exists c, c1 > 0 such that we can set ρ1(t) = ce−c1t, t ≥ 0.
Moreover, using equation 15 and Grönwall’s lemma, we can set ρ2(t) = eLt, t ≥ 0. Consequently,
ρ̃(t) = L+c1

c1
and hence Assumption 4 holds.

Theorem 5. Consider the SVGD updates in equation 2 with the kernel in equation 12. Suppose As-
sumption 4 and the assumptions made in Theorem 4 are satisfied. Then, with σ,M as in Theorem 4,
there exists a constant C(d) > 0 such that for any ϵ ∈ (0, 1), we have

P

[
W2(µ

M
av, π) ≥ C(d)

(
C0

ϵN1+σ/2

)r(d)
]
≤ ϵ, ∀N ≥

(
C0

ϵ

) 2
2+σ

,

where C0 is the same constant from Theorem 4, C(d) is the constant CP,d(1) from Kanagawa et al.
(2022, Theorem 3.5), and

r(d) :=
1

3( 4d+1
d )

· 1
3d
2 + 17

6 +
[
d+1
d + 5

3

]
ν
. (16)

We prove in Theorem 5 in Appendix A.5.
Remark 6. Note that r(d) ≈ 1

18d for large d. Hence, unlike the KSD rates in Theorem 5, the W2

rates have a curse-of-dimensionality. However, this is expected, as even in the case of i.i.d. samples,
we have a similar curse-of-dimensionality (Dudley, 1969; Weed & Bach, 2019). Intuitively, this
can be understood by observing that convergence in KSD captures convergence of expectations for
a class of test functions that is much smaller than that for Wasserstein convergence (see Gorham
& Mackey (2017)). The latter class is large enough to be highly sensitive to the effect of growing
dimension, thereby exhibiting the curse-of-dimensionality.

5 PROPAGATION OF CHAOS

We now exhibit a long-time propagation of chaos (POC) for the particle system started from an
exchangeable initial configuration and driven by the dynamics equation 2. More precisely, we show
in the following proposition that, under the conditions of Theorem 4, the time-averaged marginals of
particle locations over the time interval [0, N ] become asymptotically independent, with distribution
π, asN → ∞. This result shows in particular that, unlike traditional MCMC schemes (Brooks et al.,
2011), the SVGD algorithm provides multiple i.i.d. approximate samples from the target distribution
π. We defer its proof to Appendix A.6.
Proposition 1. Suppose that the law pN0 of the initial particle locations (xN1 (0), . . . , xNN (0)) is
exchangeable for each N ∈ N. For 1 ≤ k ≤ N , define the k-dimensional marginal of the time-
averaged occupancy measure of particle locations as follows:

µ̄N
k (A1, . . . , Ak) :=

1

N

∫ N

0

P(xN1 (t) ∈ A1, . . . , x
N
k (t) ∈ Ak)dt, for A1, . . . , Ak ∈ B(Rd).

Recall M = M(N) := ⌈N2+η⌉. Under the same setting as Theorem 4, we have that, for any fixed
k ∈ N, W1(µ̄

M
k , π

⊗k)
a.s→ 0, as N → ∞.

Remark 7. This result should be compared with Shi & Mackey (2024, Theorem 2) and Lu et al.
(2019, Proposition 2.6) where finite-time POC results are shown: the particle marginal laws at a
fixed time become asymptotically independent asN → ∞. This follows upon observing that the con-
vergence of empirical measures shown in these papers implies a finite-time POC (Chaintron & Diez,
2022, Proposition 9 and Theorem 3.21). However, owing to the lack of Lipschitz property of the vec-
tor field driving equation 2, this POC can only be extended to growing times t = tN = O(log logN)
when the particle marginal laws are not necessarily close to π. In contrast, Proposition 1 extends to
the time interval [0, N ] (hence, long-time POC) and the time-averaged particle trajectories essen-
tially produce i.i.d. samples from π.
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A PROOFS

A.1 PROOF OF LEMMA 1

Let F :
(
Rd
)N →

(
Rd
)N

be given by

Fi(z) := − 1

N

∑
j

k(zi, zj)∇V (zj) +
1

N

∑
j

∇2k(zi, zj),

for 1 ≤ i ≤ N . By Assumption 1, F is a C2 map. Note that the SVGD particle trajectories can be
written as {x(t, x(0)) : t ≥ 0}, where the flow x : [0,∞)×

(
Rd
)N →

(
Rd
)N

is given by

ẋ(t, z) = F (x(t, z)), x(0, z) = z,

with ẋ denoting the time derivative. By Hartman (2002, Chapter 5, Cor. 4.1), the map (t, z) 7→
x(t, z), and consequently, the inverse map (t, z) 7→ x(t, ·)−1(z), are C2 maps on (0,∞)×

(
Rd
)N

.

A simple change of variable formula gives (see Crippa (2008, Page 21))

p(t, z) =
p0

det(∇x(t, ·))
◦ x(t, ·)−1(z), (t, z) ∈ (0,∞)×

(
Rd
)N

.

The existence and regularity of p(·, ·) then follows from the above observations.

A.2 PROOF OF THEOREM 2

We will first show tightness of {µ̄N}N . By subadditivity of relative entropy (which follows from
Budhiraja & Dupuis (2019, Lemma 2.4(b) and Theorem 2.6)), we have

KL(L(x1(t))||π) ≤
1

N
KL(p(t)||π⊗N ) ≤ KL(p(0)||π⊗N )

N
+
C∗t

N
.

Hence, there exists C > 0 such that KL(L(x1(t))||π) ≤ C for all t ∈ [0, N ], ∀N ≥ 1. Fix any
ϵ > 0. Let δ > 0 such that δC < ϵ/2. Let K be a compact subset of Rd such that δ log(1 +
π(Kc)(e1/δ−1)) ≤ ϵ/2. By the variational representation of relative entropy (Budhiraja & Dupuis,
2019, Prop. 2.3) and Theorem 1, we have

P(x1(t) /∈ K) ≤ δ

[
log

(∫
e

1
δ1Kc (z)π(dz)

)
+ KL(L(x1(t))||π)

]
≤ δ log(1 + π(Kc)(e1/δ − 1)) + δC < ϵ

13
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for all t ∈ [0, N ], ∀N ≥ 1. In particular, {µ̄N}N is tight. Moreover, we have

KSD(µ̄N ||π) = KSD

(
1

N

∫ N

0

L(x1(t))dt||π

)

≤ 1

N

∫ N

0

KSD(L(x1(t))||π)dt by the convexity of KSD

=
1

N

∫ N

0

KSD(E[µN (t)]||π) using exchangeability, where E[µN (t)](dx) := E[µN (t, dx)]

≤ 1

N

∫ N

0

E[KSD(µN (t)||π)]dt→ 0 by KSD convexity and Theorem 1.

The result now follows from Gorham & Mackey (2017, Theorem 7).

A.3 PROOF OF THEOREM 3

The proof of Theorem 3 proceeds through the following lemmas. We will assume throughout that
Assumption 2 holds.

Lemma 2. ∥T(x)∥2 ≤ 2A2B2N
(

1
N

∑
i V (xi)

)2α
+ 2NB2d, x ∈

(
Rd
)N

.

Proof of Lemma 2. Observe that

∥T(x)∥2 =
1

N2

∑
i

∥
∑
j

(k(xi, xj)∇V (xj)−∇2k(xi, xj)∥2

≤ 2

N

∑
i,j

(
k2(xi, xj)∥∇V (xj)∥2 + ∥∇2k(xi, xj)∥2

)

≤ 2A2B2N

 1

N

∑
j

V (xj)
2α

+ 2NB2d

≤ 2A2B2N

 1

N

∑
j

V (xj)

2α

+ 2NB2d,

where the last step follows by Jensen’s inequality noting α ≤ 1/2.

The following lemma gives a key ‘a priori’ bound on the growth rate of N−1
∑

i V (xi(n)) in terms
of n and η and is crucial to the rest of the proof.

Lemma 3. There exist positive constants M,D depending only on the constants appearing in As-
sumption 2 such that for T ≥ 1, 0 ≤ n ≤ T , η ≤ 1 ∧ 1√

DT
,

1

N

∑
i

V (xi(n)) ≤M

(
d

1
1−α +

1

N

∑
i

V (xi(0))

)[
(ηn)

1
1−α ∨ 1

]
.

Proof of Lemma 3. Note that, using Taylor’s theorem,

1

N

∑
i

V (xi(n+ 1))− 1

N

∑
i

V (xi(n)) =
1

N

∑
i

⟨∇V (xi(n)), xi(n+ 1)− xi(n)⟩

+
1

N

∑
i

∫ 1

0

(1− s)⟨xi(n+ 1)− xi(n), HV (xi(n)− sηTi(x(n)))(xi(n+ 1)− xi(n))⟩ds

≤ 1

N

∑
i

⟨∇V (xi(n)), xi(n+ 1)− xi(n)⟩+
CV η

2

2N
∥T(x(n))∥2.

14
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Now, applying Lemma 2 in the above and writing D1 = A2B2CV and D2 = B2CV , we obtain

1

N

∑
i

V (xi(n+ 1))− 1

N

∑
i

V (xi(n))

≤ 1

N

∑
i

⟨∇V (xi(n)), xi(n+ 1)− xi(n)⟩+D1η
2

 1

N

∑
j

V (xj(n))

2α

+D2dη
2

= − η

N2

∑
i,j

⟨∇V (xi(n)), k(xi(n), xj(n))∇V (xj(n))⟩+
η

N2

∑
i,j

⟨∇V (xi(n)),∇2k(xi(n), xj(n))⟩

+D1η
2

 1

N

∑
j

V (xj(n))

2α

+D2dη
2

≤ η

N2

∑
i,j

⟨∇V (xi(n)),∇2k(xi(n), xj(n))⟩+D1η
2

 1

N

∑
j

V (xj(n))

2α

+D2dη
2,

where, in the last step, we used the positive-definiteness of k. Thus, suppressing the dependence on
n of the right hand side to avoid cumbersome notation, we obtain

1

N

∑
i

V (xi(n+ 1))− 1

N

∑
i

V (xi(n))

≤ B
√
dη

N

∑
i

∥∇V (xi)∥+D1η
2

 1

N

∑
j

V (xj)

2α

+D2dη
2

≤ AB
√
dη

(
1

N

∑
i

V (xi)

)α

+D1η
2

 1

N

∑
j

V (xj)

2α

+D2dη
2.

Thus, writing f(n) := 1
N

∑
i V (xi(n)), recalling α ≤ 1/2 and using f(n)2α ≤ 1+f(n), we obtain

f(n+ 1) ≤ (1 +D1η
2)f(n) +AB

√
dηf(n)α +D3dη

2, (17)

where D3 = D1 +D2. We will now harness the recursive bound equation 17 to obtain the claimed
bound in the lemma. First, we handle the case 0 ≤ n ≤ ⌈1/η⌉. Fix L > 0. Define

τL := sup{n ≥ 0 : f(n) ≤ L} ∧ ⌈1/η⌉.

Then for 1 ≤ n ≤ τL, equation 17 gives for η ≤ 1,

f(n) ≤ (1 +D1η
2)f(n− 1) +AB

√
dηLα +D3dη

2

≤
n−1∑
ℓ=0

(1 +D1η
2)ℓ(AB

√
dηLα +D3dη

2) + (1 +D1η
2)nf(0)

≤ 2

η
(1 +D1η

2)1/η(AB
√
dηLα +D3dη

2) + (1 +D1η
2)1+1/ηf(0)

≤ 2eD1(AB
√
dLα +D3d) + (1 +D1)e

D1f(0).

Hence, taking L = M̂ (d+ f(0)) for some suitably large M̂ ≥ 1 depending only on the constants
appearing in Assumption 2, we conclude from the above bound that f(τL) < L and hence τL =
⌈1/η⌉. Thus,

f(n) ≤ M̂ (d+ f(0)) for all 0 ≤ n ≤ ⌈1/η⌉.
Now, we handle the case 1/η ≤ n ≤ T . We will proceed by induction. Let

β :=M(d
1

1−α + f(0)), where M = M̂ ∨ [16(1− α)2(AB +D3)]
1

1−α .

15
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Take any η ≤ 1 ∧ 1
4(1−α)

√
D1T

. Then, by the above bound, note that for n = ⌈1/η⌉, f(n) ≤

β(nη)
1

1−α . Suppose for some 1/η ≤ n ≤ T , f(n) ≤ β(nη)
1

1−α . Then, by equation 17,

f(n+ 1) ≤ (1 +D1η
2)β(nη)

1
1−α +AB

√
dηβα(nη)

α
1−α +D3dη

2

≤ β((n+ 1)η)
1

1−α

[
(1 +D1η

2)

(
n

n+ 1

) 1
1−α

+
AB

√
d

β1−αn
+
D3dη

1−2α
1−α

βn
1

1−α

]

≤ β((n+ 1)η)
1

1−α

[
(1 +D1η

2)−

{
1

8(1− α)2n
− AB

√
d+D3d

β1−αn

}]

≤ β((n+ 1)η)
1

1−α

[
(1 +D1η

2)−

{
1

8(1− α)2n
− AB

√
d+D3d

M1−αdn

}]

≤ β((n+ 1)η)
1

1−α

[
1 +D1η

2 − 1

16(1− α)2n

]
≤ β((n+ 1)η)

1
1−α ,

where the fifth inequality uses the choice of M and the last inequality uses the bound on η. The
claimed bound follows by induction.

We will now use Lemma 3 to obtain bounds on ∥T(x(n))∥2 and the Hilbert-Schmidt norm of the
Jacobian matrix JT(x(n)).

Lemma 4. For T ≥ 1, 0 ≤ n ≤ T , η ≤ 1 ∧ 1√
DT

, we have

∥T(x(n))∥2 ≤ 2A2B2N

M2α

(
d

1
1−α +

1

N

∑
i

V (xi(0))

)2α [
(ηn)

2α
1−α ∨ 1

]+ 2NB2d,

∥JT(x(n))∥2HS ≤ 8A2B2d(N + 2)

M2α

(
d

1
1−α +

1

N

∑
i

V (xi(0))

)2α [
(ηn)

2α
1−α ∨ 1

]
+ 8B2d2(N + 3) + 8B2dC2

V .

Proof of Lemma 4. The first bound follows from Lemma 2 and Lemma 3. To prove the second
bound, note that

∥JT(x)∥2HS =

N∑
i,j=1

d∑
k,l=1

∥∂jlTik(x)∥2,

where for vi ∈ Rd, vik denotes the kth coordinate of vi and ∂jl denotes the partial derivative with
respect to xjl. We will also write for m = 1, 2, ∂mkk to denote the partial derivative of k with
respect to the kth coordinate of the mth variable. Observe that,

∂xjl
Tik(x) =

1

N

N∑
u=1

(∂1lk(xi, xu)∂kV (xu)− ∂2kk(xi, xu))1(i = j)

+
1

N
(∂2lk(xi, xj)∂kV (xj)− ∂2kk(xi, xj))

+
1

N
(k(xi, xj)∂lkV (xj)− ∂2kk(xi, xj))

+
1

N
(k(xi, xj)∂kV (xj)− ∂2l∂2kk(xi, xj)) .

16
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Write Sm(i, j) for the mth term in the above bound for m = 1, 2, 3, 4. In a similar manner as the
proof of Lemma 2,∑

ijkl

|S1(i, j)|2 ≤ 1

N

∑
iukl

(∂1lk(xi, xu)∂kV (xu)− ∂2kk(xi, xu))
2

=
1

N

∑
iul

∥∂1lk(xi, xu)∇V (xu)−∇2k(xi, xu)∥2

≤ 2A2B2dN

(
1

N

∑
i

V (xi)

)2α

+ 2NB2d2.

Similarly, ∑
ijkl

|S2(i, j)|2 =
1

N2

∑
ijkl

(∂2lk(xi, xj)∂kV (xj)− ∂2kk(xi, xj))
2

≤ 2B2

N2

∑
ij

(d∥∇V (xj)∥2 + d2)

≤ 2A2B2d

(
1

N

∑
i

V (xi)

)2α

+ 2B2d2.

Moreover, ∑
ijkl

|S3(i, j)|2 ≤ 2B2

N2

∑
ijkl

(
(∂lkV (xj))

2 + 1
)

≤ 2B2 sup
z∈Rd

∥HV (z)∥2 + 2B2d2 ≤ 2B2dC2
V + 2B2d2.

Finally,

∑
ijkl

|S4(i, j)|2 ≤ 2B2

N2

∑
ijkl

(
(∂kV (xj))

2 + 1
)
≤ 2A2B2d

(
1

N

∑
i

V (xi)

)2α

+ 2B2d2.

Combining the above bounds, we obtain

∥JT(x)∥2HS ≤ 4

2A2B2d(N + 2)

(
1

N

∑
i

V (xi)

)2α

+ 2B2d2(N + 3) + 2B2dC2
V

 .
The claimed bound in the lemma now follows from the above and Lemma 3.

Now, we will complete the proof of Theorem 3.

Proof of Theorem 3. Fix K > 0 as in the theorem and sample (x1(0), . . . , xN (0)) from pK(0)
supported on SK . Denote the law of x(n) by pK(n). As we will work with fixed 0 ≤ n ≤
T for the first portion of the proof, we will suppress dependence on n. Set ν(0) = pK(n) and
ν(η) = pK(n + 1). Interpolate these laws by defining ν(t) := ϕt#pK(n), t ∈ [0, η], where
ϕt(x) := x− tT(x), t ∈ [0, η]. Write SK = (Id−ηT)nSK and SK,t := ϕt(SK), t ∈ [0, η].

Set the step-size η as

η =

[
1

C0

(
1

N
1−α
1+α T

2α
1+α

∧ 1

N

)]1/2
θ, where θ ∈ [0, 1]

will be appropriately chosen later and C0 := 2[24A2B2dM2α(d
1

1−α +K)2α + 8B2d(C2
V + 4d)].

By Lemma 4, this choice of η ensures that for any x ∈ SK , t ∈ [0, η],

∥tJT(x)∥op ≤ η∥JT(x)∥HS ≤ θ

2
≤ 1

2
.
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Thus, Jϕt(x) is invertible for any such x, t and

∥(Jϕt(x))−1∥op ≤
∞∑
k=0

ηk∥JT(x)∥kHS ≤ 2.

In particular, if ν(0) admits a density, then for any t ∈ [0, η], ν(t) admits a density given by

qK(t, x) =
(
det(Jϕt(ϕ

−1
t (x)))

)−1
pK(n, ϕ−1

t (x)), x ∈ SK,t

and qK(t, x) = 0 otherwise. Writing E(t) := KL(qK(t)||π⊗N ), we obtain the following Taylor
expansion on the interval [0, η] along the lines of Korba et al. (2020):

E(η) = E(0) + ηE′(0) +

∫ η

0

(η − t)E′′(t)dt. (18)

clearly, E(0) = KL(pK(n)||π⊗N ) and E(η) = KL(pK(n+ 1)||π⊗N ). Moreover, by computations
similar to Korba et al. (2020), writing ∇̂V (x) = (∇V (x1), . . . ,∇V (xN ))′, we obtain for t ∈ [0, η],

E′(t) = −
∫

tr
(
(Jϕt(x))

−1∂tJϕt(x)
)
pK(n, x)dx+

∫
⟨∇̂V (ϕt(x)), ∂tϕt(x)⟩pK(n, x)dx

=

∫
tr
(
(Jϕt(x))

−1JT(x)
)
pK(n, x)dx−

∫
⟨∇̂V (ϕt(x)),T(x)⟩pK(n, x)dx.

In particular, recalling Φ(z, w) := −k(z, w)∇V (w) +∇2k(z, w),

E′(0) =

∫ (
div(T(x))− ⟨∇̂V (x),T(x)⟩

)
pK(n, x)dx

=

∫ − 1

N

∑
i,j

divxi
Φ(xi, xj) +

1

N

∑
i,j

∇V (xi)Φ(xi, xj)

 pK(n, x)dx

≤ −NEpK(0)

[
KSD2(µN

n ||π)
]
+ c∗d

along the same lines as the proof of Theorem 1. Moreover, note that for t ∈ [0, η],

E′′(t) = ψ1(t) + ψ2(t)

where, using Lemma 4 and our choice of step-size η,

ψ1(t) = Ex∼pK(n) [⟨T(x), HV (ϕt(x))T(x)⟩] ≤ CV sup
x∈SK

∥T(x)∥2 ≤ θ2

4η2
,

and

ψ2(t) =

∫
∥JT(x)(Jϕt(x))

−1∥2HS pK(n, x)dx

≤ sup
x∈SK

∥JT(x)∥2HS∥(Jϕt(x))−1∥2op ≤ 4 sup
x∈SK

∥JT(x)∥2HS ≤ θ2

η2
.

Combining the above observations, we obtain the following key ‘descent lemma’ for any 0 ≤ n ≤
T :

KL(pK(n+ 1)||π⊗N ) ≤ KL(pK(n)||π⊗N )−NηEpK(0)

[
KSD2(µN

n ||π)
]
+ c∗dη + θ2.

Hence, for T ≥ 2,

EpK(0)

[
1

T

T−1∑
n=0

KSD2(µN
n ||π)

]
≤ KL(pK(0)||π⊗N )

NTη
+
c∗d

N
+

θ2

Nη
.

Note that we have,

KL(pK(0)||π⊗N ) =

∫
SK

p0(x)

µ0(SK)

[
log
( p0(x)

π⊗N (x)

)
− log(µ0(SK))

]
dx

≤ 1

µ0(SK)

∫
(Rd)N

p0(x) log
( p0(x)

π⊗N (x)

)
dx+ log

( 1

µ0(SK)

)
.

18
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Hence, under our assumption that K satisfies µ0(SK) ≥ 1/2, we have that

KL(pK(0)||π⊗N ) ≤ 2KL(p(0)||π⊗N ) + log 2 ≤ γdN,

where γ := 2CKL+log 2. Using this in the previous display and recalling the choice of η, we obtain

EpK(0)

[
1

T

T−1∑
n=0

KSD2(µN
n ||π)

]
≤ γd

√
C0

√
N

1−α
1+α T

2α
1+α ∨N

Tθ
+
c∗d

N
+
√
C0
θ
√
N

1−α
1+α T

2α
1+α ∨N

N
.

The above expression is ‘approximately’ optimized on taking T = ⌈N
2

1−α ⌉ and θ =
√
N/T =

N− 1+α
2(1−α) , which gives the bound

EpK(0)

[
1

T

T−1∑
n=0

KSD2(µN
n ||π)

]
≤ (γd+ 1)

√
C0 + c∗d

N
.

The theorem follows from the above upon noting that
√
C0 ≤ c

(
d

1+α
2(1−α) +

√
dKα + d

)
for some

constant c depending only on the constants appearing in Assumption 2.

A.4 PROOF OF THEOREM 4

The additional bilinear term in equation 11 is the key to tackling Wasserstein convergence. It gives
uniform control in N,T over the second moment of the particle locations in the SVGD dynam-
ics equation 2, given in the following lemma.
Lemma 5. Under the same setting of Theorem 4, we have that

lim sup
N→∞

sup
T≥1

E

[
1

T

∫ T

0

1

N

N∑
i=1

∥xi(t)∥2dt

]
<∞.

This result is proved using Lyapunov function techniques and plays a key role in the proof of Theo-
rem 4.

Proof of Lemma 5. For this proof, we will abbreviate xi(t) as xi. Note that, using the SVGD equa-
tions equation 2, we have

d

dt

[
1

N

N∑
i=1

V (xi)

]
=−

∥∥∥∥∥ 1

N

N∑
i=1

∇V (xi)

∥∥∥∥∥
2

− 1

N2

∑
i,j

⟨xi, xj⟩⟨∇V (xi),∇V (xj)⟩

+
1

N

∑
i

⟨xi,∇V (xi)⟩ −
1

N2

∑
i,j

⟨∇V (xi),∇Ψ(xi − xj)⟩

− 1

N2

∑
i,j

⟨∇V (xi),Ψ(xi − xj)∇V (xi)⟩︸ ︷︷ ︸
≥0

.

(19)

The non-negativity claim above is a consequence of positive-definiteness of the kernel obtained by
(u, v) 7→ Ψ(u− v). Note that

1

N2

∑
i,j

⟨xi, xj⟩⟨∇V (xi),∇V (xj)⟩ =
d∑

ℓ,ℓ′=1

(
1

N

N∑
i=1

xi,ℓ(∇V (xi))ℓ′

)2

≥
d∑

ℓ=1

(
1

N

N∑
i=1

xi,ℓ(∇V (xi))ℓ

)2

≥ 1

d

(
1

N

N∑
i=1

d∑
ℓ=1

xi,ℓ(∇V (xi))ℓ

)2

=
1

d

(
1

N

N∑
i=1

⟨xi,∇V (xi)⟩

)2

,
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where the penultimate step follows by Cauchy-Schwartz inequality. Using the above inequality
in equation 19, we obtain

d

dt

[
1

N

N∑
i=1

V (xi)

]
≤− 1

d

(
1

N

N∑
i=1

⟨xi,∇V (xi)⟩

)2

−

∥∥∥∥∥ 1

N

N∑
i=1

∇V (xi)

∥∥∥∥∥
2

+
1

N

∑
i

⟨xi,∇V (xi)⟩ −
1

N2

∑
i,j

⟨∇V (xi),∇Ψ(xi − xj)⟩.
(20)

By Assumption 3, there exists A,α, β, γ > 0 such that

⟨x,∇V (x)⟩ ≥ α∥x∥2 for ∥x∥ ≥ A,

∥∇V (x)∥ ≤ β∥x∥ for ∥x∥ ≥ A,

∥∇Ψ∥∞ ≤ γ.

Using the above in equation 20, and defining

Γ(t) :=
∑
i

∥xi∥21[∥xi∥ ≥ A],

we obtain

d

dt

[
1

N

N∑
i=1

V (xi)

]
≤− α2

d
(Γ(t))

2
+

(
2Cβ

d
+ β

)
Γ(t) + βγ (Γ(t))

1/2
+ C ′,

where the constants C,C ′ > 0 are independent of N (but they depend on A). Thus, choosing
picking a sufficiently large constant B > 0 (which is independent of N ), we obtain for a constant
CB > 0 that, for all T > 0,

α2

2d

∫ T

0

(Γ(t))
2
1(Γ(t) ≥ B)dt ≤ 1

N

∑
i

V (xi(0)) + CB ,∫ T

0

(Γ(t))
2
1(Γ(t) < B)dt ≤ B2T.

Therefore, we obtain for all T > 0,

1

T

∫ T

0

1

N

∑
i

∥xi(t)∥2dt ≤
1

T

∫ T

0

(Γ(t))
2 dt+A2,

with
1

T

∫ T

0

(Γ(t))
2 dt ≤ B2 +

CB

T
+

1

NT

∑
i

V (xi(0)).

Thus, for all T ≥ 1 and N ≥ 1 and for a constant D > 0 (which is independent of N ),

E

[
1

T

∫ T

0

1

N

N∑
i=1

∥xi(t)∥2
]
≤ D +

1

T
E

[
1

N

∑
i

V (xi(0))

]
.

By the variational representation of relative entropy, for δ ∈ (0, 1),

E

[
1

N

∑
i

V (xi(0))

]
≤ 1

δ
log

(∫
expδV (z) π(dz)

)
+

1

Nδ
KL(pN (0)||π⊗N ).

By Assumption 3, π is sub-Gaussian. Hence, we have

lim sup
N→∞

E

[
1

N

∑
i

V (xi(0))

]
<∞,

from which, the result follows.
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Proof of Theorem 4. Recall H(t) = KL(pN (t)||π⊗N ). From the general KSD bound obtained in
Theorem 1, with k̃, we obtain for every T > 0,

1

T

∫ T

0

E[KSD2(µN (t)||π)]dt ≤ H(0)

NT
+

1

N2T

∫ T

0

E

[
N∑

k=1

C∗ (xk(t))

]
dt,

where C∗(xi(t)) is as defined in equation 7 with the kernel k̃. Now note that we can obtain constant
C > 0 such that, for any z ∈ Rd,

∇2k̃(z, z)∇V (z) = ⟨z,∇V (z)⟩ ≤ ∥z∥∥∇V (z)∥ ≤ C(1 + ∥z∥2),
k̃(z, z)∆V (z) ≤ C(∥z∥2 + 1 + Ψ(0)),

−∆2k̃(z, z) = −∆Ψ(0).

Hence, for all z ∈ Rd, we have that C∗(z) ≤ C1∥z∥2 + C2, for some constants C1, C2 > 0.
Therefore, we have for any t > 0 and N ≥ 1, that

1

T

∫ T

0

E[KSD2(µN (t)||π)]dt ≤ H(0)

NT
+

C1

NT

∫ T

0

E

[
1

N

N∑
k=1

E[∥xk(t)∥2]

]
dt+

C2

N
.

Now, using Lemma 5, there exists a constant C4 > 0 such that for any T ≥ 1 and N ≥ 1,

1

T

∫ T

0

E[KSD2(µN (t)||π)]dt ≤ H(0)

NT
+
C4

N
.

By the convexity of KSD, we have for N ≥ 1,

E[KSD(µM
av||π)] ≤

C0

N1+σ/2
.

Hence, by Borel–Cantelli lemma, we have that KSD(µM
av||π)

a.s→ 0, as N → ∞. The stated Wasser-
stein convergence result now follows by Kanagawa et al. (2022, Thm. 3.1) taking m = Id, qm =
1, q = 2, L = L(2) and Φ = Ψ.

A.5 PROOF OF THEOREM 5

By Theorem 3.5 in Kanagawa et al. (2022), we have that

W2(µ
M
av, π) ≤ C(d)(1 ∨ KSD(µM

av||π)(1−r(d)))KSD(µM
av||π)r(d),

where, from Kanagawa et al. (2022) we have

r(d) =
1

3
(
4d+1

d

) 1

1 + t1
where t1 =

3d+ 1

2
+

1

3
+

[
d+ 1

d
+

5

3

]
ν,

resulting in equation 16. Define E :=
{
KSD(µM

av||π) ≤ C0

ϵN1+σ/2

}
. By Theorem 4 and Markov’s

inequality, we have that P[Ec] ≤ ϵ. On the event Ec, for N ≥
(
C0

ϵ

) 2
2+σ , we have

W2(µ
M
av, π) ≤ C(d)

(
C0

ϵN1+σ/2

)r(d)

,

thereby proving the claim.

A.6 PROOF OF PROPOSITION 1

Let P(Rd) denote the space of probability measures on Rd, and denote by P(P(Rd)) the space
of probability measures on P(Rd). Let L(µM

av) denote the law of the random measure µM
av and δπ

denote the Dirac measure at π in P(P(Rd)).

By Lemma 5 and exchangeability,

sup
N≥1

E
[∫

Rd

∥x∥2µM
av(dx)

]
= sup

N≥1
E
[∫

Rd

∥x∥2µ̄M
1 (dx)

]
<∞. (21)

21
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Moreover, by Assumption 3(a),
∫
Rd ∥x∥2π(dx) <∞. Hence, by Chaintron & Diez (2022, Theorem

3.21), we conclude that W1(µ̄
M
k , π

⊗k) → 0 if and only if W1

(
L(µM

av), δπ
)
→ 0 as N → ∞, where

W1 is the Wasserstein distance on the space P(P(Rd)) equipped with the distance function W1 as
defined in Chaintron & Diez (2022, Definition 3.5).

Note that W1

(
L(µM

av), δπ
)
≤ E

[
W1(µ

M
av, π)

]
. By Theorem 4 and Jensen’s inequality,

W1(µ
M
av, π)

a.s→ 0 as N → ∞.

Moreover, observe that

W2
1(µ

M
av, π) ≤ W2

2(µ
M
av, π) ≤ 2

∫
Rd

∥x∥2µM
av(dx) + 2

∫
Rd

∥x∥2π(dx)

and hence, by equation 21 and Assumption 3(a), supN≥1 E
[
W2

1(µ
M
av, π)

]
< ∞. In particular,

{W1(µ
M
av, π) : N ≥ 1} is uniformly integrable and thus E

[
W1(µ

M
av, π)

]
→ 0 as N → ∞. The

result follows.
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