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Abstract

ML model design either starts with an inter-
pretable model or a Blackbox (BB) and explains
it post hoc. BB models are flexible but difficult to
explain, while interpretable models are inherently
explainable. Yet, interpretable models require
extensive ML knowledge and tend to be less
flexible and underperforming than their BB
variants. This paper aims to blur the distinction
between a post hoc explanation of a BB and
constructing interpretable models. Beginning
with a BB, we iteratively carve out a mixture of
interpretable experts and a residual network. Each
interpretable model specializes in a subset of sam-
ples and explains them using First Order Logic
(FOL). We route the remaining samples through
a flexible residual. We repeat the method on the
residual network until all the interpretable models
explain the desired proportion of data. Our
extensive experiments show that our approach
(1) identifies a diverse set of instance-specific
concepts without compromising the performance
of the BB, (2) identifies the relatively “harder”
samples to explain via residuals, and (3) is
transferred to an unknown target domain with
limited data efficiently. The code is uploaded
at: https://github.com/batmanlab/

tion is prone to confirmation bias (Wan et al., 2022), lack
of fidelity to the original model (Adebayo et al., 2018), and
insufficient mechanistic explanation of the decision-making
process (Rudin, 2019). Interpretable-by-design models over-
come those issues but tend to be less flexible than BB mod-
els and demand substantial expertise to design. Using a
post hoc explanation or adopting an inherently interpretable
model is a mutually exclusive decision to be made at the
initial phase of Al model design. This paper blurs the line
on that dichotomous model design.

The literature on post hoc explanations is extensive. This
includes model attributions ( (Simonyan et al., 2013; Sel-
varaju et al., 2017)), counterfactual approaches (Abid et al.,
2021; Singla et al., 2019), and distillation methods (Alharbi
et al., 2021; Cheng et al., 2020). Those methods either
identify key input features that contribute the most to the
network’s output (Shrikumar et al., 2016), generate input
perturbation to flip the network’s output (Samek et al., 2016;
Montavon et al., 2018), or estimate simpler functions to
approximate the network output locally. Post hoc methods
preserve the flexibility and performance of the BB but suf-
fer from a lack of fidelity and mechanistic explanation of
the network output (Rudin, 2019). Without a mechanistic
explanation, the recourse to a model’s undesirable behavior
is unclear. Interpretable models are alternative designs to
the BB without many such drawbacks. For example, mod-
ern interpretable methods highlight human understandable

MICCAI-2023-Route-interpret-repeat-CxXR<oncepts that contribute to the downstream prediction.

1. Introduction

Model explainability is essential in high-stakes applications
of Al, e.g., healthcare. While BB models (e.g., Deep Learn-
ing) offer flexibility and modular design, post hoc explana-
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Several families of interpretable models exist for a long time,
such as the rule-based approach and generalized additive
models (Hastie & Tibshirani, 1987; Letham et al., 2015;
Breiman et al., 1984). They primarily focus on tabular data.
Such models for high-dimensional data (e.g., images) pri-
marily rely on projecting to a lower dimensional human
understandable concept or symbolic space (Koh et al., 2020)
and predicting the output with an interpretable classifier.
Despite their utility, the current State-Of-The-Art (SOTA)
are limited in design; for example, they do not model the
interaction between the concepts except for a few excep-
tions (Ciravegna et al., 2021; Barbiero et al., 2022), offering
limited reasoning capabilities and robustness. Furthermore,
if a portion of the samples does not fit the template design
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of the interpretable model, they do not offer any flexibility,
compromising performance.

Our contributions: We propose an interpretable method to
achieve the best of both worlds: not sacrificing BB perfor-
mance similar to post hoc explainability while still providing
actionable interpretation. We hypothesize that a BB encodes
several interpretable models, each applicable to a different
portion of data. Thus, a single interpretable model may
be insufficient to explain all samples. We construct a hy-
brid neuro-symbolic model by progressively carving out
a mixture of interpretable models and a residual network
from the given BB. We coin the term expert for each in-
terpretable model, as they specialize over a subset of data.
All the interpretable models are termed a “Mixture of Inter-
pretable Experts” (MolE). Our design identifies a subset of
samples and routes them through the interpretable models
to explain the samples with FOL, providing basic reasoning
on concepts from the BB. The remaining samples are routed
through a flexible residual network. On the residual net-
work, we repeat the method until MolE explains the desired
proportion of data. Also, we apply our method to a real-life
CXR dataset. Due to class imbalance in large CXR datasets,
early interpretable models tend to cover all samples with
disease present while ignoring disease subgroups and patho-
logical heterogeneity. In this context, we propose MolE for
CXRs (MoIE-CXR) to address this problem by estimating
the class-stratified coverage from the total data coverage.
We assume that MoIE-CXR discovers the sample-specific
domain-invariant concepts for diverse disease subtypes and
pathological patterns. This process is analogous to how radi-
ologists search for patterns of anatomical changes to detect
abnormalities in medical images, and subsequently apply
logical rules to arrive at specific diagnoses. So, we apply
MOolE-CXR to a target domain with limited training data in
a transfer learning setup. The target domain lacks concept-
level annotation since they are expensive. Hence, we learn a
concept detector in the target domain with a pseudo labeling
approach (Lee et al., 2013) and finetune MoIE-CXR. Our
work is the first to apply concept-based methods to CXRs
and transfer them between domains.

2. Method

Notation: Assume we have a dataset {X, ), C}, where
X, Y, and C are the input images, class labels, and human
interpretable attributes, respectively. f° : X — Y, is our
pre-trained initial BB model. We assume that f° is a compo-
sition h® o ®, where @ : X — R! is the image embeddings
and h° : R! — Y is a transformation from the embeddings,
®, to the class labels. We denote the learnable function
t : RY — C, projecting the image embeddings to the concept
space (Ghosh et al., 2023b;a;c). The concept space is the
space spanned by the attributes C. Thus, function ¢ outputs
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Figure 1. Schematic view of our method. Note that f*(.) =
hF(®(.)). At iteration k, the selector routes each sample ei-
ther towards the expert g with probability 7rk() or the residual
r* = f*=1 — g* with probability 1 — 7%(.). g* generates FOL-
based explanations for the samples it covers. Note & is fixed across
iterations.

O Selector

Table 1. Datasets and BBs’.

DATASET BB #EXPERTS

HAMI1000 (Tschandl et al., 2018) INCEPTION (Szegedy et al., 2015)

SIIM-ISIC (Rotemberg et al., 2021) INCEPTION (Szegedy et al., 2015)
CARDIOMEGALY IN MIMIC-CXR (Johnson et al.) DENSENETI21 (Huang et al., 2017)
EDEMA IN MIMIC-CXR (Johnson et al.) DENSENETI21 (Huang et al., 2017)
EFFUSION IN MIMIC-CXR (Johnson et al.) DENSENETI21 (Huang et al., 2017)

PNEUMONIA IN MIMIC-CXR (Johnson et al.) DENSENETI21 (Huang et al., 2017)

L Y -

PNEUMOTHORAX IN MIMIC-CXR (Johnson et al.) DENSENETI21 (Huang et al., 2017)

a scalar value representing a concept for each input image.

Method Overview: Figure 1 summarizes our approach. We
iteratively carve out an interpretable model from the given
BB. Each iteration yields an interpretable model (the down-
ward grey paths in Figure 1) and a residual (the straight-
forward black paths in Figure 1). We start with the initial
BB f°. Atiteration k, we distill the BB from the previous
iteration f*~! into a neuro-symbolic interpretable model,
g® : C — Y. Our g is flexible enough to be any inter-
pretable models (Yuksekgonul et al., 2022; Koh et al., 2020;
Barbiero et al., 2022). The residual r* = f*—' — g* empha-
sizes the portion of f*~! that g¥cannot explain. We then
approximate 7* with f* = h¥ o®. f* will be the BB for the
subsequent iteration and be explained by the respective inter-
pretable model. A learnable gating mechanism, denoted by
7% : C — {0, 1} (shown as the selector in Figure 1) routes
an input sample towards either ¢g* or r*. The thickness of
the lines in Figure 1 represents the samples covered by the
interpretable models (grey line) and the residuals (black
line). With every iteration, the cumulative coverage of the
interpretable models increases, but the residual decreases.
We name our method route, interpret and repeat.
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Algorithm 1 Finetuning to an unseen domain.

1: Input: Learned selectors, experts, and final residual
from source domain: {7%, g*}X | and fX respectively,
with K as the number of experts to transfer. BB
of the source domain: f? = h2(®,). Source data:
Dy = {Xs,Cs,Vs}. Target data: Dy = {X;, ), }. Tar-
get coverages {7 } 5.

2: Output: Experts {7}, gf} | and final residual fX of
the target domain.

3: Randomly select n; < N; samples out of Ny = |Dy|.

4: Compute the pseudo concepts for the correctly classi-
fied samples in the target domain using f2, as, ci =
ts ((I)s(msi)) S.L., yi = f?(mtl)v i=1-- Tt

5: Learn the projection function ¢; for target domain
semi-supervisedly (Lee et al., 2013) using the pseudo

labeled samples {z,ci}"*, and unlabeled samples

{ai}ilm.

6: Complete the triplet for the target domain { X}, Ct, M},
where ¢! = t,(®4(xt)),i=1--+ Ny.

7: Finetune {7%, g*}& and fE to obtain {n}, gr}K |
and f/ using equations 5, 3 and 4 respectively for 5
cpochs. {rt, g}, and {{m¥, gl Y, FI°) repre-
sents MoIE-CXR and MoIE-CXR + R for the target
domain.

2.1. Neuro-Symbolic Knowledge Distillation

Knowledge distillation in our method involves 3 parts: (1)
a series of trainable selectors, routing each sample through
the interpretable models and the residual networks, (2) a
sequence of learnable neuro-symbolic interpretable models,
each providing FOL explanations to interpret the BB, and
(3) repeating with Residuals for the samples that cannot be
explained with their interpretable counterparts. We detail
each component below.

2.1.1. THE SELECTOR FUNCTION

As the first step of our method, the selector 7% routes the
jt" sample through the interpretable model g* or residual
¥ with probability 7¥(c;) and 1 — 7*(c;) respectively,
where k € [0, K], with K being the number of iterations.
We define the empirical coverage of the k' iteration as
((7%) = -5 2o7-, 7 (¢j), the empirical mean of the sam-
ples selected by the selector for the associated interpretable
model ¢¥, with m being the total number of samples in the
training set. Thus, the entire selective risk is:

1 m k
Rk(’frk gk) _ m Zj:l ‘C(gk,wk)(mj7cj)
7 ¢(m*) 7

ey

where E’("gk k) is the optimization loss used to learn gk and

7" together, discussed in Section 2.1.2. For a given coverage

of 7% € (0, 1], we solve the following optimization problem:

%, 0% =arg min R” (ﬂ'k(.; 0.),9"(.;0 k))

g g
0.k,0 K

S.t. C(ﬂ'k(.;st)) > 7k 2)

where 07, , 93’“ are the optimal parameters at iteration k for

the selector 7% and the interpretable model g* respectively.
In this work, s’ of different iterations are neural networks
with sigmoid activation. At inference time, the selector
routes the ;" sample with concept vector cj to g"* if and
only if 7%(¢;) > 0.5 for k € [0, K].

2.1.2. NEURO-SYMBOLIC INTERPRETABLE MODELS

In this stage, we design interpretable model ¢* of k" itera-
tion to interpret the BB f*~! from the previous (k — 1)"
iteration by optimizing the following loss function:

k-1

£ (@505) = (5 (@5), 0 eq) )7 () T (1= 7'(ey),

i=1

trainable component

0 ) fixed component trained
for current iteration k

in the previous iterations

3)
k—1

where the term 7% (¢;) [T;—; (1—7"(c;)) denotes the prob-
ability of j*" sample being routed through the interpretable
model g*. It is the probability of the sample going through
the residuals for all the previous iterations from 1 through
k—1 (e, [I'Z) (1 — 7(c;))) times the probability of
going through the interpretable model at iteration k (i.e.,
7%(c;)). Refer to Figure 1 for an illustration. We learn
7!, ... 7%= 1 in the prior iterations and are not trainable at
iteration k. As each interpretable model g* specializes in
explaining a specific subset of samples (denoted by cover-
age 7), we refer to it as an expert. We use SelectiveNet’s
(Geifman & El-Yaniv, 2019) optimization method to opti-
mize Equation (5) since selectors need a rejection mech-
anism to route samples through residuals. Appendix A.4
details the optimization procedure in Equation (3). We refer
to the interpretable experts of all the iterations as a “Mix-
ture of Interpretable Experts” (MolE) cumulatively after
training. Furthermore, we utilize E-LEN, i.e., a Logic Ex-
plainable Network (Ciravegna et al., 2023) implemented
with an Entropy Layer as first layer (Barbiero et al., 2022)
as the interpretable symbolic model g to construct First
Order Logic (FOL) explanations of a given prediction.

2.1.3. THE RESIDUALS

The last step is to repeat with the residual r*, as

rh(xj, ;) = A (xj) —g"(cj). We train f* = h¥ (@(.))
to approximate the residual 7, creating a new BB f* for the
next iteration (k + 1). This step is necessary to specialize f*
over samples not covered by ¢g*. Optimizing the following
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loss function yields f* for the k'" iteration:

ﬁlfc(wj,cj) = €(7‘ (xj,¢5), f

k
H 1—7r
i=1

non-trainable component
for iteration k&
“

Notice that we fix the embedding ®(.) for all the iterations.
Due to computational overhead, we only finetune the last
few layers of the BB (h*) to train f*. At the final iteration
K, our method produces a MolE and a Residual, explain-
ing the interpretable and uninterpretable components of the
initial BB 9, respectively. Appendix A.5 describes the train-
ing procedure of our model, the extraction of FOL, and the
architecture of our model at inference.

trainable component
for iteration k

Selecting number of iterations K: We follow two prin-
ciples to select the number of iterations K as a stopping
criterion: 1) Each expert should have enough data to be
trained reliably ( coverage ¢*). If an expert covers insuffi-
cient samples, we stop the process. 2) If the final residual
r¥) underperforms a threshold, it is not reliable to distill
from the BB. We stop the procedure to ensure that overall
accuracy is maintained.

2.2. Creating MoIE-CXR from MolE

Most of the real-life CXR datasets suffer from class im-
balance where the samples without the disease outnumber
the samples with the disease. Due to class imbalance early
interpretable models in MolE tend to cover all samples with
disease present while ignoring disease subgroups and patho-
logical heterogeneity. This section handles this problem
by introducing stratified coverage to learn the selectors in
MOolE and create the Mixture of Interpretable Experts for
chest-X-Rays (MoIE-CXR). We assume m, as the number
of class labels. This paper focuses on binary classification
(having or not having a disease), som = 2 and Y € {0, 1}.
Yet, it can be extended to multiclass problems easily.

2.2.1. HANDLING CLASS IMBALANCE IN CXRS

For an iteration k, we first split the given coverage 7" to
stratified coverages per class as {7',” = Wy - T Wy =
Ny /N,¥m}, where w,, denotes the fraction of samples
belonging to the m!” class; N,, and N are the samples of

th class and total samples, respectively.

2.2.2. LEARNING SELECTORS FOR CXRS

As per in Section 2.1.1, at iteration k, the selector 7% routes
ith sample to the expert (g*) or residual (r*) with proba-
bility 7%(¢;) and 1 — 7*(¢;) respectively. For stratified
coverages {7¥ ¥m}, we learn g and 7* jointly by chang-

ing the Equation (5) to the following optimization problem:

k,ek—ar min R* 304),g%(;0
bty =argmin R (" (300).6 ()

C’m(ﬂ-k(';esk)) Z Tm vm (5)

where #*,,0*, are the optimal parameters for 7%
st g

and ¢*, respectively.
tive risk RF from Equation (1) to R*(«w

Z N EN”L Ch (i)

(g k)
k) ’
N ..
A} Sk (cz) is the empirical mean of samples of m'"

class selected by the selector for the associated expert g*.

We modify the overall selec-

b b)) =
B =

where  (, (7

2.2.3. LEARNING EXPERTS AND RESIDUALS IN CXRS

Finally, we learn the experts and residuals in MoIE-CXR
using Equation (3) and Equation (4) respectively.

2.3. Finetuning MoIE-CXR efficiently to an unseen
domain with limited training samples

We assume the MolE-CXR-identified concepts to be gener-
alizable to an unseen domain. So, we learn the projection
t; for the target domain and compute the pseudo concepts
using SSL (Lee et al., 2013). Next, we transfer the selec-
tors, experts, and final residual ({7¥, g*}X_| and fX) from
the source to a target domain with limited labeled data and
computational cost. Algorithm 1 details the procedure.

3. Related Work

Post hoc explanations: Post hoc explanations retain the
flexibility and performance of the BB. It includes feature
attribution (Simonyan et al., 2013; Smilkov et al., 2017;
Binder et al., 2016) and counterfactual approaches (Singla
et al., 2019; Abid et al., 2021). For example, feature attribu-
tion methods associate a measure of importance to features
(e.g., pixels) that is proportional to the feature’s contribution
to BB’s predicted output. Many methods were proposed to
estimate the importance measure, including gradient-based
methods (Selvaraju et al., 2017; Sundararajan et al., 2017),
game-theoretic approach (Lundberg & Lee, 2017). The post
hoc approaches suffer from a lack of fidelity to input (Ade-
bayo et al., 2018) and ambiguity in explanation due to a
lack of correspondence to human-understandable concepts.
Recently, Posthoc Concept Bottleneck models (PCBMs)
(Yuksekgonul et al., 2022) learn the concepts from a trained
BB embedding and use an interpretable classifier for clas-
sification. Also, they fit a residual in their hybrid variant
(PCBM-h) to mimic the performance of the BB. We will
compare against the performance of the PCBMs method.
Another major shortcoming is that, due to a lack of mech-
anistic explanation, post hoc explanations do not provide
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Figure 2. Qualitative comparison of MolE discovered concepts with the baselines.

a recourse when an undesirable property of a BB is iden-
tified. Interpretable-by-design provides a remedy to those
issues (Rudin, 2019).

Concept-based interpretable models: Our approach fol-
lows the concept-based interpretable models. Such methods
provide a mechanistically interpretable prediction that is a
function of human-understandable concepts. The concepts
are usually extracted from the activation of the middle lay-
ers of the Neural Network (bottleneck). Examples include
Concept Bottleneck models (CBMs) (Koh et al., 2020), an-
tehoc concept decoder (Sarkar et al., 2021), and a high-
dimensional Concept Embedding model (CEMs) (Zarlenga
et al., 2022) that uses high dimensional concept embeddings
to allow extra supervised learning capacity and achieves
SOTA performance in the interpretable-by-design class.
Most concept-based interpretable models do not model the
interaction between concepts and cannot be used for reason-
ing. An exception is E-LEN (Barbiero et al., 2022) which
uses an entropy-based approach to derive explanations in
terms of FOL using the concepts. The underlying assump-
tion of those methods is that one interpretable function can
explain the entire set of data, which can limit flexibility
and consequently hurt the performance of the models. Our
approach relaxes that assumption by allowing multiple inter-
pretable functions and a residual. Each function is appropri-
ate for a portion of the data, and a small portion of the data

is allowed to be uninterpretable by the model (i.e., residual).
We will compare our method with CBMs, CEMs, and their
E-LEN-enhanced variants.

4. Experiments

We perform experiments on the skin and CXR datasets to
show that 1) our method captures a diverse set of concepts,
2) the performance of the residuals degrades over successive
iterations as they cover “harder” instances, 3) our method
does not compromise the performance of the BB, 4) our
method is finetuned well to an unseen domain with minimal
computation.

Experimental Details. We apply MolE to HAM10000
dataset. We then use MolE on SIIM-ISIC as a real-world
transfer learning setting (Yuksekgonul et al., 2022), with
the BB trained on HAM 10000 and evaluated on a subset of
the SIIM-ISIC Melanoma Classification. We deploy MolE-
CXR to classify cardiomegaly, effusion, edema, pneumonia,
and pneumothorax in the MIMIC-CXR dataset, considering
each to be a separate binary classification problem. We re-
peat our method until MolE covers at least 90% of samples
or the final residual’s accuracy falls below 70%. Further-
more, we only include concepts as input to g if their valida-
tion accuracy or auroc exceeds a certain threshold (in all of
our experiments, we fix 0.7 or 70% as the threshold of vali-
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Figure 3. Performance of experts and residuals across iterations. (a-c): Coverage and proportional AUROC of the experts and residuals.
(d-f): Routing the samples covered by MolE to the initial f°, we compare the performance of the residuals with f°.

dation auroc or accuracy). Refer to Table 1 for the datasets
and BBes experimented with. For all the BBes, we flatten
the feature maps from the last convolutional block to ex-
tract the concepts. For VITs, we use the image embeddings
from the transformer encoder to perform the same. We use
SIIM-ISIC as a real-world transfer learning setting, with the
BB trained on HAM 10000 and evaluated on a subset of the
SIM-ISIC Melanoma Classification dataset (Yuksekgonul
et al., 2022). Appendix A.6 and Appendix A.7 expand on
the datasets and hyperparameters respectively.

Baselines: We compare our methods to two concept-based
baselines — 1) interpretable-by-design and 2) posthoc. They
consist of two parts: a) a concept predictor  : X — C,
predicting concepts from images; and b) a label predictor
g : C — Y, predicting labels from the concepts. The end-
to-end CEMs and sequential CBMs serve as interpretable-
by-design baselines. Similarly, PCBM and PCBM-h serve
as post hoc baselines. The ® includes all layers till the last
convolution block. The standard CBM and PCBM mod-
els do not show how the concepts are composed to make
the label prediction. So, we create CBM + E-LEN, PCBM
+ E-LEN, and PCBM-h + E-LEN by using the same g of
MOIE replacing the standard classifiers of CBM and PCBM.
We train the ® and g in these new baselines to sequentially
generate FOLs (Barbiero et al., 2022). Due to the unavail-
ability of concept annotations, we extract the concepts from
the Derm7pt dataset (Kawahara et al., 2018) using the pre-
trained embeddings of the BB (Yuksekgonul et al., 2022) for

HAM10000. Thus, we do not have interpretable-by-design
baselines for HAM 10000 and ISIC.

4.1. Results
4.1.1. EXPERT DRIVEN EXPLANATIONS

Figure 2 illustrates the FOL explanations for MIMIC-CXR.
Recall that the experts (g) in MolE-CXR and the base-
lines are ELEN (Barbiero et al., 2022), attributing attention
weights to each concept. A concept with high attention
weight indicates its high predictive significance. With a
single g, the baselines rank the concepts in accordance with
the identical order of attention weights for all the samples
in a class, yielding a generic FOL for that class. In Fig. 2,
the baseline PCBM + ELEN uses left_pleural and pleu-
ral_unspec to identify effusion for all four samples. MolE-
CXR deploys multiple experts, learning to specialize in dis-
tinct subsets of a class. So different interpretable models in
MOolE assign different attention weights to capture instance-
specific concepts unique to each subset. In Fig. 2 expert 2
relies on right_pleural and pleural_unspec, but expert 4 re-
lies only on pleural_unspec to classify effusion. Figure 6
of Appendix A.9 illustrates FOLs for pneumonia and edema
of MIMIC-CXR. Figure 7 in Appendix A.9 shows such
diverse local instance-specific explanations for MolE for
HAM10000 (top) and ISIC (bottom).

The results show that the learned experts can provide more
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Table 2. MoIE-CXR does not compromize the performance of BB. We provide the mean and standard errors of AUROC over five random
seeds. For MoIE-CXR, we also report the percentage of test set samples covered by all experts as “Coverage”. We boldfaced our results

and BB.
Model Effusion  Cardiomegaly Edema  Pneumonia Pneumothorax
BB (BB) 0.92 0.84 0.89 0.79 0.91
INTERPRETABLE BY DESIGN
CEM (Zarlenga et al., 2022) 0.834+1e—4 0.754+1e¢—4 0.774+2¢—4 0.62446—4 0.764+36—4
CBM (Sequential) (Koh et al., 2020) 0.78 4164 0.72116—4 0.77+50—4 0.60416—3 0.754+6e—4a
CBM + ELEN (Koh et al., 2020; Barbiero et al., 2022) 0.8141c6—4 0.724106—4 0.79450—4 0.6248c—4 0.75416e—4a
POSTHOC
PCBM (Yuksekgonul et al., 2022) 0.8841e—4 0.81416—4 0.8241e—4 0.72416—4 0.8547¢—4
PCBM-h (Yuksekgonul et al., 2022) 0.904+1e—4 0.83+1e¢—4 0.854+1e—4 0.77+1e—4 0.8947¢—4
PCBM + ELEN (Yuksekgonul et al., 2022; Barbiero et al., 2022) 0.9041e—4 0.82416-4 0.8541e—4 0.75+16—4 0.85416e—4a
PCBM-h + ELEN (Yuksekgonul et al., 2022; Barbiero et al., 2022) 0.91416-4 0.83416—4 0.874+16—4 0.77416—4 0.90416—4
OURS
MoIE-CXR (Coverage) 0.939%7 0.859%7 0.919% ,  o0.80%7 _, 0.919%
MolIE-CXR+R 0.91 410 4 0.82 110 4 0.88110_4 0.7841e_4 0.90120_4

Table 3. MolE does not hurt the performance of the original BB
for HAM10000. We boldface our results. We also mention the
“Coverage” for MolE.

MODEL DATASET

HAM10000 SIM-ISIC
BB 0.96 085
POSTHOC
PCBM (Yuksckgonul et al., 2022) 0.93 % 0.00 0.71 4 0.01
PCBM-h (Yuksekgonul et al., 2022) 0.95 % 0.00 0.79 4 0.05
PCBM + E-LEN (Yuksekgonul et al., 2022; Barbiero et al,  0.73 & 0.01
2022) 0.94 == 0.02
PCBM-h + E-LEN (Yuksekgonul et al., 2022; Barbiero etal,  0.95 & 0.03 0.82 & 0.05
2022)
OURS
MolIE (COVERAGE) 0.95 =4 0.00 (0.9) 084 4+ 0.00

0.94)

MolE + RESIDUAL 0.92 %+ 0.00 0.82 & 0.01

precise explanations at the subject level using the concepts,
increasing confidence and trust in clinical use.

4.1.2. IDENTIFICATION OF HARDER SAMPLES BY
SUCCESSIVE RESIDUALS

Fig. 3 (a-c) reports the proportional AUROC of the experts
and the residuals per iteration. The proportional AUROC
is the AUROC of that model times the empirical coverage,
¢*, the mean of the samples routed to the model by the
respective selector (7%). According to Fig. 3a in iteration 1,
the residual (black bar) contributes more to the proportional
AUROC than the expert] (blue bar) for effusion with both
achieving a cumulative proportional AUROC ~ 0.92. All
the final experts collectively extract the entire interpretable
component from BB f° in the final iteration, resulting in
their more significant contribution to the cumulative perfor-
mance. In subsequent iterations, the proportional AUROC
decreases as the experts are distilled from the BB of the

previous iteration. The BB is derived from the residual
that performs progressively worse with each iteration. The
residual of the final iteration covers the “hardest” samples.
Tracing these samples back to the original BB f°, f° under-
performs on these samples (Fig. 3 (d-f)) as the residual. Fig-
ure 8 and Figure 9 of Appendix A.10 demonstrates similar
phenomena for other diseases (pneumonia and edema) of
MIMIC-CXR and HAM10000 respectively.

4.1.3. QUANTITATIVE COMPARISON WITH THE
BLACKBOX AND BASELINE

Table 2 shows that MoIE-CXR outperforms other models,
including BB. Recall that MoIE-CXR refers to the mixture
of all interpretable experts, excluding any residuals. As
MolIE-CXR specializes in various subsets of data, it effec-
tively discovers sample-specific classifying concepts and
achieves superior performance. In general, MoIE-CXR ex-
ceeds the interpretable-by-design baselines (CEM, CBM,
and CBM + ELEN) by a fair margin (on average, at least
~ 10% 1), especially for pneumonia and pneumothorax
where the number of samples with the disease is signifi-
cantly less (~ 750/24000 in the testset). To compare the
performance on the entire dataset, we additionally report
MOoIE-CXR+R, the mixture of interpretable experts with
the final residual in Tab.2. MoIE-CXR+R outperforms
the interpretable-by-design models and yields comparable
performance as BB. The residualized PCBM baseline, i.e.,
PCBM-h, performs similarly to MoIE-CXR+R. PCBM-h
rectifies the interpretable PCBM’s mistakes by learning the
residual with the complete dataset to resemble BB’s per-
formance. However, the experts and the final residual ap-
proximate BB’s interpretable and uninterpretable fractions,
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Figure 4. Transfering the first 3 experts of MoIE-CXR trained on MIMIC-CXR to Stanford-CXR. With varying % of training samples of
Stanford CXR, (a-c): reports AUROC of the test sets, (d-g) reports computation costs in terms of log (Flops (T)). We report the coverages
in Stanford-CXR on top of the “finetuned” and “No finetuned” variants of MoIE-CXR (red and blue bars) in (d-g).

respectively. In each iteration, the residual focuses on the
samples not covered by the respective expert to create BB
for the next iteration and likewise. As a result, the final
residual in MoIE-CXR+R covers the "hardest” examples,
reducing its overall performance relative to MoIE-CXR.
Also, Table 3 shows that MoIE outperforms the posthoc
baselines’ performance for the HAM10000 and SIIM-ISIC
datasets. As mentioned earlier, interpretable by-design base-
lines are not possible for these datasets as we extract the
concepts from Derm7pt using the embeddings from the BB.

4.1.4. APPLYING MOIE-CXR TO THE UNSEEN DOMAIN
WITH LIMITED DATA

In this experiment, we utilize Algorithm 1 to transfer MolE-
CXR trained on MIMIC-CXR dataset to Stanford Chex-
pert (Irvin et al., 2019) dataset for the diseases — effusion,
cardiomegaly and edema. Using 2.5%, 5%, 7.5%, 10%, and
15 % of training data from the Stanford Chexpert dataset, we
employ two variants of MoIE-CXR where we (1) train only
the selectors () without finetuning the experts (¢) (“No
finetuned” variant of MoIE-CXR in Fig. 4), and (2) finetune
7 and g jointly for only 5 epochs (“Finetuned” variant of
MolIE-CXR and MoIE-CXR + R in Fig. 4). Finetuning 7
is essential to route the target domain samples to the appro-
priate expert. As later experts cover the “harder” samples
of MIMIC-CXR, we only transfer the experts of the first
three iterations (refer to Fig. 3). To ensure a fair comparison,

we finetune (both the feature extractor ® and classifier h°)
BB: f° = h° o ® of MIMIC-CXR with the same training
data of Stanford Chexpert for 5 epochs. Throughout this
experiment, we fix ® while finetuning the final residual in
MOolIE+R as stated in Eq. 4. Fig. 4 displays the performances
of different models and the computation costs in terms of
Flops. The Flops are calculated as, Flop of (forward prop-
agation + backward propagation) X (total no. of batches)
X (no of training epochs). The finetuned MolE-CXR out-
performs the finetuned BB (on average ~ 5% 1 for effusion
and cardiomegaly). As experts are simple models (Barbi-
ero et al., 2022) and accept only low dimensional concept
vectors compared to BB, the computational cost to train
MOoIE-CXR is significantly lower than that of BB (Fig. 4 (d-
f)). Specifically, BB requires ~ 776T flops to be finetuned
on 2.5% of the training data of Stanford CheXpert, whereas
MolIE-CXR requires ~ 0.0065T flops. As MolE-CXR dis-
covers the sample-specific domain-invariant concepts, it
achieves such high performance with low computational
cost than BB.

5. Conclusion

This paper proposes a novel interpretable method that iden-
tifies instance-specific concepts without losing the perfor-
mance of the Blackbox and is effectively fine-tuned in an
unseen target domain with no concept annotation, limited
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labeled data, and minimal computation cost. The captured
concepts may not showcase a causal effect that can be ex-
plored in the future.
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A. Appendix
A.1. Code

Refer to the url https://github.com/batmanlab/MICCAI-2023-Route—-interpret—-repeat—-CXRs for
the code.

A.2. Background of First-order logic (FOL) and Neuro-symbolic-Al

FOL is a logical function that accepts predicates (concept presence/absent) as input and returns a True/False output being a
logical expression of the predicates. The logical expression, which is a set of AND, OR, Negative, and parenthesis, can be
written in the so-called Disjunctive Normal Form (DNF) (Mendelson, 2009). DNF is a FOL logical formula composed of a
disjunction (OR) of conjunctions (AND), known as the “sum of products”.

Neuro-symbolic Al is an area of study that encompasses deep neural networks with symbolic approaches to computing
and Al to complement the strengths and weaknesses of each, resulting in a robust Al capable of reasoning and cognitive
modeling (Belle, 2020). Neuro-symbolic systems are hybrid models that leverage the robustness of connectionist methods
and the soundness of symbolic reasoning to effectively integrate learning and reasoning (Garcez et al., 2015; Besold et al.,
2017).

A.3. Learning the concepts

As discussed in Section 2, f9: X — Visa pre-trained Blackbox. Also, fO(.) =ho ®O(.). Here, @ : X — R is the image
embeddings, transforming the input images to an intermediate representation and h° : R* — Y is the classifier, classifying
the output ) using the embeddings, ®. Our approach is applicable for both datasets with and without human-interpretable
concept annotations. For datasets with the concept annotation C € R™¥¢ (V.. being the number of concepts per image X), we
learn ¢ : R' — C to classify the concepts using the embeddings. Per this definition, ¢ outputs a scalar value c representing
a single concept for each input image. We adopt the concept learning strategy in PosthocCBM (PCBM) (Yuksekgonul
et al., 2022) for datasets without concept annotation. Specifically, we leverage a set of image embeddings with the concept

being present and absent. Next, we learn a linear SVM (%) to construct the concept activation matrix (Kim et al., 2017) as

<®(x),q">
g:l13

tuple of j*" sample is {z;,y;,¢;}, denoting the image, label, and learned concept vector, respectively.

Q € RY=x! Finally we estimate the concept value as ¢ = € R utilizing each row g* of Q. Thus, the complete

A.4. Optimization

In this section, we will discuss the loss function used in distilling the knowledge from the blackbox to the symbolic model.
We remove the superscript k for brevity. We adopted the optimization proposed in (Geifman & El-Yaniv, 2019).Specifically,
we convert the constrained optimization problem in Equation (5) as

L :R(Wag)+)\s\ll(7_<(7r)) (6)
U (a) = max(0, a)?,

where 7 is the target coverage and ) is a hyperparameter (Lagrange multiplier). We define R(.) and £, »(.) in Equation (1)
and Equation (3) respectively. ¢ in Equation (3) is defined as follows:

f(f, g) = gdistill(.f; g) + >\lens ZH(ﬁl)a (7)
=1

where ;e and H(3?) are the hyperparameters and entropy regularize, introduced in (Barbiero et al., 2022) with r being
the total number of class labels. Specifically, 37 is the categorical distribution of the weights corresponding to each concept.
To select only a few relevant concepts for each target class, higher values of A;.,,s will lead to a sparser configuration of 3. £
is the knowledge distillation loss (Hinton et al., 2015), defined as
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U(f,9) =(akxp * Tkp * Tk p) K L(LogSoftmax(g(.)/Tk p), Softmax(f(.)/Tkp))+ (8)
(1—akp)CE(g(.),y),

where Tk p is the temperature, CE is the Cross-Entropy loss, and ak p is relative weighting controlling the supervision
from the blackbox f and the class label .

As discussed in (Geifman & El-Yaniv, 2019), we also define an auxiliary interpretable model using the same prediction task
assigned to g using the following loss function

1 m r '
Eaum - E Z gdistill(f(wj>7 g(cj)) + /\lens Z H(Bl)7 (9)
j=1

i=1

which is agnostic of any coverage. L., is necessary for optimization as the symbolic model will focus on the target
coverage T before learning any relevant features, overfitting to the wrong subset of the training set. The final loss function to
optimize by g in each iteration is as follows:

L=al;+ (1— &)Ly, (10)

where « is the can be tuned as a hyperparameter. Following (Geifman & El-Yaniv, 2019), we also use o« = 0.5 in all of our
experiments.

A.5. Algorithm

Algorithm 2 explains the overall training procedure of our method. Figure 5 displays the architecture of our model in
iteration k.

A.6. Dataset

HAM10000 HAMI10000 ((Tschandl et al., 2018)) is a classification dataset aiming to classify a skin lesion benign or
malignant. Following (Daneshjou et al., 2021), we use Inception (Szegedy et al., 2015) model, trained on this dataset as the
blackbox f°. We follow the strategy in (Lucieri et al., 2020) to extract the 8 concepts from the Derm7pt ((Kawahara et al.,
2018)) dataset.

SIIM-ISIC To test a real-world transfer learning use case, we evaluate the model trained on HAM10000 on a subset
of the SIIM-ISIC(Rotemberg et al., 2021)) Melanoma Classification dataset. We use the same concepts described in the
HAM10000 dataset.

MIMIC-CXR We use 220,763 frontal images from the MIMIC-CXR dataset (Johnson et al.) aiming to classify effusion.
We obtain the anatomical and observation concepts from the RadGraph annotations in RadGraph’s inference dataset ((Jain
et al., 2021)), automatically generated by DYGIE++ ((Wadden et al., 2019)). We use the test-train-validation splits from (Yu
et al., 2022) and Densenet121 (Huang et al., 2017) as the blackbox f°.

A.7. Architectural details of symbolic experts and hyperparameters

Table 4 demonstrates different settings to train the Blackbox of MIMIC-CXR. For the Blackbox of HAM 10000, we follow
the steps in (Yuksekgonul et al., 2022). To train ¢, for MIMIC-CXR and HAM10000, we flatten out the feature maps
from the last convolutional block. Table 5, Table 6 enumerate all the different settings to train the interpretable experts
for HAM 10000, and MIMIC-CXR respectively. All the residuals in different iterations follow the same settings as their
Blackbox counterparts.
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. Blackbox
Predict 1stclass FOL 1stclass Predict rth class FOL rthclass e
Other layers Other laye S E Feature
| Leaky-RELU | | Leaky-RELU | 35 Backbone
[__Entropy-based Layer | [__Entropy-based Layer | E e
o =
Interpretable 71-k <0.5_J
expert gk
® > 0.5 -
™ > 0.5
Batch Norm
RELU

Selector Block

Input Concepts

Figure 5. Architecture of MolE. In an iteration k during inference, the selector routes the samples to go through the interpretable expert g*
if the probability 7% > 0.5. If 7% < 0.5, the selector routes the samples, through f*, the Blackbox for iteration k4 1. Note f* = h® (@(.)
is an approximation of the residual r* = f*=1 — g%

A.8. More results

A.9. Qualitative results of FOLs for MIMIC-CXR

Figure 6 demonstrates that MoIE-CXR captures diverse explanations for pneumonia and edema. Also Figure 7 reports the
FOL explanations for MoIE for HAM 10000 and SIIM-ISIC datasets respectively.

A.10. Later experts cover harder samples

Figure 8 and Figure 9 demonstrate further examples that later experts of MolE and MoIE-CXR cover harder samples for
HAM10000 and MIMIC-CXR datasets respectively.
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Algorithm 2 Route, interpret and repeat algorithm to generate FOL explanations locally.

1

2
3
4

11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:

24

25

LR W

: Input: Complete tuple: {x;, y;, ¢;}}—,; initial blackbox f© = h°(®(.)); K as the total iterations; Coverages 71, . ..

: Output: Sparse mixture of experts and their selectors {g*, 7*}X_| and the final residual fX = R (®(.))
: Fix ®.
cfork=1...Kdo
Fix 7! ... 7h=1
Minimize £* using equation 10 to learn 7% and g*.
Calculate r* = fF=1(.) — g*())
Minimize equation 4 to learn f*(.), the new blackbox for the next iteration k + 1.
end for
cfork=1...K do
for sample j in test-set do
repeat
Initialize sub_select_concept =True
Initialize the percentile_threshold =99.
Retrieve the predicted class label of sample j from the expert k as: §; = ¢g¥(c;)

th

y TK -

Create a mask vector m;. mj;[i] = 1 if a[y;][i{] > percentile(@[y;], percentile_threshold) and 0

otherwise. Specifically, the i*" entry in m; is one if the :*" value of the attention score &[y;] is greater than

(percentile_attention)” percentile.
Subselect the concept vector as ¢; as: ¢; = ¢; © m;
ifgk(éj) 7é gj then
percentile_threshold =percentile_threshold-1
sub_select_concept = false
end if
until sub_select_concept is True

et al., 2022).
end for
: end for

Using the subselected concept vector ¢;, construct the FOL expression of the j th sample as suggested by (Barbiero

Table 4. Hyperparameter setting of different convolution-based Blackboxes used by the diseases in MIMIC-CXR considering each to be a
separate binary classification problem

Setting MIMIC-CXR
Backbone DenseNet-121
Pretrained on ImageNet True
Image size 512
Learning rate 0.01
Optimization SGD
Weight-decay 0.0001
Epcohs 50

till 4" DenseNet
Layers used as ® Block
Flattening type for the input to ¢ Flatten
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EDEMA

PNEUMONIA

Table 5. Hyperparameter setting of the different interpretable experts (g) for the dataset HAM 10000

Settings based on dataset ‘ Expertl ‘ Expert2 ‘ Expert3 ‘ Expert4

‘ Expert5 ‘ Expert6

HAM10000 (Inception-V3)
+ Batch size
+ Coverage (1)
+ Learning rate
+ )\lens
+aKp
+Tkp
+hidden neurons
+Ag
+ /Tlens

32
0.4
0.01
0.0001
0.9
10
10
64
0.7

32
0.2
0.01
0.0001
0.9
10
10
64
0.7

32
0.2
0.01
0.0001
0.9
10
10
64
0.7

32
0.2
0.01
0.0001
0.9
10
10
64
0.7

32 32
0.1 0.1

10 10
10 10
64 64

0.01 0.01
0.0001 0.0001
0.9 0.9

0.7 0.7

Table 6. Hyperparameters of interpretable experts (g) for the dataset MIMIC-CXR.

Hyperparameter Effusion

Cardiomegaly

Pneumothorax

Pneumonia Edema

Batch size 1028
Learning rate 0.01
Nens 0.0001
QKD 0.99
TkbD 20
hidden neurons 30, 30
As 96
E-Lens (Tiens) 7.6

# Expers (Tjens) 5

1028
0.01

0.0001

0.99
20
20, 20
1024
7.6
4

1028
0.01
0.0001
0.99
20
20,20
256
10
5

1028 1028
0.01 0.01
0.0001 0.0001
0.99 0.99
20 20
20, 20 20, 20
256 128
10 7.6
4 5
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Figure 6. Qualitative comparison of MolE discovered concepts with the baseline for edema and pneumonia.
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Malignant <>IrregularStreaks Vv (AtypicalPigmentNetwork N BWV) vV (BWV A IrregularDG)
Vv (BWV A RegularStreaks A ﬁRegularDG)

Vv (AtypicalPigmentNetwork A —IrregularDG A =RegularDG A ﬁRegularStreaks)
Vv (ﬁAtypicalPigmentNetwork A IrregularDG A =RegularDG A ﬁRegularStreaks)

Malignant <+ BWYV V RegressionStructures

ExpErtB Expert5
f — \
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Baseline (PCBM + E-LEN)
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Figure 7. MolE identifies diverse concepts for specific subsets of a class, unlike the generic ones by the baselines. We compare FOL
explanations by MolE with the PCBM + E-LEN baselines for HAM10000 (top) and ISIC (down) to classity Malignant lesions. We

highlight unique concepts for experts 3, 5, and 6 in red, blue, and violet, respectively. For brevity, we combine the local FOLs for each
expert for the samples covered by them.
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Figure 8. Performance of experts and residuals across iterations. (a-c): Coverage and proportional accuracy of the experts and residuals of
MolE for HAM10000 dataset. (d-f): Routing the samples covered by MolIE to the initial °, we compare the performance of the residuals
with f°.

18



Submission and Formatting Instructions for ICML 2023

Coverages across experts (Pneumonia) Coverages across experts (Edema)
0.0 0.2 0.4 0.6 0.8 1.0 00 0.2 0.4 0.6 0.8 1.0
Performance of experts and residuals Performance of experts and residuals
across iterations for Pneumonia across iterations for Edema
0.79 ==zzzers 0.89--gaaar---
o) Q
O 0.70 © 0.80- f= Expertl
% 0.60 o W Expert2
= 2 0,60 mEm Expert3
© < mmm Expert4
S 0.40 _5 0.40- mmm Expert 5
= - EEm Residual
2 0.20 9 .
Q o 0.20 ---- Blackbox
o e
o 0.00 3 g A e 0.00 3 A )
~ofN\ . 0L YA . . .
\te\'a’t\ exald exal \tera’i\o \‘e(a’(.\o“\‘e(at\o“\te(at\o“\‘e\'a’(.\or‘\te‘-at\o“
Iterations Iterations
(a) (b)

Blackbox vs Residual (Pneumonia)

Blackbox vs Residual (Edema)
I Blackbox

I Residual
Initial
0.60- = = Blackbox
(f°)
0.40-
0.20-
0.00 ' ' ' ' '

\terat'\o“1 \terat'\o“?’ \xeraf\o“a \xerat'\o“A \xera'(\of\r’

AUROC
AUROC

Iterations Iterations
(c) (d)
Figure 9. (a-c): Coverage and proportional AUROC of the experts and residuals of MoIE-CXR for the diseases pneumonia and edema of

MIMIC-CXR dataset. (d-f): Routing the samples covered by MoIE-CXR to the initial f°, we compare the performance of the residuals
with f°.
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