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Abstract

Old-photo face restoration poses significant challenges due to compounded degra-
dations such as breakage, fading, and severe blur. Existing pre-trained diffusion-
guided methods either rely on explicit degradation priors or global statistical
guidance, which struggle with localized artifacts or face color. We propose Self-
Supervised Selective-Guided Diffusion (SSDiff), which leverages pseudo-reference
faces generated by a pre-trained diffusion model under weak guidance. These
pseudo-labels exhibit structurally aligned contours and natural colors, enabling
region-specific restoration via staged supervision: structural guidance applied
throughout the denoising process and color refinement in later steps, aligned with
the coarse-to-fine nature of diffusion. By incorporating face parsing maps and
scratch masks, our method selectively restores breakage regions while avoiding
identity mismatch. We further construct VintageFace, a 300-image benchmark of
real old face photos with varying degradation levels. SSDiff outperforms exist-
ing GAN-based and diffusion-based methods in perceptual quality, fidelity, and
regional controllability. Code link: https://github.com/PRIS-CV/SSDiff|

1 Introduction

Recent image restoration methods [[1} 2} 3] excel in generic scenes but struggle with facial regions,
may causing misaligned features. To address this, face restoration [4} 5] has been extensively studied,
particularly in blind face restoration (BFR) [6} [7, 8, 9L [10l [11]] for real scenarios. However, the
restoration of old face photographs remains relatively underexplored, as such low-quality (LQ) images
often suffer from compounded degradations, including fading, breakage, and severe blurring, which
pose challenges for constructing large-scale paired datasets for supervised learning.

Although existing learning-based BFR methods, such as GPEN [7]], CodeFormer [9], DifFace [10],
and DiffBIR [[11], can alleviate blurring in old face photos, they struggle to address degradations like
breakage and color fading that are not present in the training data, as illustrated in Fig.[l| Recently,
the powerful generative capability of diffusion priors [12, [13]] has opened up new possibilities for
face restoration. By designing effective guidance strategies for pre-trained diffusion models, the
denoising trajectory can be steered toward task-specific objectives, enabling adaptation to various
zero-shot restoration tasks [[12} 14, [15//16] in a train-free manner. Such flexibility and low cost make
pre-trained diffusion-guided methods well-suited for old-photo face restoration.

Nevertheless, existing pre-trained diffusion-guided methods [14}16] for old-photo face restoration
are limited by rigid, pre-defined priors. For example, DDNM [14] constructs a closed-form solution
space using the pseudo-inverse of a linear degradation model and adjusts the denoising trajectory
through backpropagation. However, as shown in Fig.[I]| degradation in old photos is complex and
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Figure 1: Existing face restoration methods face challenges with complex degradations in old face
photos, which may result in residual breakage or unnatural facial colors. In contrast, our method
restores sharp facial structures and natural facial color, and no visible breakage regions.

nonlinear, resulting in DDNM only being able to process old photos with relatively simple degradation.
PGDiff [16] improves generalization by introducing pre-defined global attribute priors, such as color
statistics and smoothing semantics. However, it faces two key limitations: i) smoothing semantic
priors is less robust to large breakage regions and may cause the model to collapse facial structure
consistency during early sampling, leading to noticeable artifacts. ii) enforcing global color statistics
(i.e., matching the average mean and variance of color channels in FFHQ dataset) may induce
sampling bias toward local extrema, resulting in significant image color inhomogeneity.

Motivated by these limitations, we investigate the generative behaviors of pre-trained diffusion models
under different guidance and discover a key insight. Our Insight: As shown in Fig. 2] we observe
that, under weak guidance from a degraded input with appropriate s, a pre-trained generative face
diffusion model can produce face images that, despite deviating from the original identity (low feature
10U, e.g., eyes, mouth, efc), exhibit structurally similar facial contours (high contour IOU), natural
color tones (saturation distribution close to HQ faces in FFHQ), and effective restoration in breakage
regions (low edge strength variation). This motivates us to use such images as pseudo-references to
guide the restoration of facial colors and breakage regions. Meanwhile, facial components like eyes
and mouth are not involved in guiding features to prevent low-fidelity facial results.

Building on this insight, we introduce Self-Supervised Selective-Guided Diffusion (SSDiff), a
training-free framework that performs self-supervision by using pseudo-references generated under
weak guidance. To fully exploit the guidance potential of pseudo-references, SSDiff introduces a
staged guidance scheme aligned with the coarse-to-fine nature of diffusion: restoration-oriented
guidance, including covering both structure-aware and breakage completion, is applied throughout the
process, while color refinement is introduced in later steps, as discussed in Section[3.2] Additionally,
we integrate face parsing maps and scratch masks obtained from inputs to selectively guide breakage
completion and face coloring without disturbing identity-sensitive features. Through our design,
our restorations exhibit high IOU of face contour and components, smooth breakage regions, and
consistent color saturation, as shown in Fig.[2] Therefore, SSDiff produces high-quality results even
under complex degradations, as shown in Fig.|l} Moreover, benefiting from face parsing-based region
selection, SSDiff can also perform region-specific stylized restoration, such as hair and lips.

Contributions. i) We propose SSDiff, a training-free framework that introduces a reference learning
paradigm, where pseudo-references generated under weak guidance from a pre-trained face diffusion
model are suitable to steer the reverse process for high-fidelity old-photo face restoration. ii) We
design a staged, region-specific guidance scheme that combines structure-aware and breakage-aware
restoration and late-stage color guidance, enabling robust restoration across diverse degradation
types. iii) We construct VintageFace, a real-world benchmark of 300 old face photos with varied
degradations, and demonstrate that SSDiff consistently outperforms existing GAN-based and zero-
shot diffusion methods in perceptual quality and fidelity of restorations.

2 Related Work

Blind Face Restoration. Blind face restoration aims to recover HQ face images from LQ face im-
ages with complex degradations. To enhance visual quality, previous approaches integrate pre-trained
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Figure 2: (Left) LQ inputs provides supervision via a loss gradient scaled by s, aligning reverse
diffusion outputs toward it. Strong guidance improves fidelity but harms perceptual quality, while
weaker guidance enhances perceptual quality but reduces fidelity. (Right) Statistical analysis on
our dataset shows that pseudo-labels generated under weak guidance (s = 1e~3) preserve facial
contours similar to LQ inputs, exhibit low similarity in semantic regions (e.g., eyes, mouth, nose),
and achieve smooth breakage regions with color saturation distributions close to HQ faces.

generative adversarial networks [18] trained on HQ faces into the restoration pipeline. Methods such
as GFPGAN [6], GPEN [7], GLEAN [19], SGPN [20], and FREx [21]] leverage facial structure cues
extracted from degraded inputs and inject them into a pre-trained StyleGAN [[17]] for restoration.
To mitigate the uncertainty of StyleGAN in continuous feature space, approaches like VQFR [8]],
CodeFormer [9], and DAEFR adopt pre-trained VQGAN to retrieve semantically similar
facial features from a discrete codebook. However, GAN-based methods suffer from mode collapse.
With the rise of diffusion probabilistic models [24]], diffusion-based methods like DR2 [23] employ
diffusion models to resist complex degradations, while DifFace [10] models the posterior distribution
from LQ to HQ images to generate high-fidelity results. PFStorer [26]], PLTrans [27]], and Wave-
Face [28] further introduce high-frequency features to constrain the denoising process for improved
fidelity. Nevertheless, these methods remain limited in handling old-photo face restoration, which
may involve breakages and fading that don’t appear in training. Our method, situated within the blind
face restoration paradigm, is more robust to such challenging degradations in old face photos.

Diffusion Prior for Restoration. Methods leveraging diffusion priors for restoration can be broadly
categorized into two groups. The first group, including DiffBIR [11]], StableSR [29], OSEDIff [30]],
and OSDFace [31]], incorporates pre-trained diffusion models such as Stable Diffusion into the
restoration pipeline and fine-tunes controllable modules for generative restoration. These approaches
perform well on degradation types seen during training but fail to generalize to unseen ones. The
second group focuses on zero-shot restoration by developing efficient guidance strategies for pre-
trained diffusion models. Among them, DDRM [32], DDNM [14], GDP [13], and T2I adjust
pre-trained diffusion models by estimating a degradation process at each iteration, using fixed linear
operators (14, or parameterized degradation models to steer intermediate outputs towards
the input LQ images. PGDiff [16] and AGLLDiff guide restoration by modeling desired attributes
of HQ images, such as color statistics and structural information from clean datasets. Our method
belongs to the second category but differs by using pseudo-references generated through weak
guidance instead of explicit attribute modeling. Furthermore, unlike applying global priors, SSDiff
selectively guides facial sub-regions in stages, enabling finer control under complex degradation.

3 Methodology

3.1 Preliminaries

Denoising Diffusion Probabilistic Models (DDPM). DDPM generative models [24] consist of
two processes: i) the forward process progressively adds Gaussian noise A to the input & with a

predefined variance schedule { ﬂi}tTZO, producing a noisy sample x; at timestep ¢ according to:
q(xi|Ti—1) :N(xt;\/l—ﬂtmt—1,5t1> ) (H
Ty = \/1—6,5(137571"‘\/ ﬁtE, ENN(O,I) (2)

ii) The reverse process is parameterized by a learned denoising network €, typically UNet [35]]
architecture, which iteratively parameterize the mean value p (s, t) by network €y:
11—t

Do (mt—1|mt) = N(mt—l; 127] (mta t) 729(wtat)) ) Ea(mt7t) = 1_7@61517 (3)
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Figure 3: Overview of our method. Face parsing maps P and scratch masks M are estimated
from input y,, using a pre-trained face parsing network [36] and a pre-trained scratch detection
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Classifier Guidance. Classifier guidance [12] introduces semantic control into the reverse diffusion
process by leveraging gradients from a pre-trained classifier ¢, (y|z). Instead of training a conditional
diffusion model, this approach modifies the denoising step of an unconditional model by shifting
the predicted mean based on the classifier gradient V, log ¢, (y|x), evaluated at the intermediate
prediction. This guides the generation trajectory toward regions in image space that are more likely
to match the target semantics:

o (@) = (wt ey (@ t) 4

p9,¢ (mt—1|mta y) ~ N (69 (azta t) + E@(mh t) vx IOg C(Z) (y‘m) |$:ll«9(:tt,t)7 Eg(mt, t)) ) (5)

where the gradient term g =V logc, (y|x) acts as a guidance signal that biases the sampling
distribution toward the target class y, 3¢ (x4, t) denotes the degree of diffusion of the sample.

3.2 Self-Supervised Selective-Guided Diffusion Model (SSDiff)

As shown in Fig[3] we aim to restore an old face
photo LQ input y, € RE*H*W which may suf-
fer from breakage, fading, and blurring, into a HQ
face photo output &y € RE*H*W To achieve this,
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recover face and breakages, and Selective Coloring
Guidance, which is applied in later steps to refine
facial color. This temporal separation is empirically
motivated by the gradient behavior observed in Fig[d]
where image gradient magnitude remains steady in
early steps but drops sharply in later steps, indicating

Figure 4: In the early stage, gradient drops are
minor, as updates focus on coarse structures like
facial contours, which occupy a small region. In
the later stage, gradients drop sharply due to refine-
ments in face details, which cover most of a face.

a shift from structural restoration to detail refinement. Our design naturally aligns with the coarse-to-

fine denoising curriculum [38] in diffusion models, where early reverse steps reconstruct spatial
structures while later steps refine details. Combined with Section [3.1] Algorithm [T] summarizes
the full sampling process of SSDiff. Below, we elaborate on its two key components: Selective
Restoration Guidance and Selective Coloring Guidance.

4



Algorithm 1 : Staged Self-Supervised Sampling in our SSDiff.

Input: Old face photo y,), face parsing map P and mask M obtained from y,,.
Require: Pre-trained diffusion model (pg(x:,t), Yo (s, t)), face selector S, style transfer ST,
pseudo label y,, under weak guidance s, edge magnitude D, strong guidance s, for restoration.
Output: High-quality face photo x.
T NN(O7I)’yc A S(yp7M)’ Yn A S(yp7M7P)’ @p S (yp7P)
for ¢t from 7" to 1 do
Ty \/%mt =/ 1;?t€9(wtvt)
.+ S(xe, M), &, + S (2, M, P)
repeat
if t > T; then > Stage I: Restoration Guidance
VL=Vs L1+ Vs, L= Vs [y, — &3+ Va,|[D(y,) — D(&,)]3
i1 ~ N (g(me,t) — 8530(x, 1) VL, To(24, 1))

else > Stage II: Restoration & Coloring Guidance
iT1 — \/%mTl Y 1(;?t EQ(mtat); 2%9 ) (:%TUP)? Y < ST(i%yp)

VL=VL+ (Vs,L3= Ve, |y, —23)
i1 ~ ./\/'(/.Lg(ilit,t) — 8529($t,t)V£, Zg(xt,t))
end if
until NV steps
Lr—1 ~ N(Me(wht) - Ssze(wt,t)VL; Ee(wht))
end for
return x

Selective Restoration Guidance. Selective restoration guidance is applied throughout the reverse
diffusion process, with its main role being to accurately restore the face image and fill in the breakage
areas. Given the input y,, we first use an arbitrary pre-trained face restoration model [9, [7] to
obtain an initially restored semantics, resulting in an output ¢, that remains broken. We treat non-
broken regions y,. of ¢, as plausible and use them to guide the frozen pre-trained face generation
model to perform reverse diffusion in non-broken regions of faces. We define this part loss £,
between non-masked face regions y,, of g, and the reverse diffusion-guided output &, formulated

as L, = ||(1-M) o (y, — ﬁ:c)Hg Its loss gradient V;_ L£; provides supervision to the reverse
diffusion process, ensuring faithful restoration in non-broken face regions. M € {0, 1} is a mask
obtained by a pre-trained scratch detector [37] from y,, ® is a Hadamard product.

For breakage regions, previous methods [14} [16]] typically set gradients to zero and rely on the
pre-trained face generation model to complete them automatically. However, this often results in
incomplete completion, especially in areas such as background and skin. To address this issue, we
introduce a smoothness-guided loss £ which explicitly enforces surface smoothness consistency
between pseudo-labels and guided features within breakage regions, mitigating color inconsistency
caused by direct guidance. We first use face parsing maps [36] P and scratch masks [37] M
derived from input y,, to select plausible breakage guide regions &,, and y,, within breakage parts
from reverse diffusion and pseudo-labels. This selection focuses on a part of the breakage regions
M 4yiqe C M such as background, skin, and hair, while excluding semantically sensitive areas (e.g.,
eyes, eyebrows, mouth) that may differ from original identity. Furthermore, we extend (£) the mask
of breakages along the horizontal and vertical dimensions of M 4,4, to alleviate incomplete scratch
detection [37]. The loss L5 for the breakage regions is defined as:

Lo = ||D (Y, € (M guidge)) — D (&, E(M guiae)) |l » (6)

where the function D (y, M) € R7*W computes the average per-pixel gradient magnitude within
the masked area. Let y, ; denote the pixel value at the spatial location (i, j), then D is defined as:

D(y, M) =|y,; — Y, ji1| (Mi; ©Miji1) + |Yi; = Yisr ;| (Mij © Mig1y). (D)
The above operations ensure smooth consistency of gradients in breakage regions to restore breakages.
Then, we leverage the loss gradient V;,_ L, as a guidance signal during the reverse diffusion process,
enabling our model to actively refine breakage regions. For the remaining small portion of breakage,
we still allow models to complete them automatically, as pre-trained face generation models generally
perform well in restoring semantically critical facial regions such as eyes, eyebrows, and mouth.



Table 1: Quantitative comparison of old-photo face images, which are categorized as simple, medium,
and hard based on degradation degree. Bold and underlined indicate best and second best results. Our
Appendix provides results on public test sets, including WebPhoto-Test [6]], and CelebA-Chlid [16]].

Type Metric GAN-based Diffusion-based (Learning) Diffusion-based (Train-free)
P BOPB [37] Code [0] | DifFace [10] DiffBIR [I1] | DDNM [14] PGDiff [16] Ours
FID| 177.19 151.01 132.14 163.47 177.82 136.73 129.13
Simple BRISQUE| 22.76 6.69 23.13 17.08 51.74 8.77 6.71
TOPIQ?T 0.4444 0.6005 0.5954 0.5474 0.3976 0.6216 0.6494
MAN-IQA?T 0.3124 0.3876 0.3676 0.3568 0.2742 0.3646 0.4005
FID] 176.11 189.37 142.22 198.84 173.96 142.56 128.31
Medium BRISQUE/ 22.54 8.29 23.45 12.27 52.78 10.22 7.29
TOPIQT 0.4337 0.6123 0.5917 0.5684 0.3929 0.6060 0.6412
MAN-IQAT 0.2975 0.3789 0.3511 0.3509 0.2721 0.3456 0.3949
FID] 218.35 173.89 145.85 200.38 203.13 166.42 122.59
Hard BRISQUE| 28.91 10.51 26.41 14.36 54.17 13.60 8.95
TOPIQ?T 0.3865 0.5670 0.5450 0.5424 0.3447 0.5747 0.5977
MAN-IQA?T 0.2454 0.3379 0.3159 0.3140 0.2243 0.3159 0.3575

BOPB [37] CodeFormer DifFace DiffBIR DDNM PGDiff Ours

Figure 5: Qualitative comparisons of old-photo face images with existing methods.

Selective Coloring Guidance. Selective coloring guidance is applied only after facial identity
features such as eyes, nose, and mouth have stabilized during the reverse diffusion process. At
this stage, as shown in Fig[] identity features are essentially fixed, and remaining steps focus on
refining details, which reduces the risk of introducing identity inconsistency through color guidance.
Given intermediate images @1, from the reverse diffusion and pseudo-label y,,, we first extract
regions related to the skin, including face and neck, using face parsing maps M, resulting in &5 and
y,,- However, direct supervision from g,, to & is suboptimal due to potential variations in facial
components. To address this, we employ a pre-trained color style transfer network [40] to transfer the
color style of g, to & to obtain a color-adapted intermediate result y, which subsequently guides
the remaining reverse diffusion steps for faithful and coherent face coloring. To supervise this process,
we define a color consistency loss L3 between &, and y,, which enforces global color coherence
while allowing structural flexibility in regions sensitive to identity. Specifically, L3 is defined as:

L3 =]y, — ﬁCng .y, = ColorTransfer (&, @p) . (8)

In this phase, by using the loss gradient V4, L3 to guide tones and shadows of skin regions, and
combining this with the earlier selective restoration guidance, facial coloring realism, and identity
preservation are improved while supporting further fine-grained facial detail reconstruction.

Overall Guidance. Our guidance strategy is staged to align with the progression of the reverse
diffusion. In the early phase of denoising, where ¢ € [T}, T], models focus solely on structural
restoration. We apply guidance losses £ = £ + Lo, where £ encourages fidelity in intact regions
and Lo enforces smoothness in breakage regions. Once the facial identity stabilizes, in the later phase
t € [0, T3], we introduce a selective coloring loss L3 and formulate the full loss as £ = L1 + Lo+ L3.

In this framework, pseudo-labels generated under a weak guidance scale s,, are used to supervise the
actual restoration process, which is conducted under a stronger guidance scale s;. To ensure coherent
interaction between the two stages, we adopt a joint optimization perspective:

c=argmin (E [y, (s3) (s 3+ 1y, (s3) @ (DI E ly (s3) ~@s(sD)3) - ©)



Ours

Figure 6: Quantitative comparisons of results on no breakage and large-region breakage images.

Theoretically, an optimal pair of weak and strong guidance scales (s5,s¥) achieves an equilibrium,
where neither under- nor over-guidance dominates, enabling effective perceptual restoration.

4 Experiments
4.1 Experiments Setting

Datasets and Metrics. Our method is training-free and does not require a training dataset. For
evaluation, we randomly collect 300 old face photographs from the Internet as our benchmark, called
VintageFace. All images are cropped and aligned to 512 x 512 using the open-source FaceLib library!.
We further categorize them into three levels of degradation: simple, medium, and hard, based on image
quality, 100 images each. Details of the benchmark are provided in our Appendix. Since ground-truth
is unavailable, we follow previous works [10} [11] and adapt no-reference metrics, like FID [41]],
BRISQUE [42], TOPIQ [43], and MAN-IQA to evaluate perceptual quality. Furthermore, we
provide qualitative results and CLIP-based [43] identity distance to assess restoration fidelity.

Implementation Details. We use the pre-trained real-time model BiseNet [36] and the scratch
detection model from [37] to obtain face parsing maps and scratch masks from inputs, respectively.
Our pre-trained diffusion model is an unconditional denoising network trained on FFHQ datasets,
which learns to reconstruct high-quality faces from pure noise over 7' = 1000 steps. We restore
breakage facial regions during the first 600 steps, and apply color migration in the remaining 400
steps (T} = 400). The strong gradient factor of our SSDiff is s, = 3.5¢~3. PGDiff [16] is also
set to this value for fairness. For the style transfer process shown in Fig. 3] we adopt a pre-trained
lightweight model CAP-VSTNet [40]], without using its built-in segmentation module for boundary
invariance. All experiments are implemented in PyTorch framework on an NVIDIA RTX 4090 GPU.

4.2 Comparisons with Existing Methods

We compare our SSDiff with BOPB [37], which is specialized for old photo restoration; Code-
Former [9]], DifFace [10], and DiffBIR [I1]], which are designed for blind face restoration; and
DDNM [14] and PGDiff [16], which guide pre-trained diffusion for zero-shot old-photo restoration.

As shown in Table[S5] a quantitative com-
parison of our SSDiff with the above
methods demonstrates that our approach
not only significantly outperforms existing
methods in FID, BRISQUE, and TOPIQ,
which reflect image features quality, but
also achieves more natural image quality in
the cross-modal human perceptual metric
MAN-IQA. However, these metrics alone b A ] 3l

do not fully capture the fidelity of the re- LQ  Pseudo-Label Ours (Orginal) Ours (Style)
sults. Therefore, Figure. [5| presents qualita-
tive comparisons across three types of old
face photographs: simple, medium, and
hard. Our method produces face images with natural color, clear texture, and minimal damage, while
maintaining high fidelity and preserving the identity of the input face images. Furthermore, we
provide more old-face photo restoration results in our Appendix.

Figure 7: Our method allows stylized restoration of facial
components specified by reference to pseudo-labels on inputs.

'Facelib: https://github.com/sajjjadayobi/FaceLib



Evaluation on Diverse Old Face Photos. As shown in Fig.[6] we validate the generality of our
SSDiff on a broader set of old face photos. This includes no-breakage images where the mask is all
zeros, and large-region breakage images where the mask indicates missing regions to be filled. In all
scenarios, our method performs robustly, achieving high-quality face coloring and region completion
while restoring sharp facial contours. It significantly outperforms existing methods that are limited to
a single function, such as coloring, completion, or suffer from overall poor results.

Region-Specific Stylized Restoration. Since the face parsing map is insensitive to scratches and
highly structured features of faces, we can reliably select specific facial components for targeted
restoration using fixed semantic labels. As shown in Fig.[7] our restored faces exhibit unnatural violet
around the lips. This issue can be mitigated by explicitly selecting the lip region via the parsing
map and increasing the guidance strength for this component. Furthermore, the same strategy can
be applied to adjust hair color, for example, modifying yellowish hair to a dark tone by reference to
pseudo-labels. This property allows us to fine-tune facial local components with suboptimal details
and achieve more visually appealing face restoration results.
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Figure 8: Ablation studies on the effect of different weak guidance factors s,, for generating pseudo
labels and strong factors s, in restoration on results. When s, = 1e~3 and s,, = 3.5¢~3, our results
show the best guidance loss, facial tones, facial details, and fidelity of identity.

4.3 Ablation Studies

Self-Supervised Strategy. When the self-supervised Table 2: Ablation studies of our self-
strategy is removed, namely when the pseudo-label supervised strategy on “medium” type data.
Yy, is no longer used, we disable both the selective

restoration guidance and selective coloring guidance ~S¢l-Supervise | FID{ TOPIQT BRISQUE}
associated with y,, in breakage regions. As shown in X 1457 0.618 792

fon i Vi v 1283 0.641 7.29
Table[2] results show a significant drop in visual qual-

ity without the self-supervision strategy. Furthermore,

based on Fig. 2] we explore the appropriate range for weak and strong guide factors s,, and s,
which determines the reliability of generated pseudo-labels and results. As shown in Fig. [8| an
excessively large s,, leads to incomplete removal of pseudo-label scratches, leaving visible artifacts
in restorations. Conversely, an overly small s causes some identity feature mismatch, resulting in
distorted eyes and dark facial tones. Thus, we set s, = 1le™> and s, = 3.5¢ 73 to obtain best results.

Selective Guidance. We first evaluate the effective- Table 3: Ablation studies of our selective
ness of the three guided losses: £q, Lo, and L3. As guidance strategy on “medium” type data.
shown in Table[3] all three gradient-based losses con- i
tribute to improved restoration. As shown in Fig.[T0] Guidance | FID] TOPIQt BRISQUE|
visualization results further reveal that £, and £ en- Ours 1283 0.641 7.29

hance the sharpness of facial structures, reducing vis- W; 0 ﬁl }‘3‘%? 82(3)(2) g}é
. - . w/lo Lo . . .
ible breakage artifacts in old photos. In contrast, L3 wio La | 1363 0.624 765

plays a critical role in facial coloring, ensuring a natural
tone in results. Furthermore, since L3 is applied after
the facial structure has stabilized, we investigate the appropriate value for 77. As shown in Fig. [0}
letting T" denote the total number of diffusion steps, setting 77 = 0.47" (fluctuating with degradations)
stabilizes the facial structure and enables the guided coloring to produce more natural skin tones.

Next, we justify the design of selective restoration. The pseudo-label y,, is not used to guide high-
semantic facial components such as the eyes, nose, or mouth, as these regions are identity-sensitive

N

and pseudo-label inconsistencies may degrade fidelity, as shown in Fig.[10} For selective coloring,
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Figure 9: Ablation study on different 7} values in reverse diffusion, i.e., when to start guiding face
coloring, on restoration results. Best facial tones and details are observed at 77 = 0.47".

we examine why guidance is applied only to skin regions, rather than full faces, or why we don’t just
color transfer. As shown in Fig.[T0] due to the limited performance of the pre-trained color transfer
network and large color variations of overall faces, the overall direct migration or full face guidance
leads to unsatisfactory results. Therefore, we restrict color guidance to skin regions.

Fidelity of Restoration. Due to the presence of severely Table 4: Quantitative comparison on
degraded facial features in a part of inputs, it is challenging identity distances () with LQ inputs.

to reliably evaluate identity consistency across all samples. _ _
To ensure meaningful measurement, we select 50 LQ in- BOPB [9]  DifFace [10] DiffBIR [I1]

. . . 0.2348 0.2451 0.2223
puts with relatively well-preserved facial features and com-  5rrR7 [T2] PGDIff [16] Ours

pute CLIP-based [45] identity feature distance between the () 5354 0.2859 0.2280
restorations and inputs. As shown in Table [ our method
achieves low identity distances, indicating good fidelity in restoring identity-relevant features.

4.4 Limitations and Future Works

Our method improves the robust-
ness of face restoration for old
photos and performs well even
under complex breakage. How-
ever, as shown in Fig. [TT] when
large stained regions are present,
our method may mistakenly re-
store these stains as part of the
face, such as skin, leading to un-
clean results. This issue stems
from the diffusion model’s ten-
dency to over-rely on surround-
ing context in severely degraded
regions, leading to incorrect restorations when visual cues are ambiguous. In the future, we plan to
incorporate fine-grained region-level annotations for such cases to reduce failure modes.

=g
S
3%
Ly
= S
© &

“fc” is facial features
like eyes, eyebrows,
or mouth in facial
breakage regions.

Figure 10: (Left) Ablations of £1, L2, L3, and why we can’t guide “fc”
in breakages in L. (Right) Ablations of color-guided areas, and why
don’t we just color style transfer (S7) instead of guiding coloring?

PGDiff [16] Ours

Figure 11: Our Failures. When large stains appear, they may be misinterpreted as a part of facial or
hair structures and color by our method, leading to unnatural artifacts and distorted local details.

5 Conclusion

In this work, we present SSDiff, a specialized framework for old-photo face restoration that leverages
the generative capacity of pre-trained diffusion models through self-supervised pseudo-reference
guidance. Unlike existing approaches that rely on explicit degradation models or pre-defined high-
quality face attributes, SSDiff guides the denoising process using features selected from generated
pseudo-references and facial geometry priors such as parsing maps and scratch masks at different
sampling stages. This design enables the selective restoration of plausible facial regions of old photos
while maintaining high visual fidelity. Extensive experiments demonstrate that SSDiff not only
handles complex old-photo degradations effectively but also enables region-specific stylization of
faces, offering a flexible and robust solution for challenging old-photo face restoration tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope by emphasizing our contributions and experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Sec. [d.4] of the main paper, we discuss the limitations of the proposed
method.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Sec.[d] we extensively delineate all the details of our methodology, facilitat-
ing the reproduction of all experimental content based on our method description.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: To prevent potential plagiarism before the paper is accepted, we assure that
upon acceptance, we will promptly provide a link to the open-source code.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Sec.[d.1] we provide a detailed description of the experimental hyperparam-
eter settings, evaluation metrics, and the computational resources required.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This is not the experimental direction of this paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Sec.[d.1] we provide a detailed description of the experimental hyperparam-
eter settings, evaluation metrics, and the computational resources required.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, our research fully adheres to the NeurIPS Code of Ethics guidelines.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Our method aids old photos restoration.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of models or datasets that pose a
highrisk of misuse. The collection of old photographs of faces are taken from the Internet.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses publicly available methods, all of which are properly credited
in the main text.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not include new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This is not the experimental direction of this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This is not the experimental direction of this paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our paper does not include the usage of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Details of Our Benchmark

First, as illustrated in Fig.[ST2} we present our criteria for categorizing our proposed VintageFace
benchmark into simple, medium, and severe degradation levels. Specifically, we employ a frozen
CLIP model to compute the similarity between each old photo and a textual description of degradation
severity. Images are then ranked by their similarity scores and assigned to categories accordingly. To
ensure accuracy, we further manually corrected a small number of misclassified samples.

Second, as shown in Fig[ST3] we display representative examples from each degradation level in
the VintageFace benchmark. These examples demonstrate varying degrees of blurring, fading, and
structural damage, and are largely consistent with the classification criteria established in Fig[ST2]

Scores [ e A
"an old-face photo / 0.02 | simple \ f Simple
with severe blur, 0';5 1/3 1/3

heavy fading, and
large visible breakage"

- i l 0.43
Old-face _.M_. Calculate __, ¢, . v |Medium Manual Medium
Photos CLIP 5 Similarity 0.62 1/3 Screening 1/3
[ T [ T
\ 0_'.6.2 Hard / \ Hard
oos | 13 1/3

Figure S12: Method for categorizing degradation types into simple, medium, and hard levels in our
benchmark VintageFace for testing.

Figure S13: A showcase of representative facial images with varying degradation types from our
VintageFace benchmark. The benchmark includes faces across diverse genders, ages, and ethnicities.

B More Comparisons

First, we provide additional visual results in the appendix (e.g., FiglST6] Fig[ST7] and Fig[ST8)
to complement the main text. These figures showcase the restoration performance on old face
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Table S5: Quantitative comparison on real-world BFR benchmarks that contain old face photos, like
WebPhoto-Test and CelebA-Child. Bold and underlined indicate best and second best results.

Dataset Metric GAN-based Diffusion-based (Learning) Diffusion-based (Train-free)
: GPEN[7] Code [0] | DifFace [I0] DiffBIR [I1] | DDNM [14] PGDiff [16] Ours
WebPhotorTest | FIDU 1013 832 891 918 165.6 96.1 869
NIQE, | 6326 4705 4831 6.069 9.259 5117 4406
—TFID] 1130 1162 T13.1 1189 512 210 1127
CelebA-Child | \yop | 4045 4983 4318 5.549 6.576 5070 4524

photographs across diverse genders, ethnicities (Asian, European-American, and Indian), and age
groups. Our method effectively balances perceptual quality and identity preservation: the restored
images exhibit minimal artifacts or breakage while maintaining faithful facial identity.

Second, we observe that widely used blind face restoration benchmarks, such as LFW-Test and
CelebChild, also include a substantial number of old face photos. However, these differ from our
dataset in that they primarily exhibit blurring, with no significant structural damage and limited
fading. To demonstrate the generalization and effectiveness of our method, we compare it with
state-of-the-art approaches on these two benchmarks. Following previous works [9,116], we adopt
FID and NIQE as evaluation metrics. As shown in Table [S5] our method achieves good quantitative
results on both benchmarks. Furthermore, we provide visual comparisons in Fig. which reveal
that our method not only effectively addresses blurring but also excels at restoring facial color. This
perceptual advantage, particularly in color restoration, is not fully captured by quantitative metrics.

Thirdly, VintageFace primarily consists of frontal photos, as portrait photos decades ago were typically
studio-based, focusing on clearly capturing facial features, making profile shots rare. Additionally,
eyewear was less common, resulting in fewer photos with glasses. Consequently, our data has fewer
such samples. Nevertheless, as shown in Fig.[ST4] SSDiff performs robustly across these scenarios,
including glasses, profile shots, and severe degradations, consistently yielding favorable results.

C More Ablation

Robustness of Pre-trained Networks. Our SSDiff is generally robust to inaccuracies in external
components (face parsing, scratch detection, style transfer). These networks only provide coarse
directional signals during reverse diffusion, similar to classifier-guided diffusion, and are not strict
constraints. As long as the guidance is not severely misleading, the strong generative prior of the
frozen diffusion model dominates reconstruction. To quantify this robustness, as shown in the
Table[S6] Table[S7] and Table[S8] we conduct ablations on the Medium type subset:

For parsing map networks, we introduce inaccuracies by replacing the original parsing maps with
pseudo-label parsing maps of different strengths s, where the resulting errors are even larger than
those observed in parsing maps under severe degradations (79% IOU). The resulting IoU with the
original parsing map is: for s=2.5e-4, IoU=76% (24% discrepancy); for s=1e-4, loU=70% (30%
discrepancy); For scratch detection networks, we randomly flip 10%, 20%, and 30% of the masks of
breakage regions to simulate a situation where some of the breakages have not been detected; For
style transfer networks, we weaken the style transfer guidance by reducing the style factor o from 0
to 0.1 and 0.2, slightly affecting color and content.

Table S6: Parsing Maps. Table S7: Scratch Masks. Table S8: Style Transfer.
Ours 76% 70% Ours 10%flip 20%flip 30%flip  Ours (a=0) a=0.1 a=0.2

FID(]) 128.3 131.1 1334 1283 129.2 130.7 1325 1283  129.2 128.8
MAN-IQA(T) 0.395 0.391 0.382 0.395 0.391 0.379 0.381 0.395  0.396 0.392
Face Sim.(f) 1 09850955 1 0974 0953 0.937 1 0.977 0.959

Here, Face Similarity (range [0, 1]) denotes the cosine similarity between features (extracted with
ArcFace [40]) of the perturbed restoration and the original restoration (Ours). These results show
that errors in the pre-trained networks are not severe, and the strong generative prior of the diffusion
model can propagate the correct cues to other regions, preventing significant performance drops. This
demonstrates that SSDiff is robust to these pre-trained networks.
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Wearing Glasses

Figure S14: Visualization of SSDiff under wearing glasses, different poses, and severe degradation.

Latency. Our method is built upon existing pre-trained diffusion face generation models, where
additional inference overhead mainly comes from four components: a simple restore, a face parsing
network, a scratch detection network, and a style transfer network. All components are lightweight
and are executed at a single denoising step rather than throughout the entire process. Moreover,
except for the style migration network, the other three can optionally be pre-processed offline. When
all four components are executed online, the average latency for processing a single old face photo is
95 ms on an NVIDIA GeForce RTX 4090. If the three offline-optional components are pre-processed,
the average latency is reduced to 24 ms. In contrast, PGDiff [16] requires semantic information
extraction at each denoising step, introducing a latency of about 10 s. Therefore, our method only
introduces minimal latency to existing pre-trained generation diffusion frameworks.

Computational Cost. As shown in Ta- Table S9: Quantitative comparison on computational
ble [S9] we further compare the number of ~ costs with existing diffusion-based BFR methods.
Parmas, FLOPs, and inference time of our i _ i
method with existing diffusion-based face o | Difface [10] DiffBIR [11] PGDiff [16] Ours
. Parmas] 175.4M 1717M 47.7M 45.4M
restoration methods [10.[I1L[16]. We let the g ops| | 268.8G 24234G 12756 120.7G
restore be performed offline; our method
performs excellently. Our method is smaller in terms of the Parmas and FLOPs counts, especially
compared to stable diffusion-based methods like DiffBIR [11]].

‘\ Face Restoration b

Method

Image Restoration
Method

Image Restoration l
Method }
Non:face Combine . -
Regions X

Figure S15: (Left) Face images are highly sensitive to artifacts, directly restoring photos containing
faces with image restoration methods may results in visually disturbing results. (Right) A common
strategy involves cropping and aligning facial regions, followed by restoration using face restoration
methods, while non-facial regions are enhanced with image restoration methods to ensure visual
perception. Therefore, old photo face restoration holds practical value for old photo restoration.

D Necessity of Old-Photo Face Restoration

While general image restoration methods [[1]] aim to restore the entire image holistically, we argue
that dedicated face restoration [6] is necessary and beneficial, especially in the context of severely
degraded old portraits. As shown in Fig.[ST3] directly applying general real-world image restoration
models [47] to facial regions may introduce noticeable artifacts, even when these methods perform
reasonably well on background areas. This is because facial regions are typically small in size,
contain rich structural priors (e.g., eyes, nose, mouth), and are highly sensitive to local distortions.
Artifacts in these regions are particularly perceptible and detrimental to human perception.

Similarly, old face photos suffer from unique degradation patterns such as heavy blurring, fading, and
structural damage. Applying global restoration methods [47, 48] to these faces without region-specific
modeling frequently leads to distorted identity features or unnatural textures. Therefore, we advocate
for face-specific old photo restoration approaches [[14) [16] that focus on preserving facial identity
and fidelity, while allowing general old photo restoration techniques to handle the surrounding
non-facial regions. This targeted strategy ensures high-quality restoration where perceptual sensitivity
is highest and complements broader restoration pipelines. Therefore, we respectfully believe the task
of old photo face restoration holds specifically practical value.
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Figure S16: Qualitative comparisons with existing methods on our VintageFace.
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Figure S17: Qualitative comparisons with existing methods on our VintageFace.
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Figure S18: Qualitative comparisons with existing methods on our VintageFace.

25



. = d
CodeFormer [9] leFace [IE]]

GPEN

DDNM

DiffBIR ResShift PGDiff [16]

GPEN [[7] CodeFormer [9|

GPEN [71 CodeFormer o]

e

DDNM [[E]] PGDiff [[E]] Ours

DifFace [10]

ResShift [49]

‘ResShift [49)  DDNM PGDiff [16]  Ours

DiffBIR
Figure S19: Qualitative comparisons with existing methods on WebPhoto-Test and CelebA-Child.
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